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Abstract—This paper investigates robust privacy-sensitive au-  While the output of a diarization system may appear to be
dio features for speaker diarization in multiparty conversations: restrictive, there are a growing number of applicationg tha
ie., a set of audio features having low linguistic information for .\ 4e| the speech/speaker activities (derived from ditiazj

speaker diarization in a single and multiple distant microphone . .
scenarios. We systematically investigate Linear Prediction (LP) for studying productivity and personal health. For examfgig

residual. Issues such as prediction order and choice of represen- Presents several case studies investigating organizato-
tation of LP residual are studied. Additionally, we explore the ductivity using such measures, implemented on wearable de-

combination of LP residual with subband information from 2.5  vices. In the medical community, [6] uses a portable device
kHz to 3.5 kHz and spectral slope. Next, we propose a supervised, record features from which, among others, speech activit

framework using deep neural architecture for deriving privacy- .
sensitive audio features. We benchmark these approaches agsin was extracted to study physical and mental health.

the traditional Mel Frequency Cepstral Coefficients (MFCC) Apart from privacy, another constraint in recording audio
features for speaker diarization in both the microphone scenarios using wearable devices is that the features for diarization
Experiments on the RTO7 evaluation dataset show that the phe robust to single distant microphones (SDM). Traditional
proposed approaches yield diarization performance close to the meeting room diarization, in contrast, uses multiple dista

objecively evaliate the notion of privacy i terms of inguisticin- Microphones (MDW) [7]. This paper focuses on the former,
formation, we perform human and automatic speech recognition €Xploring the tradeoff between diarization performance an
tests, showing that the proposed approaches to privacy-sdtise  audio privacy.
audio features yield much lower recognition accuracies compared  State-of-the-art diarization systems [7], use featureveld
to MFCC features. from the spectral shape such as Mel Frequency Cepstral Coef-
Index Terms—Privacy sensitive audio features, speaker diariza- ficients (MFCC). While these features are relatively robaost t
tion, LP residual, deep neural networks, listening tests. SDM, Milner et al. [8] show that highly intelligible speech
can be reconstructed from MFCC. Previous approaches to
privacy-sensitive features have focused on either rgingéing
simple, frame-level heuristics for estimating speechvépgti
UR work takes place in the context of analyzing socidah conversations [4], [9], or computing long-term averagés
interactions using multimodal sensors with an emphasitandard features for indexing audio logs [3]. However ¢hes
on audio [1]. Towards this we wish to capture spontaneotiiethods were not proposed for diarization, a choice that is
conversations using portable audio recorders. Analysion$ further supported by results in our preliminary experirsent
versations can then proceed by modeling the speech/speakén this paper, drawing motivation from the source-filter
activities produced by a speaker diarization system. Ticagi model of speech production, we investigate linear preaficti
ally, diarization is a batch process without any prior knedge (LP) residual for diarization. Besides prediction ordevot
of the speakers [2]. different representations of LP residual are comparedgham
However, recording and storing raw audio for this purpodé€al-cepstrum and MFCC, with the latter yielding bettefqer
would breach the privacy of people whose consent has aance. We explore the combination of residual with subband
been explicitly obtained [3]. Some studies have sugges$ied tinformation (2.5 kHz to 3.5 kHz) and spectral slope. To
the linguistic message is the most privacy-sensitive mfor enforce stricter privacy, we study obfuscation methodshsuc
tion ([3], [4]). To respect this notion of privacy, featuresuld as local temporal randomization [10] of residual features.
be stored from which neither an intelligible speech nor the In addition to LP residual, we propose a supervised resjdual
lexical content can be reconstructed. We take this apprtmctpbtained using a deep neural network (DNN) with a bottleneck

extract privacy-sensitive features and then to apply zhaion. architecture. We benchmark both features against MFC@usin
the diarization system presented in [11] on the NIST RTO07
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Diarization performance

being interpreted as lower privacy. We show that the praghosepproaches to privacy-sensitive features evaluation (b)
approaches are more privacy-sensitive than MFCC. for speaker diarization (a) Multiple distant mic
The contributions of this paper are: (a) a systematiC iNstandard spectrai-shape based feature meeting audio
vestigation of LP residual features for diarization in SDN Baseline MFCC Sgge'gt;ﬁ;‘ggggic

and MDM conditions; (b) a DNN architecture for extracting_
. . . . . -1 Excitation source features .
features; and (c) evaluation of privacy in audio using HSR | p (esidual Evaluation of

privacy (c)

and phoneme recognition. The findings of this paper are that

the proposed features yield a diarization performancesdos | Pata-driven features . |Human speech recog

MFCC on SDM, while yielding much stricter privacy. Deep neural network based approach
The rest of the paper is organized as follows. Section |l ] ) . ] ]

reviews the literature on LP residual and DNN. An overvie\@%ré\'/idfd'oiikscgiggn}l|°f our approach. A detailed discussibthe figure

of our methodology is summarized in Section IIl. A descrip- '

tion of the proposed features is given in Section IV, while

Section V discusses the diarization setup. Parameterstisele ~ Feedforward neural networks with a 3-layer architecture,

experiments associated with the proposed features isidedcr also called multilayer perceptrons (MLP), have been used fo

in Section VI. Results are presented in VIl and Section Vllfeature extraction in automatic speech recognition (ASR) f

Finally, conclusions are drawn in Section IX. several years [19], [20]. Recently, DNN i.e., the number of

layers more than three (alternatively, number of hiddeersy

Il. RELATED WORK more than one), are receiving attention due to their abibty
So far, we have discussed the relevant work on privacsepresent knowledge in a principled fashion ( [21], [22]heT

sensitive features. In this section, we briefly survey eglat motivation comes from the complexity theory of circuits [23

work in LP residual and deep neural networks. Of interest to this work are DNN with bottleneck archi-
) o _ tectures, which are recently explored for ASR in the quest
A. Linear prediction residual towards obtaining better phoneme representations. Fan-exa

It is generally known that up to three formants are requirgae, [22] shows that the output from the bottleneck layer
to synthesize intelligible speech or to reconstruct thguistic of a trained 5-layer MLP vyields lower word error rates in
information [13]. Motivated by the source-filter model, oucomparison to the traditional probabilistic features.
approach to preserving privacy is based on adaptivelyifiler A key issue with DNNs is the difficulty in training its
these spectral peaks. weights. A gradient-based optimization starting from @nd

LP analysis of speech [14] assumes the source-filter modftialization has been reported to get trapped in local op-
and it estimates three components, namely an all-pole modeha [23]. This was also observed by us while training net-
a residual and a gain. The vocal tract response is modeledvioyrks with more than three layers for phoneme recognition on
the all-pole model, with the model capacity being determin€el IMIT, to the extent that deeper networks perform worse. Two
by the prediction orderp). The residual, obtained by inversecommon strategies to address this difficulty are, greedgriay
filtering the signal with the all-pole model, can be consider by-layer training [24], [25], and an autoencoder traini@d ]
to be privacy-preserving. Depending on LP order, residual Since the privacy constraints imply that the derived fesgur
contains information mostly about the excitation source cfnnot capture phonemes, we deploy a reconstructed spectru
speakers [15]. It has also been shown that humans can reom the bottleneck layer could be deployed as an inverse
ognize speakers by listening to the residual signal [16].  filter and hypothesize that it yields a privacy preserving

Previous works have exploited the speaker information mepresentation. Section IV-B describes this in detail.

