
Spores, Formally

Heather Miller and Philipp Haller

December 2013

1 Overview

Spores are designed to avoid problems of closures. This is done using two
mechanisms: the spore shape and context bounds for the spore’s environment.

A spore is a closure with a specific shape that dictates how the environment
of a spore is declared. In general, a spore has the following shape:

spore {

val y1: S1 = <expr1>

...

val yn: Sn = <exprn>

(x: T) => {

// ...

}

}

A spore consists of two parts: the header and the body. The list of value
definitions at the beginning is called the spore header. The header is followed by
a regular closure, the spore’s body. The characteristic property of a spore is that
the body of its closure is only allowed to access its parameter, values in the spore
header, as well as top-level singleton objects (public, global state). In particular,
the spore closure is not allowed to capture variables in the environment. Only
an expression on the right-hand side of a value definition in the spore header is
allowed to capture variables.

By enforcing this shape, the environment of a spore is always declared ex-
plicitly in the spore header which avoids accidentally capturing problematic
references. Moreover, and that’s important for OO languages, it’s no longer
possible to accidentally capture the ”this” reference.

Note that the evaluation semantics of a spore is equivalent to a closure
obtained by leaving out the ”spore” marker:

{

val y1: S1 = <expr1>

...

val yn: Sn = <exprn>

(x: T) => {

// ...

}

}

1

In Scala, the above block first initializes all value definitions in order and
then evaluates to a closure that captures the introduced local variables y1, ...,
yn. The corresponding spore has the exact same evaluation semantics. What’s
interesting is that this closure shape is already used in production systems such
as Spark to avoid problems with accidentally captured ”this” references. How-
ever, in these systems the above shape is not enforced, whereas with spores it
is.

The result type of the ”spore” constructor is not a regular function type, but
a subtype of one of Scala’s function types. This is possible, because in Scala
functions are instances of classes that mix in one of the function traits. For
example, the trait for functions of arity one looks like this:1

trait Function1[-A, +B] {

def apply(x: A): B

}

The apply method is abstract; a concrete implementation applies the body of
the function that’s being defined to the argument x. Functions are contravariant
in their argument type A, indicated using the ”-” symbol, and covariant in their
result type B, indicated using the ”+” symbol.

The type of a spore of arity one is a subtype of Function1:

trait Spore[-A, +B] extends Function1[A, B]

Using the Spore trait methods can require argument closures to be spores:

def sendOverWire(s: Spore[Int, Int]): Unit = ...

This way, libraries and frameworks can enforce the use of spores instead of plain
closures, thereby reducing the risk for common programming errors.

1.1 Context bounds

The fact that for spores a certain shape is enforced is very useful. However, in
some situations this is not enough. For example, using closures in a concurrent
setting is very error-prone, because of the fact that it’s possible to capture
mutable objects which leads to race conditions. Thus, closures should only
capture immutable objects to avoid interference. However, such constraints
cannot be enforced using the spore shape alone (captured objects are stored in
constant values in the spore header, but such a constant might still refer to a
mutable object).

In this section we introduce a form of type-based constraints called ”con-
text bounds” that can be attached to a spore which enforce certain type-based
properties for all captured variables of a spore.

Taking another example, it might be necessary for a spore to require the
availability of instances of a certain type class for the types of all its captured
variables. A typical example for such a type class is Pickler: types with an
instance of the Pickler type class can be pickled using a new pickling framework

1For simplicity we omit definitions of the ‘andThen‘ and ‘compose‘ methods in the definition
of ‘Function1‘.

2

for Scala. To be able to pickle a spore, it’s necessary that all its captured types
have an instance of Pickler.2

Spores allow expressing such a requirement using implicit properties. The
idea is that if there is an implicit of type Property[Pickler] in scope at the point
where a spore is created, then it is enforced that all captured types in the spore
header have an instance of the Pickler type class:

import spores.withPickler

spore {

val name: String = <expr1>

val age: Int = <expr2>

(x: String) => {

// ...

}

}

While an imported property does not have an impact on how a spore is
constructed (besides the property import), it has an impact on the result type
of the spore macro. In the above example, the result type would be a refinement
of the Spore type:

Spore[String, Int] {

type Captured = (String, Int)

val captured: Captured

implicit val p$1 = implicitly[Pickler[(String, Int)]]

(x: String) => {

// ...

