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Abstract: A thorough analysis of the key factors impacting on the 
performance of Brillouin distributed optical fiber sensors is presented. An 
analytical expression is derived to estimate the error on the determination of 
the Brillouin peak gain frequency, based for the first time on real 
experimental conditions. This expression is experimentally validated, and 
describes how this frequency uncertainty depends on measurement 
parameters, such as Brillouin gain linewidth, frequency scanning step and 
signal-to-noise ratio. Based on the model leading to this expression and 
considering the limitations imposed by nonlinear effects and pump 
depletion, a figure-of-merit is proposed to fairly compare the performance 
of Brillouin distributed sensing systems. This figure-of-merit offers to the 
research community and to potential users the possibility to evaluate with 
an objective metric the real performance gain resulting from any proposed 
configuration. 
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1. Introduction 

During the past few years Brillouin-based distributed optical fiber sensing has been turning 
into one of the most vivid fields of research in optical fiber sensing, mainly due to its ability 
to provide distributed temperature and strain measurements along several tens of km of 
optical fiber with spatial resolution values down to the centimeter scale [1]. Actually, thanks 
to advanced and ingenious techniques, remarkable progresses have been recently reported. On 
the one hand, the spatial resolution has been improved by at least 2 orders of magnitude from 
meter to centimeter scale using methods based on correlation-domain, differential pulses, and 
dynamic gratings, among others [2–10]. On the other hand, the distance range has been 
extended from some 30 km up to 150 km by using time-division multiplexing [11], 
frequency-division multiplexing [12], remote optical amplification [13–18], smart pump pulse 
coding techniques [19–26], or combination of these last two methods [27–30]. 

However, it still remains uneasy for an external observer to fairly evaluate the real 
progresses reported in the abundance of recent publications. There is currently no objective 
metric based on a rationale to evaluate the impact of a proposed technique in term of 
performance gain. For instance, how is it possible to compare a sensor achieving a 2 m spatial 
resolution with a 2 MHz Brillouin shift frequency accuracy over 100 km [11], to a sensor 
showing a 3 m spatial resolution with 3 MHz frequency accuracy over 120 km [24]? Do they 
provide a better performance than realizing a 5 cm spatial resolution over 5 km with 0.5 MHz 
frequency accuracy [9]? 

No simple way to assess these different results is identified today and the only quantity 
sometimes used for comparison is the equivalent number of resolved sensing points, i.e. the 
ratio between the maximum sensing range and the spatial resolution. However this quantity 
does not take into account other important parameters such as the measurand resolution or the 
number of acquired/averaged traces, which is directly related to the measurement time. It also 
assumes that extending the sensing range and sharpening the spatial resolution have a 
proportional impact, which turns out to be much too simplistic as proved hereafter. 

The purpose of this paper is to study the impact of the different variables in the measuring 
process on the sensor response and the final measurement uncertainty. The analysis also 
includes the fitting procedure required to estimate the Brillouin peak gain frequency (the so-
called Brillouin frequency shift (BFS) [1]), which ultimately contains the distributed 
temperature and strain information. More specifically, the impact of the measurement 
parameters on the error of the BFS estimated from a quadratic least-square fitting process [31] 
is analyzed, so that a novel expression for the error on the BFS in Brillouin-based distributed 
sensors is derived and justified by its experimental validation. Then, a figure-of-merit (FoM) 
can be formulated combining this expression with a simple and universal model based on a 
generic distributed Brillouin sensor. This FoM is simply defined to be proportional to the 
signal-to-noise ratio (SNR) of the measurement, with some simple added considerations based 
on the limitations brought by pump depletion [32] and by other nonlinear effects, such as 
modulation instability and forward Raman scattering [33]. Therefore, any real progress 
offered by novel techniques should have the effect to normally make this FoM larger, so that 
the real performance improvement can be rigorously quantified. 
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2. Response of BOTDA sensors 

In Brillouin optical-time domain analysis (BOTDA) based sensors a pulsed pump signal 
interacts with a continuous wave (CW) probe signal through stimulated Brillouin scattering 
(SBS) [1]. A simple scheme showing the implementation of a generic BOTDA sensor is 
depicted in Fig. 1. The light from a narrowband laser is split into two arms to generate both 
the pulsed pump and the CW probe signals. The upper branch in the figure shows the 
generation of the pump signal, in which the CW laser light is intensity modulated by a pulse 
shaping device that can be an electro-optic modulator, a semiconductor optical amplifier or 
any other type of modulating device with high extinction ratio. The peak power of the pulses 
may be boosted by an optical amplifier to launch high-peak power pulses into the fiber. On 
the other hand, the lower branch in Fig. 1 shows the generation of the probe signal through an 
optical frequency shifting device, in which the frequency shift can be precisely controlled. A 
common implementation is realized using an electro-optic modulator driven by a microwave 
signal in order to generate a double-sideband suppressed carrier CW probe wave, in which 
case one of the sidebands must be filtered out before detection [34]. A polarization scrambler 
or polarization switch (placed in the pump and/or probe arm) is typically employed to get rid 
of the spatial oscillations caused by the polarization-dependent Brillouin gain. 

Laser

Sensing
fiber

Pump
Data 

acquisition

Frequency 
controller

Pulse Generator

Probe

Isolator

Frequency 
shifter

Pulse 
shaper

Filtering + 
photo-detection

 

Fig. 1. Generic BOTDA sensor scheme. 

While the frequency difference between pump and probe signals is scanned around the 
Brillouin frequency of the sensing fiber (through the frequency control, which is normally a 
microwave signal that modulates the CW probe), a data acquisition system is used to record 
the BOTDA time-traces at different frequency offsets. Usually a fiber Bragg grating (BFG) or 
other narrowband optical filter is used before the photo-detection to filter out unwanted 
spectral components, such as the Rayleigh backscattered light from the pump. It must be 
mentioned that the development presented in this paper is not restricted to a particular 
configuration and it applies to any BOTDA system implementing the interaction between a 
coherent pulsed signal with a frequency-shifted continuous coherent lightwave, for instance 
employing 2 frequency-locked lasers [3,35]. All elements that are not strictly essential for the 
basic operation of the BOTDA sensor are not represented in Fig. 1, since they can be 
considered like sophistications and are countlessly diversified. 

