

Parallel flows

Perpendicular transport

(turbulence, blobs)

Sheath physics Open B-field lines

Outflow from plasma core

Global electromagnetic simulations of tokamak SOL turbulence

F.D. Halpern, P. Ricci, S. Jolliet, J. Loizu, A. Mosetto

Introduction

For inner-wall limited tokamak plasmas, we would like to address the following questions:

- ▶ What is the mechanism determining the turbulence levels in this simplest configuration?
- ▶ What instabilities are present and which one dominates?
- ▶ How does the SOL width $L_p = -p/\partial_r p$ change with the plasma parameters?
- ▶ Is the influence of parallel dynamics (q, ν, β) important?
- ▶ What is the system size (ρ_{\star}) scaling of $L_{\mathcal{D}}$?

We carry out an extensive non-linear simulation scan which is interpreted using analytical theory

Drift-reduced fluid model for SOL turbulence

▶ Drift-reduced Braginskii equations with cold ion approximation $T_i \ll T_e$ [Ricci *et al.*, PPCF 2012]:

Heat load to PFCs, rotation,

impurities, L-H transition...

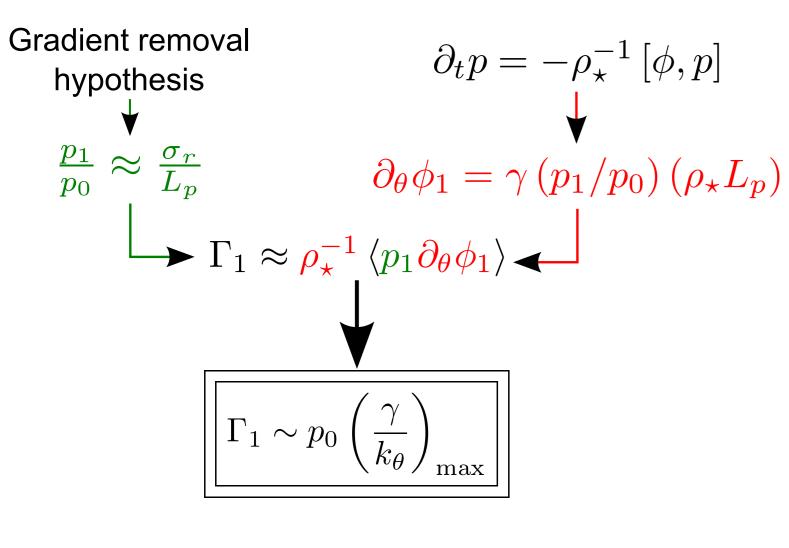
$$\begin{split} &\frac{\partial n}{\partial t} = -\rho_{\star}^{-1}[\phi, n] + \frac{2}{B}[C(p_{e}) - C(\phi)] - \nabla_{\parallel} \cdot (nv_{\parallel e}) + \mathcal{D}_{n}(n) + S_{n} \\ &\frac{\partial \omega}{\partial t} = -\rho_{\star}^{-1}[\phi, \omega] - V_{\parallel i} \nabla_{\parallel} \omega + \frac{B^{2}}{n} \nabla_{\parallel} j_{\parallel} + \frac{2B}{n} C(p_{e}) + \mathcal{D}_{\omega}(\omega) \\ &\frac{\partial \chi}{\partial t} = -\rho_{\star}^{-1}[\phi, v_{\parallel e}] - v_{\parallel e} \nabla_{\parallel} v_{\parallel e} + \frac{m_{i}}{m_{e}} \left(\nu \frac{j_{\parallel}}{n} + \nabla_{\parallel} \phi - \frac{1}{n} \nabla_{\parallel} p_{e} - 0.71 \nabla_{\parallel} T_{e} \right) + \mathcal{D}_{V_{\parallel e}}(V_{\parallel e}) \\ &\frac{\partial v_{\parallel i}}{\partial t} = -\rho_{\star}^{-1}[\phi, v_{\parallel i}] - v_{\parallel i} \nabla_{\parallel} v_{\parallel i} - \frac{1}{n} \nabla_{\parallel} p_{e} + \mathcal{D}_{v_{\parallel i}}(v_{\parallel i}) \\ &\frac{\partial T_{e}}{\partial t} = -\rho_{\star}^{-1}[\phi, T_{e}] - v_{\parallel e} \nabla_{\parallel} T_{e} + \frac{4T_{e}}{3B} \left[\frac{1}{n} C(p_{e}) + \frac{5}{2} C(T_{e}) - T_{e} C(\phi) \right] \\ &+ \frac{2T_{e}}{3} \left[0.71 \nabla_{\parallel} j_{\parallel} - \nabla_{\parallel} v_{\parallel e} \right] + \mathcal{D}_{T_{e}}(T_{e}) + \mathcal{D}_{T_{e}}^{\parallel}(T_{e}) + S_{T_{e}} \\ &\nabla_{\perp}^{2} \phi = \omega, \nabla_{\perp}^{2} \psi = n(v_{\parallel i} - v_{\parallel e}) = j_{\parallel}, \ \chi = v_{\parallel e} + \frac{m_{i}}{m_{e}} \beta \psi, \ \rho_{\star} = \rho_{s}/R \\ &\nabla_{\parallel} f = \mathbf{b}_{0} \cdot \nabla f + \rho_{\star}^{-1} \frac{\beta}{2} [\psi, f] \end{split}$$