LP residual. For example, ( [15], [17]) use residual for $mea

recognition. In an earlier work [18], interpreting the LRler I11. OVERVIEW OF OUR METHODOLOGY

as a tradeoff between privacy and speaker information, weThis section, composed of three stages, summarizes our
explored LP residual as a feature for speaker change d&tectpverall methodology in Figure 1.

To our knowledge, this is the first work exploiting residuai f  (a): We begin with a detailed description of the features ex-
diarization in SDM and MDM scenarios. tracted from LP residual and DNN in Sections IV-A and IV-B.

In sensor data research, methods of obfuscating data to pre-gain further insight, Section IV-C provides a more formal
serve privacy, such as randomization, are well establift@d analysis using mutual information.

Persuaded by obfuscation methods, we conjecture that whilgb): Benchmarking privacy-sensitive features entails a com-
temporal dynamics of the speech signal is important for ifgarison of diarization performance as well as linguistiegmy.
intelligibility, it could be less so for speaker recognititasks; Details of the diarization system, features, datasets,thad
local temporal randomization (within 250 ms) of residughaseline performance are presented in Section V. Parameter

features is explored. selection for the proposed features on the development (SDM
and MDM) data is discussed in Section V. Diarization results
B. Deep neural networks (DNN) are presented in Section VII. We discuss the MDM scenario

Our interest in DNN stem from its suitability for representmainly as a reference to the existing literature.
ing phonemes. This section reviews DNN, while a later sectio (c): Experimental protocol and the results for HSR and
(IV-B), describes the proposed feature extraction usingNDN phoneme recognition are provided in Section VIII.
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Phoneme MLP

IV. PRIVACY-SENSITIVE FEATURES

We present the details in deriving the proposed features and
follow that by an analysis based on mutual information.

A. LP residual features HL Hz
Remove this part
We discuss features derived from LP residual, subband ’W\

information, and spectral slope.
(a) LP residual:LP residual is extracted every 10 ms, using
a hamming window of size 30 ms. Two representations of the
residual studied are: real-cepstrum ( [17]) and MFCC with
19 coefficients each. These representations have been fixed a
19 dimensions to have the same dimensions as the baseline
MFCC features. The MFCC representation is computed us-
ing HTK [26] Feature selection _eXpe”mentS analyzing bomg. 2. 5-layer deep neural network with bottleneck ardtitee. (a) 5-layer
representations are presented in Section VI. Effect of tBgoneme MLP is trained with phoneme targets using cross gntmsgrion
prediction order, representing a tradeoff between privag (b) Keeping weights for the first 2 layers fixed, and removing & layers,
performance, is studied by varying it from 2 to 20. gi;:(r:ig?].structlon MLP is trained for the last two layers witfuared error
(b) Subband informationPrevious studies have shown that
the spectral subband, 2500 Hz to 3500 Hz, carries speake
specific information [27]. In an earlier study [18], we exipdal
this for speaker change detection (SCD) by represent

the subband using three MFCC. An MFCC representati re, that performs phoneme classification. From [22], ,[24]

decorrelates the filterbank energies and makes it suitaile .
a Gaussian Mixture Model (G%/IM) with diagonal covari-OUtpUt at the bottleneck layer (i.e., bottleneck featuoes) be

ance matrices. To compute subband MFCC, we employ%t n3|dttre]red Ets ??OOd tﬁhogege rep:(relsentatuf)rl.h Asf? second
HCopy [26]: it bandlimits the signal between 2500 Hz to 350 €p, the output Trom the bottieneck fayer of the phoneme

Hz, and distributes the four filterbank channels equallyhan t LP is used to train a recons'.[ructlon' MLP, Wh'.Ch reconst}'uct
tthe spectral envelope. An illustration of this is provided

mel scale such that the lower cutoff of the first filter is a Fi 5 W di th hitect d traini
2500 Hz and the upper cutoff of the fourth filter is at 350f! T'gure 2. Ve now discuss the architecture and training

Hz. Three cepstral coefficients are then calculated from tﬂéocedure of the two MLPs in detayl_. . .
four values using Discrete Cosine Transform (DCT). Phoneme MLPTwo phoneme classification MLPs are trained

without explicit temporal context. These MLPs take as input

(c) Spectral shapeGenerally, speakers differ in the dis-" g :
tribution of spectral energies [28]. For instance, male ar?dther MFCC or logarithm of DFT square magnitude vectors

female speakers exhibit different spectral energy distiom. (OPtained from 512 point FFT), both of which are mean and

Spectral slope (SS) is a way to characterize this, with tygriance normalized. When there is no ambiguity, we refer to
spectrum of female speakers tending to show a steeper sIgpi! Of them aphoneme MLPLet the layers of the phoneme
than male speakers. In [18] we showed that the first cepstfat- @nd their notations be — input (1), first expansion (H1),
coefficient ¢;) obtained from LP analysis can enhance schotleneck (B), second_ expansion (H2), and output (C_)l)'
when combined with the residual features. The number of nodes in H1 and H2 was kept same, since

(d) Obfuscation (local temporal randomizationffeatures €XPeriments in [30] show that varying the ratio of H1 to H2
within non overlapping blocks of sizesV(= 1,5,9, 13) are did not yield an appr_eC|abI_e d|ffe_renc_e in ASR_ performance.
shuffled using a uniform pseudo-random number generatbP€ Pottleneck layer is a dimensionality reduction laye][2
Such a randomization could result in two successive fram@gd we varied the number of units from 20 to 40 [30].
being separated by (N — 1) frames. The choice of the upper "€ output layer of the phoneme MLP represents the
limit for N being 13 frames was guided by results from [29 'h_oneme class an(_:i we use 39 units with softmax nonlinearity.
which indicate that information in the speech signal up to 23/his MLP was trained by growing MLPs layer-by-layer on
ms can be exploited for phoneme recognition. the TIMIT database [25]. Cascaded MLPs with 3, 4, and 5

layers are trained using standard back propagation ahgorit
by minimizing the cross entropy error criterion ( [22], [24]
B. DNN features Excluding ‘sa’ dialect sentences, the TIMIT training data

The aim of the proposed approach is to model the peaksdensists of 3000 utterances from 375 speakers and the cross-
the spectral envelope that tend to carry linguistic infaiora  validation data consists of 696 utterances from 87 speakers
For this, the spectral envelope is reconstructed from aginen The hand-labeled dataset using 61 labels is mapped to the
representation. The reconstructed envelope is then filtaye standard set of 39 phonemes [29].
obtain a residual (similar to LP residual), which is reprded Reconstruction MLP:To reconstruct the spectral envelope,
using MFCC. Details of the two steps — reconstructing thee train a 3-layer regression MLP that takes the bottleneck
envelope and filtering — and an example, are provided beldwatures as input and reconstructs the power spectrum by

H3
Reconstruction MLP

i) Reconstructing spectral envelopReconstruction of the
R ectral envelope is accomplished in two further stepst,Fir
igg train a 5-layer phoneme MLP, with a bottleneck architec-
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vector). It can be observed that the reconstructed spectrum
consists mainly of the spectral shape than the spectrailsieta
|@ Figure 3(c) shows the filtered spectrum. We observe that the
spectral shape (mainly the first formant) is filtered.

