
Toward a Verifiable Software Dataplane

Mihai Dobrescu and Katerina Argyraki
School of Computer and Communication Sciences

EPFL, Switzerland

ABSTRACT

Software dataplanes are emerging as an alternative to tradi-

tional hardware switches and routers, promising programma-

bility and short time to market. These advantages are set

against the concern of introducing buggy or under-performing

code into the network. We explore whether it is practical to

formally prove that a software dataplane satisfies key prop-

erties that would ensure smooth network operation. In gen-

eral, proving properties of real programs remains an elusive

goal, but we argue that dataplanes are different: they typi-

cally follow a pipeline structure that enables our proposed

approach, in which we verify pieces of the code in isola-

tion, then compose the results to reason about the entire dat-

aplane. We preliminarily demonstrate the potential of our

approach by applying it on simple Click pipelines and prov-

ing that they are crash-free and execute a bounded number

of instructions. This takes on the order of minutes, whereas

a general-purpose state-of-the-art verifier fails to complete

the same task within 12 hours.

Categories and Subject Descriptors

C.2.6 [Computer-Communication Networks]: Internetwork-

ing; D.2.4 [Software Engineering]: Software/Program Ver-

ification

General Terms

Design, Performance, Reliability, Verification

Keywords

Dataplane Verification, Programmable Routers

1. INTRODUCTION

Software dataplanes are emerging as an alternative to tra-

ditional hardware switches and routers. In the last five years,

the industry and research communities have produced a rapid

succession of software prototypes and products that perform

IP forwarding [12, 17], packet classification [24], encryp-

tion [18], or application acceleration [2] at line rates of tens

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Hotnets ’13, November 21–22, 2013, College Park, MD, USA.
Copyright 2013 ACM 978-1-4503-2596-7 ...$10.00.

of Gbps, which a few years back were achievable only by

specialized hardware.

The main advantage of software dataplanes is flexibility:

They make it possible to significantly cut network provi-

sioning costs by dynamically allocating packet-processing

tasks to network devices [27]; or to turn the Internet into an

evolvable architecture that adapts to the needs of its users

and operators, by continuously updating the functionality

of devices located at strategic network points [26]. Indus-

try is also listening: Intel recently announced its interest

in the development of a “composable software data plane,”

which will enable dynamic composition of different packet-

processing elements [4].

Such flexibility is set against the concern that software

dataplanes will introduce buggy and under-performing code

in the network. When we presented earlier results on soft-

ware packet processing to router manufacturers, most of their

questions were not about feasibility, but about the cost of

programmability, e.g., “if we allow third-party code to be

added into the dataplane, there will be functionality and per-

formance bugs, and who will absorb the extra cost of cus-

tomer support”? This concern is justified, given the history

of transitioning from hardware to software implementations

in other domains (e.g., the consumer electronics or car in-

dustry), where software has dramatically increased the speed

with which new features are implemented, but there is a per-

ception that it has also led to products that are more fragile

and more likely to misbehave [3, 9].

Is it practically feasible to prove that a software dataplane

satisfies key properties that would ensure smooth network

operation? Or must we accept that they will always be less

predictable than their hardware counterparts? When we say

“software dataplane,” we mean a directed graph of distinct

packet-processing elements (e.g., an IP lookup element, a

filtering element, an IP options element) that are combined

into a pipeline using a framework like Click [22].

We explore the feasibility of an automated verification

tool that takes as input either the source code or the ex-

ecutable binary of a software pipeline and proves that the

pipeline does (or does not) satisfy a target property. We care

for properties that, in the case of hardware dataplanes, are ei-

ther taken for granted or can be proved using practical tech-

niques [19–21, 25, 28]: “crash freedom,” which means that

no packet sequence can cause the dataplane to stop execut-

ing; “bounded latency,” which means that no packet experi-

1

ences more than a known, reasonable amount of latency; or

higher-level reachability properties, e.g., “any packet with

destination IP address X will never be dropped unless it is

malformed.”

