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Abstract—Employing a group of independently controlled
flying micro air vehicles (MAVs) for aerial coverage missions,
instead of a single flying robot, increases the robustness and
efficiency of the missions. Designing a group of MAVs requires
addressing new challenges, such as inter-robot collision avoidance
and formation control, where individual’s knowledge about the
relative location of their local group members is essential. A
relative positioning system for a MAV needs to satisfy severe
constraints in terms of size, weight, processing power, power
consumption, three-dimensional coverage and price. In this paper
we present an on-board audio based system that is capable of
providing individuals with relative positioning information of
their neighbouring sound emitting MAVs. We propose a method
based on coherence testing among signals of a small onboard
microphone array to obtain relative bearing measurements, and
a particle filter estimator to fuse these measurements with
information about the motion of robots throughout time to obtain
the desired relative location estimates. A method based on frac-
tional Fourier transform (FrFT) is used to identify and extract
sounds of simultaneous chirping robots in the neighbourhood.
Furthermore, we evaluate our proposed method in a real world
experiment with three simultaneously flying micro air vehicles.

I. INTRODUCTION
There has been a growing interest in the field of robotics

in using multiple autonomous robots for achieving tasks in
a collaborative manner. Teams of flying robots can accom-
plish aerial coverage tasks more robustly and more efficiently
compared to a single flying robot. Possible applications in-
clude rapidly-deployable communication networks [8], envi-
ronmental monitoring, aerial surveillance and mapping, traffic
monitoring and search and rescue [2]. However, additional
challenges are imposed on the design of MAV groups that
have so far prevented their use in real missions. Robots within
an aerial team are required to interact with each other and to
work together towards the achievement of a desired goal. This
introduces new problems, such as inter-robot collisions and
formation control. A common idea that has been addressed
throughout both the natural and artificial swarms literature
is that individual’s knowledge about the relative location of
other swarm members is essential for achieving successful
swarming [21, 20, 13] . For example, awareness about the
relative range and/or bearing of neighbouring robots can allow
a robot to maintain formations [1] [15], and decrease the risk
of collisions [3], with other team members.
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A relative positioning system for a MAV needs to sat-
isfy severe constraints in terms of size, weight, processing
power, power consumption, three-dimensional coverage and
price. These constraints prevent the current relative positioning
systems designed for ground robots and large aerial vehicles
to be used in MAVs. Inspired by the sense of hearing in
animals [6, 16], which provides them the ability of using
sound for communication and localization, we propose an
audio based positioning system for MAVs to allow them to
obtain information about the position of their local neighbours.
Such a system could also possibly be used for perceiving other
non-cooperative noise emitting aerial platforms. This paper is
organized as follows: Section II describes the related works on
relative positioning systems for MAVs. Section III describes
the proposed method for our audio based relative positioning
system and in Section IV results of real experiments with the
proposed method is provided, where three flying MAVs are
used in the experiment.

II. STATE OF THE ART

Two main approaches for obtaining relative positioning
information in multi-robot systems exist in the literature.

1) Using an absolute positioning system alongside a com-
munication network, allowing robots to obtain relative
positioning information by communicating their absolute
locations with each other [5] [19]

2) Directly measuring the relative location of other robots
using on-board exteroceptive sensors [23] [20]

A drawback with solutions based on the former approach,
for relative positioning in MAV swarms, is that an external
infrastructure, such as wireless positioning beacons or global
positioning system (GPS) satellites, is required for acquiring
the absolute positioning information. GPS technologies are
vulnerable to jamming and interferences, have low resolution,
and are impossible to use in cluttered terrains where there is no
direct line of sight with the transmitting satellites [26]. Also,
deployment of wireless positioning beacons in the environment
in advance of each mission is both costly and time-consuming.

Due to disadvantages of the first approach, much effort
has been put into the design of onboard relative positioning
systems. In this approach, every individual robot measures the
relative position of other robots using onboard exteroceptive
sensors. Most current onboard relative positioning systems
are developed for ground robots and mainly rely on sensors
such as laser range finders, infrared sensors and cameras.
However, a relative positioning system for a MAV needs
to satisfy constraints in terms of size, weight, processing
power, power consumption, three-dimensional coverage and



