000190929 001__ 190929
000190929 005__ 20181203023333.0
000190929 022__ $$a1370-1444
000190929 02470 $$2ISI$$a000325592000006
000190929 037__ $$aARTICLE
000190929 245__ $$aConjugation spaces and equivariant Chern classes
000190929 269__ $$a2013
000190929 260__ $$bBelgian Mathematical Soc Triomphe$$c2013$$aBrussels
000190929 300__ $$a14
000190929 336__ $$aJournal Articles
000190929 520__ $$aLet eta be a Real bundle, in the sense of Atiyah, over a space X. This is a complex vector bundle together with an involution which is compatible with complex conjugation. We use the fact that BU has a canonical structure of a conjugation space, as defined by Hausmann, Holm, and Puppe, to construct equivariant Chem classes in certain equivariant cohomology groups of X with twisted integer coefficients. We show that these classes determine the (non-equivariant) Chern classes of eta, forgetting the involution on X, and the Stiefel-Whitney classes of the real bundle of fixed points.
000190929 6531_ $$aConjugation spaces
000190929 6531_ $$acharacteristic classes
000190929 6531_ $$aequivariant Chem classes
000190929 700__ $$uUniv Autonoma Barcelona, Dept Matemat, E-08193 Bellaterra, Spain$$aPitsch, Wolfgang
000190929 700__ $$aScherer, Jerome
000190929 773__ $$j20$$tBulletin Of The Belgian Mathematical Society-Simon Stevin$$k1$$q77-90
000190929 909C0 $$xU10968$$0252139$$pUPHESS
000190929 909CO $$pSV$$particle$$ooai:infoscience.tind.io:190929
000190929 917Z8 $$x105396
000190929 937__ $$aEPFL-ARTICLE-190929
000190929 973__ $$rREVIEWED$$sPUBLISHED$$aEPFL
000190929 980__ $$aARTICLE