Each proof should hold for any sequence of incoming pack-

ets. If the tool proves that a target property is not satisfied,

it should provide example packet sequences that cause the

property to be violated (e.g, if it cannot prove that a pipeline

will never crash, then it should provide example packet se-

quences for which it does crash). Certain properties (like

crash-freedom and bounded-latency) should be proved for

any pipeline configuration, while others can only be proved

for a specific configuration. E.g., if we want to prove that

a pipeline will never drop a well-formed packet with desti-

nation IP address X , such a proof is meaningful only for a

specific forwarding and filtering table.

In general, automatically proving properties of real pro-

grams (unlike searching for bugs) remains an elusive goal

for the systems community, especially for programs that are

written in a low-level language like C++ and consist of more

than a few hundred lines of code. Despite promising results

from the programming-language community, we are still far

from the point where we can input a program into a verifier

and obtain a proof—even for simple programs like the UNIX

coreutils and simple properties like crash-freedom [7]. This

is due to the structure of real programs, where different pieces

of code often share access to the same state, resulting in de-

pendencies that are hard—often infeasible—to reason about,

even with the help of sophisticated verification tools.

Our thesis is that, unlike general programs, software data-

planes have a special structure that is particularly amenable

to verification: they typically consist of distinct packet-proces-

sing elements that communicate with each other through a

well-defined, narrow interface and do not share mutable state.

This special structure has the following implication: it is

possible to reason about the behavior of the entire dataplane

without treating it as a single piece of code; instead, we can

reason about each element in isolation and efficiently com-

pose the results to reason about the entire dataplane. We will

argue that this can be leveraged to sidestep certain funda-

mental problems faced by software verification and enable

the practical construction of proofs.

For general programs, verifiability and performance are

typically competing goals: a low-level language like C++ is

typically good for performance but makes verification hard,

while a language like Haskell may make it easier to verify

certain properties but harder to achieve good performance.

For software dataplanes, it does not have to be this way: we

will argue that we can write them in a way that preserves per-

formance and enables verification. The key question then is:

what defines a “software dataplane” and how much more re-

stricted is it than a “general program”? I.e., how much do we

need to restrict our dataplane programming model so that we

can achieve verifiability without giving up on performance?

2. MOTIVATION AND SETUP

Use Cases.

The most obvious users of a verification tool for software

dataplanes would be the developers of packet-processing code:

Reasoning about the behavior of a packet-processing ele-

ment E is hard enough; reasoning about what E will do

when part of a bigger pipeline is even harder. Our tool would

help by checking, for any given design or implementation

choice in E, what would be the impact on one (or more) big-

ger pipelines that include E. It would also provide concrete

examples of packet sequences that lead to a segmentation

fault, a kernel panic, a division by 0, a failed assertion, or a

counter overflow. Today, developers are forced to perform

extensive testing before release; our tool would make them

more productive by focusing their attention on the most rel-

evant test cases.

A second set of users would be network operators: When

a new, interesting type of packet processing becomes avail-

able (e.g., a new form of intrusion detection or application

acceleration), an operator may want to include this as a new

element E in the pipelines running on its network devices.

Today, the operator has no effective way of assessing the

consequences of such an upgrade on the network as a whole;

at best, it can test for a while and deploy widely after gain-

ing some level of confidence that there will be no dire con-

sequences. As a result, trying out new packet-processing

software is time-consuming and potentially dangerous. A

dataplane verification tool would change this by providing a

way to check what would be the impact on the currently run-

ning pipelines, e.g., what would be the maximum increase in

latency or energy consumption that the new element would

introduce. Such information would enable faster and safer

deployment, ultimately making operators less conservative

in trying out new packet-processing software.

A third—and perhaps most interesting—use case targets

future markets for packet-processing elements that are sim-

ilar to today’s app markets (Apple AppStore, Google Play,

etc.) Such markets would allow network operators to “go

shopping” for new packet-processing elements that they can

then drop into the dataplanes of their network devices. Our

tool would help by enabling the app-market operator to for-

mally certify that the desired element will not disrupt the

customer’s pipeline.

Our Approach.

We are exploring an approach that consists of two steps:

The first one processes each pipeline element in isolation

and identifies “suspect” packet sequences that may cause the

target property to be violated. This can be done efficiently

and completely (without false-negatives), assuming each el-

ement typically consists of relatively short and simple code

(more on this below). However, the results of the first step

may not be sound (may have false-positives), because it does

not take into account the interactions between different el-

ements. False-positives are eliminated in the second step,

2

which examines each suspect packet sequence and verifies

whether it can indeed cause the target property to be violated

given the interactions between all the involved elements.