. . . . . . .
0 1000 2000 3000 4000 5000 6000 7000 8000

=16 1 C. Mutual information based analysis
14 B
0 1000 2000 3000 4000 5000 6000 7000 8000 We now present a discussion on privacy using mutual
4 ‘ ‘ ‘ ‘ ‘ ‘ ‘ information (MI). Privacy in audio could be interpreted as a
@ ZMWMMWMM@ function that maximizes the MI with speakers while minimiz-
0 ing the MI with phonemes. This is followed by an analysis on
"% 1000 2000 3000 4000 5000 6000 7000 8000 the TIMIT test data (1344 utterances from 168 speakers).

Frequency (Hz) . . . .
1) MI framework: Given X, a multivariate continuous

random variable denoting the log squared magnitude, and
Fig. 3. Example steps in neural network filtering for an inmanie thatis S, () discrete random variables, denoting speaker and phoneme

liyl: (a) Input to phoneme MLP (logarithm of DFT square maguéector) ; ; : ;
(b) Output from reconstruction MLP (logarithm of DFT squaregnitude labels respectively, the goal is to find a transformagothat

vector) (c) Filtered spectrum. maximizes the functio (¢(X); S) — I(g(X); Q).

minimizing the squared error. The parameters of the recon- g" =arg m;’LXI(g(X)?S) —1(9(X); Q) @)
struction MLP are: the input from the bottleneck layer (B),

the expansion layer (H3), and the output layer (O2). This equation is, in general, difficult to solve without addi

The input to the reconstruction MLP is the linear outpufonal assumptions. Assuming th@tand.S are independeht
from the bottleneck layer of the phoneme MLP. The numbeéie maximum of Eq (1) is reached for:
of nodes in the expansion layer (H3) is varied independent
of H1 and H2. The output of the reconstruction MLP is the g (X)=58 (2)
estimated power spectrum, i.e., logarithm of 257 point DFT
square magnitude vectors. Another choice of output, nareelyyhere S is a transformation o that has maximum M with
19 dimensional MFCC was explored. We refer to both MLP§ A fyrther assumption of a source-filter model of speech
as_reconstructloln MLP These MLP are trained on TIMIT production simplifies this to:
train set, described above, using standard back propagatio
algorlthm l_)y minimizing the squared error cr.lterlon. . F(X)=§=x-X 3)

2) Filtering to remove spectral envelopdzor an input,
MFCC or logarithm of DFT square magnitude vectors, thv(?/heref( is a transformation ofX that has maximum mutual

corresponding phoneme MLP is used to obtain the “ne%rformation WithQ.

output from the bottleneck layer. Parameter selection rexpe Lp idual: In th ¢ Lp ind q
iments (Section VI) are performed with both reconstruction residual: In € case 0 , an Inaepen ent source-
er model assumption is part of the modeling. The all-pole

MLPs. The estimated envelope, obtained from the output i X
the reconstruction MLP, is either logarithm of 257 point DF‘ImOdel can be relntgr.preted.as an estimate of-the phor_leme
information (X) and it is obtained in an unsupervised fashion

square magnitude vectors or 19 dimensional MFCC. th ihed ral | The LP residual I
Filtering is then performed to remove the estimated enelo s the smoothed spectral envelope. The residual natura
gcomeSg*(X) in Eq 3.

from the original spectrum of the speech signal. For the ca ] o ]
where the output units are logarithm of DFT square magnitudeP€€P neural network filterAn alternative is to train a data-
vectors, filtering is performed by subtracting it from thean driven filter that yieldsX,, given X' as input. Let us consider
(logarithm of DFT square magnitude vectors). The filtered 5-I_ayer MLP for phoneme clgssmcatlon, with a bottleneck
squared magnitude vector is then converted to an MFc&cChitecture. LetX denote the input, and lef denote the
representation of 19 dimensions. In the case of the outgitg uffandom variable at the output of the MLP. Then,
being MFCC, filtering is performed by subtracting it from the
input MFCC. Z =9(X;61,62,D) (4)

3) An example:Figure 3 illustrates the example steps in
neural network filtering for an input frame that is /iy/ phome  Wheref,, 0, is the set of all parameters of the MLP (i.e., the
Figure 3(a) plots the input to the phoneme MLP (logarithm ofeights and the biases) before and after the bottleneck laye
DFT square magnitude vector). Observe that the broad spectespectively, and is the training data. Le;, denote thek'"
shape and the spectral details are manifest. First formafoneme and” denote the estimated probabilities. The cross-
can be seen around 320 Hz, while the second formant can
be observed around 2500 Hz. Figure 3(b) shows the outpufi; might be that speakers can have biases towards choices ravand
from reconstruction MLP (logarithm of DFT square magnitudeerefore towards phoneme
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entropy training criterion can be written as:

J(01,02) = —Ex[>_ P(ax|x) log P(gx|z)]
k
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It can be seen from the above equation that minimum cros Mutual information between features and phoneme labels

entropy training is equivalent to maximum mutual inforroati
training [31]. Let B denote the random variable obtained at

: : Fig. 4. Plot showing MI between the features and phonemesiydw
output from the bottleneck layer before the nonlinearityef, between the features and speakers. LPRx denotes resicatefe with LP

N . order x. SEZK and AH denote the features from [9] and [4] respectively.
B = qb(X, 01, D) (6) Deepey refer to DNN features with bottleneck sizes correspondingy.
whered; is the set of parameters of the MLP up to the bottle-

neck layer. Furthermore, from data-processing inequfgiy, . L .
y P g inequisey the number of clusters. Bias correction is performed udireg t

I(X;Q)>I1(B;Q) >1(Z;Q) (7) Miller's formula on the estimated mutual information [33].
Figure 4 plots baseline MFCC, residual, and DNN features

represented as 19 dimensional MFCC. Baseline MFCC has

high 1(X;S), showing that it is a good feature for speaker

recognition; on the other hand, it is not privacy-sensisirece

it has highI(X;@). For the residual, it can be observed that

However, given the constraints of the parametéts &),
1(Z; Q) is maximized. Similarly] (B; Q) is maximized for; .
Together with the fact that the dimension of the bottlendgk (
is much smaller than the dimension of inplX), means that

bottleneck B) serves as a compression of inpixt)(retaining as the LP order increase$(X: Q) and I(X:S) decrease.

information that has maximum MI with the phonemé)( : ; ) o
. . Clearly, a high LP order yields a privacy-sensitive feature
It is, therefore, reasonable to assume that other infoomati ) ; . ;
but it also yields low speaker information. LP order thus

such as speakers)is lost at bottleneck. We now consider theOfrers a tradeoff between privacy and speaker informaihon
reconstruction MLP, which is trained with bottleneck)(as P Y P '

: - S rediction order of 8 seems appropriate since it yields Mks
input, andX as the training target, by minimizing the squared . .

