
Evolving CPPNs to Grow Three-Dimensional Physical
Structures

Joshua E. Auerbach
Morphology, Evolution and Cognition Lab

Department of Computer Science
University of Vermont
Burlington, VT 05401

joshua.auerbach@uvm.edu

Josh C. Bongard
Morphology, Evolution and Cognition Lab

Department of Computer Science
University of Vermont
Burlington, VT 05401

jbongard@uvm.edu

ABSTRACT
The majority of work in the field of evolutionary robotics
concerns itself with evolving control strategies for human
designed or bio-mimicked robot morphologies. However,
there are reasons why co-evolving morphology along with
control may provide a better path towards realizing intelli-
gent agents. Towards this goal, a novel method for evolving
three-dimensional physical structures using CPPN-NEAT is
introduced which is capable of producing artifacts that cap-
ture the non-obvious yet close relationship between function
and physical structure. Moreover, it is shown how more fit
solutions can be achieved with less computational effort by
using growth and environmental CPPN input parameters as
well as incremental changes in resolution.

Categories and Subject Descriptors
I.2.9 [Computing Methodologies]: Artificial Intelligence—
Robotics

General Terms
Experimentation

Keywords
Evolutionary robotics, Generative and Developmental Sys-
tems

1. INTRODUCTION
Robots that operate in outdoor or other unstructured en-

vironments such as the home or office would be of great
social utility. But, to date, the vast majority of robots cur-
rently in use operate only in structured environments such
as factories. If robots are to make the migration from fac-
tories into our everyday lives they will need to be adaptive;
that is, they must exhibit intelligent behavior.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’10, July 7–11, 2010, Portland, Oregon, USA.
Copyright 2010 ACM 978-1-4503-0072-8/10/07 ...$10.00.

According to proponents of embodied artificial intelligence
such intelligent behavior arises out of the coupled dynamics
between an agent’s body, brain and environment [9, 2, 25, 4].
One extension of this concept is that the complexity of an
agent’s controller and morphology must match the complex-
ity of the task or tasks that it is required to perform. How-
ever, when extending this idea to more complex agents in
more complex environments it is not clear how to distribute
responsibility for different behaviors across the agent’s con-
troller and morphology. For example, if all a robot needs to
do is follow a light source over flat terrain wheels and a direct
sensory motor mapping would be an appropriate solution [8],
but if the robot must be able to navigate over a variety of
terrains and perform more complicated tasks a more com-
plex control strategy and/or morphology are required. This
issue of scaling has been one of the major obstacles in de-
veloping robots capable of robust and adaptive behavior in
unstructured environments.

1.1 Background
Evolutionary robotics [17, 24], in which evolutionary al-

gorithms are employed to optimize the control policy of a
robot, has provided one framework for overcoming the lim-
itations of human intuition in designing robust, non-linear,
control strategies. However, the majority of work in evolu-
tionary robotics has done only that: optimize control strat-
egy for a human designed or bio-mimicked robot morphol-
ogy. This methodology has severe limitations: fixing a robot’s
morphology places limits and biases on the kinds of action
that the robot can perform, and therefore also on the more
complex behaviors that those actions may eventually sup-
port. For example, a robot with legs can only exhibit legged
locomotion while a wheeled robot with a rigid gripper can
only move over even terrain and grasp objects with a fixed
radius.

However, there are ways to overcome these limitations.
Evolutionary algorithms may be used to optimize robot mor-
phology as well as the control policy. Sims [28] first intro-
duced an evolutionary framework in which both the mor-
phology and control of simulated machines were optimized
in virtual environments to produce adaptive behavior. This
work was followed by other studies [14, 21, 1, 22, 20, 18, 19,
30, 15, 5, 7, 6] in which aspects of the machine’s morphol-
ogy and control were evolved in virtual environments. This
approach has the advantage of discovering body plans appro-
priate for the machine’s task environment rather than being

artifacts of human design biases or copies of animal body
plans only appropriate for that animal’s ecological niche.

