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Abstract

This paper proposes an approach for high-order time integration within a multi-domain setting for time-
fractional differential equations. Since the kernel is singular or nearly singular, two main difficulties
arise after the domain decomposition: how to properly account for the history/memory part and how to
perform the integration accurately. To address these issues, we propose a novel hybrid approach for the
numerical integration based on the combination of three-term-recurrence relations of Jacobi polynomials
and high-order Gauss quadrature. The different approximations used in the hybrid approach are justified
theoretically and through numerical examples. Based on this, we propose a new multi-domain spectral
method for high-order accurate time integrations and study its stability properties by identifying the method
as a generalized linear method. Numerical experiments confirm hp-convergence for both time-fractional
differential equations and time-fractional partial differential equations.

Keywords: multi-domain, spectral, time-fractional, high-order integration, three-term-recurrence, general
linear method.

1. Introduction

Fractional calculus and the modeling of a variety of non-classic phenomena using fractional differential
equations is emerging as an area of substantial activity across many applications in the natural and social
sciences (cf. [17, 16]). The primary advantage of such models is the introduction of a parameter, α, which
can be used to model non-Markovian behavior of spatial or temporal processes. During the last decade, this
approach has emerged as generalizations of many classic problems in mathematical physics, including the
fractional Burgers’ equation [11, 25], the fractional Navier-Stokes equation [7, 6], the fractional Maxwell
equation [10], the fractional Schrödinger equation [8], the fractional Ginzburg Landau equation [8, 22],
etc. In parallel, numerical methods for classical differential equations, such as finite difference methods
[15, 14, 23], finite element methods [3], spectral methods [13, 2, 12], and discontinuous Galerkin methods
[19, 24], have been developed, albeit this remains a relatively new topic of research.

In this work we focus on time-fractional differential equations (TFDE) where the time-fractional
derivative emerges as an integro-differential operator, defined by the convolution of the classical derivative
of the function and a singular kernel of fractional power-law type. Hence, the solution to a TFDE at a
certain time depends on the total history of the solution at previous times and seek to model problems
with memory terms, among other things. Considering the design of numerical schemes, an immediate
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consequence of this is that the whole trajectory of the numerical solution must be carried forward and used
in the computation at the current time step. This impacts both the storage and the cost of the numerical
method, both of which may substantially increase over time.

Most past work on the development of methods for TFDEs has focused on lower order methods in
which a finite difference approach is used to replace the integrant with its forward, backward, or mid-point
rules. More recently, a piecewise-linear, discontinuous Galerkin method was proposed in [19] for the
fractional wave equation.

Though only sparsely explored in this context, high order methods have the potential to reduce the
storage requirement and computational cost, by allowing the use of many fewer points while achieving the
same accuracy as that of lower order methods. However, accurate high-order approximation to fractional
operators requires a delicate treatment of special functions and integral transforms, similar to what has been
developed in the context of spectral methods based on classic orthogonal polynomials [9, 5]. Using spectral
methods for the TFDE, [13] proposes a spectral-Galerkin method and shows that by taking advantage of
special properties of the time-fractional differential operator, positive definite linear systems result, leading
to an efficient solver. In [2], the authors explored analytical results of the fractional derivative of shifted
Jacobi polynomials and discussed two effective approaches - spectral collocation methods and spectral tau
methods - for the fractional differential equation. Recently, [12] derived three-term-recurrence relations
for fractional integrals and derivatives for the Jacobi polynomials, and provided an elegant collocation
approach that can be seen as a generalization of the classical numerical differentiation. A slightly different
but related approach is developed in [26] where a Petrov-Galerkin spectral element method is proposed for
fractional ODEs, defined through the Riemann-Liouville definition. Unlike [26], in this paper we focus on
a collocation form that is more suitable for variable coefficients and nonlinear source functions.

The majority of past developments of high-order methods for the TFDE emphasize spectral approxi-
mations in a single domain. In this paper, we adopt the idea of a multi-domain spectral approach, leading
to a generalized high-order linear method with a long tail of past solutions. A similar approach is recently
proposed in There are two challenges that arise out of this approach. First, one needs to discretize the
fractional derivative which has a singular kernel within the current element. For this, we rely on the use of
the three-term-recurrence approach proposed in [12]. The second task, which appears more challenging, is
to compute the history part accurately and efficiently, i.e., to compute the integral over previous elements
with high precision. In order to deal with this, we first extend the three-term-recurrence relation in [12] to
work on all elements and then combine it with a Gaussian quadrature for terms far away from the current
element. This hybrid approach is needed to control stability issues related to the recurrence relation.
Values of these integrals together with the source function form the right hand side of the linear system.

To understand the stability properties of this approach, we carry out a stability study based on a
companion matrix approach and verify hp-convergence of our method for time-fractional differential
equations and time-fractional partial differential equations. The paper seeks to establish a computational
framework for high-order accurate integration of the TFDE, and our work clearly indicates that the
multi-domain spectral approach, as an optimized combination of low and high order methods, can provide
excellent performance for numerical simulations of problems dominated by memory effects.