price. This prevents some of the successful sensor technologies
implemented for relative positioning of ground robots to be
used in MAVs. Despite this, some effort has been done in
transferring these solutions from ground robots to MAVS.
Mini laser range finders have been used [25] for detection of
large static obstacles (trees and buildings) located in front of
a MAV. These sensors provide accurate range measurements
of obstacles directly located in front of the laser beam up to
a few hundreds of meters away. A major drawback of such
sensors is their single point/planar detection ability, which
makes them a bad candidate for measuring the position of
other MAVs in three-dimensional spaces. Few works also
investigate the use of optical sensors for detecting the motion
of other aircraft relative to the background scene, computing
the relative azimuth and elevation [27]. Systems based on such
sensors have a limited field of view and are highly dependent
on light conditions and visual contrast. Furthermore, these
systems greatly suffer from missed or false detections when
the target is located on non-uniform or cluttered backgrounds
and also in the presence of vibrations and adverse weather
conditions. Small scale Doppler radar transducers are the basis
of the sensor suite proposed in [30] for allowing a MAV
to detect the presence and measure the relative bearing of
colliding obstacles. The sensor suite has a small weight of
about 300g and power consumption of 3.7 watts. However,
small field of view (30o), low resolution (15o) and small
range (10m) are some of the major drawbacks of this system.
Infrared/ultrasound-based sensor suites have been shown in
[23, 22] to provide accurate relative range and bearing estima-
tion in indoor flying platforms. However, they are not suitable
sensors for outdoor MAVs due to their short working range.

Hearing has always been one of the key senses among
humans and animals allowing them to use sound for attracting
attention, communication and localization. Despite this, audi-
tion in robotics has not received great attention compared to
vision, and most studies on this focus on speech recognition
and localization of talkers for home, office, and humanoid
robots [14]. In most works, a technique inspired by animal
hearing called Inter-aural Time Difference (ITD) (also known
as Time Difference of Arrival TDOA) is used for localizing
sound sources. This method measures the time delay caused
by the finite speed of sound between the signals received
by two microphones. While the complex hearing capabilities
of animals achieve good performance with only one pair
of acoustic sensors, technical systems often use arrays of
microphones for assisting robots in locating broadband sound
sources in the environment [28].

Audio-based relative positioning for ground robots has not
been favoured so far, due to the success of other available
sensor technologies and because of the existing challenges in
sound source localization inside reverberant and noisy domes-
tic environments. In the case of underwater robotic swarms,
the effectiveness of audio based relative positioning compared
to other methods have been shown by some researchers [11].
In these systems, a pair of hydrophone sensors onboard a small
submarine is used for measuring the relative bearing of other

sound emitting submarines.
Audio-based relative positioning for miniature aerial robots

has not been addressed so far. However, existing examples
in nature show the potential success of such a system for
aerial robots. Flight calls of nocturnal migratory birds used
for collision avoidance and coordinated migration during night
[6], and phonotaxis behaviour among insect swarms for mating
and predator avoidance [7] [16] are some of the many existing
examples. Furthermore, in a recent work, an acoustic source
localization system for MAVs was shown to be effective in
locating the source of distress signals on the ground [2].
Design of new acoustic sensors suitable for use on MAVs
have been investigated in some recent works [24] [4].

An audio-based relative positioning system for swarm of
MAVs will have several advantages. First of all, this system
will be based on cheap, small size, passive and omnidirectional
sensors which clearly satisfy the constraints of MAVs. The
passivity of the sensors will result in low power consumption
of the overall system, which is an important parameter for
having longer swarm endurance. Also, this system will be
independent of illumination and weather conditions, such as
fog, dust and rain and will not require direct line-of-sight
between robots for its operation. Such a system will also
be potentially less computationally expensive compared to
vision-based systems, as it will mainly rely on the available
phase information in the sound waves rather than the need for
extraction of features from sequence of images.

III. PROPOSED METHOD

This section explains our method for relative positioning in
a group of MAVs. Figure 1 presents the schematic diagram of
this system. The overall system is divided in to two main parts
of ‘Target’ and ‘Perceiving robots’ to illustrate the main units
of the system involved at each state. In the target robot state,
the robot generates chirps of predefined rate and frequency. In
the perceiving state, sound waves are picked up by an on-board
microphone array and are continuously checked by the Chirp
Detection and Separation unit for existence of chirps in the
sound mixture. When a full chirp is detected, it is filtered out
from the sound mixture and is then passed to the coherence
measuring unit. This unit cross correlates the signals from
every microphone pair and obtains a measure of similarity
between the signals as a function of time lag applied to one
of them. This measure reflects the chirp’s time difference of
arrival (TDOA) likelihood for all possible time delays. This
information along with knowledge of the microphone array’s
geometry is then used by the Relative Bearing Measurement
unit to estimate a measure of the target’s direction. Finally,
a particle filtering unit is used to estimate more robustly the
relative location of the target robot by fusing the noisy bearing
measurements with information about the relative motion of
robots throughout time. The relative motion between robots are
computed using information from the on-board proprioceptive
sensors and a communication network. The particle filter is
preferred over a parametric approach, such as the Extended
Kalman Filter, due to the non-linear nature of the relative
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Fig. 1. Schematic diagram of the proposed relative positioning system
illustrating main parts of the system

motion dynamics of the MAVs. A more detailed explanation
of each unit is presented in the following sections.

