
1

Convexity in source separation:
Models, geometry, and algorithms

Michael B. McCoy, Volkan Cevher, Quoc Tran Dinh,
Afsaneh Asaei, and Luca Baldassarre

Source separation or demixing is the process of extracting multiple components entangled
within a signal. Contemporary signal processing presents a host of difficult source separation
problems, from interference cancellation to background subtraction, blind deconvolution, and
even dictionary learning. Despite the recent progress in each of these applications, advances in
high-throughput sensor technology place demixing algorithms under pressure to accommodate
extremely high-dimensional signals, separate an ever larger number of sources, and cope with
more sophisticated signal and mixing models. These difficulties are exacerbated by the need for
real-time action in automated decision-making systems.

Recent advances in convex optimization provide a simple framework for efficiently solving
numerous difficult demixing problems. This article provides an overview of the emerging field,
explains the theory that governs the underlying procedures, and surveys algorithms that solve
them efficiently. We aim to equip practitioners with a toolkit for constructing their own demixing
algorithms that work, as well as concrete intuition for why they work.

Fundamentals of demixing
The most basic model for mixed signals is a superposition model, where we observe a mixed

signal z0 ∈ Rd of the form
z0 = x0 + y0, (1)

and we wish to determine the component signals x0 and y0. This simple model appears in
many guises. Sometimes, superimposed signals come from basic laws of nature. The amplitudes
of electromagnetic waves, for example, sum together at a receiver, making the superposition
model (1) common in wireless communications. Similarly, the additivity of sound waves makes
superposition models natural in speech and audio processing.

Other times, a superposition provides a useful, if not literally true, model for more complicated
nonlinear phenomena. Images, for example, can be modeled as the sum of constituent features—
think of stars and galaxies that sum to create an image of a piece of the night sky [1]. In machine
learning, superpositions can describe hidden structure [2], while in statistics, superpositions
can model gross corruptions to data [3]. These models also appear in texture repair [4], graph
clustering [5], and line-spectral estimation [6].

A conceptual understanding of demixing in all of these applications rests on two key ideas.
Low-dimensional structures: Natural signals in high dimensions often cluster around low-

dimensional structures with few degrees of freedom relative to the ambient dimension [7].
Examples include bandlimited signals, array observations from seismic sources, and natural
images. By identifying the convex functions that encourage these low-dimensional structures,
we can derive convex programs that disentangle structured components from a signal.

The authors thank Joel A. Tropp for his helpful and detailed comments on this work. MBM is supported by ONR
awards N00014-08-1-0883 and N00014-11-1002, AFOSR award FA9550-09-1-064. Work of VC, QTD, and LB is
supported in part by the European Commission under Grant MIRG-268398, ERC Future Proof, SNF 200021-132548,
SNF 200021-146750 and SNF CRSII2-147633. The work of AA is funded by SNF NCCR IM2.

2

Incoherence: Effective demixing requires more than just structure. To distinguish multiple
elements in a signal, the components must look different from one another. We capture
this idea by saying that two structured families of signal are incoherent if their constituents
appear very different from each other. While demixing is impossible without incoherence,
sufficient incoherence typically leads to provably correct demixing procedures.

The two notions of structure and incoherence above also appear at the core of recent developments
in information extraction from incomplete data in compressive sensing and other linear inverse
problems [8, 9]. The theory of demixing extends these ideas to a richer class of signal models,
and it leads to a more coherent theory of convex methods in signal processing.

While this article primarily focuses on mixed signals drawn from the superposition model (1),
recent extensions to nonlinear mixing models arise in blind deconvolution, source separation, and
nonnegative matrix factorization [10, 11, 12]. We will see that the same techniques that let us
demix superimposed signals reappear in nonlinear demixing problems.

The role of convexity

Convex optimization provides a unifying theme for all of the demixing problems discussed
above. This framework is based on the idea that many structured signals possess corresponding
convex functions that encourage this structure [9]. By combining these functions in a sensible way,
we can develop convex optimization procedures that demix a given observation. The geometry
of these functions lets us understand when it is possible to demix a superimposed observation
with incoherent components [13]. The resulting convex optimization procedures usually have both
theoretical and practical guarantees of correctness and computational efficiency.

To illustrate these ideas, we consider a classical but surprisingly common demixing problem:
separating impulsive signals from sinusoidal signals, called the spikes and sines model. This
model appears in many applications, including star–galaxy separation in astronomy, interference
cancellation in communications, inpainting and speech enhancement in signal processing [1, 14].

While individual applications feature additional structural assumptions on the signals, a simple
low-dimensional signal model effectively captures the main idea present in all of these works:
sparsity. A vector x0 ∈ Rd is sparse if most of its entries are equal to zero. Similarly, a vector
y0 ∈ Rd is sparse-in-frequency if its discrete cosine transform (DCT) Dy0 is sparse, where
D ∈ Rd×d is the matrix that encodes the DCT. Sparse vectors capture impulsive signals like pops
in audio, while sparse-in-frequency vectors explain smooth objects like natural images. Clearly,
such signals look different from one another. In fact, an arbitrary collection of spikes and sines is
linearly independent or incoherent provided that the collection is not too big [14].