If a Brillouin gain configuration is assumed for simplicity (i.e. the pump frequency is 
higher than the frequency of the CW probe component that is detected at the receiver), and 
without bringing restrictions to the analysis as justified later, the measured CW probe signal is 
amplified by stimulated Brillouin scattering while the pulsed pump propagates along the fiber, 
as shown in Fig. 2. 
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Fig. 2. Interacting signals in a generic BOTDA sensor. A light pulse of power PP – called 
pump – interacts with a continuous wave of power PS – called probe or signal – through the 
intercession of an idler acoustic wave if a strict phase matching condition is satisfied. Phase 
matching depends on the frequency difference between pump and probe and gives rise to a 
local power transfer ΔPs between the interacting optical waves. 

For a fixed frequency difference between the interacting optical signals, the amount of 
power transferred from the pump Pp(z) to the probe Ps(z) is given by: 

 
( )

( ) ( ) exp ( ) 1 ,B
s s P

eff

g z
P z P z P z z

A

  
Δ = Δ −      

 (1) 

where gB(z) represents the local Brillouin gain coefficient, Aeff is the nonlinear effective area 
of the guided mode and Δz is the interaction length, which is equivalent to the spatial 
resolution and determined by the pump pulse half duration multiplied by the group velocity of 
the guided mode. The quantity given by Eq. (1) actually corresponds to the local sensor 
response, in which the gain value gB(z) is considered for the given frequency difference and is 
assumed to be constant over the interaction length Δz. This response is, in principle, valid for 
pulses longer than the acoustic amplitude lifetime τ = 11 ns, so that the stationary 
approximation for the acoustic wave can be used. However, it must be pointed out that 
advanced configurations using shorter pulses for high spatial resolution, based on the pre-
excitation of the acoustic wave, turn out to experience a power transfer that is also given by 
Eq. (1), provided that the pre-excitation is long enough to let the acoustic wave reach its 
steady state value [25,36], so that this expression can safely be employed for all ranges of 
spatial resolution. 

In order to avoid pump depletion (in Brillouin gain configuration) or excess amplification 
(in Brillouin loss configuration), BOTDA sensors operate in a small gain regime [32], i.e. 

( ) / ( ) 0.1;s sP z P zΔ <<  and therefore, the local sensor response defined by Eq. (1) can be safely 
simplified as: 

 
( )

( ) ( ) ( ) .B
s P s

eff

g z
P z P z P z z

A
Δ = Δ  (2) 

In most high performance sensors this relative power transfer is actually in the 1% range 
or below. Actually, the absolute value of the sensor response turns out to be similar in gain 
and loss configurations under small amplification. 

Under the undepleted pump approximation it is possible to assume that the accumulated 
power that is transferred from the pump to the probe along the fiber is negligible, which is a 
necessary experimental condition to avoid systematic errors on the determination of the 
Brillouin frequency shift [32]. Negligible depletion actually makes the pump power simply 
decay exponentially during propagation as a result of the linear fiber loss αp at the pump 
wavelength. Similarly, the small gain approximation makes the probe power Ps negligibly 
modified by the interaction and therefore predominantly ruled by the linear loss αs at the 
probe wavelength. Losses experienced by pump and probe are identical in normal conditions 
due to their very close spectral vicinity; however, for the sake of generality some of the 
following expressions describe the interaction using two distinct loss coefficients. This 
distinction is mostly irrelevant from a practical point of view, but will be later helpful for the 
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physical interpretation. Under these realistic assumptions the local sensor response ΔPs(z) can 
be calculated as a perturbation and simplifies to a z-independent quantity for identical losses 
and for uniform Brillouin linear gain gB: 

 

( ) [ ]

( )

( )
( ) exp exp ( )

( )
exp , for ,

B
s Pi p si s

eff

B
Pi si p s

eff

g z
P z P z P L z z

A

g z
P P L z

A

α α

α α α α

Δ = − − − Δ

= − Δ = =             

 (3) 

where PPi and Psi are the input pump and probe powers, respectively. This situation directly 
results from the counter-propagative configuration required for the interacting optical waves 
in stimulated Brillouin scattering, as shown in Fig. 3: the power transfer is scaled by the 
product of pump and probe powers that is constant at any position z. In other words, while the 
pump is large at position z = 0, the probe is weak since it has been fully attenuated by linear 
loss along the full fiber length L. The power situation of the two waves is exactly reversed in 
the same proportion at z = L, and it can be even generalized that these powers are in exact 
inverse proportion at any position z for equal pump and probe linear losses, as described by 
Eq. (3). 

( ) e LB
s Pi si

eff

g
P z P P z

A
α−Δ = Δ

0 L z

( ) e z
P PiP z P α−=

( )( ) e L z
s siP z P α− −=

 

Fig. 3. The counter-propagative interacting signals in a BOTDA sensor experience linear loss 
and exponentially decay during their propagation. Since at each position z the Brillouin 
response is proportional to the product of the pump pulse of power PP(z) by the CW probe 
power PS(z) they show complementary amplitudes as a result of the counter-propagating 
situation and their product is invariant with position z. 

As previously mentioned, the expression in Eq. (3) corresponds to the local sensor 
response, however, the power transferred at a position z is measured at the fiber near end 
(position z = 0) and, since the probe signal must be conveyed from z to 0, it experiences the 
effect of the linear fiber attenuation αs over this distance. As a result, the sensor response ΔPs 
measured at the fiber near end is given by the following expression: 

 ( ) ( ) ( ) ( ) ( )0 ( )
exp exp exp .B

s s s Pi p si s
eff

g z
P z P z z P z P L z

A
α α αΔ = Δ − = − − Δ  (4) 

This expression actually corresponds to the measured sensor response and is proportional 
to the local gain coefficient gB(z)/Aeff, the spatial resolution Δz, the local pump power 

exp( )Pi pP zα−  and the CW probe power exp( )si sP Lα−  at the fiber near end in absence of 

SBS interaction. Thus, the local Brillouin gain associated to this response as a function of z 
can simply be obtained dividing Eq. (4) by the CW probe power measured at the receiver, 
yielding: 

 ( ) ( ) ( )
0 ( )

exp .
exp( )

s B
Pi p

si s eff

P z g z
Gain z P z z

P L A
α

α
Δ

= = − Δ
−

 (5) 
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Thus, the local gain observed at the fiber near end is proportional to the local Brillouin 
gain coefficient gB(z) (in the small gain approximation) and the local pump power. If the 
Brillouin gain is uniform along the fiber, the response traces will show an exponential 
decrease as a function of the distance z along the fiber; however, if the Brillouin gain is not 
uniform, then the position dependence of gB(z) will determine a gain profile different from the 
conventional exponential decay. This will be also the case if the pump is subject to distributed 
amplification or any type of nonlinear interaction. 