In fact, it is sometimes possible to construct morpholo-
gies ideally suited to their task environment such that no
active control is necessary to accomplish non-trivial behav-
iors. One class of such morphologies are passive dynamic
walkers [13, 33]. These “robots” are able to stably loco-
mote down an inclined plane without using any sensors or
motors. Their stability and momentum conservation are in-
herent properties of their body plans. If the prevailing view
held by robotocists that an appropriate morphology will al-
ways be intuitive to design, as summed up by Nelson et al.

Humans are much better at designing physical
systems than they are at designing intelligent
control systems: complex powered machinery has
been in existence for over 150 years, whereas it
is safe to say that no truly intelligent autonomous
machine has ever been built by a human (p. 22)[23].

were correct then it would be intuitive how to design such
structures. However, such body plans are non-intuitive to
design because they have subtle dependencies on mass distri-
bution and structural curvatures, making automated meth-
ods including evolutionary algorithms good candidates for
designing these artifacts.

In order to capture the essence of evolving non-trivial
physical structures the current work tackles the problem
of evolving solid objects with these important properties.
While not incorporating any actuation and therefore not
robots, strictly speaking, the structures evolved in this work
provide a stepping stone for the eventual evolution of fully
articulated robots controlled by closed loop, neural network
control policies. This approach is not without precedent in
the field of evolutionary robotics. Funes and Pollack [16]
first demonstrated evolving solid structures such as bridges,
scaffolds, and crane arms constructed of Lego bricks before
moving on to the evolution of actuated robots [26].

Specifically, the work presented in this paper makes use of
a recently introduced abstraction of development known as
compositional pattern producing networks (CPPNs) [31] to
grow three-dimensional physical structures. In this paper,
these CPPNs are evolved using CPPN-NEAT [31] to pro-
duce physical structures capable of conserving momentum
to achieve maximum displacement due to gravity. CPPNs
are used here because they are a form of indirect encoding
that have been shown able to capture geometric symme-
tries appropriate to the system being evolved, are capable
of reproducing outputs at multiple resolutions [29], and have
shown promise in producing neural network control policies
for legged robots [11, 12]. The combination of these features
makes it likely that evolving CPPNs will prove to be a more
promising approach to realizing intelligent agents than other
approaches.

This paper presents a method for using CPPN-NEAT
along with a novel growth procedure to evolve three di-
mensional structures appropriate for a specific task, presents
some advantages of CPPN-NEAT over other methods that
may be used for evolving three-dimensional physical struc-
tures, and discusses how this method can be extended to
co-evolve actuated body plans and control strategies.

2. METHODS
This section presents a brief description of CPPNs and

the CPPN-NEAT evolutionary algorithm. This is followed
by a description of the methods used for generating three-
dimensional physical structures from evolved genotypes. Fol-
lowing this a description is presented of the fitness function
used for evaluating these structures.

2.1 CPPNs
Compositional Pattern Producing Networks (CPPNs) are

a form of artificial neural network (ANN) where each in-
ternal node can have an activation function drawn from a
diverse set of functions instead of being limited to a sigmoid
function as is the case with classical ANNs. This function
set includes functions that are repetitive such as sine or co-
sine as well as symmetric functions such as gaussian, thus
easily allowing for motifs seen in natural systems: symmetry,
repetition, and repetition with variation.

2.2 CPPN-NEAT
CPPN-NEAT uses the NeuroEvolution of Augmenting

Topologies (NEAT) [32] method of neuro-evolution to evolve
increasingly complex CPPNs. An extension of CPPN-NEAT
—HyperNEAT— has been used [29, 11, 12] to evolve tradi-
tional ANNs, where each node is embedded in a geometric
space and whose coordinates are fed to an evolved CPPN. In
effect the connections are “painted” on to the network from
the output patterns produced by the CPPN. As shown by
Stanley et al. [29] this has the crucial benefit that a CPPNs
evolved to produce the connectivity patterns of small ANNs
can be re-queried at a higher resolution to produce the con-
nectivity patterns of larger ANNs without needing to re-
evolve these large ANNs. Analogously CPPNs evolved to
produce structures at one resolution should be able to also
produce structures at a higher resolution.

