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1. Introduction

Let H be a reductive linear algebraic group defined over an algebraically closed
field F . Throughout this text ‘reductive’ will mean ‘connected reductive’. A unipo-
tent element u ∈ H is said to be regular if the dimension of its centralizer CH(u)
coincides with the rank of H (or, equivalently, u is contained in a unique Borel
subgroup of H). Regular unipotent elements of a reductive algebraic group exist
in all characteristics (see [22]) and form a single conjugacy class. These play an
important role in the general theory of algebraic groups. In this paper we study
reductive subgroups of H containing a regular unipotent element of H . We find
that such subgroups are irreducible in the sense of Serre [17], who has generalized
the common notions of an irreducible, a completely reducible or a reducible linear
group as follows.

Definition 1.1. Let H be a reductive linear algebraic group. A subgroup G
of H is called H-irreducible if G is contained in no proper parabolic subgroup,
H-completely reducible (hereafter referred to as H-cr) if, whenever G belongs to
a parabolic subgroup P of H , then G belongs to a Levi subgroup of P , and H-
reducible if G lies in a proper parabolic subgroup of H .

The main result of the paper states that for G, H reductive groups, if G is
a closed subgroup of H containing a regular unipotent element of H , then G is
H-irreducible. This result is new even for the classical situation where H is the
general linear group. Closed subgroups of simple algebraic groups containing a
regular unipotent element were studied, and maximal such subgroups classified by
Saxl and Seitz in [16]; however, they did not treat the irreducibility phenomenon
that is the subject of this paper.

The set of regular unipotent elements is a dense open set in the variety of
unipotent elements of H . In a sense they are the ‘largest’ unipotent elements,
while the nontrivial elements of root groups are the ‘smallest’. In many situations,
it is useful to know the subgroups containing elements of this or other special kinds.
(See Saxl’s survey [15] for an overview and bibliography.)

The problem of determining closed subgroups of simple algebraic groups H
containing a regular unipotent element has already attracted considerable atten-
tion. In [23], I. Suprunenko determined closed irreducible semisimple subgroups
of GL(n, F ) containing a regular unipotent element. When char(F ) is 0 or a large
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enough prime, a regular unipotent element lies in a closed subgroup ofH isomorphic
to (P)SL(2, F ). A primary problem solved in [25, 14] was to classify all situations
when a unipotent element is contained in a closed subgroup of type A1; the case of
regular unipotent elements was crucial, and in some sense the most difficult. Proper-
ties of the centralizer C of a regular unipotent element and of its normalizer NG(C)
were investigated in [13]. The most extensive study of the overgroups of regular
unipotent elements to date was carried out by Saxl and Seitz in [16], where they
determined maximal (not necessarily connected) positive-dimensional subgroups of
H containing a regular unipotent element. As a maximal positive-dimensional sub-
group is either the normalizer of a reductive subgroup, or is a parabolic subgroup
(by the Borel-Tits theorem [2]), and as each parabolic subgroup contains a repre-
sentative of every unipotent class (and so in particular contains a regular unipotent
element), their article is concerned with determining reductive maximal subgroups
containing a regular unipotent element.

As an application of our main result, we are able to deduce from [16, Theorems
A and B] the classification of semisimple subgroups G of simple algebraic groups
H such that G contains a regular unipotent element of H . (See Theorem 1.4
below.) Indeed, given such a subgroup G ⊂ H , one embeds G in a maximal
positive-dimensional subgroup, which is one of the groups given by the results
of [16]. If M◦ is reductive, then G lies in the semisimple group [M◦,M◦] and
we proceed inductively. Otherwise, M is a parabolic subgroup and one is faced
with the question of whether G lies in a Levi factor of M in order to again argue
inductively. Our main result (Theorem 1.2) solves this problem by showing that G
cannot lie in a proper parabolic subgroup of H .

Theorem 1.2. Let G be a reductive subgroup of the reductive group H con-
taining a regular unipotent element of H. Then G is not contained in any proper
parabolic subgroup of H. In other words, G is H-irreducible.

The special case H = SL(n, F ) seems worth stating explicitly:

Corollary 1.3. Let G ⊂ GL(n, F ) be a reductive linear algebraic group. Sup-
pose that G contains an element whose Jordan normal form consists of a single
block. Then G is irreducible.

We first note that the theorem is clearly true if char(F ) = 0, since the all FG-
modules are then completely reducible and so if G lies in a parabolic subgroup, it
necessarily lies in a Levi factor of this group.