Assuming that the interacting waves only experience the same linear loss during their 
propagation, it is evident from Eqs. (4) and (5) that the more distant the position z, the smaller 
the measured sensor response, and the worst case therefore corresponds to an interaction 
taking place close to the fiber far end at z = L. Consequently, under standard BOTDA 
conditions, the sensor accuracy must be essentially proved with measurements performed at 
the far end where the measured sensor response is: 

 ( ) ( )0 exp 2 .B
s Pi si

eff

g
P z L P P L z

A
αΔ = = − Δ  (6) 

Note that, even though the local gain at position L shows an exponential attenuation as 
exp(–αL) according to Eq. (5), the absolute power signal variation that is measured by the 
sensor from an interaction at the fiber far end (z = L) is scaled by a factor exp(–2αL), as 
expressed by Eq. (6). This fact is essential to grasp how the sensing distance impacts on the 
signal-to-noise ratio (SNR) of BOTDA traces, in particular at the far end where the lowest 
absolute signal amplitude has to be detected. Actually, the effect of the fiber attenuation turns 
out to be doubled when compared to a one-way propagation; consequently, using standard 
values for the linear loss at 1550 nm it can be concluded that increasing the sensing range by 
7.5 km raises a difficulty similar to decreasing the spatial resolution by a factor 2 (in both 
cases the measured sensor response at z = L and the respective SNR are reduced by 3 dB). 
Note that the attenuation on the sensor response can be widely compensated by using 
amplification before detection, though with the penalty of the amplifier noise figure. This 
possibility of amplification can be eventually considered as a technical sophistication to 
improve the figure-of-merit introduced later in this paper and will not be further considered 
here. 

In order to experimentally verify the behavior of the measured sensor response at the far 
fiber end described by Eq. (6), measurements have been carried out using different fiber 
lengths and a setup based on Fig. 1. Considering that the analyzed distinct fiber segments 
might have different Brillouin gain coefficient gB and different effective areas Aeff, the pump 
power launched into the fiber has been adjusted in order to provide the same maximum gain 
to the BOTDA traces at z = 0. This makes a fair comparison possible between the different 
tested fibers, all of standard type and showing a similar linear loss. Thus, the gain expressed 
by Eq. (5) at the fiber near end (z = 0) has been set to 3% at the peak Brillouin gain for all the 
measurements reported here. The spatial resolution and the number of averaged traces have 
been identically set to 2 m and 1000, respectively, for all measured fiber segments. Figure 4 
shows the sensor response ΔPs

0 (in dB scale) resulting from the Brillouin gain measured at the 
far end of several distinct fibers, with lengths ranging from 2 km up to 50 km. These 
measured power variations have been normalized to their value measured at z = 0, which has 
been set identical in term of gain for all tested fibers. In addition to the sensor response, Fig. 4 
also shows the respective linear fitting (black dashed line) of the acquired data, whose slope is 
equal to ‒2α according to Eq. (6). This fitting results in an attenuation coefficient  
α = 0.211 dB/km, which is in good agreement with standard values in single-mode fibers at 
1550 nm. 
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Fig. 4. Measured sensor response for an interaction taking place at the far end of sensing fibers 
with different length L. Data are normalized to the response obtained at the near end to better 
visualize the fiber length dependence. 

3. Impact of the signal noise on the error of the estimated Brillouin frequency shift 

In Brillouin distributed time-domain sensing the local Brillouin response is retrieved by 
measuring the probe signal power variations as a function of the distance for successive 
pump-probe frequency detuning. At each position the local spectral distribution of the 
Brillouin gain spectrum (BGS) can be reconstructed, as shown in Fig. 5, from which the local 
peak gain frequency is then estimated by a fitting procedure. 
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Fig. 5. Typical local Brillouin spectral response after normalization, measured by a distributed 
time-domain sensor. The distribution maps a resonant Lorentzian profile and the peak gain 
frequency must be determined to get an estimated value for the measurand. Noise on the signal 
(σ) induces uncertainty and the estimation of the peak gain frequency is subject to statistical 
errors, depending on the Brillouin FWHM (ΔνB) and the frequency step (δ) used to measure the 
gain spectrum. 

A standard robust approach consists in making a rough estimate of the peak frequency and 
the peak gain value through a first pass, in order to discard all experimental points below a 
given fraction of the peak value (e.g. 50%). A numerical fit can then be performed over the 
kept points, which can be based on a limited number of degrees of freedom (e.g. parabolic fit) 
to optimize the robustness of the estimation. 

Surprisingly, the estimation of the potential error on the Brillouin frequency shift for a 
given signal noise has been very poorly addressed in the literature so far. Only one relation 
has been proposed in a pioneering article on Brillouin fiber distributed sensing [1], claiming 
an unusual fourth root dependence on the SNR, without detailed justification and with no 
other dependence on the estimation procedure (i.e. on the type of curve fitting) or on 
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measurement conditions, such as the number of frequency points involved in the fitting (or 
equivalently the frequency sampling step). 

In this work a new relation is established directly following the procedure used for fitting, 
by calculating the propagation of errors on the parameters obtained from a least-square 
parabolic fit [31], subject to given and equal stochastic errors σ on the measured gain spectral 
amplitudes (noise on the curve in Fig. 5). For this calculation a normalized gain response has 
been assumed, i.e. the response is 0 in absence of gain (far from the resonance) and is equal to 
1 at the estimated peak response, as shown in Fig. 5. Under these assumptions, the noise 
amplitude σ is here defined as a fraction of this normalized response, directly representing the 
inverse of the local SNR on the trace at the peak gain frequency. If ΔνB is the estimated 
Brillouin full-width at half maximum (FWHM) of the resonance and δ is the frequency 
sampling step (i.e. the frequency increment between successive Brillouin intensity traces), the 
propagated error on the estimated resonance central frequency σν expresses as: 

 ( ) ( )
( ) ( ) ( )3 2 3 2

3 31
,

8 2 1 8 2 1
B Bz z

SNR zν
δ ν δ νσ σ

η η
⋅ ⋅ Δ ⋅ ⋅ Δ= =

− −
 (7) 

where η is the fraction of the peak level over which a quadratic least-square fitting is carried 
out, i.e. all frequency points above this level η are involved in the quadratic fitting (see 
Appendix for the details on the derivation of Eq. (7)). Thus, in the particular case of η = 0.5, 
i.e. when the quadratic fitting is performed taking in to account only the data points within the 
Brillouin FWHM ΔνB, Eq. (7) reduces to: 

 ( ) ( ) ( )
3 1 3

.
4 4B Bz z

SNR zνσ σ δ ν δ ν= ⋅ Δ = ⋅ Δ  (8) 

The validity of these expressions is subject to the condition δ <<ΔνB, which is equivalent 
to require a large number of frequency sampling points. Actually, as proved in the Appendix, 
the validity is already good for 3 or more frequency points. Another condition is that a prior 
rough estimate of the central frequency has been performed, so that the measured points 
considered for the estimation are evenly distributed around the expectation value of the peak 
gain frequency. These are no real limitations, since this is normally carried out in a standard 
measurement procedure. If the fraction η is different from 0.5, it just changes the multiplying 
constant on the right term of Eq. (7). Even though this relation is here established in the 
particular case of a parabolic fit, it is not expected to substantially differ for more elaborated 
fitting functions, except possibly in the numerical proportionality factor, but unlikely in the 
functional dependence of the parameters, as clarified in the Appendix. 