This would not work for any program; we believe (and

have preliminary evidence that) it works for software pipelines

because these consist of relatively short and simple elements

that do not share mutable state. Because of this special struc-

ture, we can quickly eliminate the majority of packet se-

quences as harmless (first step), which leaves a significantly

smaller number of potentially harmful packet sequences that

need to be examined in more detail (second step).

We rely on fundamental ideas contributed by the program-

ming-language community, but we cannot “simply adjust”

existing tools to solve our problem: We use symbolic ex-

ecution [7, 14], a form of path-sensitive dynamic program

analysis, to identify suspect packet sequences in a single el-

ement; akin to compositional test generation [5, 13, 15], we

process each element once, even if it may be called from dif-

ferent points in the pipeline. These ideas have existed for a

long time, however, they have been applied toward different

goals (increasing line coverage and/or finding bugs), so we

cannot use existing incarnations of these ideas to solve our

problem.

Symbolic Execution.

A program can be represented as a tree, where each path

from the root to a leaf corresponds to a different instruction

sequence, and each internal node corresponds to a branching

point (Fig. 1). During normal execution of the program, each

variable is assigned a concrete value, and only a single path

of the tree is executed. In contrast, during symbolic execu-

tion (from now on “symbex,” for brevity), a variable may be

symbolic, i.e., assigned a set of values that is specified by an

associated constraint. E.g., a symbolic integer x with asso-

ciated constraint x > 2 ∧ x < 5 is the set of concrete values

x = {3, 4}. A symbex engine can take a program, make the

program’s input symbolic, and execute all the paths that are

feasible given this input.

Consider the toy program in Fig. 1 and assume that the

input in can take any integer value. To symbolically execute

this program, we start at the root of the tree and execute all

the feasible paths. As we go down each path, we collect two

pieces of information: the “path constraint” specifies which

values of in lead to this path, while the “symbolic state”

maps each variable to its current value on this path. E.g., at

the end of path p2, the path constraint is C = (in ≥ 0∧in <

10), while the symbolic state is S = {out 7→ 10}; at the end

of path p3, the path constraint is C = (in ≥ 10), while the

symbolic state is S = {out 7→ in}.

Proof by Execution.

If we can execute all the feasible paths of a program and

verify that none of them violates a target property, that con-

stitutes proof that the entire program satisfies this property.

E.g., suppose we want to prove that the program in Fig. 1

never executes more than 10 instructions. We can do this by

out Program (in):

 assert in ≥ 0

 if in < 10 then

 out ← 10

 else

 out ← in

 end if

 return out

0
≤

in
 <

 1
0 in

 ≥ 10

in
 <

 0

in
 ≥ 0

crash

return 10 return in

p1

p2 p3

Figure 1: A toy program and its execution tree.

symbexing the program with a symbolic input in that may

take any value, executing all three feasible paths, and veri-

fying that none of them includes more than 10 instructions.

Such a proof assumes that the symbex engine itself is cor-

rect and that the hardware operates according to its specifi-

cations.

By constructing proofs in this manner, we can automat-

ically determine all the problematic inputs that prevent us

from completing the proof. E.g., suppose we try to prove

that the program in Fig. 1 never crashes. We symbex the

program with a symbolic input in that may take any value,

and we discover three feasible paths: one for in < 0, one for

0 ≤ in < 10, and one for in ≥ 10. We can argue that the last

two paths cannot cause the program to crash, however, the

first path ends with a failed assertion—a crash. So, we have

failed to prove that the program satisfies the target property,

but we have also uncovered all the input values (in < 0) that

cause the property to be violated.

Proving 6= Bug Finding.

Proof by execution can be rarely used in practice, because

of path explosion [6]: The sheer number of feasible paths

in a real program (even one that consists of a few hundred

lines of code) is typically so large that it is impossible to

execute all of them in useful time. This is because the num-

ber of paths generally grows exponentially in the number of

branching points. Even small programs, like UNIX core-

utils, have an intractable number of feasible paths because

of their use of essential libraries like libc [7].

