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In Part I of this article, the role of the Zn content in the development of solidification micro-
structures in Al-Zn alloys was investigated experimentally using X-ray tomographic micro-
scopy. The transition region between h100i dendrites found at low Zn content and h110i
dendrites found at high Zn content was characterized by textured seaweed-type structures. This
Dendrite Orientation Transition (DOT) was explained by the effect of the Zn content on the
weak anisotropy of the solid–liquid interfacial energy of Al. In order to further support this
interpretation and to elucidate the growth mechanisms of the complex structures that form in
the DOT region, a detailed phase-field study exploring anisotropy parameters’ space is pre-
sented in this paper. For equiaxed growth, our results essentially recapitulate those of Haxhi-
mali et al.[1] in simulations for pure materials. We find distinct regions of the parameter space
associated with h100i and h110i dendrites, separated by a region where hyperbranched dendrites
are observed. In simulations of directional solidification, we find similar behavior at the
extrema, but in this case, the anisotropy parameters corresponding to the hyperbranched region
produce textured seaweeds. As noted in the experimental work reported in Part I, these
structures are actually dendrites that prefer to grow misaligned with respect to the thermal
gradient direction. We also show that in this region, the dendrites grow with a blunted tip that
oscillates and splits, resulting in an oriented trunk that continuously emits side branches in other
directions. We conclude by making a correlation between the alloy composition and surface
energy anisotropy parameters.
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I. INTRODUCTION

IN a companion article,[2] X-ray tomographic micro-
scopy was used to characterize the microstructures that
form in directionally solidified (DS) and quenched
Al-Zn alloys for various Zn compositions ranging from
5 to 90 wt pct. The results obtained in that study were in
agreement with those previously found by Gonzales and
Rappaz[3,4] on DS (but not quenched) Al-Zn alloys. In
summary, for alloys containing less than 25 wt pct Zn,
h100i dendrites were observed, and for alloys containing
more than 55 wt pct Zn, h110i dendrites were found. In
the intermediate region between these two bounding
compositions, textured seaweed structures appear. This

transition from h100i to h110i was called the ‘‘dendrite
orientation transition’’ (DOT).
Haxhimali et al.[1] and Gonzales and Rappaz[3,4]

attributed the DOT to a modification of the weak
anisotropy of the solid–liquid interfacial energy cs‘ of Al
by the addition of Zn, an element with very high
interfacial energy anisotropy in its pure state. Haxhimali
performed phase-field simulations in which the anisot-
ropy parameters were systematically varied to explore
the role of these parameters on the resulting microstruc-
tures, but only for pure materials solidifying as equiaxed
crystals in an undercooled melt. Our objective in this
work is to use phase-field simulations for binary alloys to
further explore the role of the interfacial energy anisot-
ropy on the selection of dendrite orientation. We
consider first equiaxed growth, where we find results
quite similar to those of Haxhimali et al., and then
proceed to examine directional solidification (DS), where
we find that the additional constraint of an imposed
temperature gradient helps to discriminate the effect of
changes in cs‘. Throughout this article, we assume that
interface attachment kinetics can be neglected.
This paper is organized as follows: We first describe

the various representations for the anisotropy in cs‘
found in the literature and develop some guiding
‘‘principles’’ for the selection of dendrite growth direc-
tions. We then describe the implementation of the
anisotropy in an adaptive finite element-based phase-
field code and present results of a systematic exploration
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of anisotropy parameter space. Finally, we interpret
those results in terms of the DOT principles and relate
the observations to the composition of Al-Zn alloys.

II. INTERFACIAL ENERGY AND ITS
ANISOTROPY

Several functional forms have been used in the
literature to represent the anisotropy of cs‘ for systems
having cubic symmetry. We show that some of these
representations are incompatible, meaning that one
cannot always convert directly from one form into
another. This is important to recognize when comparing
computations performed using different representations.

To examine the morphological stability of an initially
spherical solid particle,Mullins andSekerka[5] introduced
small surface perturbations given in terms of spherical
harmonics Ym

l ðh;uÞ; with h 2 ½0; p� and u 2 ½0; 2p� being
the polar and azimuthal coordinates, respectively. Chan
et al.,[6] using considerations based on group theory,
proposed that one should consider a restricted set of the
Yl
m-consistent symmetry of the underlying crystal struc-

ture. To that end, they introduced the so-called cubic
harmonics, a symmetry-adapted orthogonal basis with
cubic symmetry. The combinations of l and m respecting
this symmetry are thus restricted to l ¼ 4; 6; 8; 10; . . . and
m ¼ 0;�4;�8;�12; . . . with |m| £ l.