Observe that one cannot drop the hypothesis that G is connected. Moreover,
a similar statement for finite reductive groups is false: there exists a reducible
representation ρ : PSL(2, p) → SL(p, F ), where F is of characteristic p > 0, such
that the image of ρ contains a unipotent element with a single Jordan block matrix.

As mentioned above, we will apply the above results and the main result of
[16] to obtain the following classification of semisimple subgroups of simple groups
H containing a regular unipotent element.

Theorem 1.4. Let G be a closed semisimple subgroup of the simple algebraic
group H, containing a regular unipotent element of H. Then either the pair H, G
is as given in Table 1 below or G is isomorphic to (P)SL(2, F ) and p = 0 or p > h,
where h is the Coxeter number for H. Moreover, for each pair of root systems
(ΦH ,ΦG) as in the table, respectively, for (ΦH , A1, p), with p = 0 or p > h, there
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Table 1. Semisimple subgroups G ⊂ H containing a regular
unipotent element

H G
A6 G2, p 6= 2
A5 G2, p = 2
C3 G2, p = 2
B3 G2, p 6= 2
D4 G2, p 6= 2

B3

E6 F4

An−1, n > 1 Cn/2, n even
B(n−1)/2, n odd, p 6= 2

Dn, n > 4 Bn−1

exists a closed simple subgroup X ⊂ H of type ΦG, respectively A1, containing a
regular unipotent element of H.

The conjugacy classes of such subgroups can be deduced from the known struc-
ture of maximal connected subgroups of H (see [19] and [11]).

Our methods for proving the main theorem differ according to whether H is of
classical or of exceptional type. In the former case we use results on indecomposable
representations of simple algebraic groups applied to our group G and the natural
H-module. These include general results such as Lemma 2.2, as well as more special
results on splitting certain G-modules of composition length 2 obtained by McNinch
[12]. For the exceptional groups H , we use in many instances the classification
results on maximal subgroups and subgroups of type A1 obtained by Seitz, Liebeck
and Testerman [11, 25].

It is well-known that the Jordan normal form of the Kronecker product of two
unipotent Jordan blocks is not similar to a Jordan block matrix. It is probably
worth mentioning the following generalization of this fact to arbitrary simple al-
gebraic groups: if X and Y are non-abelian commuting reductive subgroups of
a simple algebraic group H , then the product XY contains no regular unipotent
element of H . This is a special case of Proposition 2.3.

Notation and conventions. We will write [X,X ], orX ′, for the derived subgroup
of a group X . The order of an element x ∈ X is denoted by |x|. We use CX(M) to
denote the centralizer in X of a subset M ⊂ X .

Below F is an algebraically closed field of characteristic p ≥ 0. The term
‘a simple algebraic group’ designates (unless otherwise stated) a simply-connected
simple algebraic group defined over F . To simplify the language we often write
G = An, Bn etc. instead of the more precise ‘G is a simple simply connected linear
algebraic group of type An, Bn’ etc. If G is an algebraic group then G0 is its
connected component. If G is reductive, then [G,G] coincides with the semisimple
component of G. All FG-modules under consideration are rational.
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As usual, G determines its root system Φ and the weight lattice Ω(G). We fix
a Borel subgroup B of G and a maximal torus T ⊂ B. We denote the correspond-
ing set of simple roots by ∆ and the positive roots by Φ+; dominant weights are
denoted by Ω+(G). We label Dynkin diagrams as in [3] and let ∆ = {α1, . . . , αℓ},
with associated fundamental dominant weights ω1, . . . , ωℓ. The 1-dimensional con-
nected unipotent group normalized by T , with action given by the character α ∈ Φ,
is denoted by Uα and its elements by xα(t) (t ∈ F ). For µ ∈ Ω+(G), we let V (µ)
denote the irreducible FG-module of highest weight µ, and W (µ) the indecompos-
able Weyl module of highest weight µ. By a ‘classical group’, we mean a simple
simply connected algebraic group of type An (n ≥ 1), Bn (n > 2), Cn (n > 1) orDn

(n > 3). Except when G = Bn and p = 2, we take the so-called ‘natural’ module
for G to be the irreducible module with highest weight ω1. In the exceptional case,
the natural module for G = Bn is the (2n + 1)-dimensional reducible FG-module
equipped with a nondegenerate quadratic form, whose associated bilinear form has
a 1-dimensional radical.

