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ABSTRACT

Head nods occur in virtually every face-to-face discussion.
As part of the backchannel domain, they are not only used
to express a ’yes’, but also to display interest or enhance
communicative attention. Detecting head nods in natural
interactions is a challenging task as head nods can be sub-
tle, both in amplitude and duration. In this study, we make
use of findings in psychology establishing that the dynam-
ics of head gestures are conditioned on the person’s speak-
ing status. We develop a multimodal method using audio-
based self-context to detect head nods in natural settings.
We demonstrate that our multimodal approach using the
speaking status of the person under analysis significantly
improved the detection rate over a visual-only approach.

Categories and Subject Descriptors

I.4.m [Computing Methodologies]: Image Processing and
Computer Vision—Miscellaneous
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1. INTRODUCTION

In face-to-face interactions, head nods occur in every dis-
cussion. In most cases, people producing the head nods are
not even aware of the social signal they emit: head nods
are often the result of automatic processes. Independently
of their function or meaning, head nods can be defined as
vertical up-and-down movements of the head, rhythmically
raised and lowered [5].

The social psychology community was the first to examine
the functions of head nods during face-to-face interactions.
Apart from the obvious function of signaling a ’yes’, head
nods are used inter alia to display interest, enhance commu-
nicative attention by occurring in synchrony with the other’s
speech, or anticipate an attempt to capture the floor (i.e.,
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signaling a turn claim) [5, 1]. Head nods form a major mode
of communication in backchannelling, that is, during listener
turns [5, 1]. Additionally, head nods can be used during
speaker turns to elicit feedback from the listener [1]. The
psychology literature suggests that the frequency of head
nod events in face-to-face interactions can reveal personal
characteristics or even predict outcomes. For instance, job
applicants producing more head nods in employment inter-
views have been reported to be often perceived as more em-
ployable than applicants who do not [3, 7]. In this sense,
the ability to automatically detect head nods could be use-
ful to build automatic inference methods of high-level social
constructs.

Most methods for automatically detecting head nods have
been developed in the context of human-computer interac-
tion (HCI). The primary goal of these studies was to enable
a machine to detect a ’yes’ signaled by a head nod. Within
this context, some studies proposed to track interest points
of the face [6, 13] and use state-based approaches such as fi-
nite state machines [2] and hidden Markov models [10, 13] to
detect nodding. These approaches show good performance
in restricted contexts where the head motions are explicit.
However, these methods do not allow to detect subtle head
movements that occur quite often in natural human face-to-
face interaction.

Nodding does not occur in a void. It is known that the
speaking status of people influences the dynamics of the dis-
played head gestures [5]. When a person is speaking, the
motion of his head has typically greater amplitude, larger
frequency range, and follows a close to random pattern [5].
On the other hand, when the person is listening, his head
tends to be more static as a result of both attention to the
speaker and the fact of being silent. In this sense, head ges-
tures are multimodal: the dynamics are conditioned on the
speaking status of the actor.

The contextual nature of nodding has been used in the
recent past. Work addressing the prediction of backchan-
nel feedback makes use of these findings. The goal of this
line of research is to enable robots or conversational agents
to produce natural backchannels. In this type of setting,
the contextual information such as lexical information or
prosodic cues are used to predict head nods [9].

Furthermore, communicative contextual audio-based fea-
tures have been used to improve the detection of head nods
in dyadic scenarios [10, 8]. In [10], the scenario consists of a
human interacting with an embodied conversational agent;
hence, head nods produced by the participant are not en-
tirely natural. In [8], automatically and manually extracted



Figure 1: (a) Snapshot of the recording room. (b-c)
Frame extracted from the video data for two pro-
tagonists in a dyad.

contextual cues (prosodic and lexical features) related to the
speaker were used to improve the detection of the listener’s
head nods. In this constrained dyadic scenario, only one per-
son spoke while the other person was asked to listen silently.

While the value of using audio-based context from the
perspective of the speaker to improve the detection of lis-
tener head nods has been established, one aspect that to
our knowledge has not been studied in detail is the effect
of the audio-based self-context on head nod detection. This
study develops a multimodal method using the self-context
to detect head nods in fully natural conversations where
both protagonists freely interact. We create an annotated
dataset of natural dyadic interactions in order to benchmark
our method. This paper is structured as follows. In Section
2, we present the dataset on which our method was trained
and tested. In Section 3, we explain our method to auto-
matically detect natural head nods. We discuss our results
in Section 4 and conclude in Section 5.