The lowest order cubic harmonics are

K0 ¼ 1

K4ðh;uÞ ¼ N4 Y0
4 þ

ffiffiffiffiffiffiffiffiffiffi

5=14
p

Y4
4 þ Y�44

� �

h i

K6ðh;uÞ ¼ N6 Y0
6 �

ffiffiffiffiffiffiffiffi

7=2
p

Y4
6 þ Y�46

� �

h i

½1�

The interfacial energy is then written as a summation
over this basis

cs‘ðh;uÞ ¼ c0s‘ 1þ d4K4 þ d6K6 þ � � �½ � ½2�

The Ni in Eqs. [1] are normalization constants, which
Chan et al.[6] chose such that each Ki has unit amplitude
in the polar direction in spherical coordinates. The
choice of coefficients is not unique. For example, one
may choose the Ni instead such that the mean amplitude
integrated over the unit sphere is one.[7]

Fehlner and Vosko[7] proposed an alternative basis to
that given in Eq. [1] that is more convenient for
computations. They defined two functions Q and S
respecting the fourfold symmetry of cubic crystals:

Q ¼ n4x þ n4y þ n4z ¼ sin4 hðcos4 uþ sin4 uÞ þ cos4 h ½3�

S ¼ n2xn
2
yn

2
z ¼ sin4 h cos2 h sin2 u cos2 u ½4�

where the ni are the Cartesian components of the unit
normal vector~n: The interfacial energy is then written as

cs‘ ~nð Þ ¼ c0s‘ 1þ a1 Q� 3

5

� �

þ a2 3Qþ 66S� 17

7

� �

þ � � �
� �

½5�

The formulations given in Eqs. [2] and [5] are equiva-
lent,[8] with d4 ¼ ð4

ffiffiffi

p
p

=15Þa1 and d6 ¼ ð8
ffiffiffi

p
p

=ð7
ffiffiffiffiffi

13
p
ÞÞa2:

Another description for the anisotropy widely used in
phase-field simulations of dendritic growth in cubic
materials is given by (cf.[9])

cs‘ð~nÞ ¼ c0s‘ð1� 3e4Þ 1� 4e4
1� 3e4

Q

� �

¼ c0s‘

�

1þ e4ð4Q� 3Þ
�

½6�

In the plane z = 0, Eq. [6] reduces to the simple form
cs‘ ¼ c0s‘½1þ e4 cos 4u�; and in theplanesx = 0andy =0,
one obtains the equivalent form cs‘ ¼ c0s‘½1þ e4 cos 4h�: It
is important to note that e4cannotbewritten in terms of the
ai’s in Eq. [5]. The closest possible form can be obtained by
setting a1 ¼ 4e4 and a2 = 0, but then the isotropic parts of
the surface energy do not match in the two formulations.
As this result makes clear, one must be very careful when
comparing results of calculations and experiments per-
formed using different representations for the anisotropy.
When e4 is positive, cs‘ in Eq. [6] always produces
h100i dendrites, whereas e4<0 always results in h111i
dendrites. Thus, no h110i dendrites can be generated
from the representation given by Eq. [6]. On the other
hand, the expression given in Eq. [5] produces h100i
dendrites for a1 > 0 and small a2, or h110i dendrites for
a2 < 0 and small a1. For a1 < 0 and small a2, h111i
dendrites appear, and for a2 < 0 and small a1, we obtain
mixed h100i and h111i dendrites. We will show that one
can indeed produce a continuous transition between
h100i and h110i in the quadrant of parameter space
defined by (a1 > 0,a2 < 0).

A. Simplified Criteria for DOT

It would be convenient if one were able to define a
criterion, expressed in the form of some combination of
the anisotropy parameters (a1, a2), that would deter-
mine a particular dendrite growth orientation. The
problem will turn out to be too complicated for this to
be the case, but there are two simple criteria that have
been proposed to understand the structures that appear
in the numerical calculations.
The simplest criterion to select dendrite trunk (and

side branch) growth directions assumes that they
develop along the directions of the highest surface
energy, so as to minimize the corresponding surfaces. In
simple cases, the highest surface energy directions
correspond to minima of what is known as the solid–
liquid interface stiffness. First introduced by Herring,[10]

and later extended by Du et al.,[11] the interface stiffness
U is a symmetric tensor that incorporates the anisotropy
of the surface energy, defined as

Uij ¼ cs‘dij þ
@2cs‘
@ni@nj

½7�

where dij is the Kronecker delta and n1 and n2 define
coordinates along orthogonal directions on the surface
perpendicular to the unit normal vector ~n: We will
characterize U by its trace, which is invariant under
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rotation around ~n: In spherical coordinates, where
n1 ¼ ĥ and n2 ¼ û; we have

trðUÞ ¼ 2cs‘ þ
1

sin h
@

@h
sin h

@cs‘
@h

� �

þ 1

sin2 h

@2cs‘
@u2

½8�

Herring[10] proposed that for a crystal in equilibrium
with its liquid, the shape will be such that the chemical
potential is constant at all points on the solid–liquid
interface. Assuming the diffusion of heat to be much
faster than solute diffusion, i.e., the interface is isother-
mal, Herring derived an expression for the liquid
composition C‘

0 at the solid–liquid interface of an
equilibrium shape crystal, given by

C0
‘ ¼ C1 þ

1

m‘DSf
cs‘ þ

@2cs‘
@n21

 !

K1 þ cs‘ þ
@2cs‘
@n22

 !

K2

" #

½9�

where C1 is the nominal melt composition, m‘ the
slope of the liquidus (<0), DSf the volumetric entropy
of fusion, and K1 and K2 are the principal curvatures,
i.e., the eigenvalues of the curvature tensor j: Equa-
tion [9] was expressed in a more general form by Du
et al.[11]

C0
‘ ¼ C1 þ

1

m‘DSf
U: j ½10�

If the surface energy is isotropic, cs‘ð~nÞ ¼ c0s‘; and Eq. [9]
reduces to the well-known Gibbs-Thomson equation.