A. Chirp Generator
Piezo transducers are simple, inexpensive and lightweight

devices that are suitable to be used on MAVs. These devices
generate sound by converting electrical pulses into mechanical
vibrations. The resulting sound can be very loud if the fre-
quency of the vibrations are close to the resonance frequency
of the piezo element. Hence, in order to generate a loud sound
wave that is required here, narrowband sounds such as a pure
tone or a band-limited chirp with frequencies close to the
resonance frequency should be used. To avoid the problem of
ambiguous bearing measurements, caused due to the repetitive
nature of pure tone sounds, a band-limited chirp is used for
the sound of the targets. The chirp generating unit of every
target robot generates periodical linear chirps with a predefined
and unique chirp rate. Figure 2 illustrates the sound wave
and spectrogram of an in-flight sound recording involving one
perceiving robot and two chirping MAVs.

B. Microphone Array
An onboard microphone array is used to simultaneously

measure the acoustic field at different points in space. Due
to finite speed of sound, incoming sound waves are picked up
by the microphones at different time instances. Therefore, by
comparing the microphones signals and measuring the time
delay among them, it is possible to estimate the direction
of arrival of the sound waves (section III-D). A minimum
number of four microphones, not all placed on the same
plane, is required to localize sounds in 3D-space without
ambiguity. Since we are interested in an onboard and real-
time system, we only use four microphones here to minimize
the computational and hardware loads. Furthermore, a regular
tetrahedral microphone array geometry is used to obtain equal
localization performance in all directions [9].

Fig. 2. Sound wave and spectrogram of an in-flight sound recording involving
one perceiving robot and two chirping MAVs. The two linear chirps are in
the same frequency band and have a different chirp rate.

C. Chirp Detection and Extraction
This unit is responsible for the detection and extraction of a

chirp in the perceived sound wave. The presence of a desired
chirp in the sound mixture is initially detected by a template
matching technique, where a cross correlation of the sound
mixture with a template of the desired chirp is used to find the
existence and the time segment containing the chirp. After a
chirp is detected, the Fractional Fourier transform (FRFT) [17]
of the time window containing the entire chirp is computed
with an FRFT order of α obtained by the following equation.

α =
2

π
tan−1 (a× fs) (1)

where fs is the sampling frequency and a is the chirp rate.
First proposed by Namias [17], FRFT has been recently

favoured in the field of signal processing [18], especially when
dealing with chirp signals. The FRFT provides a compact
representation of the chirp signal allowing us to extract the
chirp corresponding to a desired target robot from other
sounds. Figure 3 illustrate a comparison between the time,
frequency and Fractional domain of a linear chirp signal.

The FRFT, computed by the chirp detection unit, contains
an impulse-shaped peak that corresponds to the desired chirp.
This chirp is filtered out from other sounds by only retaining
the bin with the highest peak along with its few nearby bins
and setting all other bins to zero. The ratio of the peak value
to the mean value of all zeroed bins prior to zeroing provides
a good measure for the quality of the perceived chirp, i.e.
signal to noise ratio. This measure is computed and used later
as a reliability measure for the obtained bearing measurement.
Only measurements satisfying a predefined reliability level are
used in the update step of the particle filter. Furthermore, the
filtered chirp in the FRFT domain is transformed back to the
time domain by computing the inverse FRFT.