}

}

The refinement type contains a type member Captured which is defined to
be a tuple of all the captured types. The values of the actual captured variables
are accessible using the captured value member. What’s more, the refinement
type contains for each type class that’s required an implicit value with a type
class instance for type Captured.

Such implicit values allow retrieving a type class instance for the captured
types of a given spore using Scala’s implicitly function as follows:

val s = spore { ... }

implicitly[Pickler[s.Captured]]

Note that s.Captured is defined to be the type of the environment of spore
s: a tuple with all types of captured variables.

2A spore can be pickled by pickling its environment and the fully-qualified class name of
its corresponding function class.

3

2 Formalization

t ::= x variable
| (x : T) ⇒ t abstraction
| t t application
| let x = t in t let binding

| {l = t} record construction
| t.l selection
| spore { x : T = t ; pn; (x : T) ⇒ t } spore
| import pn in t property import
| t compose t spore composition

v ::= (x : T) ⇒ t abstraction

| {l = v} record value
| spore { x : T = v ; pn; (x : T) ⇒ t } spore value

T ::= T ⇒ T function type

| {l : T} record type
| S

S ::= T ⇒ T { type C = T ; pn } spore type
| T ⇒ T { type C ; pn } abstract spore type

P ∈ pn → T property map
T ∈ P(T) type family

Γ ::= x : T type environment
∆ ::= pn property environment

Figure 1: Core language syntax

We formalize spores in the context of a standard, typed lambda calculus with
records. Apart from novel language and type-systematic features, our formal
development follows a well-known methodology ?. Figure 1 shows the syntax
of our core language. Terms are standard except for the spore, import, and
compose terms. A spore term creates a new spore. It contains a list of variable
definitions (the spore header), a list of property names, and the spore’s closure.
A property name refers to a type family (a set of types) that all captured types
must belong to.

An illustrative example of a property name and its associated type family,
but in the context of Scala, is a type class: a spore satisfies such a property if
there is a type class instance for all its captured types.

An import term imports a property name into the property environment
within a lexical scope (a term); the property environment contains properties
that are registered as requirements whenever a spore is created. This is ex-
plained in more detail in Section 2.2. A compose term is used to compose two
spores. The core language provides spore composition as a built-in feature, be-
cause type checking spore composition is markedly different from type checking
regular function composition (see Section 2.2).

The grammar of values is standard except for spore values; in a spore value
each term on the right-hand side of a definition in the spore header is a value.

4

The grammar of types is standard except for spore types. Spore types are
refinements of function types. They additionally contain a (possibly-empty) se-
quence of captured types, which can be left abstract, and a sequence of property
names.

2.1 Subtyping

Figure 2 shows the subtyping rules. Record (S-Rec) and function (S-Fun)
subtyping are standard.

The subtyping rule for spores (S-Spore) is analogous to the subtyping rule
for functions with respect to the argument and result types. Additionally, for
two spore types to be in a subtyping relationship either their captured types
have to be the same (M1 = M2) or the supertype must be an abstract spore
type (M2 = type C). The subtype must guarantee at least the properties of its
supertype, or a superset thereof. Taken together, this rule expresses the fact
that a spore type whose type member C is not abstract is compatible with an
abstract spore type as long as it has a superset of the supertype’s properties.
This is important for spores used as first-class values: functions operating on
spores with arbitrary environments can simply demand an abstract spore type.
The way both the captured types and the properties are modeled corresponds to
(but simplifies) the subtyping rule for refinement types in Scala (see Section ??).

Rule S-SporeFun expresses the fact that spore types are refinements of
their corresponding function types, giving rise to a subtyping relationship.

S-Rec
l′ ⊆ l li = l′i → Ti <: T ′

i ∧ T ′
i <: Ti

{l : T} <: {l′ : T ′}

S-Fun
T2 <: T1 R1 <: R2

T1 ⇒ R1 <: T2 ⇒ R2

S-Spore
T2 <: T1 R1 <: R2 pn′ ⊆ pn M1 = M2 ∨M2 = type C

T1 ⇒ R1 { M1 ; pn } <: T2 ⇒ R2 { M2 ; pn′ }

S-SporeFun

T1 ⇒ R1 { M ; pn } <: T1 ⇒ R1

Figure 2: Subtyping

2.2 Typing rules

Typing derivations use a judgement of the form Γ;∆ ⊢ t : T . Besides the
standard variable environment Γ we use a property environment ∆ which is a
sequence of property names that are “active” while deriving the type T of term
t. The property environment is reminiscent of the implicit parameter context
used in the original work on implicit parameters ?; it is an environment for
names whose definition sites “just happen to be far removed from their usages.”

