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Abstract  So far, the distributed computing community has
either assumed that all the processes of a distributed system
have distinct identifiers or, more rarely, that the processes are
anonymous and have no identifiers. These are two extremes
of the same general model: namely, n processes use £ differ-
ent identifiers, where 1 < £ < n. In this paper, we ask how
many identifiers are actually needed to reach agreement in
a distributed system with ¢ Byzantine processes. We show
that having 3¢ 4 1 identifiers is necessary and sufficient for
agreement in the synchronous case but, more surprisingly, the
number of identifiers must be greater than ”23” in the par-
tially synchronous case. This demonstrates two differences
from the classical model (which has £ = n): there are situa-
tions where relaxing synchrony to partial synchrony renders
agreement impossible; and, in the partially synchronous case,
increasing the number of correct processes can actually make
itharder to reach agreement. The impossibility proofs use the
fact that a Byzantine process can send multiple messages to
the same recipient in a round. We show that removing this
ability makes agreement easier: then, ¢ + 1 identifiers are
sufficient for agreement, even in the partially synchronous
model, assuming processes can count the number of mes-
sages with the same identifier they receive in a round.
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1 Introduction

We consider a distributed system with Byzantine failures in
which £ distinct identifiers are assigned to n processes, where
1 < £ < n. Several processes may be assigned the same
identifier, in which case we call the processes homonyms.
If a process p receives a message from a process g with
identifier i, then p knows that the message was sent by some
process with identifier i, but p does not know whether the
message was sent by ¢ or another process ¢’ having the same
identifier i. This is true even if ¢ is Byzantine: a Byzantine
process cannot change its own identifier.

This model generalizes the classical scheme where
processes have distinct identifiers (i.e., £ = n), and the
less classical scheme where processes are anonymous (i.e.,
£ = 1). Studying systems with homonyms provides a better
understanding of the importance of identifiers in distributed
computing. There are two additional motivations for the new
model. In systems such as Pastry or Chord [21,24], assum-
ing that all processes have unique (unforgeable) identifiers
might be too strong an assumption in practice. We may wish
to design protocols that still work if, by a rare coincidence,
two processes are assigned the same identifier. This approach
is also useful if security is breached and a malicious process
can forge the identifier of a correct process, for example by
obtaining the correct process’s private key. Secondly, users
of a system may wish to preserve their privacy by remaining
anonymous.

Unfortunately, in a fully anonymous system, where no
identifiers are used, very few problems are solvable. In partic-
ular, Okun observed that Byzantine agreement is impossible
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in the fully anonymous model [17], even if the system is
synchronous and only one process can be faulty. With a lim-
ited number of identifiers, more problems become solvable,
and some level of anonymity can be preserved by hiding, to
some extent, the association between users and identifiers.
For example, users of a distributed protocol might use only
their domain names as identifiers. Others will see that some
user within the domain is participating, but will not know
exactly which one. (In our model, we assume that message
recipients can verify the domain from which a message came,
so that even Byzantine processes cannot modify their iden-
tifier). If several users within the same domain participate in
the protocol, they will behave as homonyms.

In this paper we study how many distinct identifiers are
needed to reach agreement in a system of n processes, up to
t of which can be Byzantine. If n < 3¢, even synchronous
Byzantine agreement is known to be unsolvable for £ = n
[16,20], so it is also unsolvable in systems with homonyms.
Thus, we need only consider systems where n > 3¢. For
the synchronous case, we prove using a scenario argument
that 3¢ 4 1 identifiers are necessary. The matching synchro-
nous algorithm is obtained by a simulation that transforms
any synchronous Byzantine agreement algorithm designed
for a system with unique identifiers to one that works in a
system with £ > 3¢ identifiers. For the partially synchro-
nous case, we prove using a partitioning argument that the
lower bound becomes £ > %3’ (The bound "23’ is strictly
greater than 37 because n > 3t). We show that this bound
is also tight by giving a new partially synchronous Byzan-
tine agreement algorithm. This bound is somewhat surprising
because the number of required identifiers £ depends on n as
well as 7. Counter-intuitively, increasing the number of cor-
rect processes can render agreement impossible. For exam-
ple,if t = 1 and £ = 4, agreement is solvable for 4 processes
but not for 5. Another difference from the classical situation
(where ¢ = n) is that the condition that makes Byzantine
agreement solvable is different for the synchronous and par-
tially synchronous models.

To strengthen our results, we show that (a) both the syn-
chronous and partially synchronous lower bounds hold even
if correct processes are numerate, i.e., can count the num-
ber of processes that send identical messages in a round and
(b) the matching algorithms are correct even if processes are

innumerate. Since a process knows the identifier of the sender
of each message it receives, itis trivial for the process to count
copies of the messages it receives in a system with unique
identifiers (¢ = n). However, using identifiers to count copies
is not possible in systems with homonyms, so the distinction
between numerate and innumerate processes is important.

What has more impact, however, is the ability for a Byzan-
tine process to send multiple messages to a single recipient
in a round. In a classical system with unique identifiers, the
Byzantine process gets no advantage from doing this: algo-
rithms could simply discard such messages. In systems with
homonyms, there is a clear advantage. In fact, we prove that if
each Byzantine process is restricted to sending a single mes-
sage per round to each recipient (and processes are numerate),
then # + 1 identifiers are enough to reach agreement even in
a partially synchronous model. We also show this bound is
tight using a valency argument: ¢ + 1 identifiers are needed
even in the synchronous case. The fact that ¢ 4 1 identifiers
are sufficient to reach agreement with restricted Byzantine
processes has some practical relevance: In some settings, it
is reasonable to assume that Byzantine processes are simply
malfunctioning ordinary processes sending incorrect mes-
sages, and not malicious processes with the additional power
to generate and send more messages than correct processes
can.

Our results are summarized in Table 1. Section 2 describes
our models and recalls the specification of Byzantine agree-
ment. Section 3 considers the synchronous case and Sect. 4
considers the partially synchronous one. Section 5 gives our
results for restricted Byzantine processes. Section 6 provides
some concluding remarks.

2 Definitions

We consider a distributed message-passing system with
n > 2 processes. Each process has an identifier from the set
{1,...,¢}. We assume that n > ¢ and that each identifier
is assigned to at least one process. Thus, the parameter £
measures the number of different identifiers that are actually
assigned to processes. In the case where n > ¢, one or more
identifiers will each be shared by several processes. In the
case where ¢ = 1, all processes have the same identifier, so

Table1 Necessary and sufficient conditions for solving Byzantine agreement in a system of n processes using £ identifiers and tolerating ¢ Byzantine

failures
Synchronous Partially synchronous
Innumerate processes 0> 3t £ > n
Numerate processes, unrestricted Byzantine processes > 3t > "*23’
Numerate processes, restricted Byzantine processes >t >t

In all cases, n must be greater than 3¢
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they are anonymous. We assume algorithms are determin-
istic. Thus, the actions of a process are entirely determined
by the process’s initial state and the messages it receives.
Processes with the same identifier are given the same algo-
rithm to execute (to avoid hardcoding an identifier into a
process’s algorithm). Processes with different identifiers may
be given different algorithms. In our proofs, we sometimes
refer to individual processes using names like p, but these
names cannot be used by the processes themselves in their
algorithms.

A correct process does not deviate from its algorithm spec-
ification. A process that is not correct is called Byzantine.
The maximum possible number of Byzantine processes is
denoted ¢, where 0 < ¢t < n. As mentioned in the introduc-
tion, we assume throughout the paper that n > 3¢, since it is
already known that Byzantine agreement is impossible when
n < 3t,eveninsynchronous systems with unique ids [16,20].
A Byzantine process may choose to send arbitrary messages
(or no message) to each other process. However, we assume
a Byzantine process cannot modify its own identifier. Thus,
a process will know the true identifier of the sender of each
message it receives, even if the sender is Byzantine. Given a
message m, we denote by m.val its value (or content) and by
m.id the identifier of the sender. If a correct process receives
m, then m was sent by some process with identifier m.id.

Since processes with the same identifier are supposed to
be indistinguishable in our model, a correct process cannot
send different messages to two processes with the same iden-
tifier during a single round. However, Byzantine processes
are not constrained in this way: they can send different mes-
sages to each process. This is because Byzantine processes
are intended to model arbitrarily bad failures in the system,
which might, for example, corrupt messages going to indi-
vidual processes.

In the synchronous model, computation proceeds in
rounds. In each round, each process can send messages to
all other processes and then receive all messages that were
sent to it during that round. It is sometimes convenient to
assume that correct processes perform broadcasts; there is
no loss of generality in assuming this, because if a process
wishes to send different messages to processes with different
identifiers, it can include the intended recipients’ identifiers
in the message itself.

For the partially synchronous model we use the defin-
ition of Dwork, Lynch and Stockmeyer [10]: computation
proceeds in rounds, as in the synchronous model. However,
in each execution, a finite number of messages might not be
delivered to all of their intended recipients. There is no bound
on the number of messages that can be dropped. As argued
in [10], this basic partially synchronous model is equivalent
to other models with partially synchronous communication.
More specifically, the model in which message delivery times
are eventually bounded by a known constant and the model

in which message delivery times are always bounded by an
unknown constant can both simulate the basic partially syn-
chronous model. Conversely, each of these models can be
simulated by the basic partially synchronous model. Thus,
our characterization of the values of n, £ and ¢ for which
Byzantine agreement can be solved applies to these other
models with partially synchronous communication too.

As mentioned in the introduction, we also consider vari-
ants of the models in which each Byzantine process is
restricted to sending at most one message to each recipient
in each round. In general, we consider unrestricted Byzan-
tine processes unless the restriction is explicitly mentioned.
We also distinguish the case where processes are innumer-
ate from the case where they are numerate. We say that a
process is innumerate if the messages it receives in a round
form a set of messages: the process cannot count the number
of copies of identical messages it receives in the round. We
say that a process is numerate if the messages it receives in
a round form a multiset of messages: the process can count
the number of copies of identical messages it receives in the
round. (As we shall show, the numerate model is more pow-
erful than the innumerate model against restricted Byzantine
processes).

The goal of an agreement algorithm is for a set of processes
proposing values to decide on exactly one of these values. We
consider the classical Byzantine agreement problem [11,20],
defined by the following three properties.