2. NATURAL HEAD NOD DATASET

In order to benchmark head nod detection methods, we
collected a dataset of 8 natural interactions (16 videos treated
individually). Pairs of participants were asked to sit at both
sides of a table and have a relaxed conversation on a topic
of their choice. Dyads were acquainted before taking part to
the experiment. In total, there were 9 different people (one
person was in all conversations).

Video was recorded during the natural interactions. II-
lustrations of the experimental setup and the recorded data
are displayed in Figure 1. Two 1280x960 monocular cam-
eras were used, recording both protagonists of the dyad at
26.6 frames per second. Camera views were quasi-frontal,
filming the upper part of the body. In addition to the im-
ages, the timestamps for each video frame were also recorded
with a resolution of 1us. In total, the dataset comprises
approximately 160 minutes of recording (~260’000 frames).
Average video duration was 10 minutes.

In order to train and test the algorithm, annotations were
performed on the dataset. Depending on the amplitude and
duration of the up-and-down oscillatory movements, head
nods can be difficult to code; two classes of head nods were
therefore defined: obvious and subtle. Head nods were an-
notated by one of the authors, thus well acquainted with
the concept of nodding, who noted the onset and offset time

of an event, and qualitatively decided the nod class based
on nod amplitude and duration. Speaking status was also
manually annotated, marking the beginning and the end of
a speaking segment. In total, nodding occurred during 858
seconds (22’812 frames), of which 92% occurred when the
person under analysis was silent. Average head nod dura-
tion was 1.2 seconds. On average, speaking and silent times
were split equally for each speaker in the dataset.

3. MULTIMODAL HEAD NOD DETECTION

As stated in the introduction, head nods are defined as
vertical up-and-down movements of the head rhythmically
raised and lowered. This implies an oscillatory pattern in
the vertical axis, while the motion in the horizontal axis
is limited. In order to encode this effect, we constructed
features based on fine-grain motion detection and transfor-
mation into the frequency domain. The extraction of the
features to characterize head nods follows a similar spirit
than [10], but relies directly on the motion estimates de-
rived from the video sequence rather than on the output
state of a head tracker, which might not be so sensitive to
subtle movements of the head. A binary classifier is then
used to assign frames to one of two classes, nodding and not
nodding.

3.1 Motion Estimation

Given the bounding box output of a face tracker (using the
method described in [12]), the goal is to detect the motion
in the horizontal and vertical directions. To perform this
task, we used a parametric motion model which estimates
the best set of parameters between the previous and current
frames, using the face bounding box region.

We used the affine motion model defined in Equation 1,
where (z;,y;) denotes a point in the image, V (x;, y;) the flow
vector modeled at point (z;,y;). Visual motion estimation
over the whole face region provides an accurate estimation of
head movements and therefore allows to capture subtle pat-
terns using a multiresolution robust estimation method [11].
Parameters t., ty, ai.4 were estimated using least-mean-
squares, implemented by the software package Motion2D®.

oy o e (@i vi)| [t +a1mi + a2y
Viw,yi) = {vy(m,yi)} B [ty + azwi + a4y¢] @
We then computed the velocity at three arbitrarily de-
fined points (see Figure 2) inside the bounding box, using
the parameters of the optical flow model (Equation 1), pro-
viding the horizontal and vertical components of the motion
at these three points. Roughly speaking, these points are
around the mouth and eyes of the participant. Typical mo-
tion time-series for speaking, nodding while silent, and not
nodding while silent are illustrated in Figure 2. The figure
illustrates that head nod activity does present differences
depending on the self-speaking status, and that building
nodding models separately for the speaking and silent cases
could reduce the confusion between, for instance, a head nod
and a quasi-random head gesture displayed during a speak-
ing turn.

3.2 Frequency Domain Analysis

Given the head motion in the horizontal and vertical di-
rections, the goal is to capture the oscillatory characteristics

"http://www.irisa.fr/vista/Motion2D/
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Figure 2: Illustration of the motion estimation step. In (1), the white rectangle is the face bounding box
provided by the face tracker; the three white crosses are the pre-defined points where the motion is computed
using the parametric model of Equation 1. A 30-second sequence of the motion is displayed in (2); (a) and
(b) are the estimated motion in the horizontal and vertical directions, respectively; (c) shows the sequence
of annotated nods (1 = nod, —1 = non-nod); (d) shows the speaking status of the participant (1 = speaking,

—1 = silent).

of a head nod. In order to perform this task, we applied
a Fourier transform (with Gaussian temporal window) to
the velocity vectors (vs (4, y: ), vy (i, 1:))T of the pre-defined
points, considering each vector component as an indepen-
dent time-series. Although this independence assumption
does not strictly hold, the computation is greatly simplified.
Finally, the feature vectors are constructed by concatenat-
ing the Fourier transform outputs. Typical Fourier features
for speaking, nodding while silent, and not nodding while
silent are illustrated in Figure 3.