It must be pointed out that logically this expression gives a strict proportionality between 
signal noise and frequency error, whereas the number of frequency sampling points has a 
direct scaling impact on the error of the estimation. Actually, Eqs. (7) and (8) are valid not 
only for BOTDA systems, but can also be applied to estimate the frequency error resulting 
from any Brillouin frequency shift estimation based on fitting a measured Brillouin spectrum, 
like Brillouin optical time-domain reflectometry (BOTDR) [13] or Brillouin optical 
correlation-domain systems [2]. It can be even generalized to any system in which the central 
value of a resonance must be evaluated by fitting experimental points obtained by a frequency 
scan. 

In order to validate the expression proposed in Eq. (8), measurements along a 24.5 km-
long standard single-mode fiber have been repeated varying the different parameters entering 
into this expression. First, the essential discrepancy with the formerly published relation in [1] 
has been checked, namely the inverse linear dependence on the SNR, fixing η = 0.5, the 
frequency step at 1 MHz and the FWHM at 58 MHz, which is obtained using a spatial 
resolution of 2 m. 

Figure 6 shows the frequency error as a function of distance, calculated as the standard 
deviation of the experimental BFS obtained from the quadratic fitting process for the case of 
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10 (blue solid line) and 200 (red solid line) averaged traces. The standard deviation is 
calculated from a set of about 100 estimated BFS at close positions. The dashed lines in the 
figure represent the respective frequency error calculated using Eq. (8), based on the 
exponential dependency of the SNR measured in the traces. The exact inverse proportion 
between the frequency error and SNR(z) is evident in the figure when considering the growth 
of the frequency error σν (z) ~1/SNR(z) with distance, which nominally increases 
exponentially according to the one-way fiber attenuation coefficient (α = 0.22 dB/km, 
obtained in this case from fitting an exponential curve to the measured SNR as a function of 
the distance). In Fig. 6 the impact of trace averaging can also be observed, where the 
frequency error obtained at 24.5 km distance with 10 time-averaged traces is 3.21 MHz, 
which is improved down to 0.75 MHz with 200 averages. This corresponds to an 
improvement factor of 4.28 on the BFS accuracy, which is in good agreement with the 
improved SNR resulting from the additional averaging (note that increasing the trace 

averaging in a factor of 20 results in a 20 4.47≈  better SNR). 
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Fig. 6. Frequency error vs distance, measured as the standard deviation of the Brillouin 
frequency shift obtained for 10 and 200 time-averaged traces (blue and red solid lines). Dashed 
lines: theoretical calculation of the frequency error based on Eq. (8) and on the exponential 
behavior of the SNR measured in the time-traces at the maximum gain frequency (the 
attenuation factor α = 0.22 dB/km is obtained from fitting the measured SNR with an 
exponential curve). 

According to Eq. (8), the number of averaged traces NAV implicitly impacts on the 

frequency error by raising the SNR following a 1 AVN  dependence, as illustrated in Fig. 7. 

This figure actually presents the frequency error at 24.5 km distance as a function of the 
number of averages when δ = 1 MHz, and ΔνB = 58 MHz (equivalent to 2 m spatial 
resolution). The dashed line in the figure corresponds to the theoretical frequency error 
estimated using Eq. (8), based on the SNR of the trace at the peak-gain frequency and at the 
far end of the fiber. It must be mentioned that this curve is not obtained by fitting, but is a 
prediction resulting from a single SNR measurement. Actually, in this case the SNR has been 
measured using 200 time-averaged traces and then estimated for other averaging numbers by 

applying the 1 AVN  dependence. 
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Fig. 7. Frequency error as a function of the number of time-averaged traces, at a 24.5 km 
distance. The theoretical curve (dashed line) is calculated using Eq. (8) (for δ = 1 MHz, ΔνB = 
58 MHz), based on the SNR calculated at the far fiber end of the time-trace at the peak gain 
frequency. 

A remarkable agreement between the measured error values and the ones predicted by 
direct calculation employing Eq. (8) can be observed in Figs. 6 and 7. Actually, Fig. 8 
compares the frequency error calculated theoretically using Eq. (8) and the error obtained 
from the standard deviation of the measured BFS (for 200 time-averaged traces). In this case 
SNR(z) is evaluated at every fiber location (over the trace with the maximum gain) and then 
used to calculate the expected frequency error from Eq. (8) (using δ = 1 MHz, and  
ΔνB = 58 MHz). It can be seen that all (blue) data points in Fig. 8, obtained by coupling the 
calculated and measured frequency errors at different positions along the fiber, are scattered 
along a straight line with unity slope, verifying the good agreement between predicted and 
experimental error values. The small frequency errors (around 0.2 MHz) in the figure 
represent the values obtained near the fiber input (z = 0) where the highest SNR is observed, 
while errors of about 0.8 MHz are obtained near the fiber far end (z = 24.5 km). 

 

Fig. 8. Measured frequency error vs calculated frequency error (blue dots), when using 200 
time-averaged traces. Red dashed line: Ideal case representing no difference between 
calculated and measured errors. 