CPPNs have several properties desirable for generating
robot morphologies. It is directly evident that geometry is a
key aspect of any artifact existing in a physical or simulated
physical environment. Providing the evolutionary process
with information about this geometry should be useful in
evolving functional structures. Additionally the ability to
operate at multiple resolutions should allow for the rapid
evolution of coarse grained structures composed of a small
number of large components followed by re-querying the gen-
erating CPPN to produce qualitatively similar structures
composed of a greater number of smaller components with-
out needing to evolve CPPNs for these higher resolution
morphologies from scratch.

Importantly, if the evolved structures are to be physically
fabricated using a technique like that outlined in [20] the
structures’ dynamical properties must be retained across the
simulation-reality gap [3, 34]. The ability to query the same
evolved encoding at different resolutions should be useful in
this endeavor since the dimensions and densities with which
the evolved structures will be fabricated most likely will not
be able to precisely match those of the simulation.

2.3 Growing Three-Dimensional Physical
Structures from CPPNs

In this work three-dimensional physical structures are grown
from evolved CPPNs. Each structure is composed of many
spherical cells which fuse together to make rigid bodies. For
an example of a structure produced in this way see Fig. 1.

Figure 1: A sample structure evolved for maximum
displacement due to gravity.

The growth procedure begins with a single cell, henceforth
referred to as the root, located at a designated origin. A
cloud composed of n points is cast around this cell with the
n points being evenly distributed on the surface of the root
sphere (all n points are at distance r from the center of the
root). This point cloud is cast using a spiral method that is a
variant of the algorithm presented by Saff and Kuijlaars [27].
Specifically the method is the “golden section” modification
to the Saff and Kuijlaars algorithm described in [10]. Once
this cloud is cast, every point in the cloud is used to query a
CPPN to retrieve a single output value. This output value
can be thought of as a concentration of matter at that point,
such that when over a certain matter threshold, Tmatter, a
cell will be placed at that point. The more the output value
exceeds the matter threshold the denser the cell placed at
that point will be. This creates a continuum from no cell
to very light cells to heavier cells (since the cells are all the
same size, density and weight are completely correlated).

The CPPN takes as input the Cartesian coordinates (x, y, z)
of the point in question as well as a constant bias input. Ad-
ditionally information is provided as input about the growth
trajectory itself: two angles φ1 and θ1 describe the direction
from the parent cell that this point is located and an addi-
tional two angles (φ2 and θ2) provide directional information
about the parent cell relative to its own parent cell. Further
knowledge of the growth trajectory is provided via an input
that receives the number of cells in the growth tree separat-
ing this point from the root (the cell’s depth, d). Additional
input is provided by a value representing the radius of the
cells being considered for addition (r) thus informing the
CPPN about the resolution at which the structure is being
grown. Resolution will be dependent on the environment in
which the physical structure exists, therefore this value may
be considered an environmental input.

Once the output values for all n points in the cloud have

1. GrowStructure(CPPN)

2. Initialize priority queue q, with priority based on
cell density

3. Create cell c at origin with full density, add to
structure S and flag its coordinates ‘discovered’

4. Enqueue c in q

5. WHILE ∼ q.isEmpty

6. c← q.front

7. Cast point cloud C centered at c
using the golden section spiral method

8. Initialize vector V of neighboring cells

9. FOR EACH point p in C

10. Query CPPN at p to get output value v

11. Add p with value v to vector V

12. Sort V by descending value

13. FOR EACH point p with value v in sorted vector V

14. IF coordinates of p not yet ‘discovered’

15. Flag p ‘discovered’

16. IF CanAdd(p,v,c)

17. Add cell centered at p with density
proportional to v to structure S

18. Enqueue (p, v) in q

19. CanAdd(p,v,c)

20. IF v > Tmatter AND

∀ cells d ∈ S, d 6= c dist(p,d) ≥ r AND

p is within bounding cube AND

S has less than M cells

21. Return true

22. ELSE

23. Return false

Figure 2: Grow Structure pseudo code. The growth
procedure starts with a root node at the origin (line
3). Then, as long as there are nodes in the queue to
consider it takes the node at the front of the queue,
casts a point cloud around it and considers adding
a node at each point in turn (lines 5-18). A node is
added at a given point if all of the following hold: it
does not conflict with a previously added node, the
CPPN outputs a value above the threshold Tmatter

when queried at that point, the point is within the
bounding cube, and the maximum number of nodes
M has not been reached (lines 19-23).