Is it possible to demix a superimposition z0 = x0+y0 of spikes and cosines into its constituents?
One approach is to search for the sparsest possible constituents that generate the observation z0:

[x̌, y̌] := arg min
x,y∈Rn

{
‖x‖0 + λ‖Dy‖0 : z0 = x+ y

}
, (2)

where the `0 “norm” measures the sparsity of its input, and λ > 0 is a regularization parameter
that trades the relative sparsity of solutions. Unfortunately, solving (2) involves an intractable
computational problem. However, if we replace the `0 penalty with the convex `1-norm, we arrive
at a classical sparse approximation program [14]:

[x̂, ŷ] := arg min
x,y∈Rn

{
‖x‖1 + λ‖Dy‖1 : z0 = x+ y

}
. (3)

This key change to the combinatorial proposal (2) offers numerous benefits. First, the procedure (3)
is a convex program, and a number of highly efficient algorithms are available for its solution.

3

Image credit: NASA

Observation z0 Sparse component x0 DCT-sparse component y0

Fig. 1: [Top] A perfect separation of spikes from sinusoids from their additive mixture with
(3). The original signal (left) is perfectly separated into its sparse component (center) and its
DCT-sparse component (right) [Bottom] Star-galaxy separation using (3) on a real astronomical
image. The original (left) is separated into a starfield (center) corresponding to a nearly sparse
component and a galaxy (right) corresponding to a nearly DCT-sparse component.

Second, this procedure admits provable guarantees of correctness and noise-stability under
incoherence. Finally, the demixing procedure (3) often performs admirably in practice.

Figure 1 illustrates the performance of (3) on both a synthetic signal drawn from the spikes-
and-sines model above, as well as on a real astronomical image. The resulting performance for the
basic model is quite appealing even for real data that mildly violates the modeling assumptions.
Last but not least, this strong baseline performance can be obtained in fractions of seconds with
simple and efficient algorithms.

Outline

The combination of efficient algorithms, rigorous theory, and impressive real-world performance
are a hallmark of the convex demixing paradigm described in this article. Below, we provide a
unified treatment of demixing problems using convex geometry and optimization starting with
Section I. Section II describes some emerging connections between statistics and geometry that
characterizes the success and the failure of convex demixing. Section III describes scalable
algorithms for practical demixing. Sections IV and V trace the recent frontier in source separation.
We not only ground the new theory on compelling signal processing applications but also point
out how we can tackle nonlinear demixing problems.

I. DEMIXING MADE EASY

This section provides a recipe to generate a convex program that accepts a mixed signal
z0 = x0 + y0 and returns a set of demixed components. The approach requires two ingredients.

4

Fig. 2: [Left] An atomic set A consisting of five atoms (stars). The “unit ball” of the atomic
gauge ‖ · ‖A is the closed convex hull of A (heavy line). Other level sets (dashed lines) of the
gauge are dilations of the unit ball. [Right] At an atom (star), the unit ball of ‖ · ‖A tends to
have sharp corners. Most perturbations away from this atom increase the value of ‖ · ‖A, so the
atomic gauge often penalizes complex signals that are comprised of a large number of atoms.

First, we must identify convex functions that promote the structure we expect in x0 and y0.
Second, we combine these functions together into a convex objective. This simple and versatile
approach easily extends to multiple signal components and undersampled observations.

Structure-inducing convex functions

We say that a signal has structure when it has fewer degrees of freedom than the ambient
space. Familiar examples of structured objects include sparse vectors, sign vectors, and low-rank
matrices. It turns out that each of these structured families have an associated convex function,
called an atomic gauge, adapted to their specific features [9].

The general principle is simple. Given a set of atoms A ⊂ Rd, we say that a signal x ∈ Rd is
atomic if it is formed by a sum of a small number of scaled atoms. For example, sparse vectors
are atomic relative to the set of standard basis vectors because every sparse vector is the sum of
just a few standard basis vectors. For a more sophisticated example, recall that the singular value
decomposition implies that low-rank matrices are the sum of a few rank-one matrices. Hence,
low-rank matrices are atomic relative to the set A of all rank-one matrices.

We can define a function that measures the inherent complexity of signals relative to a given
set A. One natural measure is the fewest number of scaled atoms required to write a signal using
atoms from A, but unfortunately, computing this quantity can be computationally intractable.
Instead, we define the atomic gauge ‖x‖A of a signal x ∈ Rd by

‖x‖A := inf
{
λ > 0 : x ∈ λ · conv(A)

}
,

where conv(A) is the convex hull of A. In other words, the level sets of the atomic gauge are
the scaled versions of the convex hull of all the atoms A (Figure 2 [Left]).

By construction, atomic gauges are “pointy” at atomic vectors. This property means that most
deviations away from the atoms result in a rapid increase in the value of the gauge, so that the
function tends to penalize deviations away from simple signals (Figure 2 [Right]). The pointy
geometry plays an important role in the theoretical understanding of demixing, as we will see in
Section II.