For the particular case of a sphere, where
K1 = K2 = 1/R, the square brackets in Eq. [9] reduce
to ½trðUÞ=R�: Figure 1(a) shows the ratio cs‘ð~nÞ=c0s‘
computed using Eq. [5] for ~n ¼ h100i and ~n ¼ h110i;
on the surface of a sphere in the quadrant of parameter
space (a1 ‡ 0, a2 £ 0). As can be seen, the surface energy
has two distinct regions. For small values of a1, the
h110i directions have higher surface energy than the
h100i; whereas at higher values of a1, the situation is
reversed. The two regions are separated by a line given
by a1 = �3a2.

Examination of Eq. [5] shows that the coefficient
multiplying Q changes sign when crossing this line.
Thus, one might expect to see h110i dendrites for
parameter sets below this line, and h100i dendrites
above it. This is our first criterion. To examine the
second principle that the crystal grows most easily in the
direction where the surface stiffness is minimum, i.e., the
direction where the surface can be deformed most easily,
we plot c0s‘=trðUÞ in Figure 1(b), for the same directions
~n ¼ h100i and h110i: Once again, the quadrant of
interest in anisotropy parameter space is divided into
two regions by a line, this time given by a1 = �20a2/3 ,
above which the minimum stiffness is achieved in the
h100i direction, and below which the minimum stiffness
corresponds to the h110i direction. On the boundary
separating these two regions, there is no preferred
direction, and we can anticipate that seaweed structures
will appear in the neighborhood of this boundary.

Considering the second principle, which has a sounder
physical basis, a sharp transition between h100i and
h110i should occur at a1 = �20/3a2, a value for which
trðUÞ is degenerate in a (001) plane. However, as shown
by Friedli,[12] the equilibrium shape of crystals, calcu-
lated with the help of the n-vector formalism of Cahn
and Hoffman,[13] shows a more complex behavior and
does not exactly follow that based on the minimum
stiffness trace. Firstly, it is only at small values of a1 that
both principal curvatures of the equilibrium crystal
maximize at h110i; and at small values of �a2 that both
principal curvatures maximize at h100i: For intermedi-
ate values of (a1, �a2), one of the two principal
curvatures of the equilibrium crystal is maximum for
h100i; while the other is maximum for h110i: Secondly,
the transition between h100i and h110i predicted from
the maximum curvature is not a linear function of a2
and deviates from the line predicted by the minimum
stiffness trace when (�a2) increases. For example, when
a2 = �0.01, the minimum stiffness trace criterion
predicts an abrupt change of dendrite growth direction
for a1 = 0.066, whereas a criterion based on the
maximum mean curvature of the n-vector predicts a
transition for a1 = 0.11.
This shows clearly that a refined criterion for dendrite

orientation selection is needed in such complex situations,

(a)

(b)

Fig. 1—Surface energy and reciprocal of trðUÞ for a sphere in the
quadrant of interest in parameter space for the anisotropy function
given by Eq. [5], for ~n ¼ h100i and h110i.
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when the two principal curvatures do not maximize at a
single orientation. In order to explore anisotropy param-
eter space more precisely, we simulate the dendritic
growth process using the phase-field method, which we
develop in the next section.

III. PHASE-FIELD MODEL

We simulate dendritic growth using the phase-field
formulation for binary alloys first introduced by
Karma[14] and later extended by Echebarria et al.[15]

The model is described here only to a depth sufficient
to understand and interpret the results, and the
reader is referred to the original works for further
details.

The phase-field w 2 ½�1; 1� is defined such that
w = +1 corresponds to the solid, w = �1 to the
liquid, and intermediate values are associated with the
diffuse solid–liquid interface. The solid–liquid interface
thus has a finite width, given in the model by W0gð~nÞ;
where gð~nÞ embodies the anisotropy. The time scale for
evolution of the phase field is s0g2ð~nÞ:

The evolution equation for w, with length scaled by
W0 and time by s0, is given by

½1� ð1� k0Þ ~H�g2ð~nÞ
Dw
Ds
¼ r � g2ð~nÞrw

	 


þ
X

i

@

@xi
jrwj2gð~nÞ @gð~nÞ

@ð@xiwÞ

� �

þ ð1� w2Þ w� k
1� k0

ð1� w2Þ ~Uþ ~H
� �

� �

½11�

where k0 is the segregation coefficient, taken to be con-
stant, and k is a phase-field model parameter defined
below in Eq. [16]. We consider two configurations:
equiaxed growth of a spherical seed in an undercooled
isothermal melt; and DS, where the sample is pulled at
constant velocity vp through a ‘‘frozen’’ linear temper-
ature field characterized by the temperature gradient
G. The two configurations are distinguished in Eq. [11]
by the definition of ~H

~H ¼ 0 Equiaxed
~x� ~x0 � ð~vP � ~vFÞs=~lT DS

�

½12�

TheDS computations are performed in a framemoving at
velocity ~vF in the ~x direction, and the notation D=Ds ¼
@=@s� ~vFð@=@xÞ has the usual interpretation of the
advective derivative. The offset ~x0 is used to limit the
computation to a desired region near the dendrite tip. The
dimensionless position along the growth axis ~x ¼ x=W0 is
thus reduced by ~x0 þ ð~vP � ~vFÞs0=W0 and scaled by the
approximate length of the mushy zone lT, also called the
‘‘thermal length,’’ ~lT ¼ lT=W0 ¼ m‘ðk0 � 1ÞC0

‘ =GW0;
where m‘ is the slope of the liquidus line and C‘

0 =
(T0 � Tf)/m‘ is a reference concentration and T0 is the
corresponding reference temperature. For the equiaxed
case, T0 is the isothermal melt temperature. In DS, T0 is
the temperature at the base of the computational domain,
discussed further in Section IV–B.