been computed the points are sorted in order of descending
output values. The sorted points are then looped through
and the algorithm considers adding a cell centered at each
point in turn. Specifically a cell, centered at point p is added
to the structure if (a) the output value of point p is above
the threshold Tmatter and (b) no other cell, besides the one
to which this new cell will be attached (its parent) has pre-
viously been added to the structure with center located at
distance < r away from p.

When a cell is added to the structure it gets placed into a
priority queue whose priority is based on the output value of
the CPPN at that point. When all points from the current
cloud have been considered the algorithm takes the cell at
the top of the priority queue and casts a point cloud around
it, and this process continues either until there are no possi-

ble points at which to place cells or a maximum number of
cells (M) have been created. One further constraint is that
the structure is not allowed to grow outside of a bounding
cube with side lengths l. This constraint was imposed so
that in the future it will be possible to physically fabricate
the entire evolved physical structures within the confines of
a 3D-printer. Fig. 2 gives pseudo code for this growth pro-
cedure.

There are several reasons why it is desirable to have a
growth procedure such as this. Merely querying CPPNs
over a sampling of three-dimensional space may lead to dis-
connected objects. Even if all but one of these objects are
thrown out much computational resources will have been
wasted querying these regions of space. Additionally impos-
ing a grid over space to determine which points to query
restricts the sort of structures that may be produced when
compared to the “point cloud” method discussed above. For
example curved structures can be constructed using the point
cloud method, but only coarsely approximated on a grid.
Additionally, having a growth procedure allows for provid-
ing the CPPN with knowledge about the structure’s growth
trajectory and environment which prove to be beneficial (see
below) and which may more easily allow for environmental
influences to act on this growth trajectory in more complex
ways in the future.

2.4 Selecting for dynamical properties of
evolved structures

One major purpose of this paper is to demonstrate that
CPPN-NEAT coupled with the growth procedure just pre-
sented is capable of evolving three-dimensional physical struc-
tures with desirable dynamic properties. This is a necessary
capability of any evolutionary algorithm to be used for co-
evolving robot morphology and control. In particular the
property selected for in this work is the maximum displace-
ment of an object due to gravity from a starting position
where part of the object begins in contact with the ground.

To select for this property, an evolved virtual object is
placed in a physical simulator1 for a set amount of time.
The fitness of this object is then calculated by finding the
point of the object nearest to the origin of the space (where
the object was touching the ground) in terms of the planar
Euclidean distance. This distance becomes the fitness of the
object and therefore of the CPPN that produced the object,
which CPPN-NEAT attempts to maximize.

3. RESULTS AND DISCUSSION
This section presents the results of several experiments

designed to illustrate the capabilities of this methodology as
well as study the effects of including the growth and envi-
ronmental inputs introduced above and the effects of varying
the resolution at which structures are grown within a sin-
gle evolutionary trial. All experiments are conducted with
the fitness function described above and each experiment
involves running 30 independent evolutionary trials. In all
cases CPPN-NEAT is configured to use a population size of
150, and run for 200 generations. Additionally in all exper-
iments the value Tmatter is fixed at 0.7, and each cell of the
structure is restricted to having its center within the bound-

1Simulations are conducted in the Open Dynamics Engine
(http://www.ode.org), a widely used open source, physically
realistic, simulation environment

ing cube ([−2, 2], [−2, 2], [0, 4]) (coordinates all in meters).
The CPPN internal nodes are allowed to use the signed co-
sine, gaussian, and sigmoid activation functions. All other
parameters of the evolutionary algorithm are kept at the
default values provided with the C++ implementation of
HyperNEAT2.