What remains of the paper is organized as follows. Basic notation of fractional calculus and TFDE are
provided in Section 2. In Section 3, we describe the core techniques of our spectral approximation to the
fractional derivative. The algorithmic details and the stability analysis of the hybrid multi-domain spectral
method are discussed in Section 4. Numerical results for a multi-term fractional differential equation are
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provided in Section 5 and Section 6 contains a few concluding remarks.

2. Fractional differential equations

Let us denote the time domain (0, T ) as Ω, and let t ∈ Ω. The fractional integral of order α of a given
function u(t) is defined as

0D
−α
t u(t) ,

1

Γ(α)

∫ t

0

(t− s)α−1u(s)ds, (2.1)

where Γ(x) is the Gamma function. This allows us to define the Caputo fractional derivative of order
α, (0 < α ≤ 1) as

0D
α
t u(t) ,

1

Γ(n− α)

∫ t

0

(t− s)n−1−αdnu(s)

dsn
ds. (2.2)

which is preferred over alternative definitions to deal with general initial conditions. This definition can
naturally be extended to higher order as

0D
α
t u(t) , 0D

α−n
t

dnu(t)

dtn
=

1

Γ(n− α)

∫ t

0

(t− s)n−1−αdnu(s)

dsn
ds, (2.3)

where n is an integer such that α ∈ (n− 1, n].
With this notation we express the multi-term fractional differential equation is written as:

m∑
k=1

ak(t) 0D
αk
t u(t) = Lu(t) + f(t), t ∈ Ω,

u(k)(0) = uk, 0 6 k 6 n− 1.

(2.4)

Here we assume that 0 6 α1 < α2 < · · · < αm and αm ∈ (n − 1, n]. On the right hand side of the
equation, L can be either a scalar function for the time-fractional differential equation (TFDE) case or an
operator in a spatial domain for the time-fractional partial differential equation (TFPDE) case. We refer to
[20] for a general background on the fractional calculus.

3. Fractional calculus using spectral methods

In the first part of this section, we provide the required background on Jacobi polynomials and
fundamentals of spectral approximations to fractional derivatives in the single domain. This sets the stage
for the second part, discussing key ideas related to the fractional derivative of Jacobi polynomials in a
multi-element setting.

3.1. Spectral approximations in the single domain
We begin by recalling basic properties of Jacobi polynomials, and then describe how to construct

differentiation matrices for fractional differentiation using three term relations of Jacobi polynomials and
their fractional derivatives.
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3.1.1. Jacobi polynomials
Denote Ja,bj (t) as the j-th order Jacobi polynomial of index (a, b) defined on [−1, 1]. As all classic

orthogonal polynomials, {Ja,bj (t)}Nj=0 satisfies the following three-term-recurrence relation (cf. [21, 5]):

Ja,b0 (t) = 1,

Ja,b1 (t) = (a+ b+ 2)t+ (a− b),
Ja,bj+1(t) = (Aa,bj t−Ba,b

j )Ja,bj (t)− Ca,b
j Ja,bj−1(t), 1 6 j 6 N − 1,

(3.1)

with the recursion coefficients given as

Aa,bj =
(2j + a+ b+ 1)(2j + a+ b+ 2)

2(j + 1)(j + a+ b+ 1)
,

Ba,b
j =

(b2 − a2)(2j + a+ b+ 1)

2(j + 1)(j + a+ b+ 1)(2j + a+ b)
,

Ca,b
j =

(j + a)(j + b)(2j + a+ b+ 2)

(j + 1)(j + a+ b+ 1)(2j + a+ b)
.

(3.2)

The endpoint values of the Jacobi polynomial are given as

Ja,bj (−1) = (−1)j
(
j + b
j

)
, Ja,bj (1) =

(
j + a
j

)
.

We also recall the relation between the Jacobi polynomial and its derivative as

dm

dxm
Ja,bj (t) = da,bj,mJ

a+m,b+m
j−m (t), m > j, m ∈ N, (3.3)

where

da,bj,m =
Γ(j +m+ a+ b+ 1)

2mΓ(j + a+ b+ 2)
. (3.4)

Finally, we recall that a Jacobi polynomial can be written as a sum of derivatives on the form

Ja,bj (t) = Āa,bj
d
dt
Ja,bj−1(t) + B̄a,b

j

d
dt
Ja,bj (t) + C̄a,b

j

d
dt
Ja,bj+1(t), (3.5)

where the coefficients are defined as

Āa,bj =
−2(j + a)(j + b)

(j + a+ b)(2j + a+ b)(2j + a+ b+ 1)
,

B̄a,b
j =

2(a− b)
(2j + a+ b)(2j + a+ b+ 2)

,

C̄a,b
j =

2(j + a+ b+ 1)

(2j + a+ b+ 1)(2j + a+ b+ 2)
.