A number of common structured families and their associated gauge functions appear in Table I.
More sophisticated examples include gauges for probability measures, cut matrices, and low-rank
tensors. We caution, however, that not every atomic gauge is easy to compute, and so we must take
care in order to develop tractable forms of atomic gauges [9, 16]. Surprisingly, it is sometimes

5

TABLE I: Example signal structures and their atomic gauges [9, 15]. The top two rows correspond
to vectors while the bottom three refer to matrices. The vector norms extend to matrix norms by
treating m× n matrices as length-mn vectors. The expression ‖x‖2 denotes the Euclidean norm
of the vector x, while σi(X) returns the ith singular value of the matrix X .

Structure Atomic set Atomic gauge ‖ · ‖A

Sparse vector Signed basis vectors {±ei}
`1 norm

‖x‖`1 =
∑

i |xi|
Binary

sign vector Sign vectors {±1}d `∞ norm
‖x‖`∞ = maxi |xi|

Low-rank matrix
Rank-1 matrices
{uvt : ‖uvt‖F = 1}

Schatten 1-norm
‖X‖S1

=
∑

i σi(X)

Orthogonal matrix
Orthogonal matrices
{O : OOt = I}

Schatten ∞-norm
‖X‖S∞ = σ1(X)

Row-sparse
matrix

Matrices w/one nonzero row
{eivt : ‖v‖2 = 1}

Row-`1 norm
‖X‖`1/`2

easier to compute the value of atomic gauges than it is to compute the (possibly nonunique)
decomposition of a vector into its atoms [12]. We will return to the discussion of tractable gauges
when we discuss numerical schemes further in Section III.

The basic demixing program

Suppose that we know the signal components x0 and y0 are atomic with respect to the known
atomic sets Ax and Ay. In this section, we describe how to use the atomic gauge functions ‖·‖Ax

and ‖·‖Ay
defined above to help us demix the components x0 and y0 from the observation z0.

Our intuition developed above indicates that the values ‖x0‖Ax
and ‖y0‖Ay

are relatively
small because the vectors x0 and y0 are atomic with respect to the atomic sets Ax and Ay. This
suggests that we search for constituents that generate the observation and have small atomic
gauges. That is, we determine the demixed constituents x̂, ŷ by solving

[x̂, ŷ] =: arg min
x,y∈Rd

{
‖x‖Ax

+ λ‖y‖Ay
: x+ y = z0

}
. (4)

The parameter λ > 0 negotiates a tradeoff between the relative importance of the atomic gauges,
and the constraint x+y = z0 ensures that our estimates x̂ and ŷ satisfy the observation model (1).
The hope, of course, is that x̂ = x0 and ŷ = y0, so that the demixing program (4) actually
identifies the true components in the observation z0.

The demixing program (4) is closely related to linear inverse problems and compressive sampling
(CS) [8, 9]. Indeed, the summation map (x,y) 7→ x+y is a linear operator, so demixing amounts
to inverting an underdetermined linear system using structural assumptions. The main conceptual
difference between demixing and standard CS is that demixing treats the components x0 and y0
as unrelated structures. Also, unlike conventional CS, demixing does not require exact knowledge
of the atomic decomposition, but only the value of the gauge.

The only link between the structures that appears in our recipe comes through the choice
of tuning parameter λ in (4), which makes these convex demixing procedures easily adaptable
to new problems. In general, determining an optimal value of λ may involve fine tuning or
cross-validation, which can be quite computationally demanding in practice. Some theoretical
guidance on the explicit choices regularization appears, for example, in [2, 3, 17].

6

Extensions

There are many extensions of the linear superposition model (1). In some applications, we are
confronted with a signal that is only partially observed—compressive demixing. In others, we
might consider an observation with additive noise, for instance, or a signal with more than two
components. The same ingredients that we introduced above can be used to demix signals from
these more elaborate models.

For example, if we only see z0 = Φ(x0 + y0), a linear mapping of the superposition, then we
simply update the consistency constraint in the usual demixing program (4) and solve instead

[x̂, ŷ] =: arg min
x,y∈Rd

{
‖x‖Ax

+ λ‖y‖Ay
: Φ(x+ y) = z0

}
. (5)

Some applications for this undersampled demixing model appear in image alignment [18], robust
statistics [5], and graph clustering [19].

Another straightforward extension involves demixing more than two signals. For example, if
we observe z0 = x0 + y0 +w0, the sum of three structured components, we can determine the
components by solving

[x̂, ŷ, ŵ] := arg min
x,y,w∈Rd

{
‖x‖Ax

+ λ1‖y‖Ay
+ λ2‖w‖Aw

: x+ y +w = z0
}
, (6)

where Aw is an atomic set tuned to w0, and as before, the parameters λi > 0 trade off the relative
importance of the regularizers. This model appears, for example, in image processing applications
where multiple basis representations, such as curvelets, ridgelets, shearlets, etc., explain different
morphological components [1]. Further modifications along the lines above extend the demixing
framework to a massive number of problems relevant to modern signal processing.

II. GEOMETRY OF DEMIXING

A critical question we can ask about a demixing program is “When does it work?” Answers to
this question can be found by studying the underlying geometry of convex demixing programs.
Surprisingly, we can characterize the success and failure of convex demixing precisely by leveraging
a basic randomized model for incoherence. Indeed, the geometric viewpoint reveals a tight
characterization of the success and failure of demixing in terms of geometric parameters that act
as the “degrees-of-freedom” of the mixed signal. The consequences for demixing are intuitive:
demixing succeeds if and only if the dimensionality of the observation exceeds the total degrees-
of-freedom in the signal.