The concentration C is represented in scaled form via
~U[15], defined as

~U ¼ 1

1� k0

2C=C0
‘

1þ k0 � ð1� k0Þw
� 1

� �

½13�

The solute balance is given by a modified Fick’s Law

1þ k0
2
� 1� k0

2
w

� �

D ~U

Ds
¼ r � ~D‘

1� w
2
r ~Uþ~j

� �

þ 1þ ð1� k0Þ ~U

2

Dw
Ds

½14�

where the scaled diffusivity is ~D‘ ¼ D‘s0=W2
0: Equation

[14] includes an ‘‘anti-trapping’’ current ~j; introduced
in order to cancel artificial trapping of solute due to
the diffuse interface,[14] given by

~j ¼ 1

2
ffiffiffi

2
p 1þ ð1� k0Þ ~U
	 
 Dw

Ds
rw
jrwj

� �

½15�

The term in parentheses represents the normal velocity
of the interface. Note that we have not included thermal
noise in our simulations.
The chemical capillary length d0¼Cs‘=ðjm‘jð1�k0ÞC1Þ;

where Cs‘ ¼ c0sl=DSf is the Gibbs-Thomson coefficient,
and the interface attachment coefficient b are related to
the phase-field parameters via

d0 ¼ a1W0=k; b ¼ a1
s

kW0
1� a2

kW2
0

s0D

� �

½16�

where a1 = 0.8839 and a2 = 0.6267 are chosen to
ensure that the phase-field model converges to the sharp
interface model. See Echebarria et al.[15] for further
details. The physical parameters used in the simulations
are listed in Table I. The diffusion coefficient was
purposely decreased by a factor of approximately 2 to
allow larger time steps to be used in the explicit solution
scheme.
The length scales of the grid spacing (D~x �W0 to

resolve the interface) and the simulation domain
(L� ~D‘=~vtip; where vtip is the speed of the dendrite
tip, to avoid interaction between the solute field and the
boundaries) are widely different. We therefore solve
these equations on an adaptive finite element grid.[21–26]

The phase field in the interfacial region is always solved
on the finest grid. The grid density outside this interfa-
cial region is determined using a hybrid scheme based on
a local error estimator and rules that ensure smooth
grading of the mesh. Please see the original papers for
the details about the numerical techniques.[21]

Echebarria et al.[15] showed that mesh-converged
results can be obtained with W0/d0 as large as 50. With
the material properties given in Table I, we have d0 �
1 9 10�8 m. The smallest expected tip radius is around
1 9 10�6 m, and using the rule that the tip radius should
be at least ten times the interface width,[15] we have
Rtip/W0 = 10, W0 = 1 9 10�7 m, and thus W0/d0� 10.
We then obtain ~D‘ ¼ 5:5; which implies that s0 = 4.6 9
10�5 s. All other physical values, such as the thermal
length, the pulling velocity, and the simulation box size
are then non-dimensionalized with these values of W0
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and s0. In the calculations presented below, we use
dxmin = 0.75 W0 and a time step in the explicit solution
scheme of 0.05 s0.

Since our study is focused on the role of anisotropy, it
is essential that we measure and correct for grid
anisotropy. All of the finite elements are cubes, whose
edge length scales in powers of two with refinement
level. We therefore assume that the grid anisotropy can
be written in the same form as Eq. [5], truncated after
the first anisotropic term, i.e., agrid1 6¼ 0; agrid2 ¼ 0: To
determine a1

grid, we grew equiaxed dendrites whose
crystallographic axes were rotated by various angles
with respect to the Cartesian grid. We then measured the
difference in growth speed in the different directions and
adjusted the grid anisotropy in order to eliminate the
differences. The amount of grid anisotropy depends on
the minimum grid spacing and was fixed in the present
case to a1

grid = �0.019. Because the grid coarsening is
controlled by an error estimator, the grid anisotropy is
not affected by the grid outside the interfacial region.
We note that one cannot completely eliminate the grid
anisotropy in this way, as second-order effects (a2

grid „ 0)
may still be present. We estimate that the residual grid
anisotropy corresponds to a1 � 0.001. This will affect
the simulations by providing a source of noise to induce
side branching, but should not affect the fundamental
orientation selection at the dendrite tip.