D. Coherence measuring
This unit compares the filtered chirp signals of all channels

with each other and hence estimates a similarity degree for



every pair of signals as a function of time-lag applied to one
of them. Cross correlation is a commonly used technique for
measuring the coherence between two signals. Cross correla-
tion of two microphone signals each having a length of N
samples can be computed by

Rij (τ) =

N−1∑
n=0

pi [n] pj [n− τ ]

where pi [n] is the signal perceived by microphone i and τ is
the correlation lag in samples in the range expressed by

−dm
c
< τ <

dm
c

(2)

where dm is the distance between the microphones and c
is the speed of sound. In order to reduce the computation
time, the cross correlation function can be approximated in the
frequency domain by computing the inverse Fourier transform
of the cross spectrum:

Rij (τ) =

N−1∑
k=0

Pi [k]P ∗j [k]ei
2πkτ
N (3)

where Pi(k) is the discrete Fourier transform of pi(n) and
P ∗j denotes the complex conjugate of Pj . This results in a
reduction of complexity from O(N2) to O(N logN), hence
making it more suitable for real time computations. A weight-
ing function was introduced into equation (3) by [10] in order
to solve the problem of wide cross correlation peaks.

Rij (τ) =

N−1∑
k=0

Pi [k]P ∗j [k]

|Pi [k]| |Pj [k]|
ei

2πkτ
N (4)

This weighting function whitens the cross-spectrum of the
signals allowing equal contribution of all frequencies in es-
timating the cross correlation and resulting in sharper peaks.
This is only suitable when the desired sound is broadband,

Fig. 3. A comparison between the time, frequency and Fractional domain
of a linear chirp. a) Time domain b) Spectrogram c) Frequency domain d)
Fractional domain

but for narrowband sounds it amplifies the background noise.
Therefore, a modified version of equation (4) was used here
instead to solve this problem.

Rij (τ) =

N−1∑
k=0

χ

[
PiP

∗
j

|Pi| |Pj |

]
ei

2πkτ
N (5)

where
χ =

{
1 fmin < f < fmax

0 otherwise

and fmin and fmax are the minimum and maximum frequen-
cies of the chirp.

E. Relative Bearing measurement

After obtaining Rij (τ) from (5) for all microphone pairs
ij, the Relative Bearing Measurement unit searches for the
most likely sound source direction

−→
b m

−→
bm = arg max

−→
b

∑
i,j

Rij(τ~bij) (6)

where time delay τ~bij corresponds to direction
−→
b and is

computed from the coordinates of microphones i and j in
the body fixed coordinate system. In this work a full direction
grid search for all directions

−→
b around the robot is used for

finding
−→
bm. Other search methods exist in the literature that

can reduce the cost of this search if necessary [29].

F. Particle Filtering

The previous sections described methods of providing an
instantaneous noisy information about the relative bearing
of a target robot in the neighbourhood. This information is
combined with the relative motion dynamics of the perceiving
and the target MAVs, measured by onboard interoceptive
sensors, using a particle filter to recursively estimate the
probability density of the target location.

At time instant t, the relative position of a single target
robot is modelled using a set of N particles of vectors pi and
weight wi, where pi = (pxi, pyi, pzi) is a vector in the body-
fixed coordinate system of the perceiving robot that starts at
its origin and ends at a point in space. pi can also be described
in the body-fixed spherical coordinate system ( 6 φ, 6 θ, r) by:

ui = (φi, θi, ri) i = 1, 2, ..N (7)

where φi is the relative azimuth defined in the range [−π, π],
θi is the relative elevation defined in the range [−π/2, π/2]
and ri is the relative range defined in the range [Rmin, Rmax].
Rmin and Rmax are dependent on the platform size and the
sound power respectively. For the MAVs and the piezos that
are used in this work the ranges are found approximately to
be [1, 250] meters.

A three dimensional state vector is specified for every
particle:

Si(t) = [φi(t) θi(t) ri(t)] (8)

The algorithm starts by forming an initial set of particles
{Si(0), i = 1 : N} for every target robot detected to be in the



Fig. 4. Positions of two robots (perceiving A and target B) in two successive
time steps along with coordinate systems and connecting vectors

neighbourhood. Particles either could be generated uniformly
over the entire state space, or only over a desired part of the
state space if some prior knowledge about the possible location
of the target is available. In this work, the initial state space
is reduced to all vectors in the space having a small deviation
from the first reliable bearing measurement.

Particle filters consists of two main steps at each iteration:
Prediction and Update.