To evaluate the dependence of the measurand resolution on the frequency scan increment, 
σν has been evaluated at the far end of the fiber (z = 24.5 km). Figure 9 shows the measured 
and calculated frequency error as a function of the frequency increment when using 200 time-
averaged traces and SNR = 9.4 dB (evaluated at the fiber far end from the temporal trace at 
the peak gain frequency). For a reliable comparison, the distributed BGS profile has been 
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measured by acquiring only one set of traces with a small frequency step (δ = 200 kHz); 
however, an undersampling has been voluntarily performed during the quadratic fitting 
process, so that the effective frequency step could be freely varied from 0.2 MHz up to 5 MHz 
using the same set of experimental time traces. This way, possible inaccuracies introduced by 
slowly varying noise and environmental conditions are suppressed, leading to a more reliable 
comparison. It can be observed that a small frequency step (i.e. when more data points are 
involved in the fitting of the gain spectrum) leads, as expected, to more accurate frequency 
measurements. Therefore, as shown in Fig. 9, if the frequency increment δ is larger, the 

frequency error grows with a factor proportional to δ , in full agreement with the model 
rooting Eq. (8). 
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Fig. 9. Frequency error as a function of the frequency spacing, at 24.5 km distance and using 
200 time-averaged traces. The theoretical curve (dashed line) is calculated using Eq. (8), for 
ΔνB = 58 MHz and SNR = 9.4 dB. 

Finally, the impact of the Brillouin linewidth on the frequency error has been analyzed, as 
shown in Fig. 10. Here, the Brillouin linewidth has been simply changed using different pump 
pulse widths (between 10 ns and 60 ns). However, it is important to take into account that 
when the spatial resolution is varied, the local Brillouin gain changes, affecting the SNR of 
the traces accordingly. To evaluate the impact of the Brillouin spectral width only, the peak 
pump power has been adjusted in order to keep a constant Brillouin gain between 
measurements. This way, the SNR on the BOTDA traces at the peak frequency is the same for 
all measurements (SNR = 9.4 dB as in the previous case), making a reliable comparison 
possible between different Brillouin linewidth conditions. 
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Fig. 10. Frequency error as a function of the FWHM Brillouin linewidth, at a 24.5 km distance 
and using 200 time-averaged traces. The theoretical curve (dashed line) is calculated using  
Eq. (8), for δ = 1 MHz and SNR = 9.4 dB. 

Experimental results demonstrate with no ambiguity the relevance and the merits of  
Eq. (8) to estimate the frequency error of a Brillouin-based distributed optical fiber sensor. As 
previously mentioned, Eq. (8) assumes that the fitting is carried out considering all frequency 
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points within the Brillouin FWHM; however, as expressed in Eq. (7) the frequency error also 
depends on the discriminating level η from which the quadratic fitting is performed. In order 
to verify the accuracy of that more general expression, the BGS obtained from a single 
measurement has been repetitively fitted with different η levels. The frequency error 
estimated at 24.5 km distance (with δ = 1 MHz, ΔνB = 58 MHz, and SNR = 9.4 dB) is shown 
in Fig. 11, where it can be visually inspected how much the frequency error can be reduced if 
a broader spectral range (lower η level) is included in the fitting. This can be easily 
understood since the use of a lower η level increases the number of data fitting points and a 
more accurate evaluation of the peak frequency can thus be obtained. On the other hand, when 
the fitting is carried out including a smaller number of frequency points (higher η levels), the 
accuracy on the quadratic fitting is reduced, leading to higher error values. 
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Fig. 11. Frequency error as a function of the threshold level used for the quadratic fitting, at a 
24.5 km distance and using 200 time-averaged traces. The theoretical curve (dashed line) is 
calculated using Eq. (7), for δ = 1 MHz, ΔνB = 58 MHz and SNR = 9.4 dB. 

The differences in Fig. 11 between the measured and calculated errors when η > 0.7 could 
be explained by the fact that a limited number of points is used for the quadratic fitting: 
actually, Eq. (7) (and hence Eq. (8)) has been obtained assuming that the number of frequency 
points involved in the fitting is much larger than 1 (see Appendix), a condition that is in 
general difficult to meet when η is close to 1. In addition, it is important to note that the first 
term in Eq. (24) might also impact on the frequency error at long distances if η is close to 1 
since a reduced SNR makes it difficult to secure a perfect symmetry of the experimental 
spectrum subject to the fitting, i.e. a perfect centering on the expected peak gain frequency. 
Incidentally Fig. 11 shows that choosing η = 0.5 is a good compromise between accuracy and 
number of fitted points that ultimately decides the measurement time. 

These experimental validations demonstrate that Eq. (7) is an expression based on a solid 
background to describe and predict the accuracy of a BOTDA sensor. Actually, by simply 
determining the SNR of the measured sensor response at any single fiber location z and at the 
peak gain frequency, the sensor performance can be fully predicted. For instance, the 
maximum reachable sensing distance can be easily estimated for a given accuracy, spatial 
resolution and averaging. Re-expressing Eq. (7) in the case of uniform linear loss α and 
Brillouin amplification gB/Aeff, and assuming that the SNR of the sensor response is known at 
the fiber near end (z = 0) yields: 

 ( ) ( ) ( )
00

3 2

3exp( )
,

0 8 2 1
AV B

AV

Nz z
z

SNR z z Nν
δ νασ

η
⋅ ⋅ ΔΔ=

= Δ −
 (9) 

where 0zΔ and 0
AVN  are the spatial resolution and the number of averaging at which the SNR 

is evaluated, respectively. It is thus straightforward to determine the maximum distance zmax at 
which a given Brillouin frequency accuracy σν will be secured. This is exemplified in Fig. 12, 
which depicts the maximum sensing distance as a function of the target frequency uncertainty 
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and spatial resolution Δz, assuming that a realistic SNR = 0 dB is measured at the input fiber 
end with a spatial resolution 0zΔ  = 2 m and no averaging (i.e. 0

AVN  = 1). It can be observed 
that a distance range zmax = 50 km can be reached while securing a frequency uncertainty of  
2 MHz in standard conditions (α−1 = 22 km, ΔνB = 58 MHz) with NAV = 1000, δ = 1 MHz,  
η = 0.5 and keeping the same spatial resolution of 2 m. However, if the frequency uncertainty 
is bound to a maximum of 1 MHz, the 50 km distance range can only be maintained by 
downgrading the spatial resolution to Δz ≈3.5 m. 
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Fig. 12. Maximum sensing distance as a function of the frequency uncertainty and spatial 
resolution. The sensor response is predicted using Eq. (9) with α−1 = 22 km, NAV = 1000, δ = 1 
MHz, η = 0.5 and Δz = 2 m, under the realistic condition of a 0 dB SNR measured at the fiber 

near end (z = 0) with a spatial resolution 
0zΔ  = 2 m and 

0
AVN  = 1. 

Thus, as a clear outcome of this study, the SNR on the sensor response turns out to be the 
crucial parameter scaling the entire performance of the sensing system. In addition Eq. (9) is 
also an efficient tool to optimize the set of parameters chosen for the acquisition procedure. 
For instance, time averaging and frequency scanning step have a similar impact on the 
accuracy. Since setting a new frequency on a microwave generator takes in general a much 
longer time than individual time averaging, it may be more effective in some systems to make 
larger frequency steps while simultaneously increasing the number of time averages, to 
eventually improve the overall acquisition speed while securing the same measurement 
accuracy. 