(3.6)
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3.1.2. Fractional differentiation matrix using three-term-recurrence relations
We recall the following result [12]

Theorem 3.1. Let the fractional integral of Jacobi polynomials be defined as

Ĵa,b,αj (t) := −1D
−α
t Ja,bj (t) =

1

Γ(α)

∫ t

−1

(t− s)α−1Ja,bj (s)ds. (3.7)

Then {Ĵa,b,αj (t)}Nj=0 satisfies the following three-term-recurrence relation:

Ĵa,b,α0 (t) =
(t+ 1)α

Γ(α + 1)
,

Ĵa,b,α1 (t) =
a+ b+ 2

2

(
t(t+ 1)α

Γ(α + 1)
− α(t+ 1)α+1

Γ(α + 2)

)
+
a− b

2
Ĵa,b,α0 (t),

Âa,bj Ĵa,b,αj+1 (t) = B̂a,b
j Ĵa,b,αj (t) + Ĉa,b

j Ĵa,b,αj−1 (t) + D̂a,b
j (t+ 1)α,

(3.8)

where
Âa,bj = (1 + αAa,bj C̄a,b

j ),

B̂a,b
j =

(
Aa,bj x−Ba,b

j − αA
a,b
j B̄a,b

j

)
,

Ĉa,b
j =

(
Ca,b
j + αAa,bj Āa,bj

)
,

D̂a,b
j =

Aa,bj
Γ(α)

(
Āa,bj Ja,bj−1(−1) + B̄a,b

j Ja,bj (−1) + C̄a,b
j Ja,bj+1(−1)

)
.

(3.9)

Using (3.3), the fractional derivative of a Jacobi polynomial can be expressed as

(Ja,bj )(α)(t) := −1D
α
t J

a,b
j (t) = γa,bj,nĴ

a+n,b+n,n−α
j−n (t), n− 1 < α < n, (3.10)

where γa,bj,n is a known constant.
Let {ti}Ni=0 be a set of collocation points, typically chosen as Gauss quadrature points. We define the

fractional differentiation matrix of order α as

Dαij = (Ja,bj )(α)(ti), 0 6 i, j 6 N. (3.11)

The entries of Dα can easily be computed through (3.8)-(3.10).
We can recast this using a more convenient nodal representation of u(t). Let {Lij(t)}Nj=0 be Lagrange

polynomials associated with {ξij}Nj=0 where ξ[−1, 1] represents the affinely mapped time, t. We can then
express u(t) as

uh(t) =
N∑
l=0

uilL
i
l(t) =

N∑
l=0

ûilJ
a,b
l (t), t ∈ Ωi. (3.12)

If we assume that the expansion coefficients, ûl, are computed through a quadrature over Ωi, we recover
modal and nodal representations of uh(t):

(ûi)j = ûij, (ui)j = uh(t
i
j), 0 6 j 6 N, 1 6 i 6 K. (3.13)
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connected through
Vûi = ui, llVij = Ja,bj (ti) (3.14)

where V is the Vandermonde matrix associated with the Legendre transformation (cf. [5]).
We can finally express the fractional derivative as

0D
−α
t u(t) =

N∑
l=0

ûl(J
a,b
j )(α)(t),

which, if evaluated the grid points, ti, results in

0D
−α
t u(t) = Dαû = DαV−1u,

where we have dropped the index i for simplicity.

3.2. Spectral approximations in the multi-domain setting
Let us now divide Ω = [tl, tr] into K elements:

tl = t0 < t1 < · · · < tK = tr, Ωi = [ti−1, ti], hi = ti − ti−1, 1 6 i 6 K. (3.15)

For any t ∈ Ωi+1, we have (n− 1 < α < n):

0D
α
xu(t) =

1

Γ(n− α)

∫ t

0

(t− s)n−1−αdnu(s)

dsn
ds

=
1

Γ(n− α)

i∑
k=1

∫
Ωk

(t− s)n−1−αdnu(s)

dsn
ds+

1

Γ(n− α)

∫ t

ti

(t− s)n−1−αdnu(s)

dsn
ds.

(3.16)

The second part of this expression is, with appropriate scaling, equivalent to the one-domain problem
discussed above. Hence, assuming that the solution locally is expressed as an expansion in Jacobi
polynomials, the fractional derivative can be computed using 3.11.

Calculating the history part accurately is key to our multi-domain spectral method as this impacts both
accuracy and computational cost of the method. We shall consider two different methods for achieving this
and, subsequently, combine these to achieve a robust balance between cost and accuracy. In the following
we refer to these two approaches as Differentiation-A and Differentiation-B and we shall illustrate shortly
their individual benefits and challenges as motivation for considering a hybrid approach.