1) Prediction: In the prediction step, a set of new particles
S̃i(t) is predicted by propagating Si(t − 1) according to a
probabilistic relative motion model. This model is derived with
the assumption that, at every time step, robots have a forward
motion, (i.e. along the x axis of their body-fixed coordinate
system), followed by a three dimensional rotation, (i.e. yaw
(λ), pitch (β) and roll (α) rotations around the z, y and x
axis of the body fixed coordinate system respectively). Figure
4 illustrates the positions of two robots in two successive
time steps consisting of a perceiving robot (Robot A) and
a target robot (Robot B). Using linear algebra the following
relationship between the vectors can be described:

−→p k = RA
′

B′(RB
′

B

−→
T B) +RA

′

A
−→p k−1 −RA

′

A

−→
T A (9)

where RJI is a rotation matrix that rotates a vector from the
coordinate system I to the coordinate system J :

RJI = Rz(λJ − λI).Ry(βJ − βI).Rx(αJ − αI) (10)

(λI , βI , αI) is the bearing of the coordinate system I relative
to a fixed NED coordinate system and (Rz, Ry, Rx) are basic
rotation matrices that rotate vectors about the local z, y and
x axis respectively.

Equation (9) is used by the perceiving robot to predict the
particles

−→̃
p ki from their previous values −→p (k−1)i. For this,

speed and orientation of the perceiving robot, and of the target
robot transmitted via a communication network, are used. The
forward motion vectors

−→
T A and

−→
T B are initially computed

from the speed sensor readings VA(k−1) and VB(k−1) at time
k − 1

−→
T A=

 (VA(k−1) + ξV )dt
0
0

 −→T B=

 (VB(k−1) + ξV )dt
0
0


where dt is the time interval between the two time steps
and ξV = N(0, σV ) is a random number generated with a
normal distribution of mean zero and standard deviation σV .
The value of σV is chosen in relation with the reliability
in the speed sensor reading measurements. Furthermore, the
rotation matrices RJI (λ+ ξλ, β + ξβ , α + ξα) in equation (9)
are computed from the bearing measurements (λ, β, α)I,J and
using equation (10), with ξλ = N(0, σλ), ξβ = N(0, σβ) and
ξα = N(0, σα) to consider the noise in the measurements.
Finally, equation (9) can be solved for the prediction

−→̃
p ki of

particle i.
2) Update: As previously explained, an audio based rela-

tive bearing measurement is obtained at every time-step. In the
update step, the likelihood of obtaining these measurements
is investigated for every particle and particles are weighted
according to this measure. For this investigation, we propose
the likelihood function:

wi =
1

σm
√

2π
e−

1
2 ( εi

σm
)
2

(11)

where
εi = 6 (

−→
b mk,

−→̃
p ki) (12)

is the angle between the measured bearing
−→
b mk at time k

and the predicted vector
−→̃
p ki of particle i. The value of σm

reflects the confidence of the bearing measurements and is
found empirically. As mentioned in section III-C, only reliable
measurements obtained from chirps that have a good signal to
noise ratio, i.e. that satisfy the predefined reliability level, is
used in the update step and this step is skipped otherwise.

Note that, the likelihood function (11) is formed by assum-
ing that the angular error between the direction measurements−→
b m and the true directions

−→
b T , have a Gaussian distribution

with mean zero and standard deviation σm. i.e.

6 (
−→
b m,
−→
b T ) ∼ N (0, σ2

m) (13)

Experiments show that this assumption is a reasonable as-
sumption. Figure 6 shows the relative bearing measurements
and the histogram of the angular errors from a field experiment
involving a target robot and a perceiving robot.

3) Relative Position Estimation: The relative range and
bearing of the target can be estimated at each time step from
the probability density function represented by a particle set.
For this, a weighted mean of all particles’ positions could
be employed. However, to avoid inaccurate estimations for
situations with multi-modal distributions, a weighted mean of
particles located in a local neighbourhood of the particle with
the highest weight is used instead:

S̄T =

K∑
i=1

wiSi : ∀ |Si − Smax| < ξ (14)
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Fig. 5. Audio based bearing measurements from an experiment involving a
perceiving robot and a target robot. In this experiment, the perceiving robot
was fixed over the ground to eliminate the uncertainties, in the estimation of
the true bearings, caused by the oboard gyros and the GPS of the perceiving
robot. The target robot is flown manually in proximity of the perceiving robot
and its onboard GPS is used only to compute the true bearings. top: Audio
based and GPS based relative azimuth measurements. bottom: histogram of
the angular errors between the measured bearings and the true bearings.

Finally, the particles are resampled according to their nor-
malized weights to avoid the problem of degeneracy of the
particle filtering algorithm.