Acknowledgements. We are very grateful to I. Suprunenko and the anonymous
referee for carefully reading the manuscript and for providing a detailed list of
comments which allowed us to correct several inaccuracies in the first version.

2. Linear representations

Until stated otherwise, we assume that H is a simple algebraic group. We first
recall some results from the representation theory of simple algebraic groups and
establish a result (Proposition 2.3) which will reduce the problem to the study of
simple subgroups. In addition, we will prove Theorem 1.2 in the case where H is
the group SL(n, F ).

Lemma 2.1. Let G ⊂ H be reductive algebraic groups, and let u ∈ G be unipo-
tent. If u is regular in H then so are all regular unipotent elements of G.

hanges

Proof. Let x be a regular unipotent element in G. Then u lies in the closure
of the G-class of x, and this of course lies in the closure of the H-class of x. If
x is not regular in H , this class has dimension strictly less than the dimension of
the H-class of u which is a contradiction. Therefore x is a regular element in H as
claimed. �

We require some additional notation; let Φ(H) denote the root system of H
and Uα the root subgroups (with respect to a fixed maximal torus TH of H) for
α ∈ Φ(H). Fix a base ∆(H) ⊂ Φ(H) and let Φ+(H) denote the corresponding set of
positive roots, BH ⊃ TH the corresponding Borel subgroup ofH , with Ru(BH) = U
and U1 the subgroup Πβ∈Φ+(H)\∆(H)Uβ . Finally, we also recall that the centralizer
of a regular unipotent element contains no non-central semisimple elements, see
[20, Ch.III, 1.14(a)].

We will need the following standard result from the literature, see e.g. Humphreys
[7, 12.4]:

Lemma 2.2. Let E be an indecomposable module for a simple algebraic group
of composition length 2. Let µ, λ be the highest weights of E/L, L, resp., where L
is the maximal submodule of E. Then either λ > µ or µ > λ, and in the latter case
E is isomorphic to W (µ)/M , where M is a submodule of W (µ).
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Actually we get thatW (µ) is reducible if there exists an indecomposable module
E as in the above lemma with µ > λ.

Proposition 2.3. Let H be a simple algebraic group and let X,Y ⊂ H be
proper subgroups such that [X,Y ] = 1 and such that X and Y each contain a
semisimple element of H \Z(H). Then XY contains no regular unipotent elements
of H.

We begin with the following:

Lemma 2.4. Let H be a simple algebraic group and u, u′ ∈ U = Ru(BH).
Suppose that u is regular and uu′ = u′u. Then either u′ is regular or u′ ∈ U1.

Proof. Note first that the lemma is true for groups of rank 2. For this, observe
that A2, B2

∼= C2, G2 are the only groups in question. In the first case verifying
the lemma is a matter of elementary matrix computations. If G is of type B2 = C2,
the explicit commutator formula for [u, u1] is available in [21, Lemma 33], and for
G of type G2 a similar formula is written down in [5, p. 192]. Using these, one
easily arrives at the conclusion. (One can also use the commutator formulas for the
root subgroups in [6, Theorem 1.12.1].)

In general, express u, u′ as follows: u = Πα∈∆(H)xα(tα) ·Πβ∈Φ+(H)\∆(H)xβ(tβ),
and u′ = Πα∈∆(H)xα(t

′
α) ·Πβ∈Φ+(H)\∆(H)xβ(t

′
β), where tα, tβ , t

′
α, t

′
β ∈ F .

Suppose the contrary, that is, u′ is not regular and u′ 6∈ U1. By [20, Ch.III,
1.13] u′ is regular if and only if t′α 6= 0 for all α ∈ ∆(H). Therefore, there is
β ∈ ∆(H) such that t′β = 0. Moreover, as u′ 6∈ U1, there exists a pair of roots

δ, γ ∈ ∆(H) adjacent to each other in the Dynkin diagram of H , and such that
t′γ = 0, t′δ 6= 0. Let P = 〈B,U−γ , U−δ〉. Then P is a parabolic subgroup of H . Let
L be its standard Levi subgroup with L′ := 〈U±γ , U±δ〉. Let h : P → L be the
natural surjection. Set u = h(u), u′ = h(u′). Then u, u′ ∈ L′ and uu′ = u′u. Let
ΦL,∆L,Φ

