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Abstract—Recent work in text to speech synthesis has pointed
to the benefit of using a continuous pitch estimate; that is, one
that records pitch even when voicing is not present. Such an
approach typically requires interpolation. The purpose of this
paper is to show that a continuous pitch estimation is available
from a combination of otherwise well known techniques. Further,
in the case of an autocorrelation based estimate, the continuous
requirement negates the need for other heuristics to correct
for common errors. An algorithm is suggested, illustrated, and
demonstrated using a parametric vocoder.

Index Terms—pitch estimation; Kalman smoother; speech
coding; speech parameterisation

I. INTRODUCTION

P ITCH estimation (pitch extraction or pitch tracking) refers
to the process of discerning the fundamental frequency

of the harmonic part of a signal. For instance, it is the
entity described by the (height of the) notes in a musical
score. Whilst pitch estimation has applications in radar and
communications, this paper is concerned with audio in general
and speech coding and synthesis in particular.

In the context of speech, pitch is associated with voicing; it
is often referred to in the literature as f0. f0 normally carries
information at a supra-segmental level (an exception being
tonal languages). This means that in, e.g., automatic speech
recognition, f0 is of little use as the acoustic models are built
at a segmental level. However, f0 is important in text to speech
synthesis (TTS) simply to make synthetic speech sound natural
at that supra-segmental level. In statistical TTS, f0 is both
modelled by the hidden Markov model (HMM), and is used in
the STRAIGHT vocoder of Kawahara et al. [1], which requires
a pitch estimate in order to extract a spectral envelope.

II. BACKGROUND

A. Pitch estimation

The estimate for STRAIGHT is usually provided by the
TEMPO method [2]. Other notable work on pitch includes
the YIN method of de Cheveigné and Kawahara [3]. This is
based to an extent on the autocorrelation method described
by Boersma [4]. More recently, model-based approaches such
as those of Christensen and Jakobsson [5] and Nielsen et
al. [6] promise higher accuracy. It is pertinent to note that
f0 extraction is by no means a solved problem. Yamagishi et
al. [7] describe a three stage process:

“f0 is first extracted using a wide range over a whole
database, then a range is determined for each speaker
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and f0 is extracted again using three methods. Fi-
nally a median value of the three methods is chosen.”

i.e., three well known f0 extraction methods are known to
produce different results; there is no oracle method.

A key issue in pitch estimation, at least for speech, is the
handling of segments that are unvoiced; that is, where pitch
cannot be observed. In HMM-based TTS, the multi-space
distribution (MSD) of Tokuda et al. [8] is used; this involves
building distinct models for voiced and unvoiced segments.
Tokuda et al. cite the work of three other groups: Freij and
Fallside [9], Jensen et al. [10] and Ross and Ostendorf [11].
In the first two of these, random values and zero respectively
were assigned to f0 when it could not be measured. This suited
their stress and intonation recognition tasks, but is unsuitable
for TTS because it would lead to synthesis of random or
meaningless f0. Ross and Ostendorf [11] use an appealing
linear dynamical system model, but state that “values for f0
in unvoiced regions are ignored” suggesting that the model in
fact requires some MSD like structure to be used in practice.

A rather high level summary would be that the lack of
voicing leads to difficulty or complexity.

B. Continuous pitch

Recent work suggests that continuous pitch has advantages.
Yu and Young [12] demonstrate that an HMM based TTS
using a continuous f0 produces more expressive f0 contours
than one based on the MSD. This follows at least in part
from the ability to define dynamic features properly. Zhang et
al. [13] introduce using the voicing strength in an otherwise
continuous system to indicate an voiced/unvoiced decision.
Latorre et al. [14] show that a voiced/unvoiced decision can in
fact be left up to the aperiodicity features in a mixed excitation
codec. In perceptual experiments, they show that this leads to
fewer intrusive errors such as false unvoicing (hoarseness) and
false voicing (buzziness).

Although f0 is a characteristic of the excitation rather than
the resonance, the estimation problem is analogous to that of
the other formants in that they are also not necessarily present.
It was shown by Garner and Holmes [15] that uncertainty
about the presence of formants can be represented as a
variance on their distributions. This can in turn be incorporated
into HMM-based models. It is reasonable to suppose that the
same method could apply to f0 estimates.

The remaining sections detail a Bayesian approach to pitch
estimation that naturally yields estimates for unvoiced seg-
ments, along with variances for all estimates. An algorithm is
described, and it is shown that the continuous pitch require-
ment has (positive) implications for the pitch extraction pro-
cess. The resulting algorithm leads to an intuitive illustration
and a persuasive demonstration using a parametric vocoder.
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III. BAYESIAN APPROACH

A. The intuition barrier

The fundamentally unintuitive concept of assigning a value
to an f0 that does not exist can be resolved by a Bayesian
approach. This approach requires a hypothesis that there is
some underlying state variable of which f0 is indicative. It
could be something physical such as tautness of vocal cords,
or something intangible such as the speaker’s intent. This has
an appealing analog in phonetics where a phoneme is the
underlying intent and a phone is the acoustic realisation. It
seems reasonable to use pitch, or ρ, to refer to the underlying
state, and f0 as the acoustic realisation. Mathematically,

p (ρ | f0) ∝ p (f0 | ρ) p (ρ) (1)

The Bayesian approach yields the pitch as being modelled
using a probability density function, p (ρ | f0); an estimate
of pitch is then available as the maximum or expectation of
this density. Intuitively, where there is a clearly observable
f0, the density function of pitch should be narrow (with a
small variance). Conversely, where f0 cannot be measured the
pitch density should have a wider variance. Where f0 is not
observable, information about the pitch is available from prior
information, p (ρ).

