Topological Complexity Of H-Spaces

Let X be a (not-necessarily homotopy-associative) H-space. We show that TCn+1(X) = cat(X-n), for n >= 1, where TCn+1(-) denotes the so-called higher topological complexity introduced by Rudyak, and cat(-) denotes the Lusternik-Schnirelmann category. We also generalize this equality to an inequality, which gives an upper bound for TCn+1(X), in the setting of a space Y acting on X.


Publié dans:
Proceedings Of The American Mathematical Society, 141, 5, 1827-1838
Année
2013
Publisher:
Providence, Amer Mathematical Soc
ISSN:
0002-9939
Mots-clefs:
Laboratoires:




 Notice créée le 2013-12-09, modifiée le 2018-12-03


Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)