Because of this challenge, symbolic execution can rarely

be used for proofs, even though it is often (and success-

fully) used for identifying good input values for testing, as

well as input values that are likely to cause bugs to mani-

fest. We should clarify that 100% line coverage (i.e., ex-

ercising each line of code at least once) is not the same as

exploring 100% of a program’s feasible paths. In fact, so-

phisticated tools may achieve good line coverage for small

and simple programs, yet explore only a small fraction of the

feasible paths. For instance, when Klee [7] symbolically ex-

ecutes UNIX coreutils like nice or cat, it achieves more than

70% line coverage, but executes less than 1% of the feasible

paths [23]. This is fine when the goal is to discover interest-

ing paths (e.g., to uncover bugs), but not when the goal is to

exercise all feasible paths (to prove properties).

3

3. OUR PROPOSAL

We observe that symbolic execution is a good fit for packet-

processing pipelines, because their special structure can help

sidestep path explosion: Intuitively, the fact that there are no

state interactions between different pipeline elements (other

than one passing a packet to another) makes it feasible to

reason about each element in isolation, then compose the re-

sults to reason about the entire pipeline. This reduces by an

exponential factor the amount of work that needs to be done

to prove something about the pipeline: If each element has

n branches and roughly 2n paths, a pipeline of k such el-

ements has roughly 2k·n paths. Verifying each element in

isolation—as opposed to the entire pipeline in one piece—

cuts the number of paths that need to be explored roughly

from 2k·n to k · 2n.

Pipeline Structure.

We consider packet-processing pipelines where each ele-

ment may access the following three types of state:

Packet state is owned by exactly one element at any point

in time. It can be read or written only by its owner; the cur-

rent owner (and nobody else) may atomically transfer own-

ership to another element. Packet state is used for commu-

nicating packet content and metadata between elements. For

each newly arrived packet, there is typically an element that

reads it from the network, creates a packet object, and trans-

fers object ownership to the next element in the pipeline.

Once an element has transferred ownership of a packet, it

cannot read or write it any more.

Private state is owned by one element and never changes

ownership. It can be read or written only by its owner, and it

persists across the processing of multiple packets. A typical

example is a flow table in a NetFlow element, or a map in an

element that performs Network Address Translation (NAT).

Static state can be read by any element but not written by

any element. This state is immutable as far as the pipeline is

concerned. A typical example is an IP forwarding table.

This structure is not accidental: it is a natural fit for any

platform that must perform high-performance streaming. The

alternative would be to allow multiple stages of the pipeline

to share read/write access to the same data, which would

require additional synchronization, e.g., through locking, a

typical cause of contention and unpredictable performance.

Pipelines that are created with Click conform to this struc-

ture, and these arguably constitute the majority of research

prototypes. Similar information about industrial prototypes

is not typically disclosed, but we know of at least one com-

pany that uses Click [1].

Pipeline Decomposition.

We now describe our two-step verification process in more

detail: First, we cut each pipeline path into small segments

(defined below). In Step 1, we capture the outcome of each

segment symbolically and, once we’ve done so, we never

need to execute that segment again, because we’ve distilled

it into its “essence”: how that segment transforms state. In

out E1 (in):

 if in < 0 then

 out ← 0

 else

 out ← in

 end if

 return out

out E2 (in):

 assert in ≥ 0

 if in < 10 then

 out ← 10

 else

 out ← in

 end if

 return out

out ToyPipeline (in):

 out1 ← E1 (in)

 out2 ← E2 (out1)

 return out2

in
 <

 0
in ≥ 0

in
 <

 0

in
 ≥ 0

return 0 return in

0
≤

in
 <

 1
0 in

 ≥ 10

in
 <

 0

in
 ≥ 0

crash

return 10 return in

0
≤

in
’
<

10 in
’ ≥ 10

in
’
<

0 in
’ ≥ 0

p1

0
≤

in
’
<

10 in
’ ≥ 10

in
’
<

0 in
’ ≥ 0

p2 p3 p5 p6

p4

e1 e2

e3

e4 e5

Figure 2: A toy pipeline that consists of two elements.