In the typing rules we assume the existence of a global property mapping
P from property names pn to type families T . This technique is reminiscent
of the way some object-oriented core languages provide a global class table for

5

T-Var
x : T ∈ Γ

Γ;∆ ⊢ x : T

T-Sub
Γ;∆ ⊢ t : T ′ T ′ <: T

Γ;∆ ⊢ t : T

T-Abs
Γ, x : T1;∆ ⊢ t : T2

Γ;∆ ⊢ (x : T1) ⇒ t : T1 ⇒ T2

T-App
Γ;∆ ⊢ t1 : T1 ⇒ T2 Γ;∆ ⊢ t2 : T1

Γ;∆ ⊢ (t1 t2) : T2

T-Let
Γ;∆ ⊢ t1 : T1 Γ, x : T1;∆ ⊢ t2 : T2

Γ;∆ ⊢ let x = t1 in t2 : T2

T-Rec
Γ;∆ ⊢ t : T

Γ;∆ ⊢ {l = t} : {l : T}

T-Sel
Γ;∆ ⊢ t : {l : T}
Γ;∆ ⊢ t.li : Ti

T-Imp
Γ;∆, pn ⊢ t : T

Γ;∆ ⊢ import pn in t : T

T-Spore
∀si ∈ s. Γ;∆ ⊢ si : Si y : S, x : T1;∆ ⊢ t2 : T2 ∀pn ∈ ∆,∆′. S ⊆ P (pn)

Γ;∆ ⊢ spore { y : S = s ;∆′; (x : T1) ⇒ t2 } :
T1 ⇒ T2 { type C = S ; ∆,∆′ }

T-Comp
Γ;∆ ⊢ t1 : T1 ⇒ T2 { type C = S ; ∆1 }
Γ;∆ ⊢ t2 : U1 ⇒ T1 { type C = R ; ∆2 }

∆′ = {pn ∈ ∆1 ∪∆2 | S ⊆ P (pn) ∧R ⊆ P (pn)}
Γ;∆ ⊢ t1 compose t2 : U1 ⇒ T2 { type C = S,R ; ∆′ }

Figure 3: Typing rules

type-checking. The main difference is that our core language does not include
constructs to extend the global property map; such constructs are left out of
the core language for simplicity, since the creation of properties is not essential
to our model.

The typing rules are standard except for rules T-Imp, T-Spore, and T-
Comp, which are new. Only these three type rules inspect or modify the prop-
erty environment ∆. Note that there is no rule for spore application, since there
is a subtyping relationship between spores and functions (see Section 2.1). Using
the subsumption rule T-Sub spore application is expressed using the standard
rule for function application (T-App).

Rule T-Imp imports a property pn into the property environment within the
scope defined by term t.

Rule T-Spore derives a type for a spore term. In the spore, all terms on
right-hand sides of variable definitions in the spore header must be well-typed
in the same environment Γ;∆ according to their declared type. The body of
the spore’s closure, t2, must be well-typed in an environment containing only
the variables in the spore header and the closure’s parameter, one of the central
properties of spores. The last premise requires all captured types to satisfy
both the properties in the current property environment, ∆, as well as the
properties listes in the spore term, ∆′. Finally, the resulting spore type contains
the argument and result types of the spore’s closure, the sequence of captured
types according to the spore header, and the concatenation of properties ∆
and ∆′. The intuition here is that properties in the environment have been

6

E-Let1
t1 → t′1

let x = t1 in t2 → let x = t′1 in t2

E-Let2

let x = v1 in t2 → [x 7→ v1]t2

E-Rec
tk → t′k

{l = v, lk = tk, l′ = t′} → {l = v, lk = t′k, l
′ = t′}

E-Sel1
t → t′

t.l → t′.l

E-Sel2

{l = v}.li → vi

E-App1
t1 → t′1

t1t2 → t′1t2

E-App2
t2 → t′2

v1t2 → v1t
′
2

E-AppAbs

((x : T) ⇒ t)v → [x 7→ v]t

E-AppSpore
∀pn ∈ pn. T ⊆ P (pn)

spore { x : T = v; pn; (x′ : T) ⇒ t }v′ → [x 7→ v][x′ 7→ v′]t

E-Spore
tk → t′k

spore { x : T = v, xk : Tk = tk, x′ : T ′ = t′ ; (x : T) ⇒ t } →
spore { x : T = v, xk : Tk = t′k, x