IV. RESULTS

A. Equiaxed Growth

Our first objective was to determine whether the
results obtained by Haxhimali et al.[1] for pure materials
held in simulations for binary materials, where Ds� D‘.
To that end, we performed a survey of anisotropy
parameter space for equiaxed growth from a small
spherical seed in an isothermal melt at fixed supersat-
uration X; defined as

X ¼ C0
‘ � C1

C0
‘ ð1� k0Þ

½17�

where C‘
0 = (T0 � Tf)/m‘ and T0 defines the tempera-

ture for the isothermal solidification. Each simulation

was carried out in one octant of a cubic domain, with all
faces having zero-flux boundary conditions. The h100i
crystallographic axes were either aligned with the
Cartesian directions of the grid or rotated by 45 deg
about the [100] to verify the grid anisotropy correction.
An initial one-eighth spherical seed of radius
R0 = 5 � 10 9 W0 was placed at one corner of the
computational domain.
The far-field supersaturation, defined as an input

parameter, was either X ¼ 0:4 or X ¼ 0:25 in the results
presented below. The initial concentration field was then
defined as

C ¼ k0C
0
‘ r 	 R0

C0
‘ 1þ Xð1� k0Þ R0=r� 1ð �½ Þ r>R0

�

½18�

The computational domain in units of W0 was 768
3 with

d~xmin ¼ 0:75: In a uniform grid, this would require
4.5 9 108 grid points, whereas in our simulations, the
grid typically started with about 5000 nodes and at the
end of the simulations, there were 1�4 9 106 nodes. The
calculations were run on both 2.93 and 3.30 GHz Intel
Xeon CPUs. Run times to generate fully developed
microstructures at X ¼ 0:4 (12000 time steps) were
typically less than one day. The execution time is related
to the complexity of the microstructure that forms
because the size of the adaptive grid scales with the
amount of solid–liquid interfacial area.
In the investigations by Haxhimali et al.[1,27], line

scans were performed by varying a1 at several fixed
values of a2 (�0.005, �0.01, �0.02). On each scan, they
found that low enough values of a1 resulted in h110i
dendrites, and at high values of a1; h100i dendrites
appeared. In the intermediate region, mixed structures
were obtained, which they termed ‘‘hyperbranched.’’ We
surveyed the anisotropy parameter space using a similar
approach, i.e., using line scans. Since all of the available
experimental and MD data[28] show that these param-
eters are in the range 0 £ a1 £ 0.12 and �0.01 £ a2 £ 0,
the (a1, a2) couples were chosen as indicated in Figure 2,
which also provides a sampling of the computed
microstructures. In particular, the diagonal scan line
was chosen to go approximately through the following
points: (a1, �a2) = (0.07, 0.0), measured by Napolit-
ano et al.[29] for Al-Si alloys; (a1, �a2) = (0.05, 0.0045)
obtained by MD simulations using the embedded atom
method[30]; and (a1, �a2) = (�0.025 ± 0.023, 0.024 ±
0.014) measured recently by Friedli for quenched
droplets in Al-82 wt pct Zn alloys.[12]

We found results similar to those reported by Haxhi-
mali et al.[1,27] with respect to the transitions among the
three types of microstructures. Looking first at the line
scan a2 = �0.01, we see in Figure 2 that h110i dendrites
form when a1 = 0. Notice that the tip has an elliptical
rather than circular shape in a transverse section,
reflecting the underlying symmetry of the h110i direc-
tion. As a1 increases, the strength of the anisotropy
along h100i increases. At first, the h110i tips become
broader and more elliptical in (100) planes, and they
grow more slowly. As a1 increases further, the tips
become sufficiently flat that they split along the h110i
axes (see the case a1 = 0.04, a2 = �0.01 in Figure 2).

Table I. Material Properties Chosen for the Phase-Field

Simulations and Values Found in the Literature for the

Composition and Temperature Considered

Property Value Units Ref.

C1 0.1 mass frac Zn –
m‘ �170 K [17]
k0 0.45 – [17]
TM 933 (660) K (�C) [17]
D‘ 1.2 9 10�9 m2/s [16]
Cs‘ 1.05 9 10�7 Km [18, 19]
qLf 1 9 109 J/m3 [19]
qcp 3 9 106 J/m3 K [20]

Note that the value of D‘ has been increased by a factor of two in
the simulations, compared to the literature value in Ref. [16].
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These tips continue to grow and eventually produce
hyperbranched structures. Increasing a1 still more in this
line scan, the h110i tips split earlier and thus grow larger
(cf. (a1, a2) = (0.06, �0.01)). As one approaches the
boundary between the hyperbranched and h100i den-
drites, the dendrites present four tips split along the
h100i axes, which then merge into single tips oriented
along the h100i for sufficiently large a1.

We note that although the tip growth velocity has
converged for the extreme cases with clear h100i and
h110i dendrites, the speeds of the double and quadruple
tips are still in their initial transient at the end of the
simulation time considered here. Thus, our simulations
should be performed for longer times to verify that those
structures persist. However, our main objective in this
part of the study has been achieved, i.e., we have verified
that the results obtained by Haxhimali et al. for a pure
material are also observed in binary alloys.

Figure 2 also includes the two lines corresponding to
our simplified principles for selection (see Figure 1). Both
of the lines, i.e., maximum surface energy (a1 = �3a2) or
minimum stiffness trace (a1 = �20/3a2), could be inter-
preted as predicting hyperbranched dendrites for

intermediate values of (a1, a2), but the transition is
clearly much broader than either line.
Although the locations of the boundaries between the

different morphologies are remarkably similar to those
reported by Haxhimali et al. for thermal dendrites, the
details of the dendritic structures in the hyperbranched
region are somewhat different. In particular, Haxhimali
et al. observed less branching in the off-axis directions.
We attribute this difference to the fact that the simula-
tions presented here correspond to solutal dendrites
growing at relatively large supersaturation (X ¼ 0:4),
whereas Haxhimali et al. considered a pure material at
very low undercooling, D ¼ 0:05: The higher supersat-
uration produces higher growth velocities, which in turn
introduce more noise into the simulation, leading to
more extensive side branching. To examine the role of X
on the morphology of the equiaxed crystal, we per-
formed a few simulations at X ¼ 0:25: Figure 3 com-
pares equiaxed dendrites computed for the parameter set
a1 = 0.08, a2 = �0.01 with X ¼ 0:4 and X ¼ 0:25:
Although the envelopes of the two dendrites are similar,
the amount of ‘‘activity’’ in the h110i directions is
significantly less at lower supersaturation. We note that

