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Introduction

Outflow from plasma core 

Perpendicular transport
(turbulence, blobs)

Sheath physics
Open B-field lines

Parallel flows

Heat load to PFCs, rotation, 
impurities, L-H transition...

For inner-wall limited tokamak plasmas, we would like to
address the following questions:

I What is the mechanism determining the turbulence
levels in this simplest configuration?

I What instabilities are present and which one dominates?
I How does the SOL width Lp = −p/∂rp change with the

plasma parameters?
I Is the influence of parallel dynamics (q, ν, β) important?
I What is the system size (ρ?) scaling of Lp?

We carry out an extensive non-linear simulation
scan which is interpreted using analytical theory

Drift-reduced fluid model for SOL turbulence

I Drift-reduced Braginskii equations with cold ion approximation Ti � Te [Ricci et al., PPCF 2012]:
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I These equations are implemented in GBS, a 3D, flux-driven, global turbulence code with circular
geometry including electromagnetic effects

I System is closed with set of fluid boundary conditions applicable at the magnetic pre-sheath entrance
where the magnetic field lines intersect the limiter [Loizu et al., PoP 2012]

I Note: normalized units used throughout: L⊥→ ρs, L‖→ R, t → R/cs, ν = ne2cs/(miσ‖R)

Turbulent saturation mechanism

I In GBS non-linear simulations, sheared flows do not contribute significantly to saturation
I We extract the following observations regarding turbulent transport [Ricci and Rogers, PoP 2013]:

(1) Mode saturation caused by
local pressure profile flattening

∂rp0 ∼ ∂rp1→ p1/p0 ∼ σr/Lp

(2) Radial extension of the mode
given by non-local linear theory

σr =
√

Lp/kθ

(3) Perpendicular turbulent
transport driven by E× B

convection

Γ1 = −ρ−1
? [φ,p]

From these observations, we obtain an estimate of Γ1:

Gradient removal 
hypothesis

Which results in an estimate of the SOL width:

Lp = q γ
kθ
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Identifying the dominant instabilities

I Reduced linear models combined with saturation theory identify dominant mode [Mosetto et al., PoP 2013]
I In circular, limited plasmas, resistive ballooning modes (RBMs) are dominant in the SOL
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I Relevant parameters for inner-wall limited SOL:
q = 3–10, ν ∼ 0.01, ŝ ≈ 2
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I Presence of RBMs confirmed in non-linear
simulations at realistic parameters for TCV SOL

Scrape-off layer width

I The SOL width can be obtained analytically by considering gradient removal saturated RBMs:

α−1
d = 27/4ν1/2 (ρ?Lp

)1/4
πq)
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q2β

ρ?Lp

I Dimensionless and engineering parameter scalings of the SOL width follow [Halpern et al., NF 2013]:

Lp =
[
2πρ?αd (1− α)1/2

]−1/2
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I Scalings obtained from least-squares-fitting of all simulation data verify our theory:

Lp = 0.42 q0.55ρ−0.53
? α−0.32

d (1− α)−0.24

Lp ∼ q0.98R0.63B−0.56[ m ]

Electromagnetic phase space

I Analytical theory predicts that the dimensionless parameters
regulating the SOL width at fixed ρ? are α and αd/q
[Halpern et al., NF 2013 (submitted)]

I GBS simulations confirm theory (figure)
I Color contours give Lp obtained from solving

Lp = q (γ/kθ)max with a linear code
I Symbols give GBS simulation results for q = 3 (triangles),

q = 4 (squares), and q = 6 (diamonds).
I Compare to [LaBombard et al., NF 2005] (diverted): α and αd
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System-size scaling

I Crucial to understand ρ? scaling of the SOL width (e.g. in ITER ρ? ∼ 10−4)
I Carried out dedicated scan at constant ν = 0.01,0.1,1, q = 4, β = [Halpern et al., NF 2013 (submitted)]

I Largest simulations reached ρ? = 2000−1 (TCV size, flux-driven!)
I Equivalent parameters: R = 0.85m, a = 0.22m, Te = 15eV, B0 = 1.4T

I System size scaling expected
from analytical theory is
Lp ∼ ρ

−3/7
?

I System size scaling retrieved from
GBS non-linear simulations

Lp ∼ ρ−0.56
?

I Difference arises from
combination of effects
I Artificially large electron mass

in GBS non-linear simulations
I Assumption of full non-adiabaticity not

fullfilled in non-linear simulations

I Self-consistent gradient removal
flux estimate in good agreement
with simulations
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Conclusions

I Developed predictive theory for SOL width of inner-wall limited tokamak plasmas
I Local profile flattening from linear modes acts as saturation mechanism
I Non-linear turbulent stage of simulations dominated by RBMs
I Obtained SOL width scaling as a function of dimensionless / engineering plasma parameters
I Theory fully verified using 3D, non-linear, flux-driven SOL turbulence simulations
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