1. Validity: If all correct processes propose the same value
v, then no value different from v can be decided by any
correct process.

2. Agreement: No two correct processes decide different
values.

3. Termination: Eventually, each correct process decides
some value.

An algorithm solves Byzantine agreement in a system of n
processes with ¢ identifiers tolerating ¢ failures if these three
properties are satisfied in every execution in which at most
t processes fail, regardless of the way the n processes are
assigned the ¢ identifiers. (Recall that each identifier must be
assigned to at least one process).

In the synchronous model, processes executing our Byzan-
tine agreement algorithm terminate after producing an out-
put. In the partially synchronous model, a process must con-
tinue participating in a Byzantine agreement protocol, even
after it has decided. If processes did stop after deciding, it
would be possible for the adversary to block all incoming
and outgoing messages from one correct process until after
a decision has been made by the other processes. When that
one correct process does begin receiving messages, it would
not be able to find out what decision value was chosen if all
other processes have terminated.
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n — 3t + 1 processes

Fig. 1 The system used in the proof of Proposition 1

3 Synchronous model

Here, we prove that having £ > 3t is necessary and sufficient
for solving synchronous Byzantine agreement, regardless of
whether the processes are numerate or innumerate. To show
that the condition £ > 3t is sufficient to reach agreement, we
design a simulation, where each group of processes with a
common identifier cooperatively simulate a single process.

3.1 Impossibility

We prove the condition £ > 3t is necessary using a scenario
argument, in the style of Fischer, Lynch and Merritt [11].

Proposition 1 Synchronous Byzantine agreement is unsolv-
able even with numerate processes if £ < 3t.

Proof It suffices to prove there is no synchronous algorithm
for Byzantine agreement when ¢ = 3¢. To derive a contra-
diction, suppose there exists an n-process synchronous algo-
rithm A for Byzantine agreement when ¢ = 3¢. Let A; (v) be
the algorithm executed by a correct process with identifier i
when it has input value v.

Imagine setting up a system as shown in Fig. 1. Every
process correctly executes the algorithm A; (v) assigned to
it. The two stacks of processes shown in the diagram each
have n — 3¢ + 1 processes, so there are a total of 2n processes
in this system. All processes within a stack have the same
identifier, and execute the same algorithm A4; (v), as shown.
The algorithm will not necessarily solve Byzantine agree-
ment in this system, since the algorithm is designed for a
system of n processes. However, we shall derive the desired
contradiction by considering how processes must behave in
this system.

@ Springer

Consider the n—t processes that run A, (1), ..., Az (1).
These n — t processes cannot distinguish this execution from
an execution in an n-process system where the remaining
identifiers, 1, ..., r are each assigned to a single Byzantine
process. (Here, we use the fact that each Byzantine process
can send multiple messages to each correct process in a single
round, so that a single Byzantine process with identifier 1
in the n-process system can send the messages sent by all
n — 3t + 1 processes running .4;(0) in Fig. 1). By validity,
the n — ¢ processes must output 1.

By a symmetric argument, the n — ¢ processes running
A1(0), ..., Az (0) must output 0.

Now, consider the n — 2t processes that run A1(0), . ..,
A;(0) and the ¢ processes that run Ay 4+1(1), ..., A3 (1).
These n — t processes cannot distinguish this execution from
an n-process execution where the remaining identifiers, ¢ +
1, ..., 2t are each assigned to a single Byzantine process. By
agreement, the n — ¢ processes must output the same value,
contradicting the previous two paragraphs. O

3.2 Algorithm

Next, we present an algorithm that solves Byzantine agree-
ment assuming £ > 3¢. Our construction of the agreement
algorithm is generic. We begin with any synchronous Byzan-
tine agreement algorithm for £ processes with unique iden-
tifiers that terminates in a bounded number of rounds (such
algorithms exist when £ = n > 3¢, e.g.,[13,16]). We trans-
form any such algorithm into an algorithm for n processes
and ¢ identifiers, where n > £. Without loss of generality, we
assume that the algorithm to be transformed uses broadcasts:
a process sends the same message to all other processes. (If a
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Code for process p; with input v

1 s =init(i,v)

2 for r =1 to maxrounds

3 send (M (s)) to all processes

4 R = the set of messages received in this round
5 s=4(s,R)

¢ end for

7 output decide(s)

Fig. 2 Synchronous Byzantine agreement algorithm A with ¢
processes and ¢ identifiers

process wishes to send a message only to specific recipients,
it could include the recipient’s identifier in the broadcasted
message).

In our transformation, we divide processes into groups
according to their identifiers. Each group simulates a sin-
gle process. If all processes within a group are correct, then
they can reach agreement and cooperatively simulate a single
process. If any process in the group is Byzantine, we allow
the simulated process of that group to behave in a Byzantine
manner. The correctness of our simulation relies on the fact
that more than two-thirds of the simulated processes will be
correct (since ¢ > 3t), which is enough to achieve agreement.

Proposition 2 Synchronous Byzantine agreement is solv-
able even with innumerate processes if £ > 3t.

Proof We transform any Byzantine agreement algorithm .4
for the classical model with unique identifiers into an algo-
rithm 7 (A) for systems with homonyms. Consider any such
A (Fig. 2) for a system with ¢ processes {pi, ..., p¢} that
uses at most maxrounds rounds. Without loss of generality,
we assume that each process terminates in .4 after running

Code for processes with identifier 4 with input v

for exactly maxrounds rounds, since processes that termi-
nate early could instead send no messages in the final rounds
and terminate at the required time. A can be specified by:

— aset of local process states,

— afunction init (i, v) that gives the initial state of process
pi when p; has input value v,

— a function M(s) that determines the message to send
when a process is in state s,

— atransition function § (s, R) that determines the new state
to which the process moves from state s after receiving a
set of messages R, and

— a decision function decide(s) which is the output value
for a process whose final state is s.

In our new algorithm 7 (.A), shown in Fig. 3, two rounds
simulate each round of 4. We call these two rounds a phase.
Each phase consists of a selecting round, and a running
round. In the selecting round (line 4 to 6) of a phase r,
the processes within each group try to agree on a state for
phase r. We shall show that if all processes in a group are cor-
rect, then, in each round, the selected state will be the same
for the processes in this group. In running rounds (line 8
to 13), each process simulates one step of algorithm .4 using
the state chosen in the preceding selecting round and the
messages received in the running round. After maxrounds
complete phases, the algorithm performs one more select-
ing round. Then, during a final deciding round processes
broadcast the output value corresponding to their simulated
states, and each process chooses a decision value that was
sent to it by processes from more than 2¢ different groups.
This additional round is needed to ensure that processes that

1 s =nit(i,v)

2 r=1

3 loop

4 send (s) to all processes /* selecting round: groups agree on their state */
5 R = the set of messages received in this round

6 s = choose({z.val : € R and z.id = i}) /* choose deterministically chooses one element of this set */
7 exit when r > mazrounds

8 send (M(s)) to all processes /* running round: simulate one round of original algorithm */
9 R = the set of messages received in this round

10 for all j € {1,...,¢} /* eliminate messages from known Byzantine groups */
11 if there is more than one different message from identifier 7 in R then remove all of them from R

12 end for

13 s=16(s,R)

14 r=r—+1

15 end loop

16 send (decide(s)) to all processes
17 R = set of messages received in this round

/* deciding round: replaces decision line of original algorithm */

1s output a value z such that |[{¢ : 3m € R such that m.id = ¢ and m.val = z}| > 2t

Fig. 3 Synchronous Byzantine agreement algorithm 7 (A) with n processes and ¢ identifiers
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share an identifier with a Byzantine process can decide cor-
rectly.

Let gy be an execution of 7 (A). Let G (i) be the group
consisting of processes with identifier ;. We say that the group
G (i) is correct if all processes in G (i) are correct in ay. At
most ¢ of the £ groups are not correct. We first observe that
in the selecting round of each phase r of ay, all processes in
a correct group G (i) select the same state s; . This is because
each process in G (i) sends the same message to all processes,
and therefore receives the same set of messages with identi-
fier i during the selecting round. Every process in the group
then makes the same choice for the new value of s at line 6.
(For example, the choose function could return the minimum
element of the set, if we have a total order on possible mes-
sages). Let winner] be a process in G (i) that sent a message
containing s; in the selecting round of phase r.

We construct an execution « of A that has the following
properties for every correct group G(i).

1. The input to p; in « is the input to some process of G (i)
in oay.

2. Process p; is correctin @ and for 1 < r < maxrounds+
1, pi’s state variable s has value s] at the beginning of
round r in .

We construct the execution « inductively. In the first
selecting round of apy, the processes in group G (i) select
a state sil contained in a message sent by the process
winneri1 € G(i) during the first selection round. Thus
sl.l = init(i, v), where v is the input to process winneril.
Let v be the input to process p; in «. This establishes prop-
erty 1 for . Then, according to algorithm A, p; will be in
state sl.1 at the beginning of round 1 in «, so property 2 is
satisfied for round 1.

Assume that property 2 holds for some r > 1. We con-
struct round r of « so that property 2 holds for » 4- 1. We now
describe the messages sent by each process p; in round r of
a. For each correct group G(j), we let p; send the message
specified by A to all other processes. By the hypothesis, p;
is in state s’; at the beginning of round r of «, so this mes-
sage will be M (s; ). For each incorrect group G(j), we let
p; behave in the following Byzantine manner. For each cor-
rect group G(i), p; sends to process p; the message that
winner! *1 has in set R from a process with identifier j at
the end of the running round of phase r of a g (if any). (There
is at most one such message after winner; *1 has executed
line 11).

We show that, for all correct groups G (i), winnerir
receives the same set of messages at the end of the run-
ning round of phase r of wg as p; receives in round r of

a. (Below, we denote this common set by R}). If G(j) is

r+1
i

+1

correct, all processes in G(j) send M(s;) to winner in
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the running round of phase r. Since processes are innumer-
ate, winner;] will only receive a single copy of M (s; ) from
processes with identifier j, just as p; does in round r of «.
If G () is not correct, then by definition, winner; +1 has the
same message labelled with identifier j at the end of the run-
ning round of phase r of oy as p; receives in round r of «
(if any).