Descent cones and the statistical dimension

Our study of demixing begins with a basic object that encodes the local geometry of a convex
function. The descent cone D(A,x) at a point x with respect to an atomic set A ⊂ Rd consists
of the directions where the gauge function ‖ · ‖A does not increase near x. Mathematically, the
descent cone is given by

D(A,x) :=
{
h : ‖x+ τh‖A ≤ ‖x‖A for some τ > 0

}
.

The descent cone encodes detailed information about the local behavior of the atomic gauge
‖ · ‖A near x. Since local optimality implies global optimality in convex optimization, we can
characterize when demixing succeeds in terms of a configuration of descent cones. See Figure 3
for a precise description of this optimality condition.

In order to understand when the geometric optimality condition is likely to hold, we need a
measure for the “size” of cones. The most apparent measure of size is perhaps the solid angle,
which quantifies the amount of space occupied by a cone. The solid angle, however, proves

7

Fig. 3: Geometric characterization of demixing. When the descent cones D(Ax,x0) and D(Ay,y0)
share a line, then there is an optimal point x̂ (star) for the demixing program (4) not equal to x0.
Conversely, demixing can succeed for some value of λ > 0 if the two descent cones touch only at the
origin. In other words, demixing can succeed if and only if D(Ax,x0)∩−D(Ay,y0) = {0} [13].

inadequate for describing the intersection of cones even in the simple case of linear subspaces.
Indeed, linear subspaces are cones that take up no space at all, but when their dimensions are
large enough, any two subspaces will always intersect along a line. Imagine trying to arrange two
flat sheets of paper so that they only touch at their centers: impossible!

It turns out that we find a much more informative statistic for demixing when we measure the
proportion of space near a cone, rather than the proportion of space inside the cone.

Definition 1: Let C ⊂ Rd be a closed convex cone, and denote byΠC(x) := arg miny∈C ‖x− y‖
the closest point in C to x. We define the statistical dimension δ(C) of a convex cone C ⊂ Rd
by

δ(C) := E ‖ΠC(g)‖22 , (7)

where g ∼ NORMAL(0, I) is a standard Gaussian random variable and the letter E denotes the
expected value.

The statistical dimension gets its name because it extends many properties of the usual dimension
of linear subspaces to convex cones [20], and it is closely related to the Gaussian width used
in [9]. Our interest here, however, comes from the interpretation of the statistical dimension as a
“size” of a cone. A large statistical dimension δ(C) ≈ d means that ‖ΠC(x)‖22 is large for most
x ∈ Rd—that is, most points lie near the cone. On the other hand, a small statistical dimension
implies that most points lie far from C. We will see below that the statistical dimension of descent
cones provides the key parameter for understanding the success and failure of demixing procedures.
Of course, a parameter is only useful if we can compute it. Fortunately, the statistical dimension of
descent cones is often easy to compute or approximate. Several ready-made statistical dimension
formulas and a step-by-step recipe for accurately deriving new formulas appear in [20]. Some
useful approximate statistical dimension calculations can also be found in the works [9, 17]. As
an added bonus, recent work indicates that statistical dimension calculations are closely related to
the problem of finding optimal regularization parameters [17, Thm. 2].

Phase transitions in convex demixing

The true power of the statistical dimension comes from its ability to predict phase transitions
in demixing programs. By phase transition, we mean the peculiar behavior where demixing
programs switch from near-certain failure to near-certain success within a narrow range of model
parameters. While the optimality condition from Figure 3 characterizes the success and failure
of demixing, but it is often difficult to certify directly. To understand how demixing operates in

8

0 25 50 75 100
0

25

50

75

100
Demixing sparse + sparse

95% success
50% success
5% success
Theory

Number of nonzeros in

N
um

be
r o

f n
on

ze
ro

s
in

Fig. 4: Phase transitions in demixing. Phase transition diagram for demixing two sparse signals
using `1 minimization [13, 20]. This experiment replaces the DCT matrix D in (3) with a random
rotation Q. The colormap shows the transition from pure success (white) to complete failure
(black). The 95%, 50%, and 5% empirical success contours (tortuous curves) appear above the
theoretical phase transition curve (yellow) where ∆ = 1. See [13] for experimental details.

typical situations, we need an incoherence model. One proposal to model incoherence assumes
that the structured signals are oriented generically relative to one another. This is achieved, for
example, by assuming that the structured components are drawn structured relative to a rotated
atomic set QA, where Q ∈ Rd×d is a random orthogonal matrix [13]. Surprisingly, this basic
randomized model of incoherence leads to a rich theory with precise guarantees and predict
typical behaviors well, and complements other phase transition characterizations in linear inverse
problems [21, 22]. Many works propose alternative incoherence models applicable to specific
cases, including [3, 9], but these specific choices do not possess known phase transitions. Under
the random model of [13], however, a very general theory is available.