. . = with phonemes than does the baseline MFCC. Furthermore,
error. The random variable at the output of this MLP)(is a

reconstruction ofX and has therefore the same dimension z'atsWOU|d lead to the loss of the first 2 to 3 formants that are

X. ltis, however, reconstructed usitigy which has maximum important for synthesizing intelligible speech [13].

. ) : . : For the DNN features, the input and reconstruction layers
MI with @ (and has low MIwiths, because of dimensionality are squared magnitude vectors, with 3 bottleneck siZes-(

red_uctlon atp). Thgrefqrg,X can be consu_:iejed to be an10720,30).The expansion layers were fixed at 1000. Similar to
estimate ofQ). Inserting X in Eq (3), we obtainS. .
L , . . the LP order, the number of bottleneck units presents adfade
2) Mianalysis: In practice, we can introduce a variabig ( between privacy and speaker information. Having more units
in Eq (1) to make it/(g(X);S) — X - I(g(X); Q) and tune P Y P ' g.
. . . . enables the capture of the spectral envelope better; hoyatve
this variable for optimal values. Alternatively, we coultbip . ) : . :
o the cost of speaker information. In comparison with an dight
I(X;Q) versusI(X;S) and make more qualitative assess- . ; :
. . order residual, it can be seen that the DNN features (with 20
ments on the tradeoff between privacy and speaker informa- . . .
. . ottleneck units) yield much lower Ml with phoneme labels,
tion. We take the latter approach and Figure 4 shows sucr\}vﬁ”e ielding similar MI with speaker labels
plot. That is,I(X; Q) versus/(X;S), on the TIMIT test set. Fea¥ures ?rom 9] and [4] Zre markeﬁEZK and AH
A higher I(X; Q) could be interpreted as a feature with IOweFes ectively.SEZK is used to denote the feature formeél b
privacy. Similarly, a feature yielding highéi( X; S) could be P Y- y

interpreted as a better feature for diarization. An ideadgoy- concatenan_ng sp_ectral flatness, -energy, Zero Crossirgg rat
o : . and kurtosis; whileAH denotes a concatenation of non-
sensitive feature would be in the top-left of this plot.

For estimating the MI with phoneme and speaker labels, W itial maximum of the normalized autocorrelation, number

use the following form of MI:I(X; A) = H(X) — H(X]|A) of autocorrelation peaks, and relative spectral entropesé
where A denotes eithe@ or S. To estimate entropie#l (X) features SEZKandAH, are privacy-sensitive but have low MI.

and H(X|A), we use k-means clustering algorithm to dis-

cretize the feature space. The features are then binned and V. DIARIZATION SETUP

the normalized bin-counts are then used to estiniaé; A). This section discusses the diarization system, features,
Model selection on the TIMIT training data is used to idgntifdatasets and the performance measure.
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A. Diarization system D. Baseline performance

The diarization system is based on ergodic Hidden Markov The results are reported in terms of Diarization Error Rates
Model (HMM) as described in [11], where each state regDER). DER is the sum of speech/nonspeech errors and
resents a cluster (speaker). The state emission prolebilispeaker errors. Speech/nonspeech errors is the sum ofdmisse
are modeled by Gaussian Mixture Models (GMM) with &peech and false alarm speech. For all experiments reparted
minimum duration constraint of 3 seconds. The algorithithis paper, we include the overlapped speech in the evatuati
follows an agglomerative framework, i.e, it starts with egka
number OT CI_USterS (hypOthe_Si_Zed speakers) and theniveeisat RTO6 evaluation data: The f-iléfléiclylumns list the perforneaotthe
merges similar clusters until it reaches the best modelkerAftspeech/inonspeech detection while the next 2 columns rpptfiarmance of

each merge, data are re-aligned using a Viterbi algorithm to baseline MFCC features for MDM and SDM.
refine speaker boundaries. The initial HMM is built using EoaTaT o AT SH SoK SoK
uniform linear segmentation and each cluster is modeled avit valuation | Miss PSP pl\;llglr\;l W P élglr\;l “

5 component GMM. The algorithm then proceeds with bottom{—RTo6 65 | 01| 66 17.1 20.8

up agglomerative clustering of the initial cluster moded][

At each step, all possible cluster merges are compared usingable | lists the performance of the baseline diarization

a modified version of the BIC criterion [11]. system on RT06 MDM and SDM evaluation data. The first
This HMM/GMM based diarization system uses the bas@- columns list the performance of the speech/nonspeech

line 19 dimensional MFCC features, which are extractedyevegetection system in terms of missed speech, false alarm,

10 ms, with a hamming window of size 30 ms using HTK [26]and over all speech/nonspeech detection error. The overall

Delta and acceleration features are not used. speech/nonspeech error rate over all the files on the RT06

. " evaluation dataset is 86 The next two columns list the

B. Privacy-sensitive features performance of the baseline MFCC in terms of the speaker

The proposed privacy-sensitive features are compargfior for both MDM and SDM scenarios. As expected, MECC

against the baseline 19 dimensional MFCC using the systg@forms better on the MDM data. On RT06 we observe a

residual is represented using MFCC or real-cepstrum, both

19 dimensional. The 25 kHZ to 35 kHZ Subband (SB) iS V| PARAMETER SELECTION ONRTEVALO6
represented using 3 dimensional MFCC and is concatenate
with the spectral slope (SS), represented using the firsti@p

(I!?ecall that we use RTeval06 as the development dataset. In
- ; : Section IV-C, we presented an analysis of the features using
coefficient ¢,) obtained from LP analysis. The two featureég on the TIMIT test set. In this section we perform parameter

streams, one consisting of LP residual and another of ; . )
and SS features, are modeled with different GMMs an(sgialectlon experiments for the proposed features using the

they are combined by linearly weighting the individual log- larization system on RTeval06.
likelihoods [11]. .
For obfuscation, features are shuffled with a uniform rafd- LP residual features
dom number generator for block sized (= 5,9,13). The We address three issues in this section: (a) the choice of
DNN features are represented using 19 dimensional MFCQepresentation (b) prediction order (c) combination witips
and subband energies.