Now consider any correct group G (i). In the selection
round of phase r + 1, winnerl.r+1 sends 8(s/, R/) and all
processes in group G (i) choose this as their new state s; +
At the end of round r in &, p; updates its state to 5(s;, R)).
This guarantees property 2 holds for r + 1.

This completes the inductive construction of execution ¢
satisfying property 1 and property 2.

Since A is a synchronous Byzantine agreement algorithm
that tolerates t Byzantine failures, all correct processes decide
some value x in «e. It follows from property 2 thatin o g, for all
correct groups G (i), decide(sl.’”“””””d”l) =x.As ¥ > 3t,
at least 2t + 1 groups G (i) are correct and all processes
in these groups send x in the deciding round. Thus, each
correct process in oy decides x, even if it is in a group with a
Byzantine process. Thus, the agreement property is satisfied.
For validity, if all correct processes in oy have the same input
value v then all correct processes in « also have input value
v, by property 1, and all correct processes in & and oy must

output v. ]

Proposition 1 states that ¢ > 3¢ identifiers are required to
solve synchronous Byzantine agreement, even if processes
are numerate. Proposition 2 states that £ > 3¢ identifiers are
sufficient, even if processes are innumerate. Thus, we have
the following theorem.

Theorem 3 Synchronous Byzantine agreement is solvable if
and only if £ > 3t.

4 Partially synchronous model

Here we prove that having ¢ > 3’% (and n > 3t) is nec-
essary and sufficient for solving Byzantine agreement in
a partially synchronous system, regardless of whether the
processes are numerate or innumerate. At most n — £ iden-
tifiers belong to more than one process, so the number of
identifiers that are assigned only to a single process is at least
¢ — (n —¢) = 2¢ — n. Thus, our condition that £ > m%
(or, equivalently, 2¢ — n > 3¢) means that at least 3¢ + 1 of
the identifiers must each be assigned to a single process. We
shall see in Sect. 4.2 that having this many non-homonym
processes will be crucial in proving the correctness of the
algorithm that we design.
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Execution o

Fig. 4 The system used in the proof of Proposition 4

4.1 Impossibility

We prove the necessity of the condition £ > "'53’

using a par-
titioning argument. We show that if there are too few identi-
fiers, and messages between two groups of correct processes
are not delivered for sufficiently long, then the Byzantine
processes can force correct processes in the two groups to
decide different values.

Proposition 4 Partially synchronous Byzantine agreement
is unsolvable even with numerate processes if £ < %ﬁ

Proof Byzantine agreement is impossible when ¢ < 3¢,
even in the fully synchronous model, by Proposition 1. So,
it remains to show that Byzantine agreement is impossible
when{ > 3tand ¢ < %3’ To derive a contradiction, assume
a Byzantine agreement algorithm 4 does exist for such a
system. In our proof, we construct three executions of this
algorithm, «, B and y.

In o, process identifiers are assigned as shown in the upper
left portion of Fig. 4. In this diagram, a process labelled A; (v)
has identifier i and input v and runs the algorithm A correctly,
and a process labelled 3; has identifier i and is Byzantine.
Note that there are n processes in total. The ¢ Byzantine
processes send no messages and all messages sent by correct
processes are delivered. All correct processes have input 0 in
o and must therefore decide 0 by some round 7.

m

~———/’ processes

Execution

}n—2é+3t

Execution g is defined similarly, as shown in the upper
right portion of Fig. 4. Again, the r Byzantine processes send
no messages and all messages sent by correct processes are
delivered. All correct processes have input 1, and must there-
fore decide 1 by some round rg.

In y, the n processes are assigned identifiers and input
values as shown in the bottom half of Fig. 4. The identi-
fiers 3t 4+ 1,37 4+ 2, ..., £ are each assigned to two correct
processes, and the identifier 1 is assigned to n — 2¢ 4 3¢ cor-
rect processes and to one Byzantine process. (Here, we use
the assumption that ¢ < %ﬁ so that n — 2¢ + 3¢t > 0).
The ¢ Byzantine processes send no messages to the cor-
rect processes with identifier 1. The r Byzantine processes
By, By, ..., B; send to each other correct process with input 0
the same messages as that process receives in « and they send
to each correct process with input 1 the same messages as that
process receives in S. (This requires the ability of Byzantine
process B3; to send more than one message to each recipient
per round). All messages sent across the edges shown in the
diagram are delivered. All other messages are not delivered
for the first 7 = max(ry, rg) rounds. The correct processes
running A;41(0), ..., A (0) and Az;11(0), ..., A (0) can-
not distinguish y from « for the first 7 rounds, so they must
decide O by round r. Similarly, the correct processes with
input 1 cannot distinguish y from g for the first » rounds, so
they must decide 1 by round r. This contradicts the assump-
tion that A satisfies agreement. O
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4.2 Algorithm

In this section, we describe an algorithm that solves Byzan-
tine agreement in the partially synchronous model when
> %ﬁ to prove the following proposition.

Proposition 5 Partially synchronous Byzantine agreement
is solvable even with innumerate processes if £ > %31 and

n > 3t.

Our algorithm is based on the algorithm given by Dwork,
Lynch and Stockmeyer [10] for the classical case where
n = ¢, with several novel features. Generalizing the algo-
rithm is not straightforward. Some of the difficulty stems
from the following scenario. Suppose two correct processes
share an identifier and follow the traditional algorithm of
[10]. They could send very different messages (for exam-
ple, if they have different input values), but recipients of
those messages would have no way of telling apart the
messages of the two correct senders, so it could appear to
the recipients as if a single Byzantine process was sending
out contradictory information. Thus, the algorithm has to
guard against inconsistent information coming from correct
homonym processes as well as malicious messages sent by
the Byzantine processes.

We think of an execution as being divided into super-
rounds, where each superround consists of two consecutive
rounds. In the partially synchronous model, only a finite
number of messages are not delivered. Let 7 be the first
superround such that all messages sent during or after super-
round 7 are delivered. We begin with an authenticated broad-
cast primitive based on [23]. This primitive allows processes
to perform Broapcast(m) commands. Once a process
receives sufficient evidence that a process with identifier i has
performed a BRoapcAsT(m), it performs an AcCEPT(m, i)
action. This is guaranteed to happen for broadcasts from
correct processes after superround 7. (In the case where a
process with identifier i is Byzantine, processes will at least
eventually agree on which messages to accept from identifier
i). Our version of authenticated broadcast for homonymous
systems satisfies the following three properties.

1. Correctness: If a correct process with identifier i per-
forms BRoapcasT(m) in superround » > T, then every
correct process performs AccepT(m, i) during super-
round r.

2. Unforgeability: If all processes with identifier i are cor-
rect and none of them perform BRoapcast(m), then no
correct process performs Accept(m, i).

3. Relay: If some correct process performs AcCCePT(m, i)
during superround r, then every correct process performs
AccEepT(m, i) by superround max(r + 1, T').
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In the following descriptions of algorithms, when we say
processes with k different identifiers have performed some
action or that messages with k different identifiers have been
received, we mean at least k different identifiers.

Proposition 6 It is possible to implement authenticated
broadcasts satisfying the correctness, unforgeability and
relay properties in the basic partially synchronous model,
provided £ > 3t.

Proof The implementation is a straightforward generaliza-
tion of the ones given in [10,23] for systems with unique
identifiers. To perform BrRoaDcAsT(m) in superround r, a
process sends a message (init m2) in the first round of super-
round r. Any process that receives this message from identi-
fier i sends (echo m, i) in the following round, which is the
second round of superround r, and in all subsequent rounds.
In each round after superround r, any process that has so far
received (echo m, i) from £ — 2¢ distinct identifiers sends a
message (echo m, i). If, at any time, a process has received
the message (echo m, i) from ¢ — ¢ distinct identifiers, the
process performs ACCEPT(m, i).

Correctness: If a correct process with identifier i performs
BroaDpcAsT(m) in some superround » > T, then all correct
processes send (echo m, i) messages in the second round of
superround r. All of these messages will be delivered and
they will come from at least ¢ — ¢ different identifiers, so all
processes will perform Accept(m, i) in the second round of
superround r.

Unforgeability: Suppose all processes with identifier i are
correct and none perform BrRoapcasT(m). The only reason
a correct process will send a message (echo m, i) is if it has
previously received (echo m, i) messages from £ — 2t > ¢
identifiers, one of which must have been sent by a cor-
rect process. Thus, no correct process can send the first
(echo m, i) message. So, no process can receive (echo m, i)
from £ — ¢t > t identifiers. It follows that no correct process
performs Accept(m, i).

Relay: Suppose some correct process p performs ACCEPT
(m, i) during superround r. Then, p has received (echo m, i)
messages from ¢ — ¢ different identifiers. At least £ — 2¢
of those messages were sent by correct processes. Each of
those £ — 2t processes continue to send (echo m, i) in every
round after superround r. Thus, in superround max(r +1, T')
every correct process sends (echo m,i) and all of these
messages are delivered, so every correct process performs
Accerr(m, ). O

We now describe the Byzantine agreement protocol,
shown in Fig. 5, that we use to prove Proposition 5. Whenever
a correct process sends a message, it sends it to all processes.
The execution of the algorithm is broken into phases, each
of which lasts four superrounds. Recall that each superround
consists of two rounds. (In fact, in the fourth superround of
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Code for process with identifier ¢ and input v;,,

1 ph=0 /* phase number */
2 lock= L1 /* locked value (initially none) */
3 lockphase =0 /* phase when lock was last set to a non-L value */
4 proper = {vin} /* values known to satisfy validity */
5 loop

6 /* beginning of superround 1 of phase */

7 if lock = L then BROADCAST(({propose proper, ph))

8 else if lock € proper then BROADCAST((propose {lock}, ph))

9 /* beginning of superround 2 of phase */

10 send (proper) to all other processes /* round 1 of superround 2 */
11 if messages received from ¢ + 1 different identifiers in this round contain some value v then add v to proper

12 if there is any set of 2t + 1 messages received in this round from different identifiers such that there is no value

13 that appears in at least ¢t + 1 of them then add all possible input values to proper

14 if 4 = (ph mod ¢) 4+ 1 and there is some value v such that the process has performed AccepT((propose Vj,ph), )

15 for ¢ — t different identifiers j, where V} is a set that contains v

16 then choose one such v and send (lock v, ph) to all processes /* round 2 of superround 2 */
17 /* beginning of superround 3 of phase */