Theorem 1 ([20]): Suppose that the atomic set of x0 is randomly rotated, i.e., that Ax = QÃx
for some random rotation Q and some fixed atomic set Ãx. Fix a probability tolerance η ∈ (0, 1),
and define the normalized total statistical dimension ∆ := d−1

(
δ(D(Ãx,x0)) + δ(D(Ay,y0))

)
.

Then there is a scalar C > 0 that depends only on η such that

∆ ≤ 1− C/
√
d =⇒ demixing can succeed with probability ≥ 1− η

∆ ≥ 1 + C/
√
d =⇒ demixing always fails with probability ≥ 1− η.

By “demixing can succeed,” we mean that there exists a regularization parameter λ > 0 so that
(x0,y0) is an optimal point of (4). “Demixing always fails” means that (x0,y0) is not an optimal
point of (4) fails for any parameter λ > 0.

Theorem 1 indicates that demixing exhibits a phase transition as the total statistical dimension
increases beyond the ambient dimension. Indeed, if the total statistical dimension is slightly less
than the ambient dimension, we can be confident that demixing will succeed, but if the total
statistical dimension is slightly larger than the ambient dimension, then demixing is hopeless. See
Figure 4 for an example of the accuracy of this theory for the MCA model from the introduction
when the DCT matrix D is replaced with a random rotation Q. The agreement between the
empirical 50% success line and the curve where ∆ = 1 is remarkable.

This theory extends analogously to the compressive and multiple demixing models (5) and (6).
Under a similar incoherence model as above, compressive and multiple demixing are likely to

9

succeed if and only if the total statistical dimension is slightly less than the number of (possibly
compressed) measurements [23, Thm. A]. This fact lets us interpret the statistical dimension
δ(D(A,x0)) as the degrees-of-freedom of the signal x0 with respect to the atomic set A. The
message is clear: Incoherent demixing can succeed if and only if the total dimension of the
observation exceeds the total degrees-of-freedom of the constituent signals.

III. PRACTICAL DEMIXING ALGORITHMS

In theory, many demixing problem instances of the form (4) admit efficient numerical solutions.
Indeed, if we can transform these problems into standard linear, cone, or semidefinite formulations,
we can apply black-box interior point methods to obtain high-accuracy solutions in polynomial
time [24]. In practice, however, the computational burden of interior point methods makes these
methods impracticable as the dimension d of the problem grows. Fortunately, a simple and
effective iterative algorithm for computing approximate solutions to the demixing program (4)
and its extensions can be implemented with just a few lines of high-level code.

Splitting the work

The simplest and most popular method for iteratively solving demixing programs goes by the
name alternating direction method of multipliers (ADMM). The key object in this algorithm is
the augmented Lagrangian function Lρ defined by

Lρ(x,y,w) := ‖x‖Ax
+ λ‖y‖Ay

+ 〈w,x+ y − z0〉+
1

2ρ
‖x+ y − z0‖2,

where 〈·, ·〉 denotes the usual inner product between two vectors and ρ > 0 is a parameter that
can be tuned to the problem. Starting with arbitrary points x1,y1,w1 ∈ Rd, the ADMM method
generates a sequence of points iteratively as

xk+1 = arg minx∈Rd Lρ(x,y
k,wk)

yk+1 = arg miny∈Rd Lρ(x
k+1,y,wk)

wk+1 = wk + (xk+1 + yk+1 − z0)/ρ.
(8)

In other words, the x- and y-updates iteratively minimize the Lagrangian over just one parameter,
leaving all others fixed. The alternating minimization of Lρ gives the method its name. Despite
the simple updates, the sequence (xk,yk) of iterates generated in this manner converges to the
minimizers (x̂, ŷ) of the demixing program (4) under fairly general conditions [25].

The key to the efficiency of ADMM comes from the fact that the updates are often easy to
compute. By completing the square, the x- and y-updates above amount to evaluating proximal
operators of the form

xk+1 = arg min
x∈Rd

‖x‖Ax
+

1

2ρ
‖uk − x‖2 and yk+1 = arg min

y∈Rd

λ‖y‖Ay
+

1

2ρ
‖vk − y‖2, (9)

where uk := z0 − yk − ρwk and vk := z0 − xk+1 − ρwk. When solutions to the proximal
minimizations (9) are simple to compute, each iteration of ADMM is highly efficient.

Fortunately, proximal operators are easy to compute for many atomic gauges. For example,
when the atomic gauge is the `1 norm, the proximal operator corresponds to soft-thresholding
by ρ:

arg min
x∈Rd

‖x‖`1 +
1

2ρ
‖u− x‖2 = soft(u, ρ) =

{
ui − ρ, ui > ρ,
0, |ui| ≤ ρ,
ui + ρ, ui < ρ.

10

If we replace the `1 norm above with the Schatten-1 norm, then the corresponding proximal
operator amounts to soft thresholding the singular values. Numerous other explicit examples of
proximal operations appear in [25, Sec. 2.6].

Not all atomic gauges, however, have efficient proximal operations. Even sets with finite number
of atoms do not necessarily lead to more efficient proximal maps than sets with an infinite number
of atoms. For instance, when the atomic set consists of rank-one matrices with unit Frobenius
norm, we have an infinite set of atoms and yet the proximal map can be efficiently obtained
via singular value thresholding. On the other hand, when the atomic set consists of rank-one
matrices with binary ±1 entries, we have a finite set of atoms and yet the best-known algorithm
for computing the proximal map requires an intractable amount of computation.