In the first experiment (experiment 1) the radius r of
each cell is fixed at 0.1 meters and the growth procedure is
limited to M = 200 cells. Experiment 2 is identical to
experiment 1 except the growth and environmental CPPN
inputs φ1, θ1, φ2, θ2, r and d are omitted so that just the
basic Cartesian coordinates (x, y, z) along with the constant
bias are inputted to each CPPN. Henceforth the inputs used
in experiment 1 will be referred to as the full set, while those
used in experiment 2 will be referred to as the restricted set.

Experiment 3 uses the full set of CPPN inputs and be-
gins with the cell radius r fixed at 0.15 meters and with
M = 60 cells maximum per structure. These parameter
values remain fixed for the first 100 generations of each evo-
lutionary trial. After the 100th generation the resolution of
the structures is increased to that of the first two experi-
ments: r = 0.1 meters, M = 200. These values, as well as
those used in all subsequent changes of resolution are cho-
sen to preserve the volume of the structures. As the radius
is changed by a factor x the maximum number of cells is
changed by a factor x3. The next experiment, Experiment
4, is identical to experiment 3, except the CPPNs are limited
to the restricted set of inputs.

Experiment 5, like experiment 1, uses the full set of
CPPN inputs and keeps the resolution fixed for the duration
of each evolutionary trial. However, in experiment 5 this res-
olution is higher. The cell radius r is set to 0.08 meters with
a maximum, M = 391 cells per structure. Experiment 6
is identical to experiment 5, but uses the restricted set of
CPPN inputs.

Figure 3: Mean best fitnesses (displacement in me-
ters) in final generation across the 30 independent
evolutionary trials with standard error bars for each
of the eight experiments. The red bars represent ex-
periments using the full set of CPPN inputs, while
the blue bars represent experiments using the re-
stricted set.

2Available at
http://eplex.cs.ucf.edu/hyperNEATpage/HyperNEAT.html

CPPN Input Set Resolution: first 100 generations Resolution: second 100 generations

Experiment 1 Full r = 0.1m, M = 200 r = 0.1m, M = 200
Experiment 2 Restricted r = 0.1m, M = 200 r = 0.1m, M = 200
Experiment 3 Full r = 0.15m, M = 60 r = 0.1m, M = 200
Experiment 4 Restricted r = 0.15m, M = 60 r = 0.1m, M = 200
Experiment 5 Full r = 0.08m, M = 391 r = 0.08m, M = 391
Experiment 6 Restricted r = 0.08m, M = 391 r = 0.08m, M = 391
Experiment 7 Full r = 0.1m, M = 200 r = 0.08m, M = 391
Experiment 8 Restricted r = 0.1m, M = 200 r = 0.08m, M = 391

Table 1: Summary of the parameters used in the eight different experiments. The full set of CPPN inputs
includes the growth and environmental inputs while the restricted set does not.

Two final experiments, experiments 7 and 8 follow the
template of experiments 3 and 4. In both these experiments
the resolution is increased halfway through each evolution-
ary trial, but in this case the resolution starts at r = 0.1 me-
ters, M = 200 and increases to r = 0.08 meters, M = 391
after 100 generations. Once again these experiments are
identical, beside experiment 7 using the full set of CPPN
inputs while experiment 8 uses the restricted set. Table 1
summarizes all these experimental setups.

After completion of all evolutionary trials, statistics are
computed for each experimental setup. Specifically of inter-
est is how fit the evolved structures are, how long it takes for
each evolutionary trial to complete, and how robust evolved
CPPNs are to changes in the resolution at which they are
queried.

Fig. 3 shows the mean best fitnesses from the final gen-
eration for each of the eight experiments. The first thing to
notice in this figure is that in three of the four pairs of ex-
periments the structures evolved using the full set of CPPN
inputs (shown in red) on average achieve significantly higher
fitness when compared with the structures evolved in the
equivalent experiment using the restricted set. Moreover
in the fourth pair of experiments (experiments 5 and 6) on
average there is no significant difference in performance be-
tween those evolved with the full set of CPPN inputs and
those evolved with the restricted set. This means that in-
cluding the additional inputs never degrades performance of
the evolved structures and more often than not leads to an
improvement in performance.