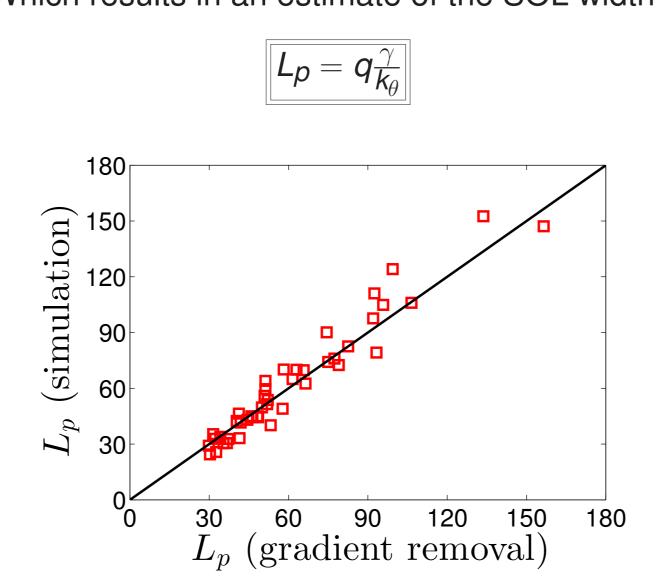
- ▶ These equations are implemented in GBS, a 3D, flux-driven, global turbulence code with circular geometry including electromagnetic effects
- ► System is closed with set of fluid boundary conditions applicable at the magnetic pre-sheath entrance where the magnetic field lines intersect the limiter [Loizu et al., PoP 2012]
- ▶ Note: normalized units used throughout: $L_{\perp} \to \rho_s$, $L_{\parallel} \to R$, $t \to R/c_s$, $\nu = ne^2 c_s/(m_i \sigma_{\parallel} R)$

Turbulent saturation mechanism

- ▶ In GBS non-linear simulations, sheared flows do not contribute significantly to saturation
- ▶ We extract the following observations regarding turbulent transport [Ricci and Rogers, PoP 2013]:

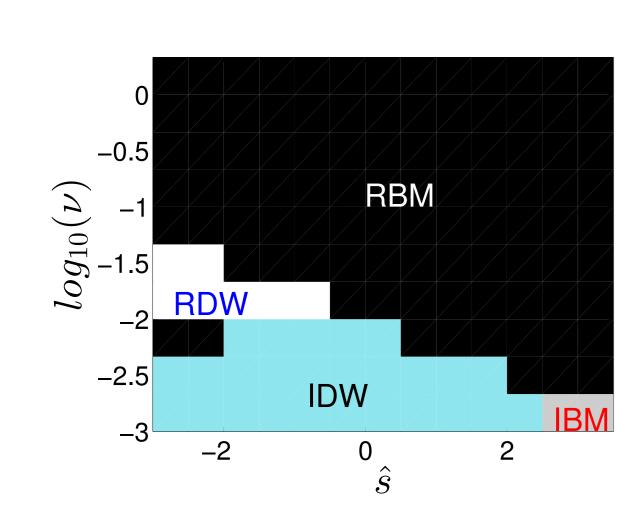
(1) Mode saturation caused by local pressure profile flattening