18 if there is some value v for which the process received (lock v, ph) from identifier (ph mod ¢) + 1 and

19 has performed AccepT(({propose V;,ph),j) for £ — ¢ different identifiers j where Vj is a set that contains v

20 then choose one such v and perform BROADCAST({vote v, ph)) /* superround 3 */
21 /* beginning of superround 4 of phase */

22 if for some v, the process has performed Accepr({(vote v,ph), ) for ¢ — ¢t different identifiers j

23 then choose one such v and set lock = v and lockphase = ph

24 send (ack v,ph) to all processes /* round 1 of superround 4 */
25 if for some v the process has received (ack v,ph) from ¢ — ¢ different identifiers in this round and

26 has performed AccepT(({propose Vj,ph),j) for £ — ¢ different identifiers j where Vj is a set that contains v

27 then decide v (but continue running the algorithm)

28 /* after end of superround 4 of phase */

29 if for some v # lock and ph’ > lockphase, the process has performed Accept((vote v,ph’), ) for £ —t different identifiers j
30 then lock = L

31 ph =ph+1

32 end loop

Fig. 5 Byzantine agreement algorithm for the partially synchronous model

each phase, the agreement algorithm only uses the first round,
but we still consider allocate two rounds to the superround
for consistency with the authenticated broadcast mechanism,
which is running in the background). Processes assigned the
identifier (ph mod £) + 1 are called the leaders of phase ph.
The algorithm uses the authenticated broadcast primitive of
Proposition 6, which is possible because £ > %3’ > 3t.

We first describe how each process keeps track of a set of
proper values, which are values that it knows can be output
without violating validity. Initially, only the process’s own
input value is in this set. This set is updated in the second
superround of each phase. Each process sends its proper set
to all others. If a process receives proper sets containing v
in messages from ¢ + 1 different identifiers, it adds v to its
own proper set at line 11: at least one correct process must
already have v in its proper set, so it is safe to add it. Also,
if a process has received proper sets from 2¢ + 1 different
identifiers and no value appears in ¢ + 1 of them, the process
adds all possible input values to its own proper set at line 13.
This can be done because ¢ 4 1 of the proper sets are from
correct processes, so there are at least two different inputs to
correct processes.

Now, we describe the main sequence of events that takes
place during each phase. In superround 1 of each phase, each
process performs a BRoapcasT of a proposal containing the
setof values it would be willing to decide, if any (line 7 and 8).
The process never proposes a value that is not in its proper
set. Moreover, if the process has already locked a value, as
described below, it does not propose any other value. In super-
round 2 of the phase, each phase leader chooses a value that
appears in proposals that the leader has accepted from ¢ — ¢
different identifiers (if such a value exists) and sends out a
request for processes to lock that value (line 16). Then, in
superround 3 of the phase, all processes vote on which lock
message to support, using a BRoabpcast (line 20). In super-
round 4 of the phase, if a process AccEPTs votes for a par-
ticular value v that comes from ¢ — ¢ different identifiers, the
process locks that value v (line 23) and sends an (ack v) mes-
sage (line 24). Then, if a process receives £ — t ack messages
for a value (and that value has been proposed by processes
with ¢ — ¢ different identifiers in this phase), then the process
can decide that value (line 27). Finally, a process releases an
old lock (line 30) if it has accepted enough votes for a later
lock request by the end of the fourth superround of the phase.
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To cope with homonyms, our algorithm differs from the
original algorithm of [10] in the following three important
ways. (1) The new algorithm uses a set of processes with
£ — t different identifiers as a quorum (e.g., for vote mes-
sages). The key property of these quorums is that any two
such sets must both contain a process that is correct and does
not share its identifier with any other process, as shown in
Lemma 7, below. (2) The vote messages are needed to ensure
agreement in the case where several leaders ask processes to
lock different values, something which could not occur in the
original algorithm of [10], since each phase in that algorithm
has a unique leader. (3) We modify the criterion for deciding.
In the original algorithm of [10], only the leader of a phase
could decide during that phase. In a system with homonyms,
this could prevent a correct process that shares its identifier
with a Byzantine process from deciding.

We begin by proving the property of quorums used by the
algorithm.

Lemma 7 Assume { > %% If A and B are sets of identi-
fiers and |A| > £ —t and |B| > £ — t, then A N B contains
an identifier that belongs to only one correct process and no
Byzantine processes.

Proof At most n — £ identifiers belong to more than one
process. At most ¢ identifiers belong to Byzantine processes.
Thus, any set that has more than n — € + ¢ identifiers must
contain an identifier that belongs to only one correct process
and no Byzantine processes. Since 2¢ — 3¢t > n, we have
|ANB| =[A|+[B|-|AUB| = |A|+|B| - £ = (£—1)+
L—1t)—L=20—-3t—L+t>n—L+t. O

In the original algorithm of [10], each phase has a unique
leader. In our algorithm, there may be several leaders. The
new voting superround ensures this cannot cause problems,
as shown in the following lemmas.

Lemma 8 If the messages {ack v, ph) and {ack v', ph) are
sent by correct processes, then v = v'.

Proof Suppose a correct process p sends (ack v, ph)
and a correct process p’ sends (ack V', ph). Accord-
ing to line 22, there is a set A of ¢ — ¢ identifiers j
for which p performs Accept({vote v, ph), j). Similarly,
there is a set B of ¢ — r identifiers j for which p’ per-
forms Accepr({vote v, ph), j). By Lemma 7, A N B
contains an identifier j that belongs to only one correct
process and no Byzantine processes. By unforgeability,
the correct process with identifier j must have performed
Broabpcast({vote v, ph)) and BRoapcast({vote v, ph)).
Thus, v =v'. O

Lemma 9 If two correct processes decide during the same
phase, then they decide the same value.
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Proof Suppose two correct processes p and p’ decide values
v and v’, respectively, during some phase ph. Then, process
p received (ack v, ph) from £ —t > ¢ different identifiers, so
some correct process must have sent (ack v, ph). Similarly,
some correct process must have sent (ack v’, ph). By Lemma
8, v="1. O

The remainder of the proof of correctness of the algorithm
is similar to the proof for the original algorithm of [10]. The
following lemma is used to ensure agreement between values
decided on line 27 in different phases.

Lemma 10 Suppose there is a value v and a phase ph
such that processes with £ — t different identifiers send an
(ack v, ph) message in phase ph. Then, at all times after
phase ph, each correct process that sent (ack v, ph) has
lock = v.

Proof To derive a contradiction, suppose the claim is false.
Let A be the set of ¢ — ¢ identifiers of the processes that
send an (ack v, ph) message in phase ph. Consider the
first time the claim is violated: some correct process p that
sent an (ack v, ph) message changes its lock to a value
different from v at line 23 or 30. In either case, there is
some v # v and ph’ > ph such that p has performed
Accept({vote v', ph'), j) for £ — ¢t > 1t different iden-
tifiers j, at least one of which must belong only to cor-
rect processes. By unforgeability, some correct process per-
formed BRoapcast({vote v/, ph’)). That process must have
performed Accept({propose V;, ph'), j) for £ — t different
identifiers j with v € V;. Let B be this set of identifiers.
By Lemma 7, some identifier j € A N B belongs to only
one correct process and no Byzantine processes. Let g be
the correct process with this identifier j. Since ¢’s identifier
isin A, g sent (ack v, ph) in phase ph. Since g’s identifier
is in B, it follows from unforgeability that g performed a
Broapcast((propose V;, ph')) with v' € V;. According
to line 7 and 8, this is possible only if ¢’s lock variable
did not have the value v at the beginning of phase ph’. This
contradicts our assumption that each correct process that sent
an (ack v, ph) message in phase ph (including ¢g) keeps the
value v in its lock variable from the time it executes line 24
of phase ph until it executes line 23 of phase ph’. O

The following lemmas are useful for proving termination.
Recall that all messages sent during or after superround T
are guaranteed to be delivered.

Lemma 11 At the end of any phase phs that occurs after
superround T, any two correct processes that have non-_L
lock values have the same lock value.

Proof Let p; and p; be any two correct processes. Suppose
the values of their lock variables are v; # L and vy # L at
the end of phase ph3. We shall prove that v; = v;. Let ph;



Byzantine agreement with homonyms

331

and ph, be the values of the lockphase variable of processes
p1 and p; at the end of phase ph3z. Then, ph; < ph3 and
pha < ph3. If phy = phy, then vi = v, by Lemma 8. So
for the rest of the proof assume, without loss of generality,
that phy < phs.

Before process p; set its lock variable to v, in phase phs,
it performed Accept((vote vy, pha), j) for £ — t different
identifiers j by the end of the third superround of phase ph;.
By the relay property of the authenticated broadcasts, pi
will accept all of these messages by the end of the fourth
superround of phase ph3 > ph». Thus, if p1’s lock is not v
at line 29 of phase phs, p; would set its lock value to L at
line 30 of phase phs. However, we assumed that p1’s lock
value at the end of phase ph3is v; # L, so v; must be equal
to vy. O

Lemma 12 Let p be a correct process. Let ph be a phase
such that (ph mod £) + 1 is the identifier of p and phase
ph — 1 occurs after T. Then, p will send a lock message in
superround 2 of phase ph.

Proof By Lemma 11, at most one non-_L value will be appear
in the lock variables of correct processes at the end of phase
ph — 1. We consider two cases.

Case 1: the lock variable of some correct process ¢ is
non-_L at the end of phase ph — 1. Let v and ph, be the
values of ¢’s lock and lockphase variables at the end of
phase ph — 1. Then, ph, is smaller than ph and g per-
formed Accept({vote v, phy), j) for £ —t > ¢ differ-
ent identifiers j, including some identifier that does not
belong to any Byzantine process. Thus, some correct process
s performed Broapcast({(vote v, phy)). So, s performed
Accept({propose V;, phy), j) for £ —t > 2t + 1 differ-
ent identifiers j with v € V;. At least ¢ + 1 of those iden-
tifiers do not belong to any Byzantine process. Therefore,
correct processes with # 4+ 1 different identifiers performed
Broabpcast({propose V;, phy)), which means v is in the
proper set of correct processes with at least ¢ + 1 differ-
ent identifiers at the beginning of phase ph, (and hence at
the beginning of phase ph — 1, since proper sets can only
grow). In superround 2 of phase ph — 1 these processes will
send proper sets containing v. All of these messages will be
delivered, since ph — 1 is after superround 7. Thus, by the
end of phase ph — 1, v will be in the proper set of every
correct process. It follows from Lemma 11 that, in phase
ph,every correct process will BRoabcasT ({propose V, ph))
with v € V, and process p will be able to find a value that
it can send in a lock message during superround 2 of phase
ph.

