TY - EJOUR
AB - Let X be a (not-necessarily homotopy-associative) H-space. We show that TCn+1(X) = cat(X-n), for n >= 1, where TCn+1(-) denotes the so-called higher topological complexity introduced by Rudyak, and cat(-) denotes the Lusternik-Schnirelmann category. We also generalize this equality to an inequality, which gives an upper bound for TCn+1(X), in the setting of a space Y acting on X.
T1 - Topological Complexity Of H-Spaces
IS - 5
DA - 2013
AU - Lupton, Gregory
AU - Scherer, Jerome
JF - Proceedings Of The American Mathematical Society
SP - 1827-1838
VL - 141
EP - 1827-1838
PB - Amer Mathematical Soc
PP - Providence
ID - 191162
KW - Lusternik-Schnirelmann category
KW - sectional category
KW - topological complexity
KW - H-space
SN - 0002-9939
ER -