 $\partial_r p_0 \sim \partial_r p_1 \rightarrow p_1/p_0 \sim \sigma_r/L_p$


(2) Radial extension of the mode given by non-local linear theory

(3) Perpendicular turbulent transport driven by $\mathbf{E} \times \mathbf{B}$ convection $\|\sigma_{r} = \sqrt{L_{p}/k_{\theta}}\|$

$$\boxed{\Gamma_1 = -\rho_{\star}^{-1} \left[\phi, \boldsymbol{p} \right]}$$


Which results in an estimate of the SOL width: From these observations, we obtain an estimate of Γ_1 :

Identifying the dominant instabilities

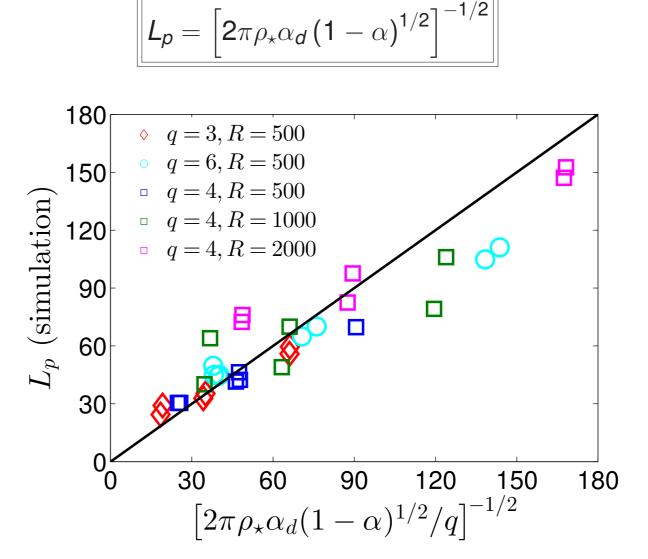
- ▶ Reduced linear models combined with saturation theory identify dominant mode [Mosetto et al., PoP 2013]
- ▶ In circular, limited plasmas, resistive ballooning modes (RBMs) are dominant in the SOL

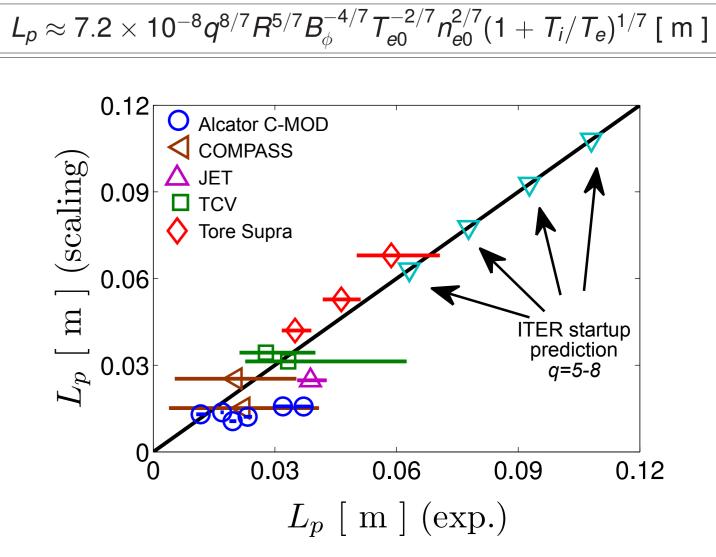
► Relevant parameters for inner-wall limited SOL: $q = 3-10, \ \nu \sim 0.01, \ \hat{s} \approx 2$