′ : T ′ = t′ ; (x : T) ⇒ t }

E-Imp

import pn in t → insert(pn, t)

E-Comp1
t1 → t′1

t1 compose t2 → t′1 compose t2

E-Comp2
t2 → t′2

v1 compose t2 → v1 compose t′2

E-Comp3
∆ = {p | p ∈ pn, qn. T ⊆ P (p) ∧ S ⊆ P (p)}

spore { x : T = v; pn; (x′ : T ′) ⇒ t } compose spore { y : S = w; qn; (y′ : S′) ⇒ t′ } →
spore { x : T = v, y : S = w;∆; (y′ : S′) ⇒ let z′ = t′ in [x′ 7→ z′]t}

Figure 4: Operational Semantics3

explicitly imported by the user, thus indicating that all spores in the scope of
the corresponding import should satisfy them.

Rule T-Comp derives a result type for the composition of two spores. It
inspects the captured types of both spores (S and R) to ensure that the prop-
erties of the resulting spore, ∆, are satisfied by the captured variables of both
spores. Otherwise, the argument and result types are analogous to regular func-
tion composition. Note that it’s always possible to weaken the properties of a
spore through spore subtyping and subsumption (T-Sub).

7

2.3 Operational semantics

Figure 4 shows the evaluation rules of a small-step operational semantics for
our core language. The only non-standard rules are E-AppSpore, E-Spore,
E-Imp, and E-Comp3. Rule E-AppSpore applies a spore literal to an argu-
ment value. The differences to regular function application (E-AppAbs) are
(a) that the types in the spore header must satisfy the properties of the spore
dynamically, and (b) that the variables in the spore header must be replaced
by their values in the body of the spore’s closure. Rule E-Spore is a simple
congruence rule. Rule E-Imp is a computation rule that is always enabled. It
adds property name pn to all spore terms within the body t. The insert helper
function is defined in Figure 5 (we omit rules for compose and let, since they
are analogous to rules H-InsApp and H-InsSel).

Rule E-Comp3 is the computation rule for spore composition. Besides com-
puting the composition in a way analogous to regular function composition,
it defines the spore header of the result spore, as well as its properties. The
properties of the result spore are restricted to those that are satisfied by the
captured variables of both argument spores.

H-InsSpore1
∀ti ∈ t. insert(pn, ti) = t′i insert(pn, t) = t′

insert(pn, spore { x : T = t; pn; (x′ : T) ⇒ t }) =
spore { x : T = t′; pn, pn; (x′ : T) ⇒ t′ }

H-InsSpore2
insert(pn, spore { x : T = v; pn; (x′ : T) ⇒ t }) =

spore { x : T = v; pn, pn; (x′ : T) ⇒ t }

H-InsApp

insert(pn, t1 t2) = insert(pn, t1) insert(pn, t2)

H-InsSel

insert(pn, t.l) = insert(pn, t).l

Figure 5: Helper function insert

2.4 Soundness

This section presents a soundness proof of the spore type system. The proof is
based on a pair of progress and preservation theorems ?. A complete proof of
soundness appears in the companion technical report ?. In addition to standard
lemmas, such as Lemma 2.4 and Lemma 2.5, we also prove a lemma specific to
our type system, namely Lemma 2.3, which ensures types are preserved under
property import. Soundness of the type system follows from Theorem 2.2 and
Theorem 2.6.

Lemma 2.1. (Canonical forms)

3For the sake of brevity, here we omit the standard evaluation rules. The complete set of
evaluation rules can be found in the accompanying technical report ?

8

1. If v is a value of type {l : T}, then v is {l = v} where v is a sequence of
values.

2. If v is a value of type T ⇒ R, then v is either (x : T1) ⇒ t or
spore { y : S = v ; pn; (x : T1) ⇒ t } where T <: T1 and v is a sequence
of values.

3. If v is a value of type T ⇒ R { type C = S ; pn }, then v is
spore { y : S = v ; pn; (x : T1) ⇒ t } where T <: T1 and v is a sequence
of values.

Proof. According to the grammar in Figure 1, values in the core language can
have three forms: (x : T) ⇒ t, {l = v}, and spore { x : T = v ; pn; (x : T) ⇒ t }
where v is a sequence of values.

For the first part, according to (T-Rec) and the subtyping rules, v is {l = v}
where v is a sequence of values of types T .