4. Figure-of-merit for distributed Brillouin optical fiber sensors 

By analyzing the sensor response measured at the receiver as a function of the distance, as 
described in Eq. (6), the pump and probe input powers in this expression can be considered as 
fixed for all types of Brillouin-based sensors, since they are essentially limited by the critical 
power for other nonlinear effects [33] and depletion [32] in some cases. However, these two 
effects are actually scaled by the effective nonlinear length of the fiber (1 e ) /L

effL α α−= −  

that asymptotically tends towards α −1 for very long fibers. This means that distributed sensing 
systems employing short fibers (L< α −1) benefits from higher possible pump and probe signal 
powers, since they can be raised by a factor 1/(αLeff) and this will eventually enhance the 
sensor response. This fact has to be considered for a fair comparison between high spatial 
resolution sensors (typically short distance) and long distance systems. 

On the other hand, recent achievements for ultra-long sensing ranges have reported 
configurations in which an optical fiber twice longer than the actual sensing range is used 
[12,30]. In contrast to standard BOTDA configurations, in which both probe and pump 
experience the one-way fiber attenuation along the whole sensing fiber (as described in  
Fig. 3), in such a long-range fiber loop configuration, the probe signal experiences twice the 
sensing fiber attenuation (equivalent to the one-way attenuation along the whole fiber), while 
the active pump power is affected by the attenuation only along the sensing fiber [30]. This 
way, following the description presented in Section 2, the dependence of SNR at the receiver 
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on the sensing fiber length should be scaled by a factor exp(–3αL) (where L corresponds to 
the sensing fiber length) and not by a factor exp(–2αL) as in the standard fiber configuration, 
to take into account the probe propagation over the extra fiber length L. This issue should to 
be considered in the figure-of-merit since it has a significant impact on the SNR at the 
receiver, the probe signal being highly attenuated when long sensing ranges have to be 
covered. Thus, for instance, reaching a 100 km sensing distance using a 200 km fiber loop, in 
which the probe is attenuated by 40 dB, is much more challenging than using a 100 km fiber 
where the probe is attenuated by only 20 dB. 

Another issue to include into the figure-of-merit is related to the number of time-averaged 
traces NAV since, as reported in Fig. 7, the SNR can be arbitrarily increased in direct 

proportion to AVN  at the expense of a longer acquisition time. Although the number of 

averaged traces could be considered as a good indicator of the measurement time, some 
techniques are subject to an extra acquisition time since they require more than a single trace 
per frequency step; for instance, this is the case in methods employing differential 
measurements [6–9] or optical pulse coding [19–26], in which the measurement time depends 
on the number of averages NAV and the number of different traces NTr required per frequency 
step. In order to consider the actual measurement time per scanned frequency, the total 
number of acquired traces NTrNAV has to be taken into account for a fair comparison. For 
instance, while the standard BOTDA scheme requires NTr = 1 [1], differential-pulse methods 
use NTr = 2 traces per scanned frequency [6–9]. On the other hand, in the case of using pulse 
coding [19–22], the number of coded traces NTr required at each frequency offset depends on 
the specific type of code being used in the sensor. 

Based on the above-mentioned considerations and taking Eqs. (6)–(8) into account, the 
following unitless figure-of-merit (FoM) can be defined for distributed fiber sensors based on 
Brillouin optical time-domain analysis: 

 
( ) [ ]2

exp (2 )
,

eff l B

Tr AV

L f L
FoM

z N N ν

α α δ ν
σ

+ Δ
=

Δ
 (10) 

where consistent units have to be used and Δz is normalized to 1 m. Note that in Eq. (10), L is 
the sensing fiber length, and fl is a parameter that takes into account the fiber configuration:  
fl = 0 for the standard fiber configuration (i.e. when the total fiber length is equal to L) and  
fl = 1 for the fiber loop configuration [12,30], in which half of the total fiber length is 
employed for sensing (i.e. when the total fiber length is equal to 2L). 

This FoM turns out to be equal to 1 for a typical commercial sensor of distance range  
L = 30 km, spatial resolution of Δz = 1 m and error on the Brillouin frequency of σν = 1 MHz, 
obtained with a standard BOTDA method (i.e. fl = 1 and NTr = 1), NAV = 1024 temporal trace 
averaging and with frequency sampling step δ = 1 MHz, in a standard fiber with  
ΔνB = 27 MHz and 0.2 dB/km attenuation. 

Table 1 illustrates the historical evolution of the figure-of-merit for BOTDA sensors 
achieved using different implementations, approximated for consistence and readability to 
two significant digits. It can be observed how this FoM has been significantly improved using 
innovative configurations during the past few years, mainly when aiming at reaching ultra-
long sensing distances. Actually, extending the sensing range brings a big improvement in the 
figure-of-merit due to the exponential decay of the SNR with distance. This issue indicates 
that extending the sensing range of a Brillouin-based sensor is much more challenging than 
increasing the spatial resolution, which only impacts linearly on the SNR. In particular, 
systems with very high spatial resolution (typically short range, i.e. <5 km) are penalized by a 
small FoM mainly because Eq. (10) assumes that very high power (Watt levels) can be used, 
which is certainly not the case in the real implemented solutions currently reported in the 
literature. Possibly Eq. (10) should be modified for very high spatial resolution (<20 cm 
resolution, reaching typically a distance shorter than 5 km) to include specific limitations 
related to these configurations. This goes beyond the scope of the present study and will be 
addressed in a future work. 
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It is also important to mention that some of the references shown in Table 1 might result in 
an overestimated FoM; actually many of the results reported in the literature are clearly 
affected by pump depletion, a concern that has not always been properly addressed in many 
reported implementations. 