Case 2: the lock variable of every correct process is L at
the end of phase ph — 1. If there are ¢ 4 1 correct processes
with the same input value, line 11 of phase ph — 1 will ensure
that value is in the proper set of all correct processes. Oth-
erwise, consider a set of 2¢ 4+ 1 messages received by some

correct process ¢ in phase ph — 1 from correct processes
with 2t 4+ 1 different identifiers: no value will appear in
t + 1 of them, so g will add all possible input values to
its proper set at line 13. Either way, there exists a value
that will appear in the propose message that is broadcast by
every correct process in phase ph, so p will be able to find
a value that it can send in a lock message during superround
2 of phase ph. O

We are now ready to prove Proposition 5 by showing the
algorithm in Fig. 5 solves Byzantine agreement.

Proof We prove each of the three correctness properties of
the algorithm in Fig. 5 in turn.

Validity: Suppose all correct processes have the same
input value, vo. Then no correct process ever adds any other
value to its proper set. So, a correct process can perform a
Broabpcast({propose V, ph)) message only if V = {vp}. It
follows from unforgeability that a correct process can per-
form an Accept({propose V, ph), j) only if V. = {vg} or
a Byzantine process has identifier j. Thus, according to the
test on line 26, no correct process can decide a value different
from vg since £ — t > t.

Agreement: If no correct processes ever decide, agree-
ment is trivially satisfied, so we consider executions where
at least one correct process decides.

Let phase ph be the first phase during which some cor-
rect process decides. By Lemma 9 there is a unique value v
that correct processes decide during phase phi. Let pj be a
correct process that decides vy during phase phj. Then p;
received (ack vy, phi) messages from ¢ — ¢ different identi-
fiers. Let A be this set of £ — ¢ identifiers.

Suppose some correct process p; decides a value vs
in some phase ph, > phi. We shall prove that v, =
vi. Before deciding vy, process p, must have performed
Accept({propose Vi, phy), k) with vy € Vi for £ — ¢ dif-
ferent identifiers k to satisfy the test on line 26. Let B be
this set of ¢ — ¢ identifiers. By Lemma 7, some identifier
k € AN B belongs to only one correct process and no Byzan-
tine processes. Let ¢ be the correct process with this identifier
k. Since k € A, g sent an (ack vy, ph1) message in phase
phi. By Lemma 10, the lock variable of g equals v; at the
beginning of phase phy. Thus, the process with identifier
k does not perform BRoapcast({propose Vi, ph;)) unless
Vi = {v1}. By unforgeability, no correct process can per-
form Accept({propose Vi, ph2), k) unless Vi, = {v1}. Since
k € B,process p did perform Accept({propose Vi, ph3), k)
and vy € Vj. Thus, v = v;. This completes the proof of the
agreement property.

Termination: There are at least 2¢ 4 1 correct processes
that do not share their identifier with any other process. Let
p be one such process and let ph be a phase such that
(ph mod ¢) + 1is p’sidentifier and phase ph — 1 occurs
after 7. By Lemma 12, there is some value v such that p
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sends a (lock v, ph) message in superround 2 of phase ph.
Every correct process receives this message, and no other
lock messages are received from a process with identifier
(ph mod )+ 1 in this phase. According to the test in line
14, p must have performed Accept({propose V;, ph), j)
for £ —t > t different identifiers j with v € V; during
superround 1 of phase ph. By the relay property, all cor-
rect processes must have performed these AccepTactions by
the end of superround 2 of phase ph. Thus, every correct
process performs Broabpcast({vote v, ph)) during super-
round 3 of phase ph and all correct processes accept this
broadcast. Thus, all correct processes send (ack v, ph) in
round 1 of superround 4 of phase ph. Each correct process
receives all of these messages and decides v. O

Combining Proposition 4 and 5, and the classical result
that Byzantine agreement is impossible when n < 3¢ even if
£ = n, yields the following theorem (for numerate or innu-
merate processes).

Theorem 13 Partially synchronous Byzantine agreement

is solvable if and only if £ > "23’ and n > 3t.

5 Restricted Byzantine processes

We now consider the effect of restricting the Byzantine
processes so that each Byzantine process can send at most
one message to each recipient in each round. We prove that
this restriction reduces the number of identifiers needed to
reach agreement if processes are numerate but does not help
if processes are innumerate.

5.1 Numerate processes

First, we consider the model where processes can count
copies of identical messages. We prove the following two
theorems for this model.

Theorem 14 Synchronous Byzantine agreement is solv-
able with numerate processes against restricted Byzantine
processes if and only if £ > t and n > 3t.

Theorem 15 Partially synchronous Byzantine agreement is
solvable with numerate processes against restricted Byzan-
tine processes if and only if £ > t and n > 3t.

Both of these theorems follow from Proposition 16 and 18,
below. The impossibility result of Proposition 16 is proved
using a valency argument, the proof technique introduced by
Fischer, Lynch and Paterson [12].

Proposition 16 Synchronous Byzantine agreement is unsolv-
able with numerate processes against restricted
Byzantine processes if £ <t orn < 3t.
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Proof 1Tt is a classical result that synchronous consensus is
impossible if n < 3¢, even if each process has a unique iden-
tifier [20]. We show that it is impossible when ¢ < ¢. To
derive a contradiction, assume that there exists an algorithm
A that solves Byzantine agreement with ¢ < ¢. In the argu-
ment below, we consider only executions of 4 with some
fixed set of £ Byzantine processes, chosen so that each of the
£ identifiers is held by one Byzantine process.

We consider configurations of the algorithm A at the end
of a synchronous round. Such a configuration can be com-
pletely specified by the state of each process. A configuration
C is v-valent if, starting from C, the only possible decision
value that correct processes can have is v. C is univalent if it
is v-valent for some v. C is multivalent if it is not univalent.

The following lemma encapsulates a Byzantine agent’s
ability to influence the decision value.

Lemma 17 Let C and C' be two configurations of A such
that the state of only one correct process is different in C
and C'. Then, there exist executions o and o that start from
C and C', respectively, which both produce the same output
value.

Proof Let p be the correct process whose state is different
in C and C’ and let i be the identifier assigned to p. Let s
and s’ be the state of p in C and C’, respectively. Let b be a
Byzantine process that has identifier i.

Let « be the execution from C in which b starts in state s’
and follows p’s algorithm, and all other Byzantine processes
send no messages. Let o’ be the execution from C’ in which
b starts in state s and follows p’s algorithm, and all other
Byzantine processes send no messages. No correct process
other than p can distinguish between « and o/, since p and b
send the same messages in o as b and p send in ’. Thus, each
correct process other than p must output the same decision
inoand o’ o

The remainder of the proof of Proposition 16 is a standard
valency argument. We use Cy to denote a configuration at
end of round k. From Cy, the system can reach different
possible configurations Ci1. In an execution of algorithm
A, the configuration Cyy; is completely determined by (1)
Cy and (2) the messages sent by the Byzantine processes to
the correct processes in round k 4 1. (The messages sent by
correct processes are determined by Cy and A).

We first show that there is a multivalent initial configura-
tion. For0 < j <n — ¢, let Cé be the initial configuration
where the first j correct processes have input 1 and the rest
of the correct processes have input 0. By validity, C8 is 0-

valent and Cgfe is 1-valent. Choose j so that Cé is O-valent

and Cé“ is not O-valent. Only one correct process is in a
different state in these two initial configurations, so there is
an execution from Cé“ that decides 0, by Lemma 17. Thus,

C} *+1 s multivalent.
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Next, we show that every multivalent configuration of A
has a multivalent successor configuration. Suppose this claim
is false to derive a contradiction. Then, there exists a multiva-
lent configuration Cy of A such that every successor configu-
ration of Cy is univalent. Thus, some successor configuration
Cg1 is v-valent and some successor configuration Cj, 4118
v/-valent, where v # v/. For 0 < j < n — ¢, let Cé{+1 be
the successor of Cy that is reached if, in round 6 + 1, the
Byzantine processes send the same messages to the first j
correct processes as they do to make the system reach Cj, I
and send the same messages to the rest of the processes as
they to make the system reach Cyy;. Then, Cg—H = Cyy1
is v-valent and Cg;f = Cj, is v'-valent. Choose j so that

. e
Cé 41 Is v-valent and Céil is not v-valent. Only one correct
process is in a different state in these two configurations, so

by Lemma 17, some execution from Cé’_tll decides v. Thus,

Céill is multivalent, contradicting the assumption.
Thus, starting from the multivalent initial configuration
of A, we can construct an infinite execution consisting only
of multivalent configurations. No correct process can ever
decide in this execution, which violates the termination con-
dition of consensus, so algorithm A cannot exist. This con-
tradiction completes the proof of Proposition 16. O
Next, we give an algorithm to prove the following propo-
sition.

Proposition 18 Partially synchronous Byzantine agreement
is solvable with numerate processes against restricted Byzan-
tine processes if £ > t and n > 3t.

The algorithm used to prove this proposition is similar
to the one presented in Sect. 4.2. In Sect. 5.1.1, we first
introduce a more powerful version of authenticated broad-
casts, which can be implemented in systems with numerate
processes against restricted Byzantine processes. Then, we
use the broadcasts to give the Byzantine Agreement algo-
rithm in Sect. 5.1.2.

5.1.1 Authenticated broadcasts with multiplicities

In this more powerful version of authenticated broadcasts,
AccEepractions have two extra parameters indicating the
superround in which the message was broadcast and an
estimate of the number of correct processes that performed
the broadcast in that round. More precisely, this estimate is
greater than or equal to the number of correct processes that
broadcasted the message and does not exceed the number
of correct broadcasters by more than the actual number of
Byzantine processes in the execution. Furthermore, all cor-
rect processes eventually agree on the multiplicity of each
message.

