Conference paper

TRACE and TRAC-BF1 Benchmark Against Leibstadt Data During the Event Inadvertent Opening of Relief Valves

In framework of introducing TRACE code to transient analyses system codes for Leibstadt Power Plant (KKL), a conversion process of existing TRAC-BF1 model to TRACE has been started within KKL. In the first step, TRACE thermal-hydraulic model for KKL has been developed based on existing TRAC-BF1 model. In order to assess the code models a simulation of plant transient event is required. In this matter simulations of inadvertent opening of 8 relief valves event have been performed. The event occurs at KKL during normal operation, and it started when 8 relief valves open resulting in depressurization of the Reactor Pressure Vessel (RPV). The reactor was shutdown safely by SCRAM at low level. The high pressure core spray (HPCS) and the reactor core isolation cooling (RCIC) have been started manually in order to compensate the level drop. The remaining water in the feedwater (FW) lines flashes due to saturation conditions originated from RPV depressurization and refills the reactor downcomer. The plant boundary conditions have been used in the simulations and the FW flow rate has been adjusted for better prediction. The simulations reproduce the plant data with good agreement. It can be concluded that the TRAC-BF1 existing model has been used successfully to develop the TRACE model and the results of the calculations have shown good agreement with plant recorded data. Beside the modeling assessment, the TRACE and TRAC-BF1 capabilities to reproduce plant physical behavior during the transient have shown satisfactory results. The first step of developing KKL model for TRACE has been successfully achieved and this model is further developed in order to simulate more complex plant behavior such as Turbine Trip.


    • EPFL-CONF-191264

    Record created on 2013-12-13, modified on 2017-05-12


  • There is no available fulltext. Please contact the lab or the authors.

Related material