Table 1. Historical Evolution of the Figure-of-merit for Distributed Optical Fiber Sensors 
Based on Brillouin Optical Time-domain Analysis 

Date Ref. 
L [km] 

(sensing range) 
Δz [m] NTr⋅NAV (per 

frequency) 
δ 

[MHz] 
ΔνΒ 

[MHz] 
σν 

[MHz] 
FoM 

Apr-93 [37] a 22 10 256 5 35 1.0 2.0 
Sep-93 [38] a 32 5 512 5 35 1.0 17.0 
Jul-95 [39] a 51 5 1024 5 35 1.0 300.0 
Jun-98 [40] a 10 1 256 1 100 1.0 1.0 
Sep-99 [41] 25 2 1000 12 70 10 1.9 

Jul-08 [34] 
5 0.3 16 1 300 1.0 1.0 
40 2 256 1 60 1.0 6.8 
50 7 256 1 30 1.0 4.0 

Aug-09 [7] 12 1 1000 4 33 0.3 0.7 
Jan-10 [19] 50 1 2048 5 60 2.2 14.0 
May-10 [20] 50 0.5 4000 5 30 0.7 45.0 
Aug-10 [14] 75 2 4000 2 65 4.0 21.0 
Aug-10 [15] 100 2 16000 2 65 1.5 290.0 

Sep-10 [42] 
25 0.3 4000 5 30 1.0 3.0 
25 0.5 4000 5 30 0.5 3.6 

Oct-10 [9] 5 0.05 512 1 27 1.5 0.2 
Jan-11 [11] 100 2 4000 5 26 2.0 440.0 
Jan-11 [24] 120 3 2000 3 50 3.1 1’800.0 
Feb-11 [16] 120 2 5000 3 58.9 2.1 2’800.0 
Mar-12 [8] 2 0.02 4000 5 75 2.0 0.1 
Mar-12 [25] 60 0.25 30660 3 28 1.2 39.0 
Apr-12 [17] 100 2 65536 2 34 1.5 110.0 

Apr-12 [12] 
75 b 1 4000 5 30 1.24 4’600.0 
150 2 4000 5 30 1.49 65’000.0 

May-12 [18] 100 0.5 131072 2 30 3.8 110.0 
Oct-12 [43] 122 4 508 3 86 1.0 13’000.0 
Oct-12 [29] 120 1 8000 5 100 1.3 12’000.0 
Dec-12 [44] 82 10 2048 2 35.7 6.0 5.7 
Jan-13 [45] 72 5 2000 5 45 1.8 26.0 
May-13 [26] 50 b 2 1000 1 60 1.0 99.0 
Jul-13 [22] 100 2 2000 1 60 0.8 1’100.0 
Sep-13 [28] 93 0.5 30480 3 35 1.7 350.0 
Sep-13 [46] 142.2 5 1024 3 56 1.5 26’000.0 
Oct-13 [47] 154.4 5 4080 3 60 1.4 45’000.0 

Jan-14 [30] 
100 b 3 2032 2 50 1.5 48’000.0 
120 b 5 2040 2 33 1.9 300’000.0 

a Laser wavelength = 1.3 μm; hence, the fiber attenuation is assumed to be α = 0.35 dB/km; for all the rest α = 0.2 
dB/km, corresponding to a laser operating at 1550 nm. 
b Fiber loop configuration, i.e. the fiber length is twice longer than the sensing range; therefore, fl = 1 in Eq. (10); for 
all the rest fl = 0 (standard fiber configuration). 

5. Conclusion 

Based on a simple physical and statistical modeling, a novel expression to predict the 
uncertainty on the determination of the Brillouin frequency shift in BOTDA sensors has been 
established and validated by a rigorous experimental verification. Using this expression the 
actual accuracy on the determination of the Brillouin frequency shift can be confidently 
predicted from a single measurement of the SNR in the sensor response at the receiver. The 
present analysis highlights all the relevant parameters that have to be considered to evaluate 
the performance of distributed Brillouin optical fiber sensors. Based on this analysis and 
considering the limitations imposed by nonlinear effects and pump depletion, a solid figure-
of-merit is introduced. This FoM should assist specialists in fairly evaluating the real progress 
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brought by proposed solutions presumably improving the performance of distributed Brillouin 
fiber sensors. 

The authors wish that the presented analysis and proposed expressions will stimulate the 
community in the future to systematically inform about the full set of experimental parameters 
making the calculation of the FoM possible. This should generate a collegial emulation for 
achieving real progress and milestones in this promising field. 

Appendix 

In this appendix the error on the estimated peak Brillouin-gain frequency described in Eqs. (7) 
and (8) is derived in the case of a quadratic least-square fitting [31] of a measured Brillouin 
spectrum. This analysis is actually valid by extension for any system in which the central 
value of a resonance must be evaluated by fitting experimental points. 

First, let consider that the measured local Brillouin gain spectrum (at a given position) is 
fitted by the following quadratic function: 

 2( ) ,y x a x b x c= ⋅ + ⋅ +  (11) 

where the coefficients a, b and c are estimated from the least-square fitting. Then, using those 
coefficients, the estimated peak gain frequency νB can be simply determined from: 

 2 0 .
2B B

dy b
a b

dx a
ν ν −= ⋅ + =  =          (12) 

Considering that the measured Brillouin traces are affected by additive Gaussian 
uncorrelated noise, the error on the estimation of νB can be determined from the errors on the 
coefficients a and b as follows: 

 
2 2

2 2 2
,= 2 cov ,B B B B

a b a ba b a bν
ν ν ν νσ σ σ∂ ∂ ∂ ∂+ +
∂ ∂ ∂ ∂

  (13) 

where σa
2 and σb

2 are the variances of the coefficients a and b respectively, and cova,b is the 
covariance between a and b. 

While the variances of the coefficients a and b in this case are given by the diagonal 
elements of the covariance matrix that describes the system, the off-diagonal elements of this 
matrix describe the covariance between the different coefficients of the parabola [31]. 
Generally the off-diagonal elements are non-zero, and therefore, the factor cova,b in Eq. (13) 
cannot be neglected. However, if the data points involved in the quadratic fitting are 
uniformly distributed (i.e. when the BGS is measured using a uniform frequency step) and 
they are symmetrically distributed around the peak value, the mathematical expressions for 
the factors σa and σb can be significantly simplified, while the factor cova,b vanishes 
completely [31]. 

Thus, in order to simplify the mathematical expression for the error in Eq. (13), and 
without losing generality in the solution, the x-axis (i.e. frequency range used in the BGS 
measurements) can be shifted by a constant offset, so that the expected peak Brillouin-gain 
frequency νB is positioned at the origin x = 0, leading in this way to a very small coefficient b 
(in fact, under this assumption b = 0 when νB is exactly in the center of the frequency range 
used for the fitting). Thus, under such a condition, and following the mathematical description 
presented in [31], based on the statistical error analysis of the least-square-fitting method, the 
factors σa, and σb can be easily extracted: 

 
2

2
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,
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xN

σσ
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where N is the number of data points used in the fitting, σ2 is the variance of the Gaussian 
noise affecting the measured traces, and σx

2 is the variance of the uniformly distributed data 
points, which can be algebraically calculated as: 

 
( )2 2

2
1

,
12x

N δ
σ

− ⋅
=  (16) 

where δ is the spacing of the data points, which represents in this case the frequency step 
between the successive acquisition of Brillouin traces. 