Step 2, we cast the proof process as a search (in isolation, at

the element level) for segments that might violate the desired

property, and then simply check whether, once we assemble

elements into the desired pipeline, any of these potential vi-

olations are still feasible. This search is complete, in that we

do not miss any potential violations, and sound, in that we

do not introduce behavior that the code does not have; the

net result is sound and complete, thus being a correct proof.

We illustrate our setup in Fig. 2: We represent the pipeline

as a tree that consists of subtrees, one per packet-processing

element; a subtree representing element Ei will appear mul-

tiple times in the tree, once for each feasible path that may

lead to Ei. The input in corresponds to a newly received

packet; we assume that this may contain anything, i.e., in

symbex terminology, in is a symbolic bit vector. We de-

fine a segment to be a complete path through one element,

and a path to be a complete execution path through an en-

tire pipeline; a path through a pipeline of k elements is a

concatenation of k segments.

In Step 1, we verify each element individually: We sym-

bex the element assuming unconstrained symbolic input, and

we conservatively tag as “suspect” all the feasible segments

that may cause the target property to be violated. E.g., if the

target property is that the pipeline never crashes, then every

segment that leads to a crash is tagged as suspect. As a by-

product, we obtain the constraint C and symbolic state S at

the end of every feasible segment.

If this step does not yield any suspect segments for any el-

ement, we are done: the pipeline satisfies the target property.

4

E.g., if none of the elements ever crashes for any input, we

have proved that the pipeline will never crash.

A suspect segment does not necessarily mean that the pipeline

can violate the target property, because a segment that is fea-

sible in the context of an individual element may become in-

feasible in the context of the full pipeline. E.g., in Fig. 2,

if we consider element E2 alone, segment e3 is feasible,

and it causes the element to crash; however, in a platform

where E2 always follows E1, segment e3 becomes infeasi-

ble, and the platform never crashes. In program analysis ter-

minology, when we explore all the feasible segments of each

individual element assuming arbitrary input, we are “over-

approximating,” i.e., we are executing some elements with

inputs that they would never see when part of the pipeline

we are aiming to verify.

In Step 2, we check if the suspect segments could violate

the target property when part of the pipeline: First, we con-

struct each potential path pi that includes at least one sus-

pect segment; pi is a sequence of segments ej . Next, we

stitch together the path constraint for pi and the resulting

symbolic state based on the constraints and symbolic state

of its constituent segments (that we have already obtained in

Step 1). Finally, we determine whether path pi is feasible

(based on its constraint) and whether it violates the target

property (based on its symbolic state), without ever actually

executing pi.

E.g., here is how we prove that the pipeline in Fig. 2 does

not crash:

Step 1:

1. We symbex E1 assuming input in can take any integer1

value. We collect constraints C1 and C2, and symbolic

state S1 and S2, for its segments e1 and e2:

• C1(in) = (in < 0), S1(in) = {out 7→ 0}.

• C2(in) = (in ≥ 0), S2(in) = {out 7→ in}.

2. We symbex E2 assuming input in can take any integer

value. We collect the following constraints and sym-

bolic state for its segments e3, e4, and e5:

• C3(in) = (in < 0), S3(in) = {crash}.

• C4(in) = (in ≥ 0 ∧ in < 10),
S4(in) = {out 7→ 10}.

• C5(in) = (in ≥ 10), S5(in) = {out 7→ in}.

3. Segment e3 may cause a crash, so we tag it as suspect.

Step 2:

1. The paths that include the suspect segment are p1 (i.e.,

sequence < e1, e3 >) and p4 (i.e., sequence < e2, e3 >).

1We use integer input for illustration purposes. In reality, the input
to each element is a symbolic bit vector.

2. We compute p1’s path constraint as

Cp1
(in) = C1(in) ∧ C3(S1(in) [out])

= C1(in) ∧ C3(0)

= (in < 0) ∧ (0 < 0).

3. Path p1’s constraint always evaluates to false, hence p1
is infeasible, i.e., there is no way the pipeline could

execute path p1. Similarly, we establish that p4 is in-

feasible.

4. Since all the feasible paths consist of non-suspect seg-

ments (that never crash), the platform never crashes.

Element Verification.