Also noteworthy in this figure is that, when using the full
set of CPPN inputs, on average there is no significant dif-
ference in the best fitness in the final generation when com-
paring between experiments that always evaluate structures
at the highest resolution and those that spend the first half
of their generations evaluating structures at a lower resolu-
tion (comparing experiment 1 with experiment 3 and exper-
iment 5 with experiment 7). This is important, because as
shown in Fig. 4 the evolutionary trials that spend their first
100 generations evaluating structures at a lower resolution
run in significantly less time than those that always evalu-
ate structures at the full resolution. This makes intuitive
sense, because evaluating at the lower resolution requires
fewer queries of the CPPN and allows for faster physical
simulations due to the lower complexity of the structure be-
ing evaluated.

The final property of interest is how robust the evolved
CPPNs are to changes in resolution. A key benefit of CPPN-
NEAT over other evolutionary methods is that the evolved
encoding are capable of producing structures at different

Figure 4: Mean running time in seconds with stan-
dard error bars for the two experiments that evolve
structures at the highest resolution with the full set
of CPPN inputs. Evolutionary trials in experiment
5 which always evaluate structures at the highest
resolution take significantly longer than those of ex-
periment 7 which evaluate structures at a reduced
resolution for the first 100 generations.

resolutions, and as mentioned above if these structures are
going to be physically fabricated it is important that they
not be too sensitive to changes in resolution. Fig. 5 demon-
strates how some of the evolved structures have similar dy-
namics and achieve similar performance when grown at dif-
ferent resolutions. This figure shows the dynamics of a single
structure that achieves the best fitness in one of the evolu-
tionary trials in experiment 5 first as it was evolved, then
regrown at a lower resolution and finally regrown once more
at a higher resolution. It is noteworthy how in all three cases
a mass distribution is preserved that allows the structure to
first fall onto its heavier end, carry its momentum through a
horizontal rotation and fall once again away from its starting
position.

Unfortunately, not all of the evolved structures preserve
their dynamics like this example when grown at different
resolutions. Fig. 6 compares the performance of structures
grown from CPPNs evolved in experiments 5 and 6 by re-
querying at both a lower and higher resolution than that at
which they were evolved. One can see how once again using
the full set of CPPN inputs improves performance. When
growing structures at a resolution lower than that used dur-
ing evolution those grown from CPPNs using the full set

a

b

c

d

e

f

g

h

Figure 5: Left: Behavior of an evolved structure
where each cell has radius r = 0.08 meters and is
alloted a maximum M = 391 cells. Center: The
CPPN used to generate the structure on the left
is re-queried to produce a new structure at lower
resolution: r = 0.1m, M = 200. Right: The same
CPPN is re-queried again to produce a new struc-
ture at higher resolution: r = 0.07m, M = 583.
Note how the three structures achieve similar per-
formance even though structures were only evalu-
ated at the r = 0.08m resolution during evolution.
See Fig 7 for an enlarged view of these structures.

Figure 6: Top: Mean fitnesses of structures grown
from CPPNs evolved in experiments 5 and 6 by re-
querying at a lower resolution (r = 0.1m, M = 200)
with standard error bars shown. Bottom: mean fit-
nesses of structures grown from the same CPPNs
by re-querying at a higher resolution (r = 0.07m,
M = 583.

of inputs on average significantly outperform those grown
from CPPNs which use the restricted set (experiment 5 vs.
experiment 6). When growing structures at a higher resolu-
tion than what their CPPNs were evolved for no significant
difference in performance is observed between those using
the full set of inputs and those using the restricted set.

4. CONCLUSIONS
This paper demonstrates that CPPN-NEAT is capable

of evolving three dimensional physical structures with non-
trivial dynamical properties. Moreover a case has been made
for why including additional inputs which recursively pro-
vide the CPPN with information about the growth trajec-
tory and environment (those in the full set) is beneficial
when using CPPN-NEAT to evolve such structures. Specif-
ically, structures evolved using these inputs on average per-
form either equivalently or significantly better when com-
pared with those grown from CPPNs that are limited to
the basic Cartesian inputs in the restricted set. Moreover
including these inputs results in CPPNs that are either as

a

Figure 7: Enlarged snapshots of the structure shown in Fig. 5 grown at three different resolutions. Left to
right: radius r = 0.08 meters, maximum M = 391 cells; r = 0.1m, M = 200; r = 0.07m, M = 583.

robust or more so to changes in growth resolution relative
to CPPNs taking only the restricted set of inputs.