There is some hope, however, even for difficult gauges. Recent algebraic techniques for
approximating atomic gauges provide computable proximal operators in a relatively efficient
manner, which opens the door to additional demixing algorithms for richer signal structures [9, 16].

Extensions

While the ADMM method is the prime candidate for solving problem (4), it is not usually the
best method for the extensions (5) or (6). In the first case, if Φ is a general linear operator, it creates
a major computational bottleneck since we need an additional loop to solve the subproblems
within the ADMM algorithm. In the latter case, ADMM even loses convergence guarantees [26].

One possible way to handle both problems (5) and (6) is to use decomposition methods. Roughly
speaking, these methods decompose problems (5) or (6) into smaller components and then solve
the convex subproblem corresponding to each term simultaneously. For example, we can use the
decomposition method from [27]:

vk = wk + ρ(Φ(xk + yk)− z0)
xk+1 = arg minx∈Rd ‖x‖Ax

+ 〈vk,Φx〉+ 1
2ρ‖x− x

k‖22
yk+1 = arg miny∈Rd λ‖y‖Ay

+ 〈vk,Φy〉+ 1
2ρ‖y − y

k‖22
wk+1 = wk + ρ(Φ(xk+1 + yk+1)− z0).

(10)

When the parameter ρ is chosen appropriately, the generated sequence {(xk,yk)} in (10) converges
to the solution of (5). Since the second and the third lines of (10) are independent, it is even
possible to solve them in parallel. This scheme easily extends to demixing three or more signals (6).

Another practical method appears in [28]. In essence, this approach combines a dual formulation,
Nesterov’s smoothing technique, and the fast gradient method [24]. This technique works both
for problems (5) and (6), and it possesses a rigorous O(1/k) convergence rate.

IV. EXAMPLES

The ideas above apply to a large number of examples. Here, we highlight some recent applications
of convex demixing in signal processing. The first example, texture inpainting, uses a low-rank and
sparse decomposition to discover and repair axis-aligned texture in images. The second example
explores an application of demixing to direction-of-arrival estimation, where we demix a source
covariance from a noise covariance to improve beamforming.

Texture inpainting

Many natural and man-made images include highly regular textures. These repeated patterns,
when aligned with the image frame, tend to have very low rank. Of course, rarely does a natural
image consist solely of a texture. Often, though, a background texture is sparsely occluded by

11

Fig. 5: Texture inpainting (White to move, checkmate in 2). The rank-sparsity decomposition (11)
perfectly separates the chessboard from the pieces. (Left) Original image. (Center) Low-rank
component. (Right) Sparse component.

a untextured component. By modeling the occlusion as an additive error, we can use convex
demixing to solve for the underlying texture and extract the occlusion [4].

In this model, we treat the observed digital image Z0 ∈ Rm×n as a matrix formed by the sum
Z0 = X0 +Y0, where the textured component X0 has low rank and Y0 is a sparse corruption or
occlusion. The natural demixing program in this setting is the rank-sparsity decomposition [2, 3]:

[X̂, Ŷ] = arg min
X,Y ∈Rm×n

‖X‖S1
+ λ ‖Y ‖1 subject to X + Y = Z0, (11)

This unsupervised texture-repair method exhibits state-of-the-art performance, exceeding even
the quality of a supervised procedure built in to Adobe Photoshop R© on some images [4]. When
applied, for example, to an image of a chessboard, the method flawlessly recovers the checkerboard
from the pieces (Figure 5).

Direction-of-arrival estimation

We describe a convex demixing program for direction-of-arrival (DOA) estimation. In DOA
estimation, we use an array of n sensors to determine the bearing of multiple sources in wireless
communications [11]. When the sources are independent, the joint covariance matrix Z0 of all of
the signals takes the form Z0 = A0A

t
0 +Y0 in expectation, where the column space of the n× r

matrix A0 encodes the bearing information from r sources, and Y0 is the covariance matrix of
the noise at the sensors.

When the number of sources r is much smaller than the number of sensors n, the matrix
X0 := A0A

t
0 is positive semidefinite and has low rank. Moreover, when the sensor noise is

uncorrelated, the matrix Y0 is diagonal. Using the atomic gauge recipe from above, we can demix
X0 and Y0 from the empirical covariance matrix Z0 by setting

[X̂, Ŷ , Ê] = arg min
X,Y ∈Rn×n

‖X‖S+
1

+‖Y ‖diag +λ ‖E‖2Fro subject to X+Y +E = Z0, (12)

where E absorbs the deviations in the expectation model due to the finite sample size. Here,
‖·‖S+

1
is the atomic gauge generated by positive semidefinite rank-one matrices, which is equal

to the trace for positive semidefinite matrices, but returns +∞ when its argument has a negative
eigenvalue. Similarly, the gauge ‖·‖diag is the atomic gauge generated by the set of all diagonal
matrices, and so it is equal to zero on diagonal matrices but +∞ otherwise. The norm ‖·‖Fro is
the usual Frobenius norm on a matrix. The results of [11] relate the success of a similar problem
to the geometric problem of ellipsoid fitting, and show that under some incoherence conditions
convex demixing succeeds.