3.2.1. Differentiation-A

With a proper affine transformation of Ωk, we may consider the following quantity:

J̃a,b,αj (t) :=
1

Γ(α)

∫ 1

−1

(t− s)α−1Ja,bj (s)ds, t > 1, 0 6 j 6 N. (3.17)

Note that since we assume t > 1 in the history part, the kernel is regular.
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Theorem 3.2. With this definition, {J̃a,b,αj (t)}Nj=0 satisfies the following three-term-recurrence relation:

J̃a,b,α0 (t) =
(t+ 1)α − (t− 1)α

Γ(α + 1)
,

J̃a,b,α1 (t) =
a+ b+ 2

2Γ(2 + α)
((t− α)(t+ 1)α − (t+ α)(t− 1)α) +

a− b
2

J̃a,b,α0 (t),

Ãa,bj J̃a,b,αj+1 (t) = B̃a,b
j J̃a,b,αj (t) + C̃a,b

j J̃a,b,αj−1 (t) + D̃a,b
j (t+ 1)α + Ẽa,b

j (t− 1)α,

(3.18)

where the coefficients are defined as
Ãa,bj = (1 + αAa,bj C̄a,b

j ),

B̃a,b
j =

(
Aa,bj t−Ba,b

j − αA
a,b
j B̄a,b

j

)
,

C̃a,b
j = −

(
Ca,b
j + αAa,bj Āa,bj

)
,

D̃a,b
j =

Aa,bj
Γ(α)

(
Āa,bj Ja,bj−1(−1) + B̄a,b

j Ja,bj (−1) + C̄a,b
j Ja,bj+1(−1)

)
,

Ẽa,b
j = −

Aa,bj
Γ(α)

(
Āa,bj Ja,bj−1(1) + B̄a,b

j Ja,bj (1) + C̄a,b
j Ja,bj+1(1)

)
.

(3.19)

Proof. For Ja,b0 (t) and Ja,b1 (t), one easily obtains

J̃a,b,α0 (t) =
1

Γ(α)

∫ 1

−1

(t− s)α−1ds =
(t+ 1)α − (t− 1)α

Γ(α + 1)
, (3.20)

J̃a,b,α1 (t) =
a+ b+ 2

2Γ(2 + α)
((t− α)(t+ 1)α − (t+ α)(t− 1)α) +

a− b
2

J̃a,b,α0 (t). (3.21)

For {Ja,bj+1(t), j > 1}, using the three terms recurrence relation (3.1), we recover

J̃a,b,αj+1 (t) =
1

Γ(α)

∫ 1

−1

(t− s)α−1
(

(Aa,bj s−Ba,b
j )Ja,bj (s)− Ca,b

j Ja,bj−1(s)
)

ds (3.22)

= −Ba,b
j J̃a,b,αj (t)− Ca,b

j J̃a,b,αj−1 (t) +
Aa,bj
Γ(α)

∫ 1

−1

(t− s)α−1sJa,bj (s)ds (3.23)

= −Ba,b
j J̃a,b,αj (t)− Ca,b

j J̃a,b,αj−1 (t)−
Aa,bj
Γ(α)

∫ 1

−1

(t− s)α−1((t− s)− t)Ja,bj (s)ds (3.24)

= (xAa,bj −B
a,b
j )J̃a,b,αj (t)− Ca,b

j J̃a,b,αj−1 (t)−
Aa,bj
Γ(α)

∫ 1

−1

(t− s)αJa,bj (s)ds. (3.25)

Next, we deal with the last term in (3.25). Recalling (3.5), we can have

1

Γ(α)

∫ 1

−1

(t− s)αJa,bj (s)ds

=
1

Γ(α)

∫ 1

−1

(t− s)α
(
Āa,bj

d
ds
Ja,bj−1(s) + B̄a,b

j

d
ds
Ja,bj (s) + C̄a,b

j

d
ds
Ja,bj+1(s)

)
ds.

(3.26)
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Through integration by parts, we obtain

1

Γ(α)

∫ 1

−1

(t− s)αĀa,bj
d
ds
Ja,bj−1(s)ds =

Āa,bj ((t− 1)αJa,bj−1(1)− (t+ 1)αJa,bj−1(−1))

Γ(α)
− αĀa,bj J̃a,b,αj−1 (t),

(3.27)

1

Γ(α)

∫ 1

−1

(t− s)αB̄a,b
j

d
ds
Ja,bj (s)ds =

B̄a,b
j ((t− 1)αJa,bj (1)− (t+ 1)αJa,bj (−1))

Γ(α)
− αB̄a,b

j J̃a,b,αj (t),

(3.28)

1

Γ(α)

∫ 1

−1

(t− s)αC̄a,b
j

d
ds
Ja,bj+1(s)ds =

C̄a,b
j ((t− 1)αJa,bj+1(1)− (t+ 1)αJa,bj+1(−1))

Γ(α)
− αC̄a,b

j J̃a,b,αj+1 (t).

(3.29)

Combining (3.25)-(3.29), we obtain the three terms recurrence relation:

Ãa,bj J̃a,b,αj+1 (t) = B̃a,b
j J̃a,b,αj (t) + C̃a,b

j J̃a,b,αj−1 (t) + D̃a,b
j (t+ 1)α + Ẽa,b

j (t− 1)α. (3.30)

where Ãa,bj , B̃a,b
j , C̃a,b

j , D̃a,b
j , Ẽa,b

j are defined in (3.19).