For the second part, according to the subtyping rules v can have either type
T1 ⇒ R1, T1 ⇒ R1 { type C = S ; pn }, or T1 ⇒ R1 { type C ; pn } where
T <: T1 and R1 <: R. If v has type T1 ⇒ R1, then according to the grammar
and (T-Abs) v must be (x : T) ⇒ t. If v has either type T1 ⇒ R1 { type C =
S ; pn } or type T1 ⇒ R1 { type C ; pn }, then according to the grammar
and (T-Spore) v must be spore { x : T = v ; pn; (x : T1) ⇒ t } where v is a
sequence of values.

Part three is similar.

Theorem 2.2. (Progress) Suppose t is a closed, well-typed term (that is, ⊢ t : T
for some T). Then either t is a value or else there is some t′ with t → t′.

Proof. By induction on a derivation of t : T . The only three interesting cases
are the ones for spore creation, application (where we might apply a spore to
some argument), and spore composition.

Case T-Spore: t = spore { x : S = t ;∆′; (x : T1) ⇒ t2 }, ∀ti ∈ t. ⊢ ti : Si,
and x : S, x : T1 ⊢ t2 : T2. By the induction hypothesis, either all t are values,
in which case t is a value; or there is a term ti such that ti → t′i (since ⊢ ti : Si).
Thus, by (E-Spore), t → t′ for some term t′.

Case T-App: t = t1 t2 and ⊢ t1 : T1 ⇒ T2 and ⊢ t2 : T1. By the induction
hypothesis, either t1 is a value v1, or t1 → t′1. In the latter case it follows
from (E-App1) that t → t′ for some t′. In the former case, by the induction
hypothesis t2 is either a value v2 or t2 → t′2. In the former case by the canonical
forms lemma we have that v2 is either (x : T1) ⇒ t or spore { x : T = v ; pn; (x :
T1) ⇒ t } where T <: T1 and v is a sequence of values; thus, either (E-AppAbs)
or (E-AppSpore) apply. In the latter case, the result follows from (E-App2).

Case T-Comp: t = t1 compose t2 and ⊢ t1 : T1 ⇒ T2 { type C = S ; ∆1 }
and ⊢ t2 : U1 ⇒ T1 { type C = R ; ∆2 }. If either t1 or t2 is not a value, the
result follows from the induction hypothesis and (E-Comp1) or (E-Comp2). If
t1 is a value v1 and t2 is a value v2, then by the canonical forms lemma, v1 =
spore { y : S = v ; ∆1; (x : T1) ⇒ s1 } and v2 = spore { z : R = w ;∆2; (u :
U1) ⇒ s2 }. Thus, by (E-Comp3), t → t′ for some t′.

Lemma 2.3. (Preservation of types under import) If Γ;∆, pn ⊢ t : T then
Γ;∆ ⊢ insert(pn, t) : T

9

Proof. By induction on a derivation of t : T . The only three interesting cases
are the ones for spore creation, application (where we might apply a spore to
some argument), and spore composition.

Case T-Spore: t = spore { x : S = t ;∆′; (x : T1) ⇒ t2 }, ∀ti ∈ t. ⊢ ti : Si,
and x : S, x : T1 ⊢ t2 : T2. By the induction hypothesis, either all t are values,
in which case t is a value; or there is a term ti such that ti → t′i (since ⊢ ti : Si).
Thus, by (E-Spore), t → t′ for some term t′.

Case T-App: t = t1 t2 and ⊢ t1 : T1 ⇒ T2 and ⊢ t2 : T1. By the induction
hypothesis, either t1 is a value v1, or t1 → t′1. In the latter case it follows
from (E-App1) that t → t′ for some t′. In the former case, by the induction
hypothesis t2 is either a value v2 or t2 → t′2. In the former case by the canonical
forms lemma we have that v2 is either (x : T1) ⇒ t or spore { x : T = v ; pn; (x :
T1) ⇒ t } where T <: T1 and v is a sequence of values; thus, either (E-AppAbs)
or (E-AppSpore) apply. In the latter case, the result follows from (E-App2).