C. Datasets 1) Representations of LP residualve study the 2 different
Experiments were performed on NIST RT06 and RTO&presentations of LP residual using the baseline didqmizat
evaluation data for Meeting Recognition Diarization tasR][ system described in Section V-A. Figure 5 shows the com-
[35]. RTO6 evaluation data is used as the development datgsarison between the 2 representations on the RT06 MDM
and it contains nine meeting recordings of approximately 2fata. It can be observed that MFCC representation yields a

minutes each. The best set of parameters is then used Hetter performance for all prediction orders. It is intéiresto
benchmarking the proposed features against MFCC featuodserve that the gap between the two representations decrea
on the RTO7 dataset using the baseline diarization systém. Bs the prediction order increases. It could be due to MFCC
evaluation dataset (RTO7) contains eight meetings of yweabeing better able to capture spectral peaks than real cepstr
43 minutes each. MDM data is obtained by denoising titerom here on, we use MFCC representation of the residual.
individual channels using Wiener filter and then beamfogmin 2) Prediction order: The effect of LP order on MFCC
using the Beamformlt toolkit [36]. SDM experiments wergepresentation of residual on both MDM and SDM data is
performed on randomly selected individual MDM channels.presented in Figure 6. Both curves exhibit similar behayior
Speech/nonspeech segmentation is obtained using a foreddch can be analyzed separately in 3 relatively distinet re
alignment of the reference transcripts on close talkingronic gions: smaller drop in performance for increases in preauict
phone data using the AMI RTO06 first pass ASR models [37rders from 2 to 6, followed by a more dramatic drop in
Since our interest in this paper is in evaluating the privacperformance for prediction orders between 8 to 12, and then
sensitive features for speaker segmentation and clugteriagain a smaller drop afterward.
the same speech/nonspeech segmentation is used across bB#t us consider prediction orders between 2 to 6. An
experiments. increase from 2 to 6 results in a drop b6% in the MDM
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Fig. 5. Comparison between MFCC and real-cepstrum repi@sems of the Fig. 7. Combination of LP residual (MFCC representationhvétope and
LP residual on RT06 MDM evaluation data. subband. X-axis denotes the weight assigned to LP residual.

60 :ZDD&" 1 MFCC features in both SDM and MDM cases. Revisiting
the performance versus privacy tradeoff, an LP order of 8

seems appropriate for the diarization task, since the first

two formants are important for synthesizing an intelligibl

speech signal [13]. At this prediction order, residual gsel

a performance 0£22.3% on the MDM data while yielding

29.2% on the SDM data.

3) Combination with subband and slope featurebhe
effect of combining LP residual &** order in MFCC repre-
10 ] sentation with slope and subband on MDM data is presented in
Figure 7. X-axis denotes the weight assigned to LP residual,
L n + e while y-axis denotes the speaker error. We ran experiments

Prediction order varying the weights in steps of 0.05 starting from 0.05 t&%0.9
A weight of 1 denotes that LP residual is used without the

) ) ) ) o other features, while a weight of O denotes that these festur
Fig. 6. Using MFCC representation of LP residual, predictarder vs

speaker error is illustrated on MDM and SDM conditions of tleelopment are used without LP residual.
dataset (RTO6). It can be observed from the plot that for either slope
or subband energies, combining residual with weights less
case. This could be due to the loss of the first formarthan 0.45 yields a lower performance than that is achieved
which carries more linguistic information [13]. Speakerogr With LP residual alone. In general, combination with the
therefore, seems to be relatively less affected. subband energies yields a slightly better performance over
For LP orders between 8 to 12, an increase in the Lgope at smaller weights. On the other hand, for weights over
order results in a bigger drop in performance. For instand®4, the plot shows that the difference between slope and
an increase in LP order from 8 to 10 results in a drop gubband energies may not be significant. For instance, #te be
nearly % in MDM and 5% in SDM. We note that the vocal combination with spectral slope yields an error27% at
tract system is typically characterized by up to five resoean @ weight of 0.45, while the best combination with subband
in the 0 to 4 kHz range. An LP order in the range 8 to 12 cé&hergy yields an error af0.9% at a weight of 0.6.

model around 3 to 5 formants. Since higher order formantswe note that combining both slope and subband energies
carry more speaker information [38], we note that incregsiyields a consistent gain over combining with either of those
prediction order beyond 8 results in greater speaker errorsfeatures. Furthermore, combining both features with tesid

For the last segment (orders 12), we see a smaller dropyields improvement over residual by itself, for weights be-
in the performance as the order is increased. We note thaten 0.45 to 0.8. The best performance of this combined
residual contains both modeling and excitation errors. s tsystem is18.6% at a weight of 0.6. At this configuration,
LP order increases beyond 10, the contribution of the errorthese features yield a promising comparison with the haeseli
the residual is mainly due to the excitation error componentMFCC features X7.1%). It is interesting to note that the

It is also interesting to note that residual obtained B§ 2 diarization system which models the features using Gaussia
order prediction performs slightly better than the baselirdistributions is suitable for the proposed features as.well

w £y a1
o o o
T T T

Speaker error (%)

N
=}
T
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Fig. 8. Performance of DNN features on the development datdleBeck Fig. 9. With input features as MFCC, performance of the DNNttiBoeck
size (B - in terms of number of units) versus speaker error rét@sfor size (B - in terms of number of units) versus speaker error rgigsfor 5
5 different reconstruction layer sizes (H3). The input tees are squared different reconstruction layer sizes (H3).

magnitude vectors.

B. DNN features trying to reconstruct the input largely with only the phoreem

information. Consequently, it is understandable thatquies

We now analyze the parameters of the DNN approacyyer units (H3) than the first expansion layer (H1) of the
namely, input domain, bottleneck size, and filtering doma‘”phoneme MLP.

The phoneme and the reconstruction MLPs were tramedWe remark that DNN features obtained from the system

) . , which represents a gain of
opment data (RT06 eval). MFCC representation was obtam@%% over the baseline MECC features P 9

from the log squared magnitude vectors and the ICSI diariza- . . .
g squ gnituce v arz 2) MFCC input: We now examine Figure 9, where the

tion system was used to analyze the features. . ) .
y y input of the phoneme MLP was 19 dimensional MFCC.

Figures 8 and 9 illustrate the effect of bottleneck size wzersTh tout of th truction MLP 257 di ional
speaker error rates on the development data. The inpurésatu € oulput of the reconstruction was 'mensiona
uared magnitude vectors. Bottleneck sizes were varoed fr

are squared magnitude and MFCC vectors, respectively. 0 40 in st £10. for 5 diff i truction |
size of the reconstruction MLP was varied as well. All thé~ © In steps o , 107 ferent reconstruction layer