IV. EXPERIMENTS AND RESULTS

To test and verify the proposed algorithm, multiple real
experiments were performed with three similar MAV platforms
such as the one shown in figure 6. A microphone array
consisting of four microphones is mounted on one of the
robots along with a digital sound recorder for recording the
microphone signals. The microphones are covered with wind

Fig. 6. Picture of the MAV platform [12] used for experimenting the proposed
algorithm. Four microphones and an on-board digital sound recorder is used
for recording sounds during flight.

protection and are positioned in a way to form a regular
tetrahedron of edge length 10 cm. This dimension was selected
relative to the size of the MAV to prevent the drag caused by
the microphones from affecting the MAV’s stability. Audio is
recorded with a sampling rate of 48kHz. The two target robots
are equipped with a piezo transducer and a micro controller
programmed to generate periodic linear chirps as shown in
figure 2. One of the robots produce chirps with up-sweep
frequency from 1700kHz to 4700kHz and the other robot have
chirps with down-sweep frequency from 4700kHz to 1700kHz.
The rate of chirping for both robots are set to about 20 chirps
per second with each chirp having a duration of approximately
0.05 seconds.

All MAVs are equipped with an autopilot that allows it to
fly fully autonomously to predefined waypoints. The orien-
tation, altitude, air-speed and global positioning information
of the MAVs are measured using on-board sensors and are
transmitted and recorded on a ground station. The roll and
pitch orientations of the MAVs are measured using on-board
gyroscopes and since no compass is currently present on the
MAVs, the heading information was obtained from the on-
board GPS sensor. The MAVs were controlled to fly within
the visual range of a safety pilot while the engine power of
the perceiving robot was occasionally reduced or even turned
off to increase the detection range by increasing the signal to
noise ratio. This reduction in the engine power is achieved
automatically whenever the MAV is descending.

Figure 7 shows the path of all three robots, recorded by
the GPS sensors, for 25 seconds duration of flight time.
The relative azimuth estimations for this duration of time
is shown in Figure 8. These estimates are compared against
the relative azimuth values computed from the GPS positions
and the onboard IMU data and show a good correspondence
at all times. Furthermore, the reliable bearing measurements,
obtained by the Relative Bearing Estimation unit, and the
perceiver’s motor input is illustrated in this figure. It is shown
that for high motor inputs fewer reliable measurements are
obtained. This is due to the loudness of the self-propeller noise

Fig. 7. The motion path of robots recorded by onboard GPS sensors, for
25 seconds of flight time in an experiment involving one perceiving robot to
locate and track two target robots
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Fig. 8. top: The relative azimuth estimations from the Particle Filtering unit
compared with the relative azimuth computed from the GPS positions and the
onboard IMU orientations. The relative azimuth measurements obtained by
the Relative Bearing Measurement unit are shown by small markers. bottom:
Motor input of the perceiving robot

which affects the signal to noise ratio. Despite this, the relative
bearing of the targets are shown to be tracked correctly long
after observations are no longer available.

The relative range estimations along with the particle dis-
tributions and GPS based range estimates are shown in Figure
9. It can be seen that, the particles gradually converge towards
the correct relative range and furthermore track it with an ac-
ceptable accuracy. As expected, the speed of convergence and
the accuracy in the relative range estimations are dependent
on the motions and positions of the robots. For some types
of relative motions, the particles having an inaccurate range
are eliminated faster than for other types of motions. Figure 9

Fig. 9. The Relative range estimations, standard deviation of the relative
range of all particles and GPS based range values

shows that in the first few seconds, where the perceiving robot
is further away from the target robots, and robots are moving
towards each other, particles are still widely spread in relative
range although they have converged to the correct bearing. As
the robots get closer and pass each other, the disparity of the
particles is reduced.

V. CONCLUSION AND FUTURE WORK

This paper presents a solution to the problem of relative
positioning for a group of micro air vehicles. The solution
provided in this paper requires MAVs to be equipped with
an on-board microphone array to measure the relative bearing
to other sound emitting MAVs and on-board sensors to obtain
information about the state of the MAVs. The particle filtering
technique used in this paper was shown to be well-suited for
fusing the relative bearing measurements with relative motion
of the MAVs in order to achieve robust estimation of the
relative range and bearing. In this work a communication
network between the robots was required to share sensor
informations and compute the relative motion between the
robots. Removing the need of a communication network, by
considering some prior knowledge about the behaviours of
the robots, is an area of work we are currently pursuing.
In this work a piezoelectric transducer was used on the
robots as the target source. However as the engine of nearly
all flying platforms generate sound when flying, this sound
could possibly be used in the future for detecting other non-
cooperative robots and aerial platforms.
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