In DOA estimation, the source covariance matrix plays a key role in estimating the source
directions [29]. For instance, the multiple signal classification (MUSIC) algorithm exploits the
nullspace of the source covariance matrix to localize the sources. In the presence of white additive

12

0 20 40 60 80 100 120 140 160 180
−60

−50

−40

−30

−20

−10

0

Bearing (degrees)
0 20 40 60 80 100 120 140 160 180

−70

−60

−50

−40

−30

−20

−10

0

Bearing (degrees)

MUSIC pseudospectrum at 5dB MUSIC pseudospectrum at −5dB

Fig. 6: Enhancing DOA estimation. The MUSIC pseudospectrum based on the demixed estimate
X̂ (solid blue lines) from (12) is significantly more informative for the source bearings than the
MUSIC pseudospectrum based on the raw covariance Z0 (dashed magenta lines).

Gaussian noise, the empirical covariance estimate becomes corrupted, deteriorating the bearing
estimates generated by MUSIC.

Figure 6 shows how the demixing procedure (12) can significantly boost the performance of
MUSIC under additive noise. In this experiment, we generate an array data for r = 2 sources
and n = 10 sensors with signal-to-noise ratios of 5dB and −5dB. We simulate the data and
compute the empirical covariance matrix Z0. Then we estimate the source covariance X0 using
the demixed output X̂ of (12). We compare the performance of MUSIC with given the raw
empirical covariance Z0 and the demixed estimate X̂ .

At 5dB SNR, about one-third of the DOA estimates of the MUSIC algorithm with Z0 are
more than three degrees off of the true bearings. At −5dB, MUSIC’s performance on the raw
covariance is even worse: 90% of the estimated bearings are off by three degrees or more. In
contrast, the MUSIC algorithm using the demixed estimate X̂ provides consistently accurate
bearing estimates.

V. HORIZONS: NONLINEAR SEPARATION

We conclude our demixing tutorial with some promising directions for the future. In many
applications, the constituent signals are tangled together in a nonlinear fashion [10, 12]. While
this situation would seem to rule out the linear superposition model considered above, we can
leverage the same convex optimization tools to obtain demixing guarantees and often return to a
linear model using a technique called semidefinite relaxation.

We describe the basic idea behind this maneuver with a concrete application: blind deconvolution.
Convolved signals appear frequently in communications due, for example, to multipath channel
effects. When the channel is known, removing the channel effects is a difficult but well-understood
linear inverse problem. With blind deconvolution, however, we see only the convolved signal
z0 = x0 ∗ y0 from which we must determine both the channel x0 ∈ Rm and the source y0 ∈ Rd.

While the convolution x0∗y0 involves nonlinear interactions between x0 and y0, the convolution
is in fact linear in the matrix formed by the outer product x0y

t
0. In other words, there is a linear

operator C : Rm×d → Rm+d such that
z0 = C

(
X0

)
where X0 := x0y

t
0.

The matrix X0 has rank one by definition, so it is natural use the Schatten 1-norm to search for

13

low-rank matrices that generate the observed signal:

X̂ = arg min
X∈Rm×d

‖X‖S1
subject to z0 = C(X).

This is the basic idea behind the convex approach to blind deconvolution of [10].
The implications of the non-linear demixing example above are far reaching. There are large

classes of signal and mixing models that support efficient, provable, and stable demixing. Viewing
different demixing problems within a common framework of convex optimization, we can leverage
decades of research in various diverse disciplines from applied mathematics to signal processing,
and from theoretical computer science to statistics. We expect that the diversity of convex demixing
models and geometric tools will also inspire the development of new kinds of scalable optimization
algorithms that handle non-conventional cost functions along with atomic gauges [30].

REFERENCES

[1] J.-L. Starck, F. Murtagh, and J. M. Fadili, Sparse image and signal processing. Cambridge:
Cambridge University Press, 2010, wavelets, curvelets, morphological diversity.

[2] V. Chandrasekaran, S. Sanghavi, P. A. Parrilo, and A. S. Willsky, “Rank-sparsity incoherence
for matrix decomposition,” SIAM J. Optim, vol. 21, no. 2, pp. 572–596, 2011.

[3] E. J. Candès, X. Li, Y. Ma, and J. Wright, “Robust principal component analysis?”
J. Assoc. Comput. Mach., vol. 58, no. 3, pp. 1–37, May 2011. [Online]. Available:
http://arxiv.org/pdf/0912.3599

[4] X. Liang, X. Ren, Z. Zhang, and Y. Ma, “Repairing sparse low-rank texture,” in Computer
Vision–ECCV 2012. Springer, 2012, pp. 482–495.

[5] Y. Chen, A. Jalali, S. Sanghavi, and C. Caramanis, “Low-rank matrix recovery from errors
and erasures,” IEEE Trans. Inform. Theory., 2013, to appear.