The computation proceeds in superrounds. Superround »
is composed of the two rounds 27 and 2r 4+ 1. Our authen-

ticated broadcast is defined by two primitives: BRoADCAST
(m), where m is a message, and Accept(m, i, r, ) where o
is a positive integer. In the AccepT action, « is an estimate
of the number of processes with identifier i that broadcasted
m in superround r.

Consider any execution that uses authenticated broad-
casts. Let T be the first superround such that all messages
sent during or after superround 7' are delivered. Let f; be
the number of Byzantine processes with identifier i. (The f;
values are used only in the specification of the authenticated
broadcast and are not known by the processes). The following
properties define the correctness of the authenticated broad-
casts. We use * as a wildcard, indicating that one field of an
action or message can take on any value.

1. Correctness: If o > 0 correct processes with identifier
i perform BRoaDcAsT(m) in some superround » > T
then every correct process performs Accept(m, i, r, a')
with ' > « during superround r.

2. Relay: If a correct process performs Accept(m, i, r, &)
in superround ' > r then every correct process per-
forms Accepr(m,i,r, a’) with &’ > « in superround
max(r’, T) + 1.

3. Unforgeability: If the number of correct processes with
identifier i that perform BROADCAST (m) in superround r
is a, and some correct process performs Accept (m, i, r,a’)
then o’ < a + f;.

4. Unicity: for each m, i and r, each correct process per-
forms at most one AcCCEPT(m, i, r, %) action per super-
round.

We give an implementation of this version of authenticated
broadcast in Fig. 6. In the algorithm, we call a message sent
in round R valid if

— it contains at most one tuple whose first element is init,
if R is even (and none if R is odd),

— for each m,h and r, it contains at most one tuple
(echo, m, h, r, ), and

— in each tuple (echo, m, h, r, &), r < L%J and a > 0.

All messages sent by correct processes are valid. Before prov-
ing that the algorithm has the required properties, we give a
brief overview of the intuition behind the argument.

To initiate a BRoADcAST(m) in superround r, a process
with identifier i sends an (init, m) message in round 2r
(line 4). Each process maintains an estimate a[m, h, r] of
how many processes with identifier 4 performed broadcasts
of message m in superround r. The algorithm maintains an
invariant that the estimates exceed the true number by at most
fn,inorder to guarantee unforgeability. In round 2r, this esti-
mate is simply the number of copies of (init, m) messages the
process received from processes with identifier 4 (line 12).
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Code for process with identifier ¢« € {1,2,...,¢}

1 a[m,h,r] =0 for all h,m and r

2 for R=0to oo

3 M=10

4 if R is even and the process wishes to BROADCAST(m) in this superround then M = M U {(init,m)}

5 for all h € {1,2,...,¢}, m € possible messages, and k € {0,..., \_%J}

6 if a[m, h, k] # 0 then M = M U {(echo,m, h,k,a[m, h, k])}

7 end for

8 send (M) to all processes

9 Let V be the multiset of valid messages received in the round

10 for all h € {1,2,...,¢} and m € possible messages

11 if R is even then

12 a[m, h, R/2] = number of occurrences of (init,m) in messages of V received from processes with identifier h
13 for all k € {1,... [ £}

14 Let W be the multiset of tuples (echo, m, h, k, *) that occur in V'

15 if |W|>n — 2t then

16 Let a1 be the maximum « such that W has at least n — 2t occurrences of (echo,m,h,k,a’) with o/ > «
17 a[m, h, k] = max(a[m, h, k], 1)

18 if Ris odd and |W|>n —t then

19 Let ap be the maximum « such that W has at least n — ¢ occurrences of (echo,m, h,k,a’) with o/ > «
20 AccepT(m, h, k, a2)

21 end for

22 end for

23 end for

Fig. 6 Authenticated broadcast primitive for numerate processes and restricted Byzantine processes

In each round, each process sends the non-zero estimates in
its array a to the other processes (see line 6). Then, each
process updates its estimates based on these messages at line
17. The new estimate is the maximum multiplicity « that
is smaller than or equal to the estimates that were received
from n — 2t processes in this round. Since n — 2t > ¢, one
of these n — 2¢ estimates comes from a correct process, and
therefore exceeds the true number by at most f,, so updating
the estimate in this way preserves the invariant mentioned
above.

Finally, processes perform AccEept actions at line 20. By
choosing the maximum multiplicity oy that is less than or
equal to n — ¢ processes’ estimates, we ensure that the mul-
tiplicity chosen for the accept action is less than or equal to
some correct process’s estimate. Together with the invariant
mentioned above, this will be shown to guarantee unforge-
ability. The different thresholds (n — 2¢ and n — ¢) used in the
definitions of o1 and o, are used to ensure the relay property.
Suppose some process performs AccepT(m, h, k, az). Then
n — t processes sent estimates greater than or equal to oy,
and at least n — 2t of them must be correct. Those n — 2¢
correct processes will eventually deliver messages to all cor-
rect processes, causing all correct processes to increase their
estimates to at least «rp. Once that has occurred, all correct
processes will perform Accept(m, h, k, o) with o > 3.

‘We now provide the formal proof that the implementation
in Fig. 6 satisfies the specification of authenticated broadcast
whenn > 3t and £ > .
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Lemma 19 [facorrectprocess performs ACCEPT (x, *, %, o)
then o > 0.

Proof To perform AccEPT (%, %, %, ) in line 20, correct
processes consider only valid messages (echo, x, *, %, B)
with 8 > 0. O

The following lemma shows that a correct process’s esti-
mate a[m, h, k] of the number of processes with identifier
h that performed BroapcasT(m) in superround k is not
too large. This will be useful in proving the unforgeability

property.

Lemma 20 Let « be the number of correct processes with
identifier i perform BROADCAST(m) in superround r. If a
correct process q sends (echo,m, i, r, ag) inround R > 2r+1
then ay < o + f;.

Proof We prove this lemma by induction.

Base case (R = 2r 4 1): A process with identifier i sends
amessage containing (init, 72) in round 2r only if it performs
a BRoapcasT(m) in superround r or it is Byzantine. Thus,
each correct process receives at most & + f; valid messages
containing (init, m) from processes with identifier i in round
2r. Therefore, at the end of round 2r, each correct process
has a[m,i,r,] < o + f;. So, if a correct process g sends
(echo, m,1,r,ay) inround 2r + 1 then a; < o + f;.

Induction step: Let R > 2r + 1. Assume the lemma is
true for round R — 1. Let ¢ be a correct process. In line 17 of



Byzantine agreement with homonyms

335

round R — 1, process ¢ either did not change a[m, i, r] or set
it to 1. If a[m, i, r] did not change, then ¢ sends the same
tuple (echo, m, i, r, a,) that it sent in the previous round, and
the claim follows from the induction hypothesis. Otherwise,
suppose g changed a[m, i, r] to @1 in round R — 1. Then, g
must have received atleastn—2¢ > r-+1 messages containing
tuples of the form (echo, m, h, k, @’) with @’ > @1 in the
previous round. At least one of those messages was from a
correct process, which had &’ < a + f; by the induction
hypothesis. Thus, @1 < @ 4 f; and the claim follows. O

Let ITr(m, i, r) be the set of correct processes that send a
message containing (echo, m, i, r, x) inround R. The follow-
ing lemma will be useful in proving the correctness property
of our authenticated broadcasts.

Lemma 21 Let o be the number of correct processes with
identifier i that perform BROADCAST(m) in superround r >
T. In round R > 2r + 1, we have:

1. if a > 0 then every correct process is in Tl1g(m, i, r),

2. Mlg_1(m,i,r) CHg(m,i,r), and

3. for every q in I1g(m, i, r), if q sends (echo,m,i,r, ay)
in round R then a; > a.

Proof We prove this lemma by induction.

Base case (R = 2r + 1): Each of the « correct processes
with identifier i that perform BRoapcAsT () in superround r
sends (init, m) inround 2r. Since r > T, each correct process
receives all of these messages and setsa[m, i,r] > o. Ifa >
0, then each correct process sends (echo, m, i, r,a[m, i, r])
in round 2r 4 1, so (1) and (3) are satisfied. If « = 0, (1) is
trivially satisfied and (3) follows from Lemma 19. From the
algorithm, a correct process never sends (echo, m, i, r, x) in
round 2r, so Iy, (m, i, r) = (. Thus, we have (2).

Induction step: Let R > 2r + 1. Assume properties (1),
(2) and (3) are true for round R — 1. Property (2) for round
R follows from the fact that a[m, i, r] never decreases. Prop-
erty (1) for round R follows from (1) and (2) in the induc-
tion hypothesis. To prove (3), consider any process ¢ in
Mg(m,i,r).Ifa =0, (3) follows from Lemma 19. If « > 0,
then by the induction hypothesis, ¢ is in [Tg_;(m, i, ) and
q sent (echo, m, i, r, a(’l) with a’ > o inround R — 1. Since

g =
q’s value of a[m, i, r] can only increase, ¢ sends a message
(echo, m, i, r, az) in round R with a, > a; > a. O

Theorem 22 The algorithm in Fig. 6 ensures the correct-
ness, relay, unforgeability and unicity properties when n >
3tand { > t.

Proof We prove each of the four properties in turn.
Correctness: Suppose @ > 0 correct processes with iden-

tifier i perform BRoapcasT(m) in superround » > T. Each

of these processes sends (init, m) inround 27. By Lemma 21,

every correct process g sends (echo,m,i,r, ag) in round
2r + 1, with oy > a. All of these messages are delivered.
Thus, every correct process sets a» to a value greater than or
equal to « on line 19 and then performs Accept(m, i, r, &2)
at the end of superround r.

Relay: Assume some correct process p performs ACCEPT
(m,i,r,a) in superround r* > r. Then it must do so in
round 27" + 1 (since a correct process accepts only in
the second round of the superround). Process p must have
received at least n — ¢ messages containing tuples of the
form (echo, m, i, r,a’) with @’ > « in this round. Among
the n — ¢ senders of these messages, at least n — 2¢ are cor-
rect. Since the value stored in each sender’s a[m, i, r] vari-
able can only increase, each of these n — 2¢ correct senders
also sends a tuple of the form (echo, m, i, r, @’) with o’ > «
in the second round of superround max(r’, T'). All of these
messages are delivered. Thus, for each correct process, the
value of a[m,i,r] is at least « after the process executes
line 17 during the second round of superround max(r’, T).
Then, in superround max(r’, T) + 1, each of the n — ¢ cor-
rect processes sends a tuple of the form (echo, m, i, r, o)
with o’ > «. All of these messages are delivered. Thus, each
correct process performs Accept(m, i, r, ') witha’ > « in
superround max(r’, T) + 1.