Additionally, this work demonstrates that it is possible
to improve run time performance without significantly de-
grading the quality of evolved structures by using a lower
resolution at the start of an evolutionary trial followed by
increasing this resolution partway through. First evaluating
structures at a lower resolution allows the evolutionary pro-
cess to more quickly search the space of possible solutions
before switching to a higher resolution to more further refine
the shape and mass distribution of the structures.

This work is a first step in a research trajectory that aims
to co-evolve articulated body plans and control policies. The
results presented here are promising in this endeavor in that
CPPN-NEAT is able to find non-intuitive solutions that cap-
ture the powerful yet subtle relationship between physical
structure and function. Adding in articulation will involve
extending the growth procedure presented here to addition-
ally query evolved CPPNs for cell connectivity information.
For example when adding a new cell to the morphology in-
stead of always doing so in a rigid manner the CPPN can be
queried with information regarding the two cells’ geomet-
ric positions to produce another value used to determine
whether the cells should be connected rigidly or with a ro-
tational joint, and if they are to be connected with a joint,
properties of this joint may also be determined from the
CPPN output.

More work will be needed to extend the growth procedure
to allow for the inclusion of arbitrary numbers of sensors on
each cell, but the current results along with previous exper-
iments using CPPNs suggest that additional CPPN outputs
and/or input flags will provide the necessary mechanisms
for extending the current framework in that direction. Ad-
ditionally, since the HyperNEAT variant of CPPN-NEAT
has shown success in the evolution of ANNs it is reasonable
to expect that co-evolving neural network control policies
along with the morphology should be possible. The authors
intend to tackle these problems in future work.

5. REFERENCES
[1] A. Adamatzky, M. Komosinski, and S. Ulatowski.

Software review: Framsticks. Kybernetes: The
International Journal of Systems & Cybernetics,
29(9/10):1344–1351, 2000.

[2] M. Anderson. Embodied Cognition: A field guide.
Artificial Intelligence, 149(1):91–130, 2003.

[3] R. D. Beer. Intelligence as adaptive behavior: an
experiment in computational neuroethology. Academic
Press Professional, Inc., San Diego, CA, USA, 1990.

[4] R. D. Beer. The dynamics of brain-body-environment
systems: A status report. In P. Calvo and A. Gomila,
editors, Handbook of Cognitive Science: An Embodied
Approach, pages 99–120. Elsevier, 2008.

[5] J. Bongard and R. Pfeifer. Repeated structure and
dissociation of genotypic and phenotypic complexity in
Artificial Ontogeny. Proceedings of The Genetic and
Evolutionary Computation Conference (GECCO
2001), pages 829–836, 2001.

[6] J. Bongard and R. Pfeifer. Evolving complete agents
using artificial ontogeny. Morpho-functional Machines:
The New Species (Designing Embodied Intelligence),
pages 237–258, 2003.

[7] J. C. Bongard. Evolving modular genetic regulatory
networks. In Proceedings of The IEEE 2002 Congress
on Evolutionary Computation (CEC2002), pages
1872–1877, 2002.

[8] V. Braitenberg. Vehicles: Experiments in Synthetic
Psychology. MIT Press, 1986.

[9] R. Brooks. Cambrian intelligence. MIT Press
Cambridge, Mass, 1999.

[10] CGAFaq. Evenly distributed points on sphere –
cgafaq, 2010. [Online;
http://cgafaq.info/wiki/Evenly distributed points on sphere
accessed 25-January-2010].

[11] J. Clune, B. Beckmann, C. Ofria, and R. Pennock.
Evolving Coordinated Quadruped Gaits with the
HyperNEAT Generative Encoding. In Proceedings of
the IEEE Congress on Evolutionary Computing, pages
2764–2771, 2009.