[6] B. N. Bhaskar, G. Tang, and B. Recht, “Atomic norm denoising with applications to line
spectral estimation,” preprint, 2013. [Online]. Available: http://arxiv.org/abs/1204.0562

[7] R. G. Baraniuk, V. Cevher, and M. B. Wakin, “Low-dimensional models for dimensionality
reduction and signal recovery: A geometric perspective,” Proc. IEEE, vol. 98, no. 6, pp.
959–971, 2010.

[8] E. J. Candès and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal
Processing Magazine, vol. 25, no. 2, pp. 21–30, 2008.

[9] V. Chandrasekaran, B. Recht, P. A. Parrilo, and A. S. Willsky, “The convex geometry of
linear inverse problems,” Found. Comput. Math., vol. 12, no. 6, pp. 805–849, 2012.

[10] A. Ahmed, B. Recht, and J. Romberg, “Blind deconvolution using convex programming,”
arXiv preprint arXiv:1211.5608, 2012.

[11] J. Saunderson, V. Chandrasekaran, P. A. Parrilo, and A. S. Willsky, “Diagonal and low-rank
matrix decompositions, correlation matrices, and ellipsoid fitting,” SIAM J. Matrix Anal.
Appl., vol. 33, no. 4, pp. 1395–1416, 2012.

[12] V. Bittorf, C. Ré, B. Recht, and J. A. Tropp, “Factoring nonnegative matrices with linear
programs,” in Advances in Neural Information Processing Systems 25 (NIPS), December
2012, pp. 1223–1231.

[13] M. B. McCoy and J. A. Tropp, “Sharp recovery bounds for convex deconvolution, with
applications,” preprint, 2012, arXiv:1205.1580v1.

[14] D. L. Donoho and X. Huo, “Uncertainty principles and ideal atomic decomposition,” IEEE
Trans. Inform. Theory, vol. 47, no. 7, pp. 2845–2862, Aug. 2001.

[15] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition by basis pursuit,”
SIAM J. Sci. Comput., vol. 20, no. 1, pp. 33–61, 1998.

http://arxiv.org/pdf/0912.3599
http://arxiv.org/abs/1204.0562
http://arxiv.org/abs/1205.1580

14

[16] F. Bach, “Structured sparsity-inducing norms through submodular functions,” Advances in
Neural Information Processing Systems, pp. 118–126, 2010.

[17] R. Foygel and L. Mackey, “Corrupted sensing: Novel guarantees for separating structured
signals,” preprint, May 2013. [Online]. Available: http://arxiv.org/abs/1305.2524

[18] Y. Peng, A. Ganesh, J. Wright, W. Xu, and Y. Ma, “RASL: Robust alignment by sparse and
low-rank decomposition for linearly correlated images,” IEEE Trans. Pattern Anal., vol. 34,
no. 11, pp. 2233–2246, 2012.

[19] Y. Chen, A. Jalali, S. Sanghavi, and C. Caramanis, “Clustering partially observed graphs via
convex optimization,” in International Symposium on Information Theory (ISIT), 2011.

[20] D. Amelunxen, M. Lotz, M. B. McCoy, and J. A. Tropp, “Living on the edge: A geometric
theory of phase transitions in convex optimization,” preprint, March 2013, arXiv:1303.6672.

[21] D. L. Donoho and J. Tanner, “Precise undersampling theorems,” Proc. IEEE, vol. 98, no. 6,
pp. 913–924, Jun. 2010.

[22] M. Bayati, M. Lelarge, and A. Montanari, “Universality in polytope phase transitions and
message passing algorithms,” preprint, July 2012, arXiv:1207.7321.

[23] M. B. McCoy and J. A. Tropp, “The achievable performance of convex demixing,” preprint,
2013, arXiv:1309.7478.

[24] Y. Nesterov, Introductory lectures on convex optimization: a basic course, ser. Applied
Optimization. Kluwer Academic Publishers, 2004, vol. 87.

[25] P. L. Combettes and V. R. Wajs, “Signal recovery by proximal forward-backward splitting,”
Multiscale Model. Simul., vol. 4, pp. 1168–1200, 2005.

[26] C. Chen, B. S. He, Y. Ye, and X. Yuan, “The direct extension of admm for multi-block
convex minimization problems is not necessarily convergent,” Optimization Online, 2013.

[27] G. Chen and M. Teboulle, “A proximal-based decomposition method for convex minimization
problems,” Math. Program., vol. 64, pp. 81–101, 1994.

[28] I. Necoara and J. Suykens, “Applications of a smoothing technique to decomposition in
convex optimization,” IEEE Trans. Automatic control, vol. 53, no. 11, pp. 2674–2679, 2008.

[29] H. L. V. Trees, Optimum Array Processing: Part IV of Detection, Estimation, and Modulation
Theory. John Wiley and Sons, Inc., 2002, vol. Print ISBN: 9780471093909.

[30] Q. T. Dinh, A. Kyrillidis, and V. Cevher, “Composite self-concordant minimization,” Lab.
Inform. Infer. Sys. (LIONS), EPFL, Switzerland, Tech. Report, January 2013.

http://arxiv.org/abs/1305.2524
http://arxiv.org/abs/1207.7321
http://arxiv.org/abs/1309.7478

	Demixing made easy
	Geometry of demixing
	Practical demixing algorithms
	Examples
	Horizons: Nonlinear separation