Unforgeability: Assume that some correct process g per-
forms Accept(m, i, r, ') in superround r’. Then it received
at least n — ¢ messages containing tuples of the form
(echo, m, i, r, a”) witha” > o’. Becausen —t > t + 1, one
of those messages came from a correct process. By Lemma
20, the «” in that message is less than or equal to « + f;, so
o <a+ fi

Unicity: This follows directly from the code. O

5.1.2 Byzantine agreement algorithm

Our Byzantine agreement algorithm uses the authenticated
broadcasts described in Sect. 5.1.1. During superround r’, a
process p may perform Accept(m, i, r, ;). For each iden-
tifier i, o; is p’s estimate of the number of processes with
identifier i that performed BRoADCAST(m) in superround r.
We say that the number of witnesses that p has for (m, r) in
superround r’ is the sum, over all i, of the ;s that appear
in all Accepr(m,i,r, «;) actions that p performs during
superround r'. It follows from the properties of authenticated
broadcast that the number of witnesses will eventually be at
least as large as the actual number of correct processes that
performed BRoapcasT(m) in superround r and exceed that
number by at most 7.

In Sect. 4.2, we gave a partially synchronous Byzantine
agreement algorithm for the weakest model we consider: the
model had innumerate processes and unrestricted Byzantine
processes. The algorithm worked if £ > %3’ (and n > 31).
Here, we give a similar partially synchronous algorithm for
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Code for process with identifier : and input v;,

1 ph=0 /* phase number */
2 lock =1 /* locked value (initially none) */
3 lockphase =0 /* phase when lock was last set to a non-L value */
4 proper = {vin} /* values known to satisfy validity */
5 loop

6 /* beginning of superround 1 of phase */

7 if lock = L then V = proper else V = proper N {lock}

8 for each v € V do BROADCAST(propose v) /* superround 1 */
9 /* beginning of superround 2 of phase */

10 send (proper) to all other processes /* round 1 of superround 2 */
11 if messages received from ¢ 4 1 different processes in this round contain some value v then add v to proper

12 if there is any set of 2t + 1 messages received in this round from different processes such that there is no value

13 that appears in at least ¢ + 1 of them then add all possible input values to proper

14 if i = ph mod ¢+ 1 and there is some value v such that there are at least n — ¢t witnesses for (propose v, 4ph)

15 then choose one such v and send (lock v, ph) to all processes /* round 2 of superround 2 */
16 /* beginning of superround 3 of phase */

17 if there is some value v for which the process received (lock v, ph) from a process with identifier ph mod ¢ 4 1

18 and there are at least n — ¢t witnesses for (propose v, 4ph)

19 then deterministically choose one such value v and perform BROADCAST(vote v)

20 /* beginning of superround 4 of phase */

21 if for some v, there are at least n — t witnesses for (vote v, 4ph + 2)

22 then choose one such v and set lock = v and lockphase = ph

23 send (ack v,ph) to all processes /* round 1 of superround 4 */
24 if for some v, there are at least n — ¢ witnesses for (propose v,4ph) and the process received n — t messages (ack v, ph)
25 then decide v (but continue running the algorithm)

26 if for some v/ # lock and ph’ > lockphase, there are n — t witnesses for (vote v’,4dph’ + 2)

27 then lock = L

28 ph=ph+1

20 end loop

Fig. 7 Partially synchronous Byzantine agreement algorithm for numerate processes and restricted Byzantine processes

the stronger model where processes are numerate and the
Byzantine processes are restricted. (See Fig. 7). This new
version of the algorithm works under a weaker condition on
the number of identifiers: £ > ¢. The structure of the algo-
rithm in this section is identical to the algorithm of Sect. 4.2.
Here, we point out the important differences.

The algorithms of Sect. 4.2 and this section both use quo-
rums. The main difference between them is how the quorums
are defined. Often, a quorum is defined as a set of at least Q
processes, for some threshold Q. In Sect. 4.2, the ability of
unrestricted Byzantine processes to send multiple messages
meant that we could not define quorums in this way; instead,
a quorum was defined as a set of at least £ — ¢ identifiers.
The condition that £ > %3’ ensured that any two quorums
shared at least one identifier belonging to a single correct
process and no Byzantine processes, which was crucial to
ensure agreement. Now that we are considering numerate
processes and restricted Byzantine processes, it makes sense
to define a quorum in a more traditional way, by saying a
quorum consists of n — ¢ processes. Two such quorums are
guaranteed to share at least one correct process since n > 3t.

Asin Sect. 4.2, the proper variable stores a set of values
that can be output without violating validity and is updated
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similarly, except that processes count the number of incom-
ing messages containing a value, rather than the number of
different identifiers those messages came from. The condi-
tion that n > 3t ensures that a process could decide on a
value in its proper set without violating validity.

Both algorithms use rotating leaders: processes with iden-
tifier i are leaders of phase ph if ph mod ¢ = i. The con-
dition that ¢ > ¢ is used in the algorithm of this section to
guarantee that at least one identifier is assigned only to correct
processes, which is needed to prove termination. Thus, the
agreement and validity properties of our algorithm depend
on the condition n > 3¢, while termination is guaranteed by
the condition £ > t.

At line 19, processes deterministically choose one of the
values they receive in lock requests to vote for. This means
that the value chosen is uniquely determined by the set of
lock requests received. (For example, if the values come from
a totally ordered set, a process could choose the minimum
value among the lock requests received).

We now prove the correctness of the algorithm in Fig. 7.

Consider any execution of the algorithm. Let f; be the num-
14
ber of Byzantine processes with identifieri andlet f = > f;
i=1
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be the total number of Byzantine processes in the execution.
The following sequence of lemmas are analogous to the ones
proved in Sect. 4.2.

Lemma 23 [fsome correct process p has n —t witnesses for
(m, r) in some superround r’ > r, then at leastn —t — f cor-
rect processes performed BRoADCAST(m) in superround r.

Proof For each identifier i, let o; be the number of cor-
rect processes with identifier i that perform BRoADCAST ()
in superround r. By unforgeability, if p performs Accept
(m,i,r, o) in superround r’, then &/ < «; + f;. Thus, the
number of witnesses that p has for (m, r) in superround ' is
atmosthZl(ai+fi) = (Zle a;)+ f.Soif p has n—t wit-
nesses for (m, r) in superround r/, then Zle a >n—t—f,
as required. O

Lemma 24 [f some correct process has n — t witnesses
for (m,r) and some correct process has n — t witnesses
for (m',r"), then some correct process performed both
Broapcast(m) in superround r and BrRoapcasT(m') in
superround r’.

Proof By Lemma 23, there is a set A of atleastn —¢ — f cor-
rect processes that performed BRoapcasT(m) in superround
r and there is a set B of atleastn — — f correct processes that
performed BRoapcasT(m’) in superround r’. Since there are
n — f correct processes, |[A N B| = |A| + |B| — |AU B| >
nm—t—f)+(n—t—f)—(n—f)=n-2t—f >n-3t >0,
so there is at least one process in A N B. O

Lemma 25 [fthe messages (ack v, ph) and {ack V', ph) are
both sent by correct processes, then v = v'.

Proof Suppose a correct process p sends (ack v, ph) and a
correct process p’ sends (ack v’, ph). According to line 21,
process p has n —t witnesses for (vote v, 4 ph+2). Similarly,
p’ has n — t witnesses for (vote v/, 4ph + 2). By Lemma
24, there is at least one correct process that performed both
BroapcasT(vote v) and BRoapcasT(vote v’) in superround
3 of phase ph,sov =1’ O

Lemma 26 [ftwo correct processes decide in the same phase
then they decide the same value.

Proof Suppose two correct processes p and p’ decide values
v and v/, respectively, during some phase ph. Then process p
received n — t copies of (ack v, ph), so some correct process
must have sent (ack v, ph). Similarly, some correct process
must have sent (ack v’, ph). By Lemma 25, v = v'. O

Lemma 27 Suppose there is a value v and a phase ph such
that n — t processes send an {ack v, ph) message in phase
ph. Then, at all times after phase ph, each correct process
that sent (ack v, ph) has lock = v.

Proof Let A be the set of correct processes that sent
(ack v, ph) in phase ph. By the hypothesis |A| > n —2¢. To
derive a contradiction, suppose the claim is false. Consider
the first time the claim is violated: some correct process p
that sent an (ack v, ph) message changes its [ock to a value
different from v on line 22 or 27. In either case, there is some
v/ # v and ph’ > ph such that p has n — t witnesses for
(vote v, 4ph’+2). By Lemma 23, some correct process per-
formed BroapcasT(vote v’) in superround 4 ph’ + 2. That
process had n — r witnesses for (propose v, 4 ph’) in super-
round 2 of phase ph’. By Lemma 23 thereisaset Bofn—t— f
correct processes that perform Broapcast(propose v') in
superround 4 ph’. Since there are n — f correct processes,
[ANB|=|A|+|B|—|AUB|>n—-2)+(n—t— ) —
(n — f) = n — 3t > 0. Thus, there is at least one correct
process ¢ that sends (ack v, ph) in phase ph and performs
BroapcasT(propose v') in phase ph’. According to line 21,
this is possible only if ¢’s lock variable is not equal to v at
the beginning of phase ph’. This contradicts our assumption
that each correct process that sent an (ack v, ph) message in
phase ph keeps the value v in its [ock variable from the time
it executes line 17 of phase ph until it executes line 22 of
phase ph'. o

Lemma 28 At the end of any phase phs that occurs after T,
any two correct processes that have non-_L lock values have
the same lock value.