Using Eq. (16) and considering that the number of frequency points N involved in the 
fitting is large enough, so that N2>>1, the error on the estimation of the coefficients a and b 
can be obtained: 

 
2

2
5 4

180
,a N

σσ
δ

=  (17) 

 
2

2
3 2

12
.b N

σσ
δ

=  (18) 

It must be pointed out that the condition of a large number of fitted points is already 
satisfied with a good approximation when N is larger than 3. In all cases a smaller number of 
sampling points is simply mathematically irrelevant to determine a parabolic function, since it 
is generically characterized by 3 parameters, as expressed in Eq. (11). 

Replacing Eqs. (17) and (18) into Eq. (13), the following expression for the error on the 
estimated local Brillouin frequency shift can be obtained: 
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 (19) 

Note that the expression in Eq. (19) depends on the coefficient a, which actually defines 
the curvature of the fitted parabola, and hence, it is expected to have a direct relation with the 
Brillouin FWHM linewidth. In order to obtain a relation independent of the fiber location (i.e. 
to neglect the effects of the fiber attenuation on the coefficients of the parabola), the local 
Brillouin gain can be normalized, as shown in Fig. 5, so that the maximum peak response is 
equal to 1 at the resonance frequency, while in absence of gain the response is 0. Under such 
an assumption, the following relation between the coefficients of the fitted parabola must be 
satisfied at the resonance Brillouin frequency: 
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2

1
2 2 2
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b b b
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b
c

a
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 (20) 

Using Eq. (20) and assuming that the fitting is carried out considering only data points 
above a given threshold level η (with 0 < η < 1) defined by the range νB – xη ≤ x ≤ νB + xη, 
where y(x = νB ± xη) = η, the following expression for the coefficient a can be extracted: 
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2

1
.

B B By x a x b x c

a
x

η η η

η

ν ν ν η
η

± = ⋅ ± + ⋅ ± + =

−
 =                 

 (21) 

Considering that N >> 1, and that the frequency range which is used for the fitting is 2xη, 
where 2xη = (N – 1)⋅δ ≈N⋅δ, the expression for the coefficient a can be written as: 
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N

η
δ
−

=  (22) 

It is important to point out that Eq. (22) is valid for every level η with 0 < η < 1. 
Consequently, by evaluating the parabola at the Brillouin FWHM it is possible to obtain the 
following relation between the number of data points N involved in the fitting, the frequency 
spacing δ, the discrimination level η, and the Brillouin FWHM linewidth ΔνB: 
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( )

2 2 2

2 2 2

4 1 2

2 1 .

B

B

a
N

N
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δ ν

δ ν η
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Δ
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Then, replacing Eqs. (22) and (23) into Eq. (19), the error on the estimated Brillouin 
frequency shift can be obtained as: 
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2 2
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= 3 .

2 18 2 1
B B

B
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σ δ ν νσ
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  (24) 

Note that the first factor inside the brackets in Eq. (24) can be neglected in many practical 
cases since the factor (νB /ΔνB )2 is normally very small (in fact νB is nearly equal to zero as a 
result of the centering frequency offset). Actually, this factor depends on how symmetric the 
data points are distributed around the peak-gain frequency; and therefore, the impact of the 
first term in the brackets of Eq. (24) can be made negligible if the frequency data points are 
symmetrically distributed around νB. On the contrary, if the range of frequencies used for the 
fitting (νB – xη ≤ x ≤ νB + xη) is not well-centered with respect to νB, the error in the estimated 
Brillouin frequency shift is expected to increase rapidly. In order to reduce the frequency error 
resulting from data points asymmetrically located with respect to the peak νB, an iterative 
multi-pass fitting procedure can be carried out to adjust recursively the frequency range and 
keep it symmetrically centered with respect to the peak-gain frequency νB. 

In addition, it is worth pointing out that the error introduced by the first factor in Eq. (24) 
can also significantly increase if the threshold level η used in the fitting approaches 1, 
independently of the number of frequency data points employed. Therefore, the threshold 
level η for the fitting has to be kept below a reasonable value (for instance below 0.7, as 
illustrated in Fig. 11), so that the variance of the error in the Brillouin frequency estimation 
(in a well-centered spectrum) can be reduced to: 
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2
2

3 2
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8 2 1
B
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σ δ νσ
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  (25) 

Note that, due to the normalization of the Brillouin gain spectrum, the factor σ in Eq. (25) 
corresponds to the inverse of the SNR of the trace at the maximum gain, so that the frequency 
error resulting from the quadratic fitting procedure can be expressed as: 

 
( )3 2

3
= .

8 2 1
B

SNRν
δ ν

σ
η

⋅ Δ
−

  (26) 

For instance, in the particular case of η = 0.5 (i.e. when the fitting of the BGS considers 
the data points within the Brillouin FWHM linewidth only), the frequency error can be 
estimated by the following expression: 

 
1 3

= .
4 BSNRνσ δ ν⋅ ⋅ Δ  (27) 

Equation (27) provides an estimation of the local frequency error (and hence, the 
respective temperature and strain resolution) resulting from the least-square quadratic fitting 
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on the local BGS, as a function of the measurement frequency step, the Brillouin linewidth 
and the local SNR. 

The functional dependence of the local frequency error on the different measurement 
parameters is actually logical and supports the assumption that it does not depend on the type 
of fitting that is performed over the measured points. This can be better figured out by re-
expressing Eq. (27) under the following form: 

 
1 3 3

= .
4 4

B
B

BSNR N
ν

νδσ ν σ
ν

ΔΔ =
Δ

  (28) 

Equation (28) shows that the local frequency error σν is logically proportional to the noise 
on the sensor response σ and to the width of the resonance ΔνB, and is inversely proportional 
to the square root of the number of sampling points N. This latter dependence is usual in 
statistical estimations of the standard deviation of a quantity, so that the functional 
dependence is not expected to essentially change if a more sophisticated fitting is carried out. 

Only the numerical factor 3 / 4  can be reasonably taken as specific to the type of function 
fitted over the experimental points and could be potentially made smaller. 
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