Abstract

Despite recognized as one key component for establishing a functional electrical connection with nerves, neural invasive peripheral interfaces are still not optimal for long-term applications in humans. An improvement in the field of biocompatible and nontoxic materials is necessary to overcome the issues of interface/tissue mismatch and physiological reactions. The present work aimed to study, implement and characterize a novel approach to modify the surface of neural mi-crolectrodes basedon polyimide thin films. The purpose was to improve biocompatibility and to promote neuronal migration, growth and differentiation by increasing the surface roughness and endowing the surface with structure-reactivity for thiol-containing amino acids or peptides. L-Cysteine-Rhodamine B, used as a model biomolecule, was successfully grafted on samples surface via the introduction of cross-linkable vinyl groups on polyimide foils. Preliminary in vitro biological analysis allowed to evaluate the tendency of PC12 cells to adhere and to proliferate.

Details

Actions