Fig. 2—Phase-field results for equiaxed growth of Al-0.1 Zn alloy with varying anisotropy parameters, and X ¼ 0:4: The scale and orientation of
all dendrites are identical. The solid lines in the center graph represent the limits between the domains h100i; hyperbranched and h110i struc-
tures, reported by Haxhimali et al.[1] The present calculations show very similar results for the locations of the boundaries. The two dashed lines
correspond to the simple selection criteria (maximum surface energy and minimum stiffness) shown in Fig. 1. The dendrite surface is colored by
concentration, and the grayscale background shows the liquid concentration field in the plane of the dendrite tip.
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the computations become increasingly expensive as the
supersaturation decreases because the dendrites grow
much more slowly, and thus the simulations must be run
for a longer time and to larger overall size.

B. Directional Solidification

In order to directly compare the simulations with the
experiments in the companion paper, we performed a
similar exploration of anisotropy parameter space for
DS. For these simulations, we investigated anisotropy
parameters along the diagonal line in Figure 5 running
from (a1, a2) = (0.08, 0) to (0, �0.01), using the
domain shown schematically in Figure 4.

There is an additional variable introduced in DS
compared to equiaxed growth, which is the orientation
of the crystallographic directions with respect the
thermal gradient, parallel to the pulling velocity. In
the experiment, there are many viable nuclei at the
beginning of solidification and one anticipates that the
most favorably oriented crystals will dominate after a
prolonged period of growth (cf. Reference 31, Section
11.4). We identify these orientations in the simulations
as those that have grown the farthest in the pulling
direction after 27000 time steps, a period long enough to
clearly establish the structure. This also corresponds to
the structure with the lowest tip undercooling and the
fastest growing orientation.

We refer to the Cartesian axes of the computational
domain as ðx̂; ŷ; ẑÞ; with x̂ parallel to the pulling
direction and the imposed temperature gradient G.
The initial quarter-sphere seed was placed as illustrated
in Figure 4, centered on the edge of the simulation
domain defined by the line x = z = 0. The vertical
faces with normal vector �ẑ were treated as symmetry
planes, and those with normal vector �ŷ were made
periodic. In the experiments, we saw that the primary
dendrite trunks were bisected by a vertical (001) plane.
In view of this, we oriented the crystal such that the
vertical x�y plane corresponded to the (001) plane.
Thus, we have ẑ k ½001�; as indicated in Figure 4. In this
way, various orientations could be obtained by rotating

the crystal axes around the z-axis, as measured by the
Euler angle a between [100] and x̂:We performed a scan
in a from zero to 45 deg in increments of 5 deg for each
anisotropy parameter pair.
The horizontal faces at the top and bottom of the

computational domain also had zero normal derivative
boundary conditions. The pulling velocity is normal to
these faces, so the material is advected into the domain
at the top and leaves at the bottom. The upper surface
was always far enough from the crystal as to be
unaffected by the solute diffusion field ahead of the
solid.
In DS, we use the supersaturation parameter X0;

defined in Eq. [17], to set the approximate solid fraction
at the base of the domain, fm, using the lever rule. Note
that the actual solid fraction will be less than fm
computed in this way, due to solute redistribution

(a) (b)

Fig. 3—Comparison of computed equiaxed dendrites with a1 = 0.08, a2 = �0.01, at two different supersaturations X. The times were chosen
from the two simulations such that the dendrite tips were at approximately the same distance from the center.

Fig. 4—DS simulation domain and seed position configuration. The
front and back faces (~n ¼ �ẑ) are symmetry planes, parallel to the
(001) plane of the crystal, and the side faces (~n ¼ �ŷ) are periodic.
The crystal axes are rotated with respect to x̂ by an angle a that is
specified in the simulation.
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effects, but we do not require an exact value for our
purposes.

fmðX0Þ ¼
k0X0

1� ð1� k0ÞX0
½19�

If X0 ¼ 1; the entire mushy zone is present in the
simulation domain, which would require the domain to
be very large to accommodate the entire dendrite, leading
to long computation times. We typically set X0 ¼ 0:45;
which for k0 = 0.45 corresponds to fm = 0.269. The
temperature at the base of the domain can be computed
from the phase diagram, T0 = Tliq � (Tliq � Tsol)fm.