3.3 Classification

The goal is now to assign each feature vector to either of
these two classes, nodding or not nodding. For each of the
speaking status values, we trained a separate linear support
vector machine (SVM) to perform the classification. This
multimodal approach directly takes into account the switch-
ing dynamics of head movements, depending on the speak-
ing status of the person under observation, as suggested by
previous work in psychology [4].

The training set was defined as follows. The positive set
was composed of all frames labeled as obvious nods. The
negative set was selected randomly from the set of frames
labeled as non-nod. Frames labeled as subtle nods were not
used for training because they can be too similar to not
nodding features. In addition to this, transitional frames
were discarded to attenuate the dependence to time-related
annotation inaccuracy. The training set was balanced, i.e.
the number of positive and negative examples was equal.
Approximately 5000 training examples were used for each
class. We then further segmented the data into speaking
and silent, training each separate model on its own training
set.

To validate our hypothesis that self-context in terms of
speaking status improves nodding detection, we implemented
a baseline method using the visual modality only. For the
visual-only method, we used a single SVM trained on the
full training set (i.e. not separating it into speaking and
silent).

4. RESULTS

The evaluation of the head nod detection method was
conducted at the frame level. Leave-one-out cross valida-
tion was performed at the sequence level: the algorithm was
trained on all except one sequence and tested on the re-
maining one. The binary output of the SVM classifier was
compared to the annotated ground truth (including obvious
and subtle nods).

In Figure 4, we display the receiver-operating character-
istic (ROC) curve for both the visual-only and the multi-
modal approaches. The Fi score, defined by the harmonic
mean of precision and recall, was also computed. The multi-
modal method significantly outperforms the visual-only one:
Fpisual — 559, ettt — (0.6283. These results show that
using the self-speaking status of a person improves the de-
tection rate, highlighting the difference in dynamics of head
gestures between speaking and silent suggested in the psy-
chology literature [5]. This result confirms previous find-
ings [10, 8] that have shown the advantage of using audio-
based contextual cues for this task, with the novel angle that
using self-context (as opposed to interaction partner-based
context) is also advantageous. Moreover, independently of
the approach (multimodal or visual-only), the method we
developed to extract head nods in natural settings yields
competitive results on this dataset.

Head nods of small amplitude and duration are in general
accurately detected by the proposed method. Additionally,
because of the switching dynamics conditioned on the speak-
ing status, the number of false positives is kept low. In other
words, speaking can be seen as an attenuation factor of the
head nod detector.

5. CONCLUSIONS

In this study, we developed and evaluated a multimodal
method to detect natural head nods in face-to-face inter-
actions. Our work brings the novel angle of examining in
detail the effect of the speaking self-context on head nod
detection. Two nodding models were trained, depending
on the speaking status of the person under analysis. Com-
pared to the baseline vision-only method, results demon-
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Figure 3: Examples of typical Fourier transform outputs. (a) and (b) are the Fourier outputs taken on the
temporal motion sequence in the horizontal and vertical direction, respectively. Referring to Figure 2, (1) is
a Fourier sample taken at ¢ = 128.8s (nod, non-speaking); (2) is sampled at ¢t = 131.4s (non-nod, silent); (3) is

taken at t = 116.2s (non-nod, speaking).
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Figure 4: Receiver-operating characteristic curve
(ROC) for the two head nod detection approaches.
In red: visual-only method. In blue: audio-visual
approach.

strated that audio-based self-context improved the detection
of head nods, underlining the difference of head gesture dy-
namics conditioned on the speaking status of the person, as
suggested by previous work in psychology. The developed
method yielded competitive results on this dataset, allow-
ing to detect subtle nods while keeping the number of false
positive low.

The method presented in this paper could be extended for
the detection of head shakes by using the same frequency
domain motion features. Other possible avenues for future
work would be to use more detailed audio context, e.g. tak-
ing into account the prosody or lexical information of both
protagonists in the interaction. The presented method could
also be seen as a first step towards the classification of head
nods defined by their communicative functions; we hypoth-
esize that context from both protagonists in the form of
visual, prosodic, and lexical features would have to be used
for this task.
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