Our approach assumes that symbexing each element in

isolation is feasible. So far, we have been able to symbex all

the elements we have experimented with (reported below),

but not before resolving two significant challenges: loops

and mutable data structures. For lack of space, we only out-

line the main ideas behind our techniques.

The main challenge we encountered was the presence of

loops (e.g., the one executed when processing IP options),

which create many paths even within a single element. E.g.,

if we symbexed (in isolation) the IP options element that

comes with Click, we roughly estimated that we would have

to execute millions of segments, which would take months to

complete. To resolve this, we reuse the idea of decomposi-

tion, but apply it at a different level: If a loop has t iterations,

we view it as a sequence of t “mini-elements,” each one cor-

responding to one iteration of the loop. In the “pipeline de-

composition” part, we said that we symbex each element in

isolation, then compose the results to reason about the entire

pipeline. Similarly, we symbex one mini-element in isola-

tion, then use the results to reason about the entire loop.

The other challenge we encountered was the presence of

mutable data structures, e.g., a hash table for per-flow statis-

tics or a map for network address translation (NAT). Symbex

engines still lack the semantics to deal with data structures

in a scalable manner; symbexing an element that contains,

e.g., access to an array with 1 million entries will cause a

symbex engine to essentially branch into 1 million different

segments, independently from the array content or the logic

of the code that uses the returned value. To resolve this,

we separate the verification of a stateful element into two

distinct parts: (1) verification of the code that accesses data

structures and (2) verification of the rest of the code.

To verify the rest of the code, we model each data struc-

ture as a key/value store that supports only a read and a write

function, and we assume that a read may return either a value

that was previously written in the data structure or a default

value. First, we symbex the element assuming that a read to

a data structure may return any value (the variable that stores

the return value is marked symbolic and unconstrained), and

we identify all the “bad” values that, if read from the data

structure, will cause the target property to be violated. Sec-

ond, we go back and check whether any input to the element

5

may have caused any of these bad values to be written to the

data structure in the first place.

To verify code that accesses data structures, we are taking

a pragmatic approach: use either data structures that have

been previously verified by experts [29], or data structures

that can be efficiently verified using static analysis. For in-

stance, verifying code that accesses arrays can be efficiently

done using static analysis, due to the simplicity of array se-

mantics. Fortunately, most packet-processing functionality

can be implemented using pre-allocated arrays, and this is

not by accident: Packet-processing elements typically main-

tain their private state in pre-allocated hash tables/maps that

provide O(1) lookup time, so that they can access it at line

rate; these data structures can be easily implemented as array

chains. Even longest prefix matching (often implemented on

tries) is amenable to an array-based implementation, as long

as we are willing to throw memory at the problem [16].

Preliminary Results.

To test the potential of these ideas, we applied them on

packet-processing pipelines developed with Click, to answer

two questions: (a) is there any input that can make the pipeline

crash? (b) which is the maximum number of instructions

that each pipeline may ever execute and which input causes

it? We used a Xeon-based server running SMPClick [10]. In

all the pipelines we tried, packets are generated by a “gen-

erator” element and dropped by a “sink” element; what we

verify is all the packet-processing code between the two. We

used S2E [11] as our underlying symbex engine.

We first verified pipelines that combine elements from

the default Click IP-Router configuration (Classifier, EthEn-

cap/EthDecap, CheckIPhdr, IPlookup, DecTTL, IP options).

We proved that any pipeline that consists of these elements

will not crash for any input. We also proved that the longest

pipeline (that consists of all these elements) executes up to

about 3600 instructions per packet, and we also identified

the packet that yields this maximum result.

For the longest pipeline, our verification time was about

18 minutes; in contrast, when we fed the same code to the

symbex engine (without using pipeline decomposition or any

of the other presented ideas), verification did not complete

within 12 hours.

We are currently experimenting with pipelines that con-

tain more sophisticated elements, e.g., that collect NetFlow-

style statistics or perform NAT functionality.

The pipelines that we verified may be conceptually sim-

ple, but they include processing that is challenging from a

verification point of view: large numbers of branching points,

loops, and mutable data structures. The fact that we were

able to verify them within minutes or tens of minutes consti-

tutes encouraging evidence.