When the primary dendrite trunk is oriented nearly
along [100], the domain should have an aspect ratio in
the horizontal plane of approximately 2:1 to accommo-
date the side branches. On the other hand, when the
primary dendrite trunk is close to [110], the aspect ratio
should be 7:2 to accommodate the h110i side branches.
We used two different computational domains:

384 9 192 9 96 for the [100] orientations and 360 9
168 9 48 for the [110] orientations. One could tell early
on in the calculations which direction was being
selected, and we made sure to use the appropriate
domain for the structure that appeared. In the case of
seaweed structures, both domains were examined. Note
that the size of the domain in the y�z plane was chosen
to correspond approximately to the observed primary
spacing and was not varied in the simulations.
The simulation parameters common to all of the DS

cases are listed in Table II. The physical parameters
used in these simulations were the same as those used in
the equiaxed growth simulations, given in Table I. We
started the calculations with the same radius quarter
sphere as in the equiaxed case, ran the simulation for
5000 time steps in a fixed frame (~vF ¼ 0) to establish the
seed, then restarted the calculation with ~vF ¼ ~vP , and
continued the run to 27000 total time steps. This
typically resulted in well-defined dendrites with 7.5 9

Fig. 5—Computed microstructures for the orientation with the lowest undercooling for various values of anisotropy parameters along the line
indicated. For each selected microstructure, the orientation of [100] and [110] is shown. The thermal gradient and pulling direction are aligned
with the vertical axis of the domain. The dendrite surface is colored by concentration, and the grayscale background shows the liquid concentra-
tion field in the plane of the dendrite tip.
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105 to 2.5 9 106 nodes, and ran in about 1 to 3 days on
the same machines mentioned earlier. Once again, the
execution time depended on the complexity of the
microstructure.

The results for the fastest growing, lowest tip und-
ercooling microstructures are summarized in Figure 5.
For convenience of reference, we have included from
Figure 2 the dividing lines associated with the surface
energy and stiffness trace criteria, and the shaded
regions where h100i; h110i and hyperbranched struc-
tures were found in equiaxed solidification. Please note
that all of these simulations were run for the same
amount of time. Therefore, smaller solid structures are
reflective of slower growth and higher undercooling,
compared to the larger ones. At the extreme ends of the
scan line, we see the expected h100i and h110i primary
dendrites, and the most interesting structures appear in
the intermediate region.

Starting from (a1, �a2) = (0, 0.01), where we have
h110i dendrites, and progressing along our scan line,
Figure 5 shows that the h110i dendrite tip becomes
increasingly blunt. Notice that when the dendrite is
oriented with [110] inclined by 3–5 deg with respect to
the pulling directions, side branches are emitted prefer-
entially on the side facing the melt ahead of the growing
tip. The primary trunk becomes less and less distinct as
we approach the line separating the regions of
h110i=h100i minimum stiffness, a1 = �20a2/3. After
that line is crossed, (see Figure 5 (a1, a2) =
(0.044, �0.0045)), the tip and main trunk disappear,
and we have only advancing side branches that curve
outward as they grow. The lowest undercooling orien-
tation also has rotated such that the [110] direction is
5 deg away from the pulling direction. This orientation
corresponds to ½230� k x̂; which helps to explain the
h320i texture reported by Gonzales et al.[4] for C1 ¼ 50
wt pct Zn. Moving further along the line scan, the
selected orientation rotates continuously toward
½100� k x̂; and textured seaweeds appear close to and
on both sides of the boundary where the h100i dendrites
appeared in the simulations of equiaxed growth. Finally,
h100i dendrites appear. Thus, for DS, the minimum
stiffness criterion provides an approximate predictor for
the onset of seaweed structures.

The growth mechanism for the textured seaweeds can
be better understood with the aid of Figure 6, which
shows the intersection of the surface w = 0 with the
(001) plane (z = 0). The figure shows a temporal

sequence of the dendrite tip position for the case
(a1, a2) = (0.048, �0.004) between 19000 and 31000
time steps, in increments of 1000. The contours are
shown transformed back to the reference frame fixed in
space, rather than the computational domain traveling
with the pulling velocity. One can see clearly that the tip
is very broad and oscillates from side to side. As it does
so, it emits side branches at different heights with respect
to the pulling axis, corresponding to the location of the
tip. This phenomenon occurs because both anisotropy
components are relatively weak, and for this case, their
effects are also nearly equal in magnitude. This is the
same mechanism that was found by Akamatsu et al.[32]

to produce seaweeds in 2-D thin samples.

V. DISCUSSION

The simulations of equiaxed and DS demonstrate that
as the surface energy anisotropy varies over a fairly
narrow range, there is a continuous transition in
dendrite trunk orientation between h100i and h110i:
The intermediate region between these two extremes is
characterized by hyperbranched structures in equiaxed
growth. The additional constraint imposed by the

Table II. Directional Solidification Simulation Parameters

and Their Dimensional Equivalents

Dimensionless
Parameter Value

Dimensional
Equivalent

Dx=W0 0.75 Dx ¼ 7:5
 10�8m

a1
grid �0.019 N/A

Dt=s0 0.05 Dt ¼ 2:3
 10�6s
~lT 1 9 104 G = 20777 K/m
~vP 0.25 vP = 543 lm/s
~vF 0.25 vF = 543 lm/s
X 0.45 N/A

Fig. 6—Temporal sequence showing the advancement of the dendrite
tip on the (001) plane for the case (a1, a2) = (0.048, �0.004). Notice
that the tip is broad, and oscillates from side to side, emitting side
branches at different heights with respect to the pulling direction.
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thermal gradient leads instead to textured seaweed
structures in directional solidification.