With (3.17), we can calculate the integral term in the history part as

D̃αJa,bj (t) :=
1

Γ(n− α)

∫ 1

−1

(t− s)n−α−1 dn

dsn
Ja,bj (s)ds = γa,bj,nJ̃

a+n,b+n,n−α
j−n (t), t > 1. (3.31)

To test the accuracy of differentiation based on this recurrence relation, we consider numerical differentia-
tion of a function u(t) = sin(t). Figure 1 illustrates the error of the numerical differentiation of order α of
u(t), by using Differentiation-A. The following parameters were used:

Ω = [0, 2π], α = 0.6, N = 16, K = 14, (3.32)

where the same number of N is used in all elements. What is worth observing in Figure 1 is that large
numerical errors appear as t gets large, i.e., as the history increases.

To understand this, consider the proof of Theorem 3.2. From (3.23) to (3.24), we use −s = (t− s)− t,
where s ∈ [−1, 1] and t > 1. Note that after the affine transformation the right end of each element
corresponds to s = 1 and cancellation becomes significant as observed in near 2π in Figure 1. For t� 1,
even small errors destroy the real value through the recurrence. This is a classic phenomenon for forward
recurrences and to compute J̃a,b,αj (t) for large t, we need to consider an alternative.
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−11

−10

−9

−8

−7
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lo
g 10

|e
rr

or
|

Figure 1: Numerical errors of Differentiation-A with sin(t) and parameters in (3.32).

3.2.2. Differentiation-B

As an alternative approach to calculate (3.17) we consider a Gauss quadrature

D̃αJa,bj (t) ≈ 1

Γ(n− α)

N∑
i=0

ωi(t− si)n−α−1 dn

dsn
Ja,bj (si), (3.33)

where {si, ωi} can be chosen as the Legendre-Gauss-Lobatto points if t is outside [−1, 1] since in this case
the kernel is regular.

One easily observes that Differentiation-B can not be expected to be accurate when (t− s)n−α−1 is
nearly singular, i.e., when t is very near the boundary of [−1, 1]. To illustrate this point, we consider the
same example and parameters as in Section 3.2.1. Figure 2 highlights that there are indeed large errors
near the right end of each element. They are caused by the singularity of (t− s)n−α−1.
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−14

−12

−10
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Figure 2: Numerical errors of Differentiation-B with sin(t) and parameters in (3.32).

3.2.3. A Hybrid Approach
Based on the discussion above, we can make the following observations. When t is close to the

end point of the integration domain, Differentiation-A performs well while Differentiation-B fails. As t
increases, the situation reverses, and Differentiation-B is superior to Differentiation-A.

This situation suggest that a hybrid of these two techniques has a potential for reaching high-order
accuracy across the entire history by using Differentiation-A for Ωi−m, · · · ,Ωi, where m is small integer,
and use Differentiation-B for the remaining part of the history elements.

To illustrate the hybrid approach, we consider again the fractional differentiation of sin(t) and use the
same parameters as in (3.32). We fixm = 3, i.e., a total of four elements are computed with Differentiation-
A and the rest are obtained with Differentiation-B. Figure 3 illustrates that the numerical errors in the
hybrid approach are uniformly small across the entire range.
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Figure 3: Numerical errors of the hybrid approach with sin(x) and parameters in (3.32).

4. Multi-domain spectral method for TFDE

Let us now return to the fractional differential equation{
0D

α
t u(t) = λu(t) + f(t), t ∈ Ω,

u(0) = u0,
(4.1)

where λ ∈ C, and α ∈ (0, 1). To understand the basic properties of our scheme, we shall first consider
this model problem.

4.1. Description of the Method
Without loss of generality, we set (a, b) = (0, 0) for the index of the Jacobi polynomials, i.e., we use

an expansion in Legendre polynomials to represent the solution.
First, consider a domain decomposition of Ω:

0 = t0 < t1 < · · · < tK = T, Ωi = [ti−1, ti], hi = ti − ti−1, 1 6 i 6 K. (4.2)

The model equation (4.1) takes the form: ti−1
Dα
t u(t) +

i−1∑
k=1

tk−1
D̃α
tk
u(t) = λu(t) + f(t), t ∈ Ωi, 1 6 i 6 K,

u(0) = u0,

(4.3)
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where D̃α is defined in (3.31).
Next, we define the approximating space:

XN = {u ∈ C(Ω);u|Ωi
∈ PN , 1 6 i 6 K}, (4.4)

where PN is the polynomial space of degree N defined on Ωi, i.e., we represent the global solution as
piecewise polynomials.