B. Choice of prior

Depending upon the type of signal, different priors might
be appropriate. For instance, a singing voice has certain
constraints defined by music theory. In the case of speech, it is
reasonable to assume that the pitch is a continuous contour. If
ρt is the pitch at time t, a first order relationship would define
p (ρt) ∝ p (ρt | ρt−1). Modelling both this and the likelihood
terms as normal distributions,

p (ρt | ρt−1) ∼ N(ρt−1, φ
2), (2)

p (f0,t | ρt) ∼ N(ρt, σ
2), (3)

where “∼” is taken to mean “is distributed as” and N(µ, σ2)
is the normal distribution with mean µ and variance σ2.
Equations 2 and 3 constitute a linear dynamical system, the
solution to which is the Kalman smoother. This is the same
model used, albeit for TTS, by Ross and Ostendorf [11].

C. Parameters

The dynamical system model introduces two standard devi-
ation parameters. Of these, φ is a system-wide parameter; it
must be set either heuristically or trained. The other, σ, is a
function of the f0 extraction, and is discussed below.

IV. PROBABILISTIC PITCH ESTIMATION

A. Observation variance

Any f0 estimation technique will yield some estimate of f0
whether voicing is present or not; the requirement here is to
also produce some measure of how accurate the estimate is. As
pointed out by Boersma [4], the autocorrelation based method

not only yields an estimate of f0, but also a harmonics-to-noise
ratio (HNR). Boersma defines the HNR as

HNR = 10 log10
r′(τmax)

1− r′(τmax)
, (4)

where τmax > 0 and is the lag associated with the peak in
the autocorrelation, r(τ) is the autocorrelation, and r′(τ) =
r(τ)/r(0). For purely harmonic signals the HNR is infinite;
for noise it is minus infinity.

Notice that the reciprocal of the term inside the logarithm of
equation 4 is zero for harmonic signals and infinite for noise.
This is the same as the requirement for σ; it follows that a
heuristic but intuitively reasonable definition would be:

σ ∝ 1− r′(τmax)

r′(τmax)
. (5)

This leads to the distribution p (f0,t | ρt) ∼ N(ρt, σ
2
t ), where

the variance, now dependent upon t, is small for harmonic
signals and larger for noisier ones.

B. Corollary

Although the dynamical system model arose simply to make
use of prior information when f0 cannot be observed, it has
two other advantages in the context of autocorrelation based
pitch estimation:

1) Because of the coarse granularity of the autocorrelation,
better accuracy is sometimes sought via interpolation
within frames. The dynamical system performs the same
task implicitly over time.

2) If a small value is used for φ, effectively over-smoothing
the pitch contour, the resulting contour is robust to the
wrong choice of peak in the autocorrelation.

The implication is that the pitch tracker no longer requires
these components, and can thus be significantly simplified.

C. Algorithm

The above intuition leads to the following algorithm for
pitch estimation:

1) Frame the signal into possibly overlapping frames.
2) Window each frame.
3) For each frame calculate the autocorrelation and divide

by that of the window as described by Boersma [4].
4) For each frame identify a peak, τmax,t, in the normalised

autocorrelation between limits defined by frequencies flo
and fhi.

5) For each frame calculate the (heuristic) variance

σ2
t =

(
1− r′(τmax,t)

r′(τmax,t)
× (fhi − flo)

)2

(6)

6) Using a value of φ2 = 1000 (i.e., pitch expected to
remain within tens of Hz) and prior mean and variance
µ0 = fhi+flo

2 and σ2
0 = (fhi − flo)

2, apply the Kalman
smoother to the sequence of estimates and variances to
give a sequence of pitch estimates.
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Fig. 1. Illustrative example of pitch estimation. The illustrations are, from top to bottom: The periodogram up to 500 Hz of the 16 kHz signal; the pitch
estimate and HNR-implied standard deviation from the normalised autocorrelation; the first (over-)smoothed pitch estimate; and the second estimate with more
relaxed smoothing. In each case, the dark blue lines are ±1 standard deviation. The reference pitch is clearly visible as the first harmonic in the periodogram.

7) Calculate new estimates as in step 4, except with time
dependent frequency bounds:

flo,t = 1.5ρt, (7)
fhi,t = 0.75ρt, (8)

i.e., within the pitch halving and doubling range.
8) Recalculate the variance as above, except using the time

dependent frequency bounds.
9) Using a value of φ2 = 10000 (i.e., pitch allowed to

vary hundreds of Hz), reapply the Kalman smoother to
the sequence of estimates and variances to give a final
sequence of pitch estimates.