other parameters of the phoneme MLP and the reconstructionc> frqm 600 t'o 1_400' in steps of 200. )
MLP were unchanged during the experiments. E_xpenments |r_1d|cated that 1_000 nodes is a reasonable
1) Log squared magnitude inpufor the experiments in choice for the first and the _thlrd Iaye_rs of _the phone_me
Figure 8, the input to the phoneme MLPs was 257 dimensiodd-P- Although a bottleneck size of 30 in conjunction with
log squared magnitude vectors. The output of the reconstrd 'econstruction layer size of 800 yields the lowest error,
tion MLP was 257 dimensional log squared magnitude vectdt@Ving 20 units for the bottleneck layer seems to be the
as well. We varied the bottleneck sizes from 10 to 40 ifost reasonable choice. Furthermore, reasonable sizédor t
steps of 10. This was repeated for 5 different reconstrocti§*Pansion layer of the reconstruction MLP again appears to
layer sizes from 600 to 1400, in steps of 200. PreliminaRg 800 units.
experiments indicated that 1000 nodes to be a reasonabl8) Filtering domain: We performed studies on MFCC
choice for the first and third layers of the phoneme MLP. being the output of the reconstruction MLP. Diarization ex-
From Figure 8, it can be observed that, in general, f@€riments showed that the speaker error was high. Since the
all reconstruction layer sizes, a bottleneck layer size ®f @bjective of the paper was not to optimize all the parameters
units seems to yield the lowest speaker error rates. Whehthe proposed DNN features, but to analyze the feasibility
the number of units are higher or lower, the speaker errdf the architecture itself, we chose not to delve into thaitet
increases. A similar trend was observed for a 5 layer ML®# why MFCC may not be the optimal filtering domain.
architecture in [30]. We could infer that a bottleneck siZe o 4) Selected DNN architecturén conclusion of the analysis
20 units is sufficient to capture phoneme information usingia this section, we choose the DNN architecture with log-
bottleneck architecture. With a larger bottleneck, soneakpr squared magnitude input (257-dimensional input), 100@suni
information could be captured. Furthermore, the “optinsde for the first expansion layer of the phoneme MLP, 20 units
of the expansion layer in the reconstruction MLP is arourfdr the bottleneck layer, 1000 units for the second expansio
800 units. In general, for either more or less number ddyer of the phoneme MLP, and 800 units for the expansion
units, we observe an increase in the speaker errors for tager of reconstruction MLP. The output is a 257-dimensiona
other bottleneck sizes. Intuitively, the reconstructiohMis log-squared magnitude input.
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TABLE Il
VII. DIARIZATION RESULTS ONRTEVALO7 RTO7 evaluation data: Performance & order LP residual and DNN

iarizati _features. LPR8 denotes LP residual represented using MRSBCdenotes
Recall that we use the HMM/GMM based diarization SYS subband information from 2.5 kHz to 3.5 kHz, while SS dersjestral

tem [11], and that we utilize the MDM and SDM conditions slope.
in RTeval07 for evaluation. This diarization system is uted
evaluate the the proposed privacy-sensitive featuresisigie Features Spkr err (o) | Spkr err (%)
baseline MFCC features MDM SDM
' MFCC (baseline) 6.4 11.2
LPR8 12.9 12.0
A. Baseline MFCC LPR8 + SB 11.9 11.9
L _ , , _ _ LPR8 + 55 11.3 12.2
This section begins with the results obtained using the LPR8 + SB + SS 11.0 115
baseline MFCC features, which are tabulated in Table II. The DNN 145 13.9

TABLE I

Performance of baseline MFCC features on RT07 MDM and SDM:dat o~ ;
The first 3 columns list the performance of the speech/necbpédetection where the addition of energies from a lower subband (1'5 kHz

while the next 2 columns report the speaker errors. to 2.5 kHz) yielded improvements to residual, although oot t
the extent of subband (2.5 kHz to 3.5 kHz).
Features Miss | FA | sp/nsp | Spkrerr (o) | Spkr err (%) While MFCC does not perform worse than the proposed
MFCC (baselne)| 37 | 0.0 | 37 MG'?QA Slli';' features on S.DM, the _change from MDM to SDM results
in a smaller difference in speaker error between MFCC and

rﬁ§idual features (09). This result could be attributed to LP
residual capturing instants of significant excitation, apett
hhat has been exploited earlier in [39]. Adding either sgct
sﬁ)pe or subband information to LPR8 does not yield a gain,
ﬁowever, adding both yields a small gain®§%.

performance of the speech/nonspeech detection systenmeon
RTO7 evaluation dataset is 37 On RTO7 evaluation data,
we observe an even higher performance difference for t
MFCC features between the SDM and the MDM, with th
actual difference being 4%8.

From Table Ill, it can be seen that DNN yields a per-

) ) formance of13.9% on the SDM data. This represents a

B. Comparison with MFCC on RT07 MDM performance drop df.7% in comparison with baseline MFCC.
Table Il lists the diarization results in MDM and SDMIt also appears that DNN features are less sensitive to the

conditions. As part of notation, LPR8 denot&$ order LP change from MDM to SDM. We attribute this to reasons
residual represented using MFCC, while SB and SS dengaiilar to that of residual, since Figure 3 shows that the DNN
subband (2.5 kHz to 3.5 kHz) and spectral slope, respegtivedpproach captures pitch information.
DNN denotes the DNN features summarized in Section VI-B4.
It can be observed that the baseline MFCC yields the best Meetingwise comparison
speaker errors on MDM. As a matter of interest, baseline
MFCC in combination with Time-Delay Of Arrival (TDOA) th
features yields a speaker error ©9.9%. The addition of
TDOA does not always lead to an improvement [2].
LPRS8 yields a performance that &% below MFCC’s, a
trend that was observed on the development data. Similar,
combining LPR8 with either SS or SB, yields a gain. This

Table IV presents a summary statistics of the dataset, with
e average length being 43 minutes. The longest meeting
is 70 minutes, while the shortest meeting is 25 minutes. In
almost all meetings there are 4 speakers, with the exception
f NIST-20060216-1347 and VT-20050408-1500, where there
e 6 and 5 speakers, respectively.

shows that SS and SB have information complementary to TABLE IV
LPR8. Combination with both SS and SB yields a gain of Statistics of the RTO7 evaluation dataset.
nearly 2%; however, the difference with MFCC is still.6%. ,
. S.No Meetings Length | Speakers| Turns
Table 11l shows that DNN vyields a performance bf.5% minutes
on MDM. This represents a performance drop of nea&fly 1 | CMU-20061115-1030] 41 4 758
in comparison to baseline MFCC. This result is similar td tha g CE"S'IJ'ZZO%%Gllllll??'llS%%O gg j ;gg
of residual fegturgs. We.shall analyze these errors at tred le 7 EDI-20061L14-500 48 7 557
of each meeting in Section VII-D. 5 NIST-20051104-1515] 70 ) 650
6 | NIST-20060216-1347| 47 6 630
. . 7 VT-20050408-1500 25 5 508
C. Comparlson with MFCC on RT07 SDM 3 VT-20050425-1000 35 7 726

We now focus on the results obtained on the RT07 SDM
condition, presented in the third column of Table III. Figure 10 compares the speaker errors on MDM and SDM
Consistent with the results on MDM, MFCC still yields theconditions for each meeting. The upper plot shows the com-
best result. This shows that there is useful speaker infiioma parison on MDM while the lower plot shows it on SDM. The
in the first few formants — although higher order formantslterfirst 8 blocks correspond to the 8 meetings in the evaluation
to carry more speaker information [38] — that are removathtaset, while the ninth block corresponds to the entirasgaht
by LP analysis as well as by DNN. These conclusions areOn MDM, not only does MFCC perform better than residual
supported by our results for speaker change detection il [L&d DNN features on the whole data, it performs better on
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Fig. 10. Meetingwise analysis of the 9 meetings in the RTOTuew®n dataset. The upper plot shows the comparison on th&MDdio while the lower
plot shows the comparison the SDM audio. The meeting humberssgamd to the first column in Table IV.