For simplicity, we consider a uniform decomposition (hi ≡ h) and the same number of degrees of
freedom on each element, although this is not required. The numerical solution can be expressed as

uh(t) =
N∑
l=0

ûilPl(t̃), t ∈ Ωi, (4.5)

where

t =
1− t̃

2
ti−1 +

1 + t̃

2
ti, t̃ ∈ [−1, 1], (4.6)

and Pl(t̃) is the l-th order Legendre polynomial defined on [−1, 1].
Insert (4.5) into (4.3), and enforce the equation to hold at a set of collocation points ξij , to recover

ti−1
Dα
t uh(ξ

i
j) +

i−1∑
k=1

tk−1
D̃α
tk
uh(ξ

i
j) = λuh(ξ

i
j) + f(ξij), 0 6 j 6 N, 1 6 i 6 K, (4.7)

We shall assume that {ξij}Nj=0 is the Legendre-Gauss-Lobatto points on Ωi but this too can be relaxed.
Using the affine transformation in (4.6), we introduce the following matrices:

(M̂0)jl = (
h

2
)−α −1D

α
t Pl(ξj), 0 6 j, l 6 N,

(M̂i−k)jl = (
h

2
)−α −1D̃

α
1Pl(ξ̃

i
j), 0 6 j, l 6 N, 1 6 k 6 i− 1,

(4.8)

where

ξij =
1− ξ̃ij

2
tk−1 +

1 + ξ̃ij
2

tk. (4.9)

and D̃α is defined in (3.31).
The multi-domain spectral method may now be expressed as follows. Assume that {ûk}i−1

k=1 were
solved on previous elements, i.e., the history is known. Then (4.7) is equivalent to the following linear
system in ûi:

M̂0û
i +

i−1∑
k=1

M̂i−kû
k = λVûi + f i, (4.10)

where (f i)j = f(tij). Following the discussion in Section 3, M̂0 is calculated with the three-term-
recurrence in Section 3.1.2, {M̂1, · · · ,M̂m} are calculated with Differentiation-A, and {M̂m+1, · · · ,M̂i−1}
are calculated with Differentiation-B, where m is a small integer like 3 or 4.
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In practice, it is preferred to work directly in physical space. Hence, we write (4.10) as

N0u
i +

i−1∑
k=1

Ni−kuk = λ(
h

2
)αui + (

h

2
)αf i, (4.11)

where
Nk = (

h

2
)αM̂kV−1, 0 6 k 6 i− 1. (4.12)

To complete the method, one needs to enforce the initial condition on each element: the first row of (4.11)
is replaced by (1, 0, · · · , 0) and the first element of the right hand side vector is replaced by uh(ti−1

N ).
If α ∈ (1, 2), the second row of (4.11) also needs to be replaced by the first row of the first-order
differentiation matrix, and the right hand side vector is changed accordingly.

4.2. Stability
Let us consider the stability characteristics of the proposed method. We consider the model equation:{

0D
α
t u(t) = λu(t), t ∈ Ω,

u(0) = u0.
(4.13)

It is stated in Theorem 2.17 of [18] that (4.13) is stable if the following condition is satisfied

| arg(λ)| > απ

2
. (4.14)

Following (4.11), the multi-domain spectral method is expressed through the following linear system

N0u
i +

i−1∑
k=1

Ni−kuk = λ(
h

2
)αui, (4.15)

which can be recognized as a general linear method [4], albeit with a unbounded number of terms as the
time step approaches zero. To study the stability of (4.15), we fix the number of terms in the summation,
effectively eliminating the memory effect as it fades out. Denote the number of remaining terms as Nc and
consider

ui −
Nc∑
k=1

Ri−ku
k = 0, (4.16)

where
Rk = −(N0 − λ(

h

2
)αI)−1Nk. (4.17)

Introduce the vector
yi = (ui,ui−1, · · · ,u2)T . (4.18)

Then, (4.16) is equivalent to
yi = Pyi−1, (4.19)
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where P is assembled fromRk as

P =


R1 R2 R3 · · ·
I

I
I

· · · · · ·

 . (4.20)

The stability of (4.15) is then determined by the spectrum of P as a function of z = λ
(
h
2

)α.
In Figure 4, we plot the stability regions, defined as the regions where all eigenvalues have modulus

less than one, for the linear case, i.e., N = 1, for different values of α’s and Nc’s. The x-axis (y-axis) is
the real (imaginary) part of z and the black regions represent unstable regions. First of all we observe that
as Nc increases, the stability regions appears to converge. Typically, with Nc > 15 we obtain a reliable
stability region for the scheme. Secondly, as α approaches 1, the stability region of the scheme approaches
that of the backward Euler scheme as one would expect. To consider the extension of this study to higher
order methods, we consider the cases of N = 2, 3, 4, 5 in Figure 5. The conclusions follow that of the
N = 1 case. The results supports a conjecture that the scheme is A-stable for all orders.

Furthermore, we observe in Figure 5 that stability regions of the numerical method contain the stability
region of the continuous equation. Specifically, the angle of the draw line from (0, 0) to first time this line
touches the region of instability is independent of N and about πα/2. It is consistent with the theoretical
results in (4.14).

5. Numerical examples

In the following we consider various examples to illustrate the accuracy and efficiency of the proposed
scheme. For this, we consider both fractional ordinary and partial differential equations.

