Development and experimental validation of a finite element model of total ankle replacement

Alexandre Terriera, Xabier Larreaa, Jonas Guerdatab, Xavier Crevoisierb

a Laboratory of Biomechanical Orthopedics, Ecole Polytechnique Fédérale de Lausanne, Station 19, 1015 Lausanne, Switzerland
b Service of Orthopaedics and Traumatology, University Hospital Center and University of Lausanne, Rue du Bagnon 46, 1011 Lausanne, Switzerland

Abstract

Total ankle replacement remains a less satisfactory solution compared to other joint replacements. The goal of this study was to develop and validate a finite element model of total ankle replacement, for future testing of hypotheses related to clinical issues. To validate the finite element model, an experimental setup was specifically developed and applied on 8 cadaveric tibias. A non-cemented press fit tibial component of a mobile bearing prosthesis was inserted into the tibias. Two extreme anterior and posterior positions of the mobile bearing insert were considered, as well as a centered one. An axial force of 2 kN was applied for each insert position. Strains were measured on the bone surface using digital image correlation. Tibias were CT scanned before implantation, after implantation, and after mechanical tests and removal of the prosthesis. The finite element model replicated the experimental setup. The first CT was used to build the geometry and evaluate the mechanical properties of the tibia. The second CT was used to set the implant position. The third CT was used to assess the bone-implant interface conditions. The coefficient of determination (R-squared) between the measured and predicted strains was 0.91. Predicted bone strains were maximal around the implant keel, especially at the anterior and posterior ends. The finite element model presented here is validated for future tests using more physiological loading conditions.

1. Introduction

The implant survival rate of total ankle replacement (TAR) is only 70–98% at 5–6 years, 80–95% at 8–10 years (Easley et al., 2011), and can drop to 45% at 15 years (Brunner et al., 2013). Failure causes include aseptic loosening, subsidence, cyst formation, peri-prosthetic and polyethylene fracture (Conti and Wong, 2001; Besse et al., 2009; Bonnin et al., 2011; Labelè et al., 2011; Brunner et al., 2013).

Most current finite element models of TAR are limited to the intra-articular aspects or to the prosthetic components (Anderson et al., 2006, 2010; Reggiani et al., 2006; Espinosa et al., 2010; Barg et al., 2011). Therefore, the goal of this study was to develop and validate a finite element model of TAR, for future testing of hypotheses related to clinical issues.

2. Methods

2.1. Experimental model

Eight cadaveric tibias (77–90 years) perfused with a formaldehyde solution were used (Table 1). The tibias were CT scanned (GE Medical Systems) three times: before implantation, after implantation, and after the mechanical tests and removal of the prosthesis. Radiopaque beads were fixed to the bone to register the 3 CTs. The CT resolution was 0.5 × 0.5 × 0.7 mm. Bone quality was evaluated by the average Hounsfield number of the distal tibia, from the articular surface to 30 mm above it (Table 1). An experienced surgeon inserted a non-cemented press fit tibial component (Salto, Tornier, Inc. Edina, MN, USA) according to manufacturer’s recommendations. A distal tibial bone block was resected at a distance of 7 mm above the joint line, with a tibial posterior slope of 7 degrees. The tibia was cut at 150 mm from the implant plateau. The proximal part was fixed within an aluminium cylindrical support using 9 screws (Fig. 1). The tibia and screws were embedded in resin (MultiCast 20, Suter-Kunststoffe AG). The aluminium cylinder was fixed to the test plate of an Instron testing machine (ElectroPuls E3000). A block of polyethylene with same dimensions as the original mobile-bearing insert was placed on the plate of the tibial component. A universal joint was placed between the polyethylene and the load cell fixed to the Instron actuator. The proper alignment of the system was achieved with a mobile carriage supporting the aluminium cylinder. Three positions of the mobile-bearing insert were considered: centered, anterior and posterior. For the centered position, the mobile-bearing insert was aligned with the tibial plate and the loading axis. For the anterior and posterior positions, the mobile-bearing insert was displaced at the extreme end of the tibial plate (4.5 mm). For the three positions, the axial loading force was 2 kN, applied at 1 N/s. A pre-conditioning of 50 cycles of 2 kN at 0.1 Hz was performed before measurement.

The bone deformation was measured with stereo digital image correlation of 2 cameras (LimesseMesstechnik & Software GmbH). The anterior side of the tibia, around the implant, was uniformly painted in white (spray) and then in black, to create the speckles required by the stereo-optical analysis. The measure was performed at maximum loading. The axial and transverse strains were derived from the displacement measurement (Vic-3D Digital Image Correlation, Correlated Solutions, Inc., Columbia, USA). The systematic and
random axial strain errors were evaluated using an extensometer (Instron 2620-603 Dynamic Extensometer) as a reference. The inclination of the implant during loading was assessed with the same stereo-optical technique.