4. DISCUSSION

How about model checking or a special language? We

have not precluded the option of using model checking to

verify individual elements, e.g., it may be a good alternative

to static verification of data structures. For certain low-level

properties, using a special language or environment guaran-

tees a priori that the property holds, e.g., writing a program

in Java or running it in a sandbox guarantees that the pro-

gram will never perform illegal memory accesses. For most

properties, however, one would have to develop special lan-

guages, whereas we are interested in verifying software data-

planes written in a popular language like C++ and optimized

for high performance.

How much are we giving up for verifiability? We are re-

stricting ourselves to pipelines where different stages do not

share mutable state. We think this is necessary, because state

creates dependencies among the pieces of code that share it,

and more dependencies are equivalent to more constraints,

which increase verification time. Hence, controlling verifi-

cation time comes down to restricting the range of code that

accesses the same state. We think this restriction is accept-

able, because pipeline states are mostly designed anyway to

be independent from each other for performance reasons.

Our claim then is that, in the context of packet-processing

pipelines at least, state isolation per pipeline stage is rea-

sonable to expect, since we mostly do it anyway for perfor-

mance.

What about non-verifiable elements? There will al-

ways be some forms of packet processing that we will not be

able to verify—perhaps deep-packet inspection fundamen-

tally requires dynamically-growing data structures that are

not statically verifiable. We are not advocating to reject such

non-verifiable code; network operators will always have the

option to deploy it, but they will have to be more conserva-

tive in doing so, as there will be no assurance about what that

code will do to their network (which is what happens with

all dataplane software today).

Why not verify the control plane? We are focusing on

dataplane software verification, because we believe it is an

equally worthy goal that has received no attention, perhaps

because it is mistakenly considered easy. We should also

clarify that we cannot use bug-finding tools for control-plane

applications [8] to prove dataplane properties. These tools

were designed to find bugs, not produce proofs, i.e., they

cannot reason about all the paths of a software dataplane.

Is this Active Networking? No, because we are not con-

sidering code-carrying packets, and we are focusing on ex-

isting, popular languages like C++ and platforms like Click.

But we are sharing a similar vision: of a programmable data-

plane, where the operator “drops in” new packet-processing

code without risking to destabilize network operation.

Acknowledgments. We would like to thank George Can-

dea and Johannes Kinder for enlightening discussions, Vi-

taly Chipounov for guiding us through using S2E and even

extending S2E output in response to our requests, and Stefan

Bucur, Vova Kuznetsov, Simon Schubert, and Cristian Zam-

fir, as well as the anonymous reviewers, for helping us make

this paper better.

6

5. REFERENCES
[1] Meraki. http://meraki.cisco.com.
[2] Vyatta Hardware Appliances. http://www.vyatta.com/

solutions/physical/appliances.
[3] Cars and Software Bugs.

http://www.economist.com/blogs/babbage/2010/

05/techview_cars_and_software_bugs, 2010.
[4] Intel RFP Announcement: SDN Extensions for Programmable Data

Services, 2012.
[5] S. Anand, P. Godefroid, and N. Tillmann. Demand-Driven

Compositional Symbolic Execution. In Proc. of the International

Conference on Tools and Algorithms for the Construction and

Analysis of Systems (TACAS), 2008.
[6] P. Boonstoppel, C. Cadar, and D. R. Engler. RWset: Attacking Path

Explosion in Constraint-Based Test Generation. In Proc. of the

International Conference on Tools and Algorithms for the

Construction and Analysis of Systems (TACAS), 2008.
[7] C. Cadar, D. Dunbar, and D. R. Engler. KLEE: Unassisted and

Automatic Generation of High-Coverage Tests for Complex Systems
Programs. In Proc. of the USENIX Symposium on Operating Systems

Design and Implementation (OSDI), 2008.
[8] M. Canini, D. Venzano, P. Peresini, D. Kostic, and J. Rexford. A

NICE Way to Test OpenFlow Applications. In Proc. of the USENIX

Symposium on Networked Systems Design and Implementation

(NSDI), 2012.
[9] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, and

S. Savage. Comprehensive Experimental Analyses of Automotive
Attack Surfaces. In Proc. of the USENIX Security Symposium, 2011.

