000190917 001__ 190917
000190917 005__ 20180913062154.0
000190917 0247_ $$2doi$$a10.1137/110850487
000190917 022__ $$a1064-8275
000190917 02470 $$2ISI$$a000326348400010
000190917 037__ $$aARTICLE
000190917 245__ $$aNumerical Approximation Of Internal Discontinuity Interface Problems
000190917 260__ $$aPhiladelphia$$bSiam Publications$$c2013
000190917 269__ $$a2013
000190917 300__ $$a29
000190917 336__ $$aJournal Articles
000190917 520__ $$aThis work focuses on the finite element discretization of boundary value problems whose solution features either a discontinuity or a discontinuous conormal derivative across an interface inside the computational domain. The interface is characterized via a level set function. The discontinuities are accounted for by using suitable extension operators whose numerical implementation requires a very low computational effort. After carrying out the error analysis, numerical results to validate our approach are presented in one, two, and three dimensions.
000190917 6531_ $$afinite elements
000190917 6531_ $$ainterface problem
000190917 6531_ $$alevel set
000190917 700__ $$0240914$$aDiscacciati, Marco$$g146261$$uUniv Politecn Cataluna, UPC BarcelonaTech, Lab Calcul Numer LaCaN, Dept Matemat Aplicada MA3 3, E-08034 Barcelona, Spain
000190917 700__ $$0240286$$aQuarteroni, Alfio$$g118377$$uEcole Polytech Fed Lausanne, Chair Modeling & Sci Comp, MATHICSE, Stn 8, CH-1015 Lausanne, Switzerland
000190917 700__ $$0242884$$aQuinodoz, Samuel$$g167304$$uEcole Polytech Fed Lausanne, Chair Modeling & Sci Comp, MATHICSE, Stn 8, CH-1015 Lausanne, Switzerland
000190917 773__ $$j35$$k5$$qA2341-A2369$$tSiam Journal On Scientific Computing
000190917 909C0 $$0252102$$pCMCS$$xU10797
000190917 909CO $$ooai:infoscience.tind.io:190917$$pSB$$particle
000190917 917Z8 $$x159570
000190917 937__ $$aEPFL-ARTICLE-190917
000190917 973__ $$aEPFL$$rREVIEWED$$sPUBLISHED
000190917 980__ $$aARTICLE