5.1. Fractional differential equations
Example 5.1. Let us first consider the order of convergence of the multi-domain spectral method applied
to (4.1) with α ∈ (0, 1) and λ = −1. We choose the exact solution to be u(t) = sin(t) + t, yielding the
source function,

f(t) =
t1−α

2
(E1,2−α(it) + E1,2−α(−it)) +

t1−α

Γ(2− α)
+ sin(t) + t, t ∈ (0, 4π],

where i =
√
−1 and Eλ,µ(·) is the Mittag-Leffler function [1]

For the numerical results, let K1, K2 be the number of elements of two different meshes, and eh,1, eh,2
be the corresponding errors. Then, the order of convergence of the scheme is obtained as

Order =
log(‖eh,1‖2/‖eh,2‖2)

log(K2/K1)
. (5.1)

Numerical results for different values of N , K, and α are shown in Table 1, showing hp-convergence as

‖u− uh‖2 ∼ hN+1−α. (5.2)
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Figure 4: Stability domains for the multi-domain spectral method with N = 1 (linear approximation). Nc

is the number of cut-off in the history for different values of α.
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Figure 5: Numerical stability for the multi-domain spectral method with different N and α values. Nc is
fixed as 20.
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N = 1
α = 0.1 α = 0.5 α = 0.9

K ‖eh‖2 Order ‖eh‖2 Order ‖eh‖2 Order
20 1.56e-02 1.67 1.29e-01 1.38 1.56e-02 1.01
30 7.91e-03 1.64 7.40e-02 1.39 7.91e-03 1.03
40 4.94e-03 1.62 4.96e-02 1.39 4.94e-03 1.04
50 3.44e-03 - 3.64e-02 - 1.55e-01 -

N = 2
α = 0.1 α = 0.5 α = 0.9

K ‖eh‖2 Order ‖eh‖2 Order ‖eh‖2 Order
20 4.54e-04 2.97 3.62e-03 2.78 4.54e-04 2.15
30 1.36e-04 2.97 1.17e-03 2.75 1.36e-04 2.11
40 5.79e-05 2.97 5.30e-04 2.73 5.79e-05 2.10
50 2.98e-05 - 2.88e-04 - 2.34e-03 -

N = 3
α = 0.1 α = 0.5 α = 0.9

K ‖eh‖2 Order ‖eh‖2 Order ‖eh‖2 Order
20 1.76e-05 3.94 1.51e-04 3.80 1.76e-05 3.20
30 3.56e-06 3.95 3.24e-05 3.80 3.56e-06 3.15
40 1.14e-06 3.95 1.08e-05 3.80 1.14e-06 3.12
50 4.74e-07 - 4.65e-06 - 3.96e-05 -

N = 4
α = 0.1 α = 0.5 α = 0.9

K ‖eh‖2 Order ‖eh‖2 Order ‖eh‖2 Order
20 5.05e-07 4.96 4.11e-06 4.86 5.05e-07 4.23
30 6.77e-08 4.96 5.72e-07 4.86 6.77e-08 4.17
40 1.63e-08 4.96 1.41e-07 4.86 1.63e-08 4.14
50 5.38e-09 - 4.77e-08 - 4.57e-07 -

N = 5
α = 0.1 α = 0.5 α = 0.9

K ‖eh‖2 Order ‖eh‖2 Order ‖eh‖2 Order
20 1.33e-08 5.95 1.09e-07 5.87 1.33e-08 5.21
30 1.19e-09 5.80 1.01e-08 5.88 1.19e-09 5.15
40 2.24e-10 - 1.85e-09 5.89 2.24e-10 5.13
50 8.70e-11 - 4.98e-10 - 5.23e-09 -

Table 1: Numerical errors and orders of convergence for Example 5.1 for number of elements K and order
of approximation N .
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Example 5.2. Next, we consider cases where α ∈ (1, 2) and choose the exact solution to be u(t) =
sin( t

2
) + 2e−

t
3 , resulting in a source function,

f(t) =
it2−α

8

(
E1,3−α(

1

2
it)− E1,3−α(−1

2
it))

)
+

2t2−α

9
E1,3−α(− t

3
) + sin(

t

2
) + 2e−

t
3 , t ∈ (0, 8π].

Numerical results are shown in Table 2, displaying order of convergence as in (5.2).

Example 5.3. Let us now consider a time fractional PDE of the form:
0D

α
t u+ b 0D

2α
t u = cux + duxx + f, (x, t) ∈ Ωx × Ωt = (0, 2π)× (0, T ],

u(x, 0) = φ(x), x ∈ Ωx,

ut(x, 0) = ψ(x), x ∈ Ωx,

(5.3)

where u = u(x, t) satisfies a 2π-periodic boundary condition and 1/2 < α < 1. If b = 0, the initial
velocity ut(x, 0) = ψ(x) is not needed.

Since u and f are periodic in the spatial domain, they are expressed as

uh(x, t) =
∑
|k|≤M/2

ûk(t)e
ikx, fh(x, t) =

∑
|k|≤M/2

f̂k(t)e
ikx, (5.4)

where i =
√
−1 and f̂k(t) can be obtained through the fast Fourier transform (FFT).