Case T-Comp: t = t1 compose t2 and ⊢ t1 : T1 ⇒ T2 { type C = S ; ∆1 }
and ⊢ t2 : U1 ⇒ T1 { type C = R ; ∆2 }. If either t1 or t2 is not a value, the
result follows from the induction hypothesis and (E-Comp1) or (E-Comp2). If
t1 is a value v1 and t2 is a value v2, then by the canonical forms lemma, v1 =
spore { y : S = v ; ∆1; (x : T1) ⇒ s1 } and v2 = spore { z : R = w ;∆2; (u :
U1) ⇒ s2 }. Thus, by (E-Comp3), t → t′ for some t′.

Lemma 2.4. (Preservation of types under substitution) If Γ, x : S;∆ ⊢ t : T
and Γ;∆ ⊢ s : S, then Γ;∆ ⊢ [x 7→ s]t : T

Proof. By induction on a derivation of Γ, x : S;∆ ⊢ t : T .

Lemma 2.5. (Weakening) If Γ;∆ ⊢ t : T and x /∈ dom(Γ), then Γ, x : S; ∆ ⊢
t : T .

Proof. By induction on a derivation of Γ;∆ ⊢ t : T .

Theorem 2.6. (Preservation) If Γ;∆ ⊢ t : T and t → t′, then Γ;∆ ⊢ t′ : T .

Proof. By induction on a derivation of t : T .

• Case T-Sel: t = s.li and Γ;∆ ⊢ s : {l : S}. Since t → t′ we have either by
(E-Sel1) s → s′ and t′ = s′.li, or we have by (E-Sel2) s = {l = v} and
t′ = vi. In the former case, by the induction hypothesis, Γ;∆ ⊢ s′ : {l : S}
and thus by (T-Sel), Γ;∆ ⊢ s′.li : Si. In the latter case, by (T-Rec),
Γ;∆ ⊢ vi : Si.

• Case T-Imp: t = import pn in s and Γ;∆, pn ⊢ s : T . Since t → t′, we
have by (E-Imp) t′ = insert(pn, s). By Lemma 2.3, Γ;∆ ⊢ insert(pn, s) :
T .

• Case T-App: t = s1 s2 and T = S2. By (T-App), Γ;∆ ⊢ s1 : S1 ⇒ S2 and
Γ;∆ ⊢ s2 : S1. Since t → t′, either (E-App1), (E-App2), (E-AppAbs), or
(E-AppSpore) applies. If (E-App1) applies, then s1 → s′1 and t′ = s′1 s2.
By the induction hypothesis, Γ;∆ ⊢ s′1 : S1 ⇒ S2. By (T-App), Γ;∆ ⊢ t′ :
S2. The case where (E-App2) applies is similar. If (E-AppAbs) applies,
then s1 = (x : S1) ⇒ t2 and s2 = v and t′ = [x 7→ v]t2. By (T-Abs),

10

Γ, x : S1;∆ ⊢ t2 : S2. By (T-App), Γ;∆ ⊢ v : S1. By Lemma 2.4,
Γ;∆ ⊢ [x 7→ v]t2 : S2.

If (E-AppSpore) applies, then s1 = spore { x : T = v ; pn; (y : S1) ⇒ t2 }
and s2 = v′ and ∀pn ∈ pn. S ⊆ P (pn) and t′ = [x 7→ v][y 7→ v′]t2. By
(T-Spore), x : T , y : S1; ∆ ⊢ t2 : S2. By (T-App), Γ;∆ ⊢ v′ : S1. By
Lemma 2.5, Γ, x : T , y : S1;∆ ⊢ t2 : S2. By Lemma 2.5, Γ, x : T ;∆ ⊢ v′ :
S1. By Lemma 2.4, Γ, x : T ;∆ ⊢ [y 7→ v′]t2 : S2. By (T-Spore), we also
have ∀vi ∈ v. Γ;∆ ⊢ vi : Ti. By Lemma 2.4, Γ;∆ ⊢ [x 7→ v][y 7→ v′]t2 : S2.

• Case T-Spore: t = spore { y : S = s ;∆′; (x : T1) ⇒ t2 } and T = T1 ⇒
T2 { type C = S ; ∆,∆′ }. By (T-Spore), ∀si ∈ s. Γ;∆ ⊢ si : Si and
y : S, x : T1;∆ ⊢ t2 : T2 and ∀pn ∈ ∆,∆′. S ⊆ P (pn). Since t → t′, rule
(E-Spore) must apply, and thus si → s′i for some si. By the induction
hypothesis, Γ;∆ ⊢ s′i : Si. Thus, by (T-Spore), Γ;∆ ⊢ t′ : T .