[12] J. Clune, R. T. Pennock, and C. Ofria. The sensitivity
of hyperneat to different geometric representations of

a problem. In Proceedings of the Genetic and
Evolutionary Computation Conference, 2009.

[13] S. Collins, A. Ruina, R. Tedrake, and M. Wisse.
Efficient bipedal robots based on passive-dynamic
walkers. Science, 307(5712):1082–1085, 2005.

[14] F. Dellaert and R. Beer. Toward an evolvable model of
development for autonomous agent synthesis.
Artificial Life IV, Proceedings of the Fourth
International Workshop on the Synthesis and
Simulation of Living Systems, 1994.

[15] P. Eggenberger. Evolving morphologies of simulated
3D organisms based on differential gene expression.
Procs. of the Fourth European Conf. on Artificial Life,
pages 205–213, 1997.

[16] P. Funes and J. Pollack. Computer evolution of
buildable objects. Fourth European Conference on
Artificial Life, pages 358–367, 1997.

[17] I. Harvey, P. Husbands, D. Cliff, A. Thompson, and
N. Jakobi. Evolutionary robotics: the sussex approach.
Robotics and Autonomous Systems, 20:205–224, 1997.

[18] G. Hornby and J. Pollack. Body-brain co-evolution
using l-systems as a generative encoding. Proceedings
of the Genetic and Evolutionary Computation
Conference (GECCO-2001), pages 868–875, 2001.

[19] G. Hornby and J. Pollack. Evolving L-systems to
generate virtual creatures. Computers & Graphics,
25(6):1041–1048, 2001.

[20] H. Lipson and J. B. Pollack. Automatic design and
manufacture of artificial lifeforms. Nature,
406:974–978, 2000.

[21] H. H. Lund and J. W. P. Lee. Evolving robot
morphology. IEEE International Conference on
Evolutionary Computation, pages 197–202, 1997.

[22] C. Mautner and R. Belew. Evolving robot morphology
and control. Artificial Life and Robotics, 4(3):130–136,
2000.

[23] A. L. Nelson, G. J. Barlow, and L. Doitsidis. Fitness
functions in evolutionary robotics: A survey and
analysis. Robotics and Autonomous Systems,
57(4):345–370, 2009.

[24] S. Nolfi and D. Floreano. Evolutionary Robotics: The
Biology,Intelligence,and Technology. MIT Press,
Cambridge, MA, USA, 2000.

[25] R. Pfeifer and J. Bongard. How the Body Shapes the
Way We Think: A New View of Intelligence. MIT
Press, 2006.

[26] J. B. Pollack, H. Lipson, G. Hornby, and P. Funes.
Three generations of automatically designed robots.
Artif. Life, 7(3):215–223, 2001.

[27] E. Saff and A. Kuijlaars. Distributing many points on
a sphere. The Mathematical Intelligencer, 19(1):5–11,
December 1997.

[28] K. Sims. Evolving 3D morphology and behaviour by
competition. Artificial Life IV, pages 28–39, 1994.

[29] K. Stanley, D. D’Ambrosio, and J. Gauci. A
Hypercube-Based encoding for evolving Large-Scale
neural networks. Artificial Life, 15(2):185–212, 2009.

[30] K. Stanley and R. Miikkulainen. A taxonomy for
artificial embryogeny. Artificial Life, 9(2):93–130,
2003.

[31] K. O. Stanley. Compositional pattern producing

networks: A novel abstraction of development.
Genetic Programming and Evolvable Machines,
8(2):131–162, 2007.

[32] K. O. Stanley and R. Miikkulainen. Evolving neural
networks through augmenting topologies. Evolutionary
Computation, 10:2002, 2001.

[33] R. Tedrake, T. Zhang, and H. Seung. Learning to walk
in 20 minutes. In Proceedings of the Fourteenth Yale
Workshop on Adaptive and Learning Systems, Yale
University, New Haven, CT, 2005.

[34] R. A. Watson, S. G. Ficici, and J. B. Pollack.
Embodied evolution: Embodying an evolutionary
algorithm in a population of robots. In Congress on
Evolutionary Computation, pages 335–342. IEEE
Press, 1999.