▶ Presence of RBMs confirmed in non-linear simulations at realistic parameters for TCV SOL

Scrape-off layer width

▶ The SOL width can be obtained analytically by considering gradient removal saturated RBMs:

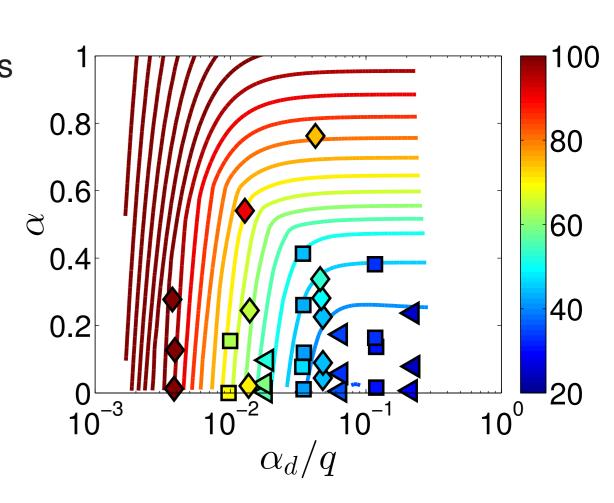

$$L_p = q \frac{\gamma}{k_{\theta}}$$


$$L_p = q \frac{\gamma}{k_{\theta}}$$

$$k_b = \sqrt{(1 - \alpha)/(\nu \gamma_b)}/q$$

 $\alpha_{d}^{-1} = 2^{7/4} \nu^{1/2} \left(\rho_{\star} L_{p} \right)^{1/4} \pi q$ $\alpha = \frac{q^{2} \beta}{L}$

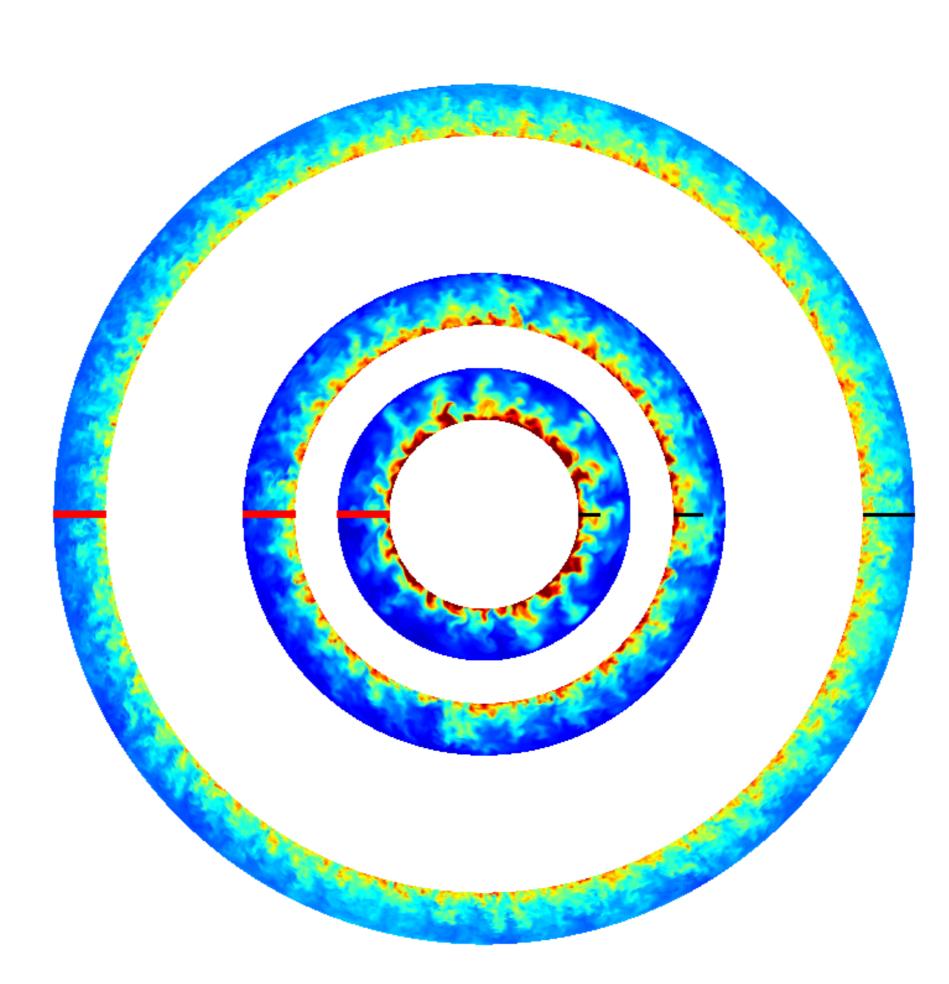
▶ Dimensionless and engineering parameter scalings of the SOL width follow [Halpern et al., NF 2013]:



► Scalings obtained from least-squares-fitting of all simulation data verify our theory:

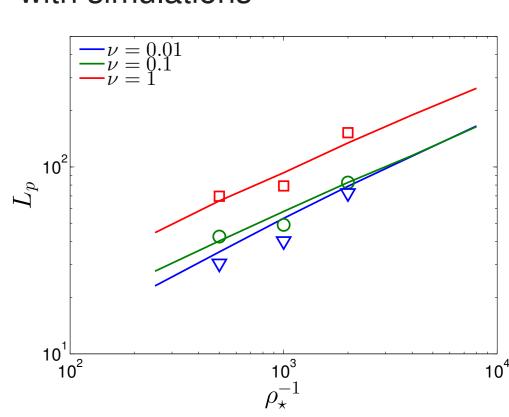
$$L_p = 0.42 \, q^{0.55} \rho_{\star}^{-0.53} \alpha_{d}^{-0.32} (1 - \alpha)^{-0.24}$$

 $L_p \sim q^{0.98} R^{0.63} B^{-0.56} [\text{m}]$


Electromagnetic phase space

- Analytical theory predicts that the dimensionless parameters regulating the SOL width at fixed ρ_{\star} are α and α_d/q [Halpern et al., NF 2013 (submitted)]
- ► GBS simulations confirm theory (figure)
- ▶ Color contours give L_p obtained from solving
- $L_p = q (\gamma/k_\theta)_{\text{max}}$ with a linear code
- ▶ Symbols give GBS simulation results for q = 3 (triangles), q = 4 (squares), and q = 6 (diamonds).
- ▶ Compare to [LaBombard *et al.*, NF 2005] (diverted): α and α_d

System-size scaling


- ▶ Crucial to understand ρ_{\star} scaling of the SOL width (e.g. in ITER $\rho_{\star} \sim 10^{-4}$)
- ▶ Carried out dedicated scan at constant $\nu = 0.01, 0.1, 1, q = 4, \beta = [Halpern et al., NF 2013 (submitted)]$
- ▶ Largest simulations reached $\rho_{\star} = 2000^{-1}$ (TCV size, flux-driven!)
- ▶ Equivalent parameters: R = 0.85m, a = 0.22m, $T_e = 15$ eV, $B_0 = 1.4$ T

- System size scaling expected from analytical theory is
- System size scaling retrieved from GBS non-linear simulations

$$L_{
m p} \sim
ho_{\star}^{-0.56}$$

- ▶ Difference arises from combination of effects
- Artificially large electron mass
- in GBS non-linear simulations Assumption of full non-adiabaticity not
- fullfilled in non-linear simulations
- Self-consistent gradient removal flux estimate in good agreement with simulations

Conclusions

- ▶ Developed predictive theory for SOL width of inner-wall limited tokamak plasmas
- ▶ Local profile flattening from linear modes acts as saturation mechanism
- ► Non-linear turbulent stage of simulations dominated by RBMs
- ▶ Obtained SOL width scaling as a function of dimensionless / engineering plasma parameters
- ► Theory fully verified using 3D, non-linear, flux-driven SOL turbulence simulations

Thanks to B Labit, I Furno, G Arnoux, J Gunn, J Horacek, M Kočan, B LaBombard, and C Silva for kindly providing their SOL profile measurements