000191162 001__ 191162
000191162 005__ 20181203023339.0
000191162 022__ $$a0002-9939
000191162 02470 $$2ISI$$a000326522400035
000191162 037__ $$aARTICLE
000191162 245__ $$aTopological Complexity Of H-Spaces
000191162 269__ $$a2013
000191162 260__ $$bAmer Mathematical Soc$$c2013$$aProvidence
000191162 300__ $$a12
000191162 336__ $$aJournal Articles
000191162 520__ $$aLet X be a (not-necessarily homotopy-associative) H-space. We show that TCn+1(X) = cat(X-n), for n >= 1, where TCn+1(-) denotes the so-called higher topological complexity introduced by Rudyak, and cat(-) denotes the Lusternik-Schnirelmann category. We also generalize this equality to an inequality, which gives an upper bound for TCn+1(X), in the setting of a space Y acting on X.
000191162 6531_ $$aLusternik-Schnirelmann category
000191162 6531_ $$asectional category
000191162 6531_ $$atopological complexity
000191162 6531_ $$aH-space
000191162 700__ $$uCleveland State Univ, Dept Math, Cleveland, OH 44115 USA$$aLupton, Gregory
000191162 700__ $$aScherer, Jerome
000191162 773__ $$j141$$tProceedings Of The American Mathematical Society$$k5$$q1827-1838
000191162 909C0 $$xU10968$$0252139$$pUPHESS
000191162 909CO $$pSV$$particle$$ooai:infoscience.tind.io:191162
000191162 917Z8 $$x105396
000191162 937__ $$aEPFL-ARTICLE-191162
000191162 973__ $$rREVIEWED$$sPUBLISHED$$aEPFL
000191162 980__ $$aARTICLE