In steps 6 and 9, although the value of φ2 has the indicated
meaning, it also functions more generally as a weighting factor
between the likelihood and prior distributions. The Kalman
smoother is detailed in the appendix.

D. Illustrative example

Fig. 1 shows the effect of the above algorithm on a real
recording (utterance EM1_ENG_0001_0 from the EMIME
bilingual database [16]). Notice that the effect of the Kalman
smoother is rather intuitive: In segments of clearly defined
f0, the estimated distribution has small variance; in less clear
segments the variance is larger. The large variance is especially
evident during the opening and closing silence.

Some pitch halving and doubling errors can be seen to
be corrected. Reciprocally, there is a false high HNR around
frame 340 during a region of otherwise low HNR and large
variance.

V. VOCODER

Whilst quantitative validation and incorporation into a TTS
system are matters for future research, the technique described

Male Female
Original EM1_ENG_0001_0.16 EF2_ENG_0001_0.16
Vocoded EM1_ENG_0001_0.vo EF2_ENG_0001_0.vo

TABLE I
RECORDINGS DEMONSTRATING VOCODER PERFORMANCE (FILES HAVE

.WAV EXTENSION).

has been validated qualitatively by incorporation into a simple
parametric vocoder (the signal is parameterised rather than
coded). Such a vocoder is a prerequisite for HMM-based TTS.

In the encoding part of the vocoder, 16 kHz speech is split
into overlapping frames of 256 samples every 128 samples.
Each frame is represented using 24th order auto-regression
(AR) coefficients. The pitch estimator described above is also
used to represent frames of 1024 samples, but at the same
period as the AR. For each frame, a pitch estimate and HNR
are recorded. In the decoder, frames of 256 samples are
constructed using an impulse stream of the given frequency,
and white noise. The impulses and noise are added in the
ratio suggested by the HNR, and used to excite the AR filter.
Frames are concatenated using overlap-add.

The vocoder relies on two effects to mask the harmonic
component when none is required:

1) In segments of silence, the gain of the AR filter is small.
2) During unvoiced speech, the HNR is low.

The performance is evidence from the recordings included
with this submission, again from the EMIME bilingual
database, summarised in table I. Although the vocoder suffers
from the “buzziness” associated with the simplistic excitation,
and certainly contains artefacts, the speech is clear.
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VI. CONCLUSIONS

In this letter, it has been shown that the linear dynamical
system and associated Kalman smoother allow a pitch extrac-
tion algorithm to generate continuous pitch estimates given
discontinuous f0 observations. In using the Kalman smoother,
some heuristic aspects of the pitch extracter are rendered moot,
enabling simplification.

The resulting pitch estimation has been validated both
intuitively by illustration, and qualitatively using a vocoder.
In doing so, the concept of a parametric vocoder with no
voiced/unvoiced decision has been demonstrated.

No claims have been made about the quantitative accuracy
of the algorithms; this is a matter for future research.

The algorithm is undoubtedly better suited to the Bayesian
pitch estimation of Nielsen et al. [6]. That algorithm produces
a distribution over pitch, yielding p (ρ | f0) directly, along
with a distribution over HNR (it is their value g, which is
in turn a simple function of signal to noise ratio). Although
likely to be quantitatively more accurate, Nielsen’s estimation
is considerably more computationally intensive, justifying in
part the more heuristic approach presented here.

The approach as described, or using another pitch estimation
method, is suitable for the HMM modelling of Yu and Young
[12]. It is also appropriate for incorporation into HMM training
in the same way as formants via the algorithm presented by
Garner and Holmes [15].
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APPENDIX

Although the Kalman smoother is well known (see, e.g.,
the book by Scharf [17]), the recursions are stated below for
reference.

The forward filter maintains a mean, M+
t , and variance,

V +
t ; it is initialised as

M+
1 =

f0,1σ
2
0 + µ0σ

2
1

σ2
0 + σ2

1

; V +
1 =

σ2
0σ

2
1

σ2
0 + σ2

1

. (9)

With no offset, the first predictor has the same mean with
variance

P2 = φ2 + V +
1 . (10)

That predictor then replaces the prior for a the second frame:

M+
2 =

f0,2P2 +M+
1 σ

2
2

P2 + σ2
2

, V +
2 =

P2σ
2
2

P2 + σ2
2

, (11)

and an iteration is evident.
The backward smoother then updates these to a mean, M−t ,

and variance, V −t . The first term, this time at time T , is

M−T =M+
T ; V −T = V +

T . (12)

The next backward term is then

M−T−1 =
V +
T−1M

−
T

φ2 + V +
T−1

+
M+

T−1φ
2

φ2 + V +
T−1

, (13)

V −T−1 =
V +
T−1

φ2 + V +
T−1

(
φ2 +

V +
T−1V

−
T

φ2 + V +
T−1

)
, (14)

and again a recursion is evident. At any time t, the posterior
pitch distribution is

p (ρt | f0,t) ∼ N(M−t , V
−
t ). (15)