• Case T-Comp: t = s1 compose s2 and T = T1 ⇒ T2 { type C =
S,R ; ∆3 }. By (T-Comp), Γ ⊢ s1 : U1 ⇒ T2 { type C = S ; ∆1 }
and Γ ⊢ s2 : T1 ⇒ U1 { type C = R ; ∆2 } and ∆3 = {pn ∈ ∆1∪∆2 | S ⊆
P (pn) ∧ R ⊆ P (pn)}. Since t → t′, either (E-Comp1), (E-Comp2), or
(E-Comp3) applies.

If (E-Comp1) applies, then s1 → s′1, and by (T-Comp), Γ;∆ ⊢ s1 : U1 ⇒
T2 { type C = S ; ∆1 }, and t′ = s′1 compose s2. By the induction
hypothesis, Γ;∆ ⊢ s′1 : U1 ⇒ T2{ type C = S ; ∆1 }. By (T-Comp), we
know that Γ;∆ ⊢ s2 : T1 ⇒ U1 { type C = R ; ∆2 } and ∆3 = {pn ∈
∆1 ∪∆2 | S ⊆ P (pn) ∧R ⊆ P (pn)}. By (T-Comp), Γ;∆ ⊢ t′ : T .

If (E-Comp2) applies, then s2 → s′2, and by (T-Comp), Γ;∆ ⊢ s2 : T1 ⇒
U1 { type C = R ; ∆2 }, and t′ = v1 compose s′2. By the induction
hypothesis, Γ;∆ ⊢ s′2 : T1 ⇒ U1 { type C = R ; ∆2 }. Since (E-Comp2)
applies, s1 = v1, so by (T-Comp), we know that Γ;∆ ⊢ v1 : U1 ⇒
T2 { type C = S ; ∆1 } and ∆3 = {pn ∈ ∆1 ∪ ∆2 | S ⊆ P (pn) ∧ R ⊆
P (pn)}. By (T-Comp), Γ;∆ ⊢ t′ : T .

If (E-Comp3) applies, then s1 = spore { x : S = v;∆1; (y : U1) ⇒ t2 }
and s2 = spore { y : R = w;∆2; (z : T1) ⇒ u1 } and ∆3 = {p | p ∈
∆1,∆2. S ⊆ P (p) ∧R ⊆ P (p)}. By (E-Comp3),
t′ = spore { x : S = v, y : R = w;∆3; (z : T1) ⇒ let x = u1 in [y 7→
x]t2}.
First, we show that ∀vi ∈ v. Γ;∆ ⊢ vi : Si and ∀wi ∈ w. Γ;∆ ⊢ wi : Ri.
This follows from the fact that s1 and s2 are well-typed spores and (T-
Spore).

Second, we show that x : S, y : R, z : T1;∆ ⊢ let x = u1 in [y 7→ x]t2 : T2.
By (T-Let), we need to show that x : S, y : R, z : T1;∆ ⊢ u1 : U1 and
x : S, y : R, z : T1, x : U1; ∆ ⊢ [y 7→ x]t2 : T2. The former follows from
(T-Spore) and Lemma 2.5. To prove the latter: given that s1 is well-
typed, by (T-Spore) we have that x : S, y : U1 ⊢ t2 : T2. By Lemma 2.5,
x : S, y : U1, x : U1 ⊢ t2 : T2. By Lemma 2.4, x : S, x : U1 ⊢ [y 7→ x]t2 : T2.
By Lemma 2.5, x : S, y : R, z : T1, x : U1;∆ ⊢ [y 7→ x]t2 : T2.

Third, we show that ∀pn ∈ ∆,∆3. S ⊆ P (pn) ∧ R ⊆ P (pn). Since s1 is
well-typed, we have ∀pn ∈ ∆,∆1. S ⊆ P (pn). Since s2 is well-typed, we

11

have ∀pn ∈ ∆,∆2. R ⊆ P (pn). Moreover, we have that ∆3 = {p | p ∈
∆1,∆2. S ⊆ P (p) ∧ R ⊆ P (p)}. Thus, ∀pn ∈ ∆,∆3. S ⊆ P (pn) ∧ R ⊆
P (pn).

By (T-Spore) it follows from the previous three subgoals that Γ;∆ ⊢ t′ :
T .

2.5 Relation to spores in Scala

The soundness proof (see Section 2.4) of the formal type system guarantees
several important properties for well-typed programs which closely correspond
to the pragmatic model of spores in Scala:

1. Application of spores: for each property name pn, it is ensured that the
dynamic types of all captured variables are contained in the type family
pn maps to (P (pn)).