most meetings. This supports our analysis in Section VII-C. VIII. A NALYSIS OF PRIVACY
However, this performance difference diminishes when the
average turn length per meeting is longer or when the meetir}g

themselves are longer. Similarly, while the addition ofctpsd To our knowledge, quantitative analysis of privacy in audio

slope and subband information to residual translates tdra 98,5 not been studied before. Studies such as (3], [4] irelicat
in performance in most meetings; again, this gain is smallﬁ{ | ’

. . that the main privacy concerns are the reconstructibility o
when the average turn length is longer or when the meetm%?. - . R
intelligible speech signal and of the linguistic infotioa.

are longer. It appears that in these cases, extra informatio . : )
In this paper, we explore two ways to analyze this notion of

in MFCC or in SS and SB — aids speaker discriminability. rivacy: human speech recognition (HSR) rates of speech syn

On SDM, residual features are comparable to MFCC H . ’ iy
. L ; esized from the features and automatic speech recognitio
most meetings. Furthermore, it is reassuring to observe tl{

the gains, albeit small, due to the addition of SS and SB RSR) rates using the features. ASR accuracies are geyerall

0 . . : L
LPR8, are more for meetings with shorter turns. These msurl?porte.q n th? literature using phoneme recognition ordNo_r
cognition. Since the latter is more complex for assessing

support our analysis on MDM as well on the whole data. DN ; ; ; I
features exhibit similar trends observed on MDM privacy due to the differences in vocabulary sizes, dicti@s,

and language models, we prefer phoneme recognition studies

So far, we have investigated LP residual and DNN features
r speaker diarization. We now proceed to analyze privacy.

E. Obfuscation method
In Section IV-A, we mentioned another strategy that can e Analysis using human speech recognition
gainfully employed for improving privacy of audio features | the field of HSR, one aspect of an intelligibility test
We now present speaker error rates of MFCC and LPR@whether the vocabulary is open or closed. Another aspect
that are randomized with block sized/ (= 5,9,13) on the s whether one tests on individual units such as nonsense
evaluation dataset in Table V. In the table, “Randx” is used &yjlables or on fully-formed sentences. Furthermore,yull
TABLE V formed sentences could be meaningful such as conversations
Effect of randomization on MFCC and LPR8 on the RTO7 MDM ddtas and news or semantically unpredictable sentences (SU§) [40
Randx is used to denote randomization with block size ofmdm Baseline, In this study, we selected a dataset that was open vocabulary
non randomized performances are given as a reference in rterdiv. . .
as well as being SUS. This is done so that the test evaluates

Feature | LPR8 %) | MFCC (%) the acoustic aspect of intelligibility instead of the cdiya

| Spkr err Spkr err aspect of prediction. SUS are usually constructed from l&mp
Baseline 12.9 6.4 ;
e 5 e grammatical templates. -
Rand9g 13.8 71 1) HSR setupWe used the 20 SUS from EMIME bilingual
Rand13 13.7 6.8 database [41], with a vocabulary size of 88 words. The list of

sentences is given in Table VI. There are 7 female and 7 male
denote randomization with block size x frames. We note thaative english speakers with different accents. We chose on
randomizing the MFCC features with various block sizes doémmale and one male speaker, resulting in 10 sentences being
not change the performance significantly (%). Similarly, spoken by female and 10 being spoken by male speakers. The
the performance of the LP residual remains unaffected gl lospeech from the close talking microphone, sampled at 22 kHz,
temporal randomization. was downsampled to 16 kHz.
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20 semantically unpredictable sentences in the dataset.

TABLE VI

Sentence ]

The dust leaned through the broad hat.

The task joined the staff that coped.

The pure word cleaned the mind.

-~

When does the flow guide the blue fron

Use the length or the export.

The youth knelt with the fresh state.

The road dared the growth that slipped.

The large wine blamed the store.

How does the thing cut the true wall?

best performing listeners. The four columns indicate perfo
mance corresponding to the 4 systems: (a) raw waveform; (b)
reconstruction from MFCC; (c) reconstruction from MFCC
representation of*" order LP residual; and (d) reconstruction
from MFCC representation of DNN features.

TABLE VII
HSR performance of the 4 systems over all the listeners artheetop 10
best performing listeners. The four columns indicatingfgenance
correspond to raw waveform, reconstruction from MFCC, fistRCC
representation oB*" order LP residual, and from MFCC representation of
DeepNN features, respectively.

Bear the truth and the pool.

The foot gazed under the dead sprin
The suspgct mixed the pain that Erepgt l | Wav | MFCC | LPRJT"CC [ DeepNNMFOC ]
The nice block paid the blood. Total | 852 | 713 137 6.8
Why does the jazz hit the brown bar? Top-10| 918 | 794 289 16.9
Bite the book and the stress.
The health went down the dark square].
The dog built the wife that walked.
The good man marked the tree.
Where does the post need the poor rade?
Export the son or the firm.

It can be seen that for both sets of listeners (total, and top-
10), listening to the raw waveform vyielded the best perfor-
mance. Reconstruction from MFCC also yielded very good
intelligibility, i.e., around71% for all the listeners and around
79% intelligibility for the top-10 listeners. In general, lesting

. . . _to speech reconstructed from the MFCC representatiai’of

We_ generateq the following features .from tths audio: ( rder LP residual appears much less intelligible, with atbu
bagehng MFCC; (b) MFCC representation df &order LP 50 % to 60 % drop in intelligibility. This could partially be
residual; and (C.) MFCC. representation of DNN featureaUe to the loss of the first two formants, which carry more
Reconstructioh yields audio frpm the 3 sets of features fofin uistic information [13]. There is a further loss in imfoa-
each of the ZQ se_ntence_s. Since our pool of listeners WS by representing LP residual using MFCC. DNN features
mostly non-native in english, we added the raw waveform gg,  yhe jowest intelligibility, aroundr% intelligibility over
the 4" set (or 4" system to estimate the upper bound "Nall listeners and around7% over the top-10 listeners.

erformance. . . . .
P furthermore, since listeners listen to each sentence jtwice

. In _the_ _tradeoff between_ obtaining reasonable es_UmatesSoome listeners reported that this led to them performintgbet
intelligibility versus repeating each sentence, we digidiee

80 utterances (20 sentences4 systems) into 2 groups c)fon systems having lower intelligibility (having alreadgténed

40 each. Each aroun was obtained by a Latin square dest|ona cleaner version before). On the other hand, the two
L group y q s%quences corresponding to the utterances for each graep we
to maximize the coverage of the systems and the sentenc

. . r%%‘domized and therefore there is no systematic bias teward
In order that listeners do not get used to a predeterming . . "

. ) pr|}/1acy-sen5|t|ve or the non privacy-sensitive systems.
sequence of audio, the sequences were randomized. Eac
listener was assigned to one of the two groups and she lgtene

to 40 utterances (10 utterance from each system). B. Analysis using automatic phoneme recognition