The strains were evaluated in medial and lateral regions of interest (ROIs). The two ROIs were rectangles of 4 mm width and 12 mm high, centered at each sides of the implant fixation blade (Fig. 1). Within each ROI, the strains were estimated on a regular grid of 3 by 7 points, and then averaged, to avoid the lack of precision of a point-to-point comparison.

2.2. Numerical model

The numerical model replicated the experimental setup. All tibias were segmented with the first CT, using imaging software Amira (http://www.vsg3d.com). Cortical and trabecular bone were segmented separately. Geometric models were built using Geomagic Studio (http://www.geomagic.com). The precise position of the implant position in the reconstructed tibia was obtained with the second CT, which was registered to the first one using radio-opaque beads. The bone cuts and implant positioning was done with CAD software Solidworks (http://www.solidworks.com), under the supervision of the surgeon who performed the implantation on cadavers. The third CT was used to assess the bone cuts of the numerical model. The metallic tibial component was assumed rigid. Bone was non-homogeneous and linear elastic. The elastic modulus was estimated from the first CT (Keller, 1994). The Poisson’s ratio was 0.3.

The proximal part of the tibia embedded in resin was fully constrained. A point corresponding to the center of the universal joint in the experimental setup was rigidly linked to the implant (Fig. 2). An axial compressive force of 2 kN was applied on this point. The rotation and axial displacement of this point were free, while its transverse translations were constrained. The centered, anterior, and posterior positions of the insert were replicated in the numerical model. The bone-implant interface was fully bonded. When the second CT presented a gap (> 0.5 mm) between the bone cut and the medial or lateral side of the plateau, no contact was considered at that side (Table 1).

Bone was meshed with quadratic 10-nodes tetrahedral elements. The average element size was 0.7 mm in the ROI, and higher elsewhere. The implant was meshed with rigid quadrilateral elements. A mesh sensitivity analysis was performed with 5 different mesh refinements. The model was implemented in Abaqus v6.12 (http://www.simulia.com) and the analysis was performed with the implicit solver.

The longitudinal and transverse strains were evaluated at the same points as in the experiment. The comparison between the numerical predictions and the experimental measurements was performed for the longitudinal and transverse strains, the two ROIs, the three insert positions, and all tibias. The octahedral shear strain and the von Mises stress were calculated within the entire tibial bone. To evaluate the effect of the antero-posterior position of the polyethylene insert, the octahedral shear strain was evaluated along a line, within the symmetry plane of the implant, and at 1 mm from the implant distal end. We considered the maximal value, normalized with the value of the central position of the insert. Student’s t-test with a significance level of 5% was used for all hypotheses testing.

3. Results

One tibia was excluded because of a bone fracture during implantation. The following results are based on the 7 remaining tibias. Systematic error of axial strain measurement was 140 microstrains. The measurement was adjusted to remove this bias. Random error was 230 microstrains. Implant inclination remained below 0.2 degree. Longitudinal and transverse strain ranged from

<table>
<thead>
<tr>
<th>Subject</th>
<th>Gender</th>
<th>Age</th>
<th>Side</th>
<th>HU</th>
<th>Contact</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M</td>
<td>90</td>
<td>L</td>
<td>259.9</td>
<td>Symmetric</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td>240.6</td>
<td>Symmetric</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>90</td>
<td>L</td>
<td>274.3</td>
<td>Lateral</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td>259.0</td>
<td>–</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>82</td>
<td>L</td>
<td>303.6</td>
<td>Medial</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td>313.6</td>
<td>Symmetric</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>77</td>
<td>L</td>
<td>409.4</td>
<td>Lateral</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td>404.8</td>
<td>Symmetric</td>
<td>2</td>
</tr>
</tbody>
</table>
Among all tibias, von Mises stress peaks were mainly localized within cortical bone (Fig. 5). In trabecular bone, peak values (1 to 5 MPa) were localized between implant keel and cortical bone, and between implant plate and cortical bone.
associated with total ankle replacement, optimal implant design, fixation and positioning and development of revision implants.

Conflict of interest statement

None of the authors has any conflict of interest.

Acknowledgements

This study was financially supported by the Inter-institutional Center of Translational Biomechanics (EPFL-CBT). The cadaveric tibias were provided by the Department of Fundamental Neurosciences of the University of Lausanne. The CTs were performed at the "Centre Universitaire Romand de Médecine Légale" of the University of Lausanne. The implants and instrumentation were provided by Tornier (Tornier Inc., Edina, MN).

References

Fig. 5. Von Mises stress distribution on a sagittal cut view of the tibia.