Proof Let p1 and p, be correct processes. Suppose the lock
values of p; and p» at the end of phase ph3 are v; # L and
vy # L. Let phy and phj be the lockphase values of p;
and p» at the end of phase ph3. Since, at the end of phase
phs3, correct processes have locks associated with phases ph
and phy, we must have phy < phsz and phy, < ph3. If
ph1 = ph» then v; = vy follows from Lemma 25. So for
the rest of the proof assume, without loss of generality, that
phy < phy. Before process p, changes its lock to vy in
phase phy, it has n — t witnesses for (vote vy, 4phy + 2).
By the relay property of the authenticated broadcast, p will
accept all of these messages by the end of phase ph3 and set
its lock to L(v1, phy), if vi # vy. Thus, v; must be equal
to vy. O

Lemma 29 Let p be a correct process. Let ph be a phase
such that ph mod £ + 1 is the identifier of p and phase
ph — 1 occurs after T. Then, p will send a lock message in
superround 2 of phase ph.

Proof By Lemma 28, at most one non-_L value will appear
in the lock variables of correct processes at the end of phase
ph — 1. We consider two cases.

Case 1: the lock variable of some correct process ¢ is
non-_L at the end of phase ph — 1. Let v and ph, be the
value of ¢g’s lock and lockphase variables at the end of
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phase ph — 1. Then, ph, < ph and ¢ has n — ¢ witnesses for
(vote v, 4ph, +2) in superround 3 of phase ph,. Thus, some
correct process performed Broapcast(vote v) in super-
round 4 ph,, + 2. That process must have n — t > 2¢ + 1 wit-
nesses for (propose v, 4 ph,). By Lemma 23, atleast 7 + 1 dif-
ferent correct processes performed BRoAaDCAST (propose v)
in superround 4 ph,,, which means v is in the proper set of
at least # 4 1 correct processes at the beginning of phase ph,.
Thus, by the end of phase ph — 1, v will be in the proper
set of every correct process. It follows that, in phase ph,
every correct process will perform BRoapcAsT(propose v)
in superround 4 ph, and process p will be able to find a value
that it can send in superround 2 of phase ph.

Case 2: the lock variable of every correct process is L at
the end of phase ph — 1. If there are r 4 1 correct processes
with the same input value, that value will be in the proper
set of all correct processes by the beginning of phase ph.
Otherwise, every value will be in the proper set of all correct
processes by the beginning of phase ph. Either way, some
value will appear in the propose message that is broadcast
by correct processes in phase ph, so p will be able to find a
value that it can send in superround 2 of phase ph. O

We can now prove Proposition 18 by showing the algo-
rithm in Fig. 7 solves Byzantine agreement for numerate
processes against restricted Byzantine processes when £ > ¢
and n > 3¢.

Proof We prove each of the three properties that Byzantine
agreement algorithms must satisfy.

Validity Suppose all correct processes have the same
input value vg. Then no correct process ever adds any other
value to its proper set. So, a correct process can perform
BroapcasT(propose v) only if v = wvp. Thus, accord-
ing to the test on line 17, a correct process can perform
Broapcast(vote v) only if v = wvg. Then, according to
the test on line 21, a correct process can send a message
(ack v, *) only if v = vg. Thus, no correct process decides a
value different from vg.

Agreement Let phase ph be the first phase during which
some correct process p decides. By Lemma 26, there is a
unique value v; such that correct processes decide during
phase phi. From the code, process p has received n — ¢
(ack v, ph1) messages. Let A be a set of n — 2¢ correct
processes that sent (ack vy, phy).

Suppose some correct process g decides a value v, in a
phase phy > phi. We shall prove that v; = v,. Process ¢
has n — t witnesses for (propose vz, 4ph>). By Lemma 23,
there is a set B of n — t — f correct processes that perform
BroaDpcasT(propose v) in superround 4 ph». Thus, there is
some correct process 1 € AN B.

Process & sent an (ack vy, ph1) in phase ph;. By Lemma
27, h’s lock variable is vy at the beginning of phase
pho. Thus, h performs only BRoabpcasT(propose vy) in
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superround 1 of phase phs. But h € B, so it performs
BroabcasT(propose vp) in superround 4 phy. Thus, vi = v

Termination As there are £ > ¢ identifiers, there is at least
one identifier, say k, such that all processes with this identifier
are correct. Let ph be a phase such that ph mod £ + 1 =
k and phase ph — 1 occurs after 7. By Lemma 29, each
process p; with identifier k sends a {lock v;, ph) message in
superround 2 of phase ph. According to the test in line 14,
pj must have n — t witnesses for (propose v;, 4ph) during
superround 1 of phase ph. By the relay property, all correct
processes must have n — ¢ witnesses for (propose v;, 4ph)
at the end of superround 2 of phase ph.

Each correct process receives the same set of lock mes-
sages from all processes with identifier k¥ and determinis-
tically chooses one of them at line 19. Let v be the value
chosen by all correct processes. All correct processes then
perform BrRoapcasT(vote v) in superround 4 ph + 2. Thus,
every correct process has n —t witnesses for (vote v, 4ph+2)
in superround 3 and according to the test on line 21, sends
(ack v, ph) in round 1 of superround 4 of phase ph. Every
correct process receives all these messages and has n — ¢
witnesses for (propose v, 4ph) in superround 3, and thus
decides v. O

If this Byzantine agreement algorithm is run in a synchro-
nous environment, the termination argument guarantees that
all correct processes will output a value by the end of the
first phase in which all phase leaders are correct. Thus, the
algorithm can always terminate after r + 1 phases, so it sat-
isfies the stronger termination condition that we require for
synchronous algorithms.

5.2 Innumerate processes

We first consider the case of innumerate processes when there
is full synchrony.

Theorem 30 Synchronous Byzantine agreement is solv-
able with innumerate processes against restricted Byzantine
processes if and only if £ > 3t.

Proof The synchronous algorithm given in Sect. 3.2 obvi-
ously still works if the Byzantine processes are restricted.
To derive a contradiction, assume that for some ¢ and ¢
with £ < 3z, there is an algorithm A that solves Byzan-
tine agreement in a synchronous system H of n processes,
¢ identifiers and up to ¢ Byzantine processes. Let A; denote
the code executed by the processes with identifier i.
Consider the classical synchronous system (where each
process has its own identifier) S, with € processes and at
most ¢ Byzantine processes. Let {q1, g2, ..., q¢} be these
processes. Let g; run algorithm 4;. We shall prove that this
will solve Byzantine agreement in S. This contradicts the
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classical impossibility result [10,16], since the number of
processes is £ < 3t.

Let s be any execution of the algorithm in S. We prove
that the properties of Byzantine agreement are satisfied for
as. Let Input(i) denote the input of process ¢;. If all £
processes are Byzantine in «g, then the properties of Byzan-
tine agreement are vacuously satisfied. Assume that o g has
b < ( Byzantine processes. Without loss of generality,
assume the Byzantine processes are q1, . .., qp.

We consider an execution « i of the algorithm in H where
(n — £ + 1) processes have the identifier £, and the other
processes have identifiers 1, . .., £ — 1 (one process per iden-
tifier). In the execution o,

1. the processes with identifieri (1 < i < b) are Byzantine,
and they send the same messages to the process with
identifier j in round r as the Byzantine process ¢; sends
to ¢; in round r of a,

2. the process with identifieri (b+1 <i < £—1)is correct
and has as input Input (i), and

3. all processes with identifier £ are correct and have input
Input(£).

The processes with identifier £ all have the same input
and receive the same messages, so they send the same mes-
sage m(r) in round r and have the same state at the end of
each round. The other processes receive from processes with
identifier £ only the message m () in round r.

The process g; in ag and a process with identifier i in « gy
have the same state at the beginning of each round. As oy
satisfies the specification of Byzantine agreement, the execu-
tion «e g satisfies the specification of the Byzantine agreement.
This completes the proof. O

Next, we show that the condition for solving Byzantine
agreement is more restrictive when there is only partial syn-
chrony.

Theorem 31 Partially synchronous Byzantine agreement is
solvable with innumerate processes against restricted Byzan-
tine processes if and only if £ > %3[ andn > 3t.

.. . . . +3
Proof By Proposition 5, there is an algorithm if £ > ”T’

andn > 3¢, even against unrestricted Byzantine processes, so
the same algorithm would work against restricted Byzantine
processes.

The impossibility result can be proved in exactly the same
way as Proposition 4. In that proof, only the Byzantine
process denoted 3; must send multiple messages to a sin-
gle recipient in execution y. Consider the messages 31 must
send to the correct process running .4,41(0) in y. It must
send the same messages as the entire stack of processes run-
ning .4 send to the process running .4, (0) in «. However,
all processes in that stack behave identically in o, so B] must

simply send n — £ + 1 copies of a message to the process run-
ning A;+1(0). Since we are now considering a model where
processes are innumerate, 3 can simply send one copy of
the message to the process running A, 41 (0) instead. (A sym-
metric argument applies to the messages sent by B to each
other process in y). O

6 Concluding remarks

Since the pioneering work of [1], the question of what can
be computed in a totally anonymous distributed systems
has been extensively studied. Some results depended on
properties of the communication graph (e.g., [4,25]). Some
work considered shared memory for the “wake up” prob-
lem [15], others considered consensus [3]. The power of
anonymous broadcast systems, in comparison with anony-
mous shared-memory systems has also been studied [2].
None of these considered process failures. Anonymous
processes with crash failures have been considered more
recently [5,6,9,14,19,22]. In [18], Byzantine agreement was
studied in a model with a restricted kind of anonymity:
processes have no identifiers, but each process has a sepa-
rate channel to every other process and a process can detect
through which channel an incoming message is delivered. It
was shown that Byzantine agreement can be solved in this
model when n > 3t.

A kind of homonym is considered in group signatures [7],
which define a signature scheme where a receiver can deter-
mine that the message was sent by a member of a group,
but cannot determine which process within the group sent it.
Thus, processes can choose to behave like homonyms to pre-
serve some privacy. These signature schemes ensure stronger
additional properties. For example, the signatures provide
authentication that prevents Byzantine processes from forg-
ing relayed messages, and messages can be “opened” to
reveal the actual sender using a secret key.

The model of homonyms considered here generalizes both
the classical (non-anonymous) and the anonymous model.
We completely characterized the solvability of Byzantine
agreement in this model, precisely quantifying the impact
of the adversary, with some surprising results. Many chal-
lenging questions remain open. How do homonyms affect
the solvability of problems other than Byzantine agreement?
For problems that remain solvable when homonyms are intro-
duced into the model, how does the existence of homonyms
affect the complexity of solving the problem?
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