2. Dynamically, a spore only accesses its parameter and the variables in its
header.

3. The properties computed for a composition of two spores is a safe approx-
imation of the properties that are dynamically required.

2.6 Excluded types

This section shows how the formal model can be extended with excluded types
as described above (see Section ??). Figure 6 shows the syntax extensions:
first, spore terms and values are augmented with a sequence of excluded types;
second, spore types and abstract spore types get another member type E = T
specifying the excluded types.

t ::= ... terms
| spore { x : T = t ;T ; pn; (x : T) ⇒ t } spore

v ::= ... values
| spore { x : T = v ;T ; pn; (x : T) ⇒ t } spore value

S ::= T ⇒ T { type C = T ; type E = T ; pn } spore type
| T ⇒ T { type C ; type E = T ; pn } abstract spore type

Figure 6: Core language syntax extensions

Figure 7 shows how the subtyping rules for spores have to be extended. Rule
S-ESpore requires that for each excluded type T ′ in the supertype, there must
be an excluded type T in the subtype such that T ′ <: T . This means that by
excluding type T , subtypes like T ′ are also prevented from being captured.

Figure 8 shows the extensions to the typing rules. Rule T-ESpore addi-
tionally requires that none of the captured types S is a subtype of one of the
types contained in the excluded types U . The excluded types are recorded in
the type of the spore. Rule T-EComp computes a new set of excluded types V

12

S-ESpore
T2 <: T1 R1 <: R2

pn′ ⊆ pn M1 = M2 ∨M2 = type C ∀T ′ ∈ U ′. ∃T ∈ U. T ′ <: T

T1 ⇒ R1 { M1 ; type E = U ; pn }
<: T2 ⇒ R2 { M2 ; type E = U ′ ; pn′ }

S-ESporeFun

T1 ⇒ R1 { M ; E ; pn } <: T1 ⇒ R1

Figure 7: Subtyping extensions

based on both the excluded types and the captured types of t1 and t2. Given
that it is possible that one of the spores captures a type that is excluded in
the other spore, the type of the result spore excludes only those types that are
guaranteed not be captured.

T-ESpore
∀si ∈ s. Γ;∆ ⊢ si : Si y : S, x : T1;∆ ⊢ t2 : T2

∀pn ∈ ∆,∆′. S ⊆ P (pn) ∀Si ∈ S. ∀Uj ∈ U. ¬(Si <: Uj)

Γ;∆ ⊢ spore { y : S = s ;U ; ∆′; (x : T1) ⇒ t2 } :
T1 ⇒ T2 { type C = S ; type E = U ; ∆,∆′ }

T-EComp
Γ;∆ ⊢ t1 : T1 ⇒ T2 { type C = S ; type E = U ; ∆1 }
Γ;∆ ⊢ t2 : U1 ⇒ T1 { type C = R ; type E = U ′ ; ∆2 }

∆′ = {pn ∈ ∆1 ∪∆2 | S ⊆ P (pn) ∧R ⊆ P (pn)} V = (U \R) ∪ (U ′ \ S)
Γ;∆ ⊢ t1 compose t2 : U1 ⇒ T2 { type C = S,R ; type E = V ; ∆′ }

Figure 8: Typing extensions

Figure 9 shows the extensions to the operational semantics. Rule
E-EAppSpore additionally requires that none of the captured types T are con-
tained in the excluded types U . Rule E-EComp3 computes the set of excluded
types of the result spore in the same way as in the corresponding type rule
(T-EComp).

13

E-EAppSpore
∀pn ∈ pn. T ⊆ P (pn) ∀Ti ∈ T . Ti /∈ U

spore { x : T = v ; U ; pn ; (x′ : T) ⇒ t } v′ → [x 7→ v][x′ 7→ v′]t

E-EComp3
∆ = {p | p ∈ pn, qn. T ⊆ P (p) ∧ S ⊆ P (p)} V = (U \ S) ∪ (U ′ \ T)

spore { x : T = v ; U ; pn ; (x′ : T ′) ⇒ t } compose

spore { y : S = w ; U ′ ; qn ; (y′ : S′) ⇒ t′ } →
spore { x : T = v, y : S = w ; V ; ∆ ;
(y′ : S′) ⇒ let z′ = t′ in [x′ 7→ z′]t }

Figure 9: Operational semantics extensions

14