_ A web-based application was setup so that listeners couldynqther approach to assessing linguistic privacy is toystud
listen using their headphones or speakers. After listeni®y  ,oneme recognition accuracies for privacy-sensitive and
had to type-in the sentences thgy heard. They could CPmP'EA&cc features. Phoneme recognition studies were performed
the task in multiple sessions. Listeners were asked toi¢esty, T\MIT database. Experiments were conducted excluding
the number of times they could listen to an utterance t03q «s5' gialect sentences. The training data consists 6030
maximum of 5 times. If an utterance was not intelligible Bfte, e ances from 375 speakers, cross-validation data stensi
5 listening tests, they typed “Not intelligible”. Out of Y ¢ g9 ytterances from 87 speakers, and the test data set
listeners, one was a native engllsh_ listener. consists of 1344 utterances from 168 speakers. The phoneme
_2) HSR experimentsBefore scoring, we preprocessed thget corresponds to the standard set of 39 units [29].
listeners' typed-in responses t(.) ensure that typing emoes 1) Phoneme  recognition  system: Features are
not counted as a loss in |nteII_|g|b|I|ty. T_he score, complut ean/variance normalized across the training data set.
using the HResults tool [26], is the ratio of the number o three layered MLP is used to estimate the phoneme
correct words to the _total number of WOFdS. . posterior probabilities. MLP consists of 1000 hidden ynits
The results of scoring the features are listed in Table Will. Iand 39 output units with softmax nonlinearity, represemtin
addition, we also obtained an ordering of I|_steners acogrdlthe phoneme classes. The input layer uses a temporal context
to the percentage of words correctly recognized. In Table V f 9 frames on the features generated at a frame rate of 100
the two rows corresp_ond to the performance of the 4 SYS‘EEH?. For all the features studied (baseline MFCC, LP residual
scored over all the listeners, or scored only over the top Wth MFCC representation, DNN features with MFCC

2We obtained a noise-excited reconstruction from MFCC utiiegRASTA-  '€Presentation), the input to the MLP was 13-dimensional
MAT library: http://iwww.ee.columbia.edwbipwe/resources/matlab/rastamat’ MFCC with delta and acceleration coefficients. The MLP

N B B R B R R R R R e P
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is trained using standard back propagation algorithm | o
minimizing the cross entropy error criterion. The phonen | e
recognition experiments are performed using the hybr
HMM/MLP system reported in [19]. The phoneme sequenc
is decoded using the Viterbi algorithm, where each phoner
is represented by a left-to-right, 3-state HMM, enforcing
minimum duration of 30 ms. The emission likelihood in eac
of the three states is the same, and is derived from the out
of the MLP.

2) Phoneme recognition experimentSigure 11 plots the
recognition accuracies for increasing LP orders. As the L
order increases the recognition accuracies drop. We nate t
an increase in LP order by 2 can allow an extra comple 2 2 5 0
conjugate pole pair to be modeled, possibly modeling araex
formant. Since lower order formants generally carry more B )
inguistc information, one could expect the performanoe £ 11 Fhoneme recogniion accuracy for he esiuel based fesr
drOp when the LP order is increased. axis shows the phoneme accuracy %) (

From Figure 11, we observe that the LP residual with
a prediction order of 8, yields arounth% lower phoneme 1) LP residual featuresWe studied two different strategies
recognition accuracy in comparison with the MFCC featuret® represent the LP residual, with the MFCC representation o
We remark that the phoneme recognition experiments usitit¢ residual yielding superior performances for all preaic
simple features proposed in [9], namely, spectral flatness, orders. Additionally, we explored the combination of resit
ergy, Zero_crossing rate, and kurtoﬁf@& and the features with subband information from 2.5 kHz to 3.5 kHz and

proposed in [4], namely, autocorrelation and relativeetiaé  Spectral slope. Although residual features performechsiig
entropy @\H)’ with delta and acceleration coefficients, antﬁSS than the conventional MFCC features, we observed that

with a 9 frame context, yielded accuracies 4§.8% and residual features are less affected by the change from MDM

31.2% respectively. The performance of ari”8order LP to SDM. Furthermore, residual features proved to be more
residual lies between that of the simple features and the ®F@rivacy-sensitive than MFCC features in terms of lowerlinte
(68.2%). Phoneme recognition experiments using the MFCl@ibility and phoneme recognition accuracy.
representation of DNN features yielded an accuracygof%,  2) DNN features: We utilized a greedy, layer-by-layer
which is much lower than that & order LP residual’s. trained DNN for representing the phoneme information in
We then performed recognition experiments for the obfufi?® short-term spectrum of the signal. A second MLP was
cation method or8t" order LP residual. We note here that!tilized to reconstruct the spectrum, which was used asea. filt
randomization can be performed for (a) only test data; or () terms of diarization performance, this approach peréatm
both train and test data with different seeds. The diffezen&lightly worse than the LP residual based approach. However
between the two stems from the fact that in the second calfiese features proved to be more privacy-sensitive thed-res
the MLP has been trained with noisy targets. While randori@! features. Future work on this approach will investigate
ized training £9.3%) improves the performance marginallymProvements such as training the DNN on meeting data.
over clean training 48.2%), we still observed a substantial 3) Putting privacy and diarization togetheStandard spec-
drop in phoneme recognition performance over residuaFitser@ features such as MFCC yielded, not surprisingly, good
Although our HSR experiments in the previous section show#guistic reconstruction. Proposed approaches to pyivac
that reconstructing speech from MFCC representatioftbf Sensitive audio feature extraction yielded substantikaiyer
order LP residual is unintelligible, this result suggestatt linguistic performance compared to the MFCC features.

randomization can be used to enforce further privacy. While the diarization performance of the LP residual fea-
tures are similar to the baseline MFCC on SDM, the perfor-

mance of the DNN features were abadt lower than MFCC.
IX. CONCLUSION However, the effect of &% drop in diarization performance
on socially relevant tasks such as dominance estimatioa hav
In this paper we presented two different approaches been shown to be minimal, if any [42].
privacy-sensitive audio features for robust speaker zh#ion, 4) Future Work: Nonverbal cues in audio have been ex-
namely, LP residual based and and DNN based. We systenpbred in developing computational models of face-to-face
ically investigated both sets of features for speaker zidion human behavior. However, with a few exceptions [5], [6],
in single and multiple distant microphone conditions. Theost work done in this domain are from meeting room
SDM scenario, however, is more relevant to a portable audiadio. Our future work will utilize the privacy-sensitiveidio
recorder scenario. The notion of audio privacy was integare features in this paper to capture real-world audio. Patefn
as the linguistic message, and methods to assess them & tespeech/nonspeech detection and diarization can then loe use
of phoneme recognition and intelligibility tests were sésd to analyze social interactions.
We now summarize our key conclusions. Finally, in this paper, we have proposed intelligibilitycan

o
@
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L L L
14 16 18 20

10 12
Linear Prediction Order
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phoneme recognition as means to investigate the compley

issue of assessing privacy in audio. Complementary social
. . : [22]

acceptability studies are needed to determine reasonabiesn

on measured phoneme accuracy.
[23]
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