Inserting (5.4) into (5.3) and requiring the equation to be satisfies in a Fourier Galerkin sense [9] yields
a multi-term time-fractional differential equations:

∀k : 0D
α
t ûk(t) + b 0D

2α
t ûk(t) = ickûk(t)− dk2ûk(t) + f̂k(t), k ∈ I, (5.5)

for which we apply the multi-domain spectral method in the temporal direction. Once ûk’s are recovered,
uh are obtained through the inverse fast Fourier transform.

We first consider (5.3) in (0, 2π)× (0, 10] with b = 1, c = 0, d = 1, known as the fractional telegraph
equation. The exact solution is taken to be u(x, t) = exp(sin(x)) sin(t), yielding the initial position
φ(x) = 0, the initial velocity ψ(x) = exp(sin(x)) and the source term as

f(x, t) = exp(sin(x))
(
sin(x)− (cos(x))2

)
sin(t) + exp(sin(x))

(
sin(α)(t) + sin(2α)(t)

)
,

where sin(β)(t) = −1
2
in+1tn−β (E1,n−β+1(it)− (−1)nE1,n−β+1(−it)) and n = dβe. We take α as 0.7 and

M as 40 and consider cases withN = 2, 5, 8, 11 andK = 4, 6, 8, 10. The numerical orders of convergence
are shown in Figure 6. We observe hp-convergence in time as expected since the spatial error is negligible.
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N = 2
α = 1.1 α = 1.4 α = 1.8

K ‖eh‖2 Order ‖eh‖2 Order ‖eh‖2 Order
20 6.95e-02 1.91 1.45e-01 1.57 6.95e-02 1.11
30 3.20e-02 1.90 7.66e-02 1.58 3.20e-02 1.13
40 1.85e-02 1.90 4.86e-02 1.58 1.85e-02 1.14
50 1.21e-02 - 3.42e-02 - 1.07e-01 -

N = 3
α = 1.1 α = 1.4 α = 1.8

K ‖eh‖2 Order ‖eh‖2 Order ‖eh‖2 Order
20 3.22e-03 2.84 7.79e-03 2.46 3.22e-03 2.02
30 1.02e-03 2.85 2.87e-03 2.51 1.02e-03 2.10
40 4.49e-04 2.86 1.39e-03 2.54 4.49e-04 2.14
50 2.37e-04 - 7.91e-04 - 3.70e-03 -

N = 4
α = 1.1 α = 1.4 α = 1.8

K ‖eh‖2 Order ‖eh‖2 Order ‖eh‖2 Order
20 1.13e-04 3.87 3.58e-04 3.52 1.13e-04 3.18
30 2.35e-05 3.87 8.57e-05 3.55 2.35e-05 3.20
40 7.74e-06 3.87 3.08e-05 3.57 7.74e-06 3.20
50 3.26e-06 - 1.39e-05 - 9.28e-05 -

N = 5
α = 1.1 α = 1.4 α = 1.8

K ‖eh‖2 Order ‖eh‖2 Order ‖eh‖2 Order
20 3.55e-06 4.87 1.34e-05 4.55 3.55e-06 4.19
30 4.92e-07 4.87 2.12e-06 4.57 4.92e-07 4.19
40 1.21e-07 4.87 5.70e-07 4.58 1.21e-07 4.20
50 4.08e-08 - 2.05e-07 - 1.67e-06 -

N = 6
α = 1.1 α = 1.4 α = 1.8

K ‖eh‖2 Order ‖eh‖2 Order ‖eh‖2 Order
20 9.11e-08 5.91 4.08e-07 5.59 9.11e-08 5.22
30 8.31e-09 5.89 4.23e-08 5.59 8.31e-09 5.21
40 1.53e-09 5.86 8.46e-09 5.61 1.53e-09 5.21
50 4.13e-10 - 2.42e-09 - 2.56e-08 -

Table 2: Numerical errors and orders of convergence for Example 5.2 for number of elements K and order
of approximation N .
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Figure 6: Convergence tests of equation (5.3) with different values of N and K. The errors are measured
in the L2-norm.

Example 5.4. We finally consider the time-fractional convection diffusion equation, for which b = 0, f =
0 in (5.3):

0D
α
t u = cux + duxx, (x, t) ∈ (0, 10)× (0, 8],

with the initial condition u(x, 0) = exp(−20(x − 3)2) and periodic boundary conditions. The initial
condition is not strictly periodic, but it is so close to 0 at the two ends of the domain that it can be regarded
as periodic in practice.

We use the following parameters:

c =
1

5
, d =

1

100
, α = 0.2, 0.5, 0.8, 1.0, N = 3, K = 30, M = 200.

In Figure 7, we can observe that the advection effect becomes stronger as α becomes bigger.

6. Conclusion

We have proposed a new multi-domain spectral method for high-order integrations of the time-
fractional differential equation. To ensure a proper balance between computational cost and high-order
accuracy, we have proposed a hybrid approach which combines two integration/differentiation rules,
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Figure 7: Numerical results for the time-fractional convection diffusion equation in Example 5.4.
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based on a the three-term-recurrence relation and Gauss quadrature, respectively. The stability analysis
confirms excellent stability properties and the numerical results shows that the proposed method achieves
hp-convergence for both TFDEs and TFPDEs.
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