OM-2: An Online Multi-class Multi-kernel Learning Algorithm

Efficient learning from massive amounts of information is a hot topic in computer vision. Available training sets contain many examples with several visual descriptors, a setting in which current batch approaches are typically slow and does not scale well. In this work we introduce a theo- retically motivated and efficient online learning algorithm for the Multi Kernel Learning (MKL) problem. For this algorithm we prove a theoretical bound on the number of multiclass mistakes made on any arbitrary data sequence. Moreover, we empirically show that its performance is on par, or better, than standard batch MKL (e.g. SILP, Sim- pleMKL) algorithms.


Presented at:
In Proceeding of CVPR 2010, Online Learning for Computer Vision Workshop
Year:
2010
Laboratories:




 Record created 2013-12-19, last modified 2018-03-17

n/a:
Download fulltextPDF
External link:
Download fulltextRelated documents
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)