[10] B. Chen and R. Morris. Flexible Control of Parallelism in a
Multiprocesor PC Router. In Proc. of the USENIX Annual Technical

Conference, 2001.
[11] V. Chipounov, V. Kuznetsov, and G. Candea. The S2E Platform:

Design, Implementation, and Applications. ACM Transactions on

Computer Systems, 30(1), 2012.
[12] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall,

G. Iannaccone, A. Knies, M. Manesh, and S. Ratnasamy.
RouteBricks: Exploiting Parallelism to Scale Software Routers. In
Proc. of the ACM Symposium on Operating Systems Principles

(SOSP), 2009.
[13] P. Godefroid. Compositional Dynamic Test Generation. In Proc. of

the ACM Symposium on the Princinples of Programming Languages

(POPL), 2007.
[14] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed Automated

Random Testing. In Proc. of the ACM Conference on Programming

Language Design and Implementation (PLDI), 2005.
[15] P. Godefroid, A. Nori, S. Rajamani, and S. D. Tetali. Compositional

May-Must Program Analysis: Unleashing The Power of Alternation.
In Proc. of the ACM Symposium on the Princinples of Programming

Languages (POPL), 2010.

[16] P. Gupta, S. Lin, and N. McKeown. Routing Lookups in Hardware at
Memory Access Speeds. In Proc. of the IEEE INFOCOM

Conference, 1998.
[17] S. Han, K. Jang, K. Park, and S. Moon. PacketShader: A

GPU-accelerated Software Router. In Proc. of the ACM SIGCOMM

Conference, 2010.
[18] K. Jang, S. Han, S. Han, S. Moon, and K. Park. SSLShader: Cheap

SSL Acceleration with Commodity Processors. In Proc. of the

USENIX Symposium on Networked Systems Design and

Implementation (NSDI), 2011.
[19] P. Kazemian, M. Chang, H. Zeng, S. Whyte, G. Varghese, and

N. McKeown. Real Time Network Policy Checking using Header
Space Analysis. In Proc. of the USENIX Symposium on Networked

Systems Design and Implementation (NSDI), 2013.
[20] P. Kazemian, G. Varghese, and N. McKeown. Header Space

Analysis: Static Checking for Networks. In Proc. of the USENIX

Symposium on Networked Systems Design and Implementation

(NSDI), 2012.
[21] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. Godfrey. VeriFlow:

Verifying Network-Wide Invariants in Real Time. In Proc. of the

USENIX Symposium on Networked Systems Design and

Implementation (NSDI), 2013.
[22] E. Kohler, R. Morris, B. Chen, J. Jannoti, and M. F. Kaashoek. The

Click Modular Router. ACM Transactions on Computer Systems

(TOCS), 18(3):263–297, 2000.
[23] V. Kuznetsov, J. Kinder, S. Bucur, and G. Candea. Efficient State

Merging in Symbolic Execution. In Proc. of the ACM Conference on

Programming Language Design and Implementation (PLDI), 2012.
[24] Y. Ma, S. Banerjee, S. Lu, and C. Estan. Leveraging Parallelism for

Multi-dimensional Packet Classification on Software Routers. In
Proc. of the ACM SIGMETRICS Conference, 2010.

[25] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B. Godfrey, and S. T.
King. Debugging the Data Plane with Anteater. In Proc. of the ACM

SIGCOMM Conference, 2011.
[26] B. Raghavan, T. Koponen, A. Ghodsi, M. Casado, S. Ratnasamy, and

S. Shenker. Software Defined Internet Architecture. In Proc. of the

ACM Workshop on Hot Topics in Networks (HotNets), 2012.
[27] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi. Design and

Implementation of a Consolidated Middlebox Architecture. In Proc.

of the USENIX Symposium on Networked Systems Design and

Implementation (NSDI), 2012.
[28] G. G. Xie, J. Zhan, D. A. Maltz, H. Zhang, A. Greenberg,

G. Hjalmtysson, and J. Rexford. On Static reachability Analysis of IP
Networks. In Proc. of the IEEE INFOCOM Conference, 2005.

[29] H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook, D. Distefano,
and P. W. O’Hearn. Scalable Shape Analysis for Systems Code. In
Proc. of the International Conference on Computer Aided

Verification (CAV), 2008.

7