One of our objectives in this study was to correlate the
anisotropy parameters with Zn content. We can do so
only qualitatively for several reasons. We do not really
know whether the line we chose to scan along actually
corresponds precisely to the alloys in the Al-Zn system.
Recall that this line was chosen based on published
values from MD studies of Al surface energy anisotropy
for low Zn content and a measured value for high Zn
alloys obtained experimentally. All of these values are
subject to a fairly large degree of uncertainty. If we
nevertheless assume that our line scan corresponds to
Zn content, then we can attempt to correlate our
calculation results with the experimental findings of
Gonzales et al.[3]

The result is shown in Figure 7. The computational
results are presented as a contour plot, showing the
height of the computed dendritic structure after 27000
time steps for all of the anisotropy pairs and orienta-
tions considered, indicated by open circles. (See the scale
at the top of the figure.) We also highlight by a red line
the orientations with the largest growth and minimum
undercooling for each anisotropy pair along the line.
Superimposed on these data, we show as green squares
the experimentally measured orientations reported by
Gonzales et al.[3] Based on the idea that at. pct is a more
representative measure of how Zn in the solid modifies
the solid–liquid interfacial energy, those data, originally
reported as wt pct Zn, have been rescaled to at. pct Zn at
the corresponding solidus km0 X1; where k0

m is the
segregation coefficient when the composition X1 is
measured in at. pct. (See the scale at the bottom of the
figure.) The relevant portion of the equilibrium phase
diagram is also shown for reference. The results

presented in Figure 7 can be used to correlate the
anisotropy parameters with the composition by com-
paring the scales on the top and bottom of the graph.
The result is given by

a1 ¼ 0:064� 1:33
 10�3 km0 X0

� �

;

�a2 ¼ 0:002þ 1:67
 10�4 km0 X0

� �
½20�

The agreement between the experimental and compu-
tational results seems remarkable, but we must also be
clear that this is somewhat artificial. The horizontal axis
of the experimental data (k0

m X0) was translated and
stretched by a constant factor to make the beginning and
end of DOT agree with the calculations. If we had chosen
a different, but similar, line scan in anisotropy space, still
crossing the three regions from h110i to h100i; the result
would have been similar, although the scaling might be
different. Nevertheless, we obtain for anisotropy of pure
Al (a1, a2) = (0.064, �0.002), which is quite close to the
measurement of Napolitano et al.[29] in dilute Al-Si
alloys. We should also note that instead of the solid
composition at the liquidus temperature (km0 X1), one
should also correct for the fact that the liquid at the tip is
actually at a higher Zn content. For all of the selected
microstructures in Figure 7, the supersaturation mea-
sured from the concentration ahead of the dendrite tip
was Xtip � 0:3� 0:05: For the nominal composition
C1 ¼ 0:1; this amounts to a tip undercooling of about
3.5 K. The correction is thus quite small, and in any case
within the margin of error of our choice of the line scan
in anisotropy space. We also note that the simulation
domain represents a very small fraction of the mushy
zone, and it is therefore reasonable to treat the anisot-
ropy parameters as constant over the entire region.

Fig. 7—Contour map showing the maximum height of the computed dendrite for each anisotropy couple (a1, a2), at various orientations of the
[100] direction with respect to the pulling direction in the (001) plane. The red circles indicate, for each couple (a1, a2), the angle corresponding
to the most developed (lowest undercooling) structure. We also superimpose as green squares the experimental results reported by Gonzales
et al.[3] A portion of the Al-Zn phase diagram is shown in gray (Color figure online).
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There are some additional limitations to the simula-
tions that should be noted. We did not add noise to the
equations, and hence we can draw only limited conclu-
sions about side branch formation. The residual grid
anisotropy is thus the main remaining source of noise in
the simulations. However, since the dendrite surface is
itself morphologically unstable, the grid noise is still
sufficient to induce side branching. In some cases, the
boundaries of the simulation domain affect the forma-
tion of the side branches at some distance from the tip.
This is an indication that the simulation domain is too
small to accommodate the structure. An example of this
phenomenon occurs for the anisotropy parameters
(a1, �a2) = (0.016, 0.008). We ran a simulation in a
30 pct larger domain, 480 9 216 9 60, keeping all other
parameters unchanged, and the computed dendrites are
compared side-by-side in Figure 8. The dendrite com-
puted in the smaller domain is at the top. One can see
that the tips are nearly identical, and that the side
branches are indeed more developed when the constraint
of the lateral boundaries is moved back. The fact that
the tip shapes are the same, however, indicates that our
study, which focuses on the dynamics of tip selection, is
not strongly affected by the domain size.

VI. CONCLUSIONS

We performed a systematic exploration of anisotropy
parameter space to examine the hypothesis that the
DOT in DS Al-Zn alloys can be explained as being due
to a continuous transition in anisotropy of the solid–
liquid interfacial energy with Zn content. Our results
show a transition similar to that observed in experi-
ments, from h100i dendrites, to textured seaweeds, and
then to h110i as the anisotropy is varied.

In particular, for DS in the intermediate region of
parameter space separating the regions where h100i and
h110i form, we find a transition over a narrow range of
anisotropy parameters where the orientation rotates
continuously from h110i to h100i parallel to the thermal

gradient and pulling direction. By comparing these
results with the experimental results of Gonzales and
Rappaz,[3,4] we are able to correlate the anisotropy
parameters with the corresponding narrow range of
solid compositions, expressed in at. pct.
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