+
L be the root system, simple root system and the set of positive roots for

L′, with respect to the maximal torus TH ∩ L and Borel subgroup BH ∩ L. Then
∆L = {γ, δ} and

u = xγ(tγ)xδ(tδ) · Πβ∈(Φ+

L
\∆L)xβ(tβ)

is regular in L′ and

u′ = xδ(t
′
δ) · Πβ∈Φ+

L
\∆L

xβ(t
′
β)

is not regular. In addition, uu′ = u′u. This is a contradiction, as the result holds
in the rank two group L′. �

Proof of Proposition 2.3. Suppose the contrary, and let u ∈ XY be a reg-
ular unipotent element. Then u = u1u2 = u2u1 for some unipotent elements
u1 ∈ X,u2 ∈ Y . Moreover, neither of u1, u2 is regular, as each of X,Y contains a
non-central semisimple element. As uui = uiu for i = 1, 2, Lemma 2.3 implies that
u1, u2 ∈ U1. Then u = u1u2 ∈ U1, which is false by [20, Ch.III, 1.13]. �

The above proof shows slightly more: a regular element u has no factorization
u = u1u2, where CH(ui) contains a semisimple element of H \ Z(H).

Theorem 1.2 will follow directly from the following result and Proposition 2.3.
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Theorem 2.5. Let G ⊂ H be a simple closed subgroup of the simple algebraic
group H, and suppose G contains a regular unipotent element of H. Then G is
H-irreducible, that is, G is not contained in any parabolic subgroup of H.

We first establish an elementary lemma.

Lemma 2.6. Let P ⊂ H be a proper parabolic subgroup, properly containing a
Borel subgroup of H. Let L ⊂ P be a Levi subgroup and π : P → L the natural
surjection. Then for u ∈ P a regular unipotent element of H, u /∈ L and π(u) is a
regular unipotent element of L.

Proof. Let TH ⊂ BH be as above. We can assume that BH ⊂ P . Then L =
〈TH , U±α : α ∈ J〉 for some proper non-empty subset J of ∆(H). Using the notation
of the proof of Lemma 2.4, we have u = Πα∈∆(H)xα(tα) · Πβ∈Φ+(H)\∆(H)xβ(tβ).
By [20, Ch.III, 1.13] u regular implies tα 6= 0 for all α ∈ ∆(H). This implies the
first assertion, as if u ∈ L then tα = 0 whenever α 6∈ J . The second assertion also
follows since π(u) = Πα∈Jxα(tα) ·Πβ∈Φ+

L
\Jxβ(tβ), where Φ

+
L are the set of roots in

Φ+(H) which are linear combinations of the roots in J . �

Lemma 2.7. Assume char(F ) = 0 and let G ⊂ H be a reductive subgroup of
the simple algebraic group H such that u ∈ G is a regular unipotent element of H.
Then G is H-irreducible

Proof. This follows directly from Lemma 2.6 and the fact that all FG-modules
are completely reducible. We apply this to the FG-modules induced by the action
of G on the unipotent radical of any parabolic subgroup containing G to see that
G lies in a Levi factor, contradicting Lemma 2.6. �

In Lemmas 2.8 and 2.9 below we consider two special cases for p = 2. The
claim (2) of Lemma 2.8 is stated without proof in [16, p. 373]. We provide a proof
here for the sake of completeness. Lemma 2.9 would follow from Lemma 2.8 as
soon as one shows that every indecomposable representation of G = G2 of degree
7 in characteristic 2 preserves a quadratic form. However, it seems more simple to
argue directly.

Lemma 2.8. Let G = Bn and p = 2. Let φ : G → H = A2n be an indecompos-
able representation.

(1) The composition factors of φ are of dimension 1, 2n. If the socle of the FG-
module corresponding to φ is one-dimensional then φ(G) stabilizes a nondegenerate
quadratic form on F 2n+1 and hence φ(G) = SO(2n+ 1, F ) ⊂ H = SL(2n+ 1, F ).

(2) SO(2n+1, F ), and hence φ(G), contains no regular unipotent element of H,
equivalently, no matrix similar to J2n+1, the unipotent Jordan block of size 2n+1.

Proof. (1) It is well-known that the minimal dimension of a non-trivial FG-
module is 2n with highest weight µ = 2kω1, and that there is no 2n+1-dimensional
irreducible FG-module. Therefore, the composition length ofG on the natural mod-
ule V for H is 2. Let µ be the highest weight of the non-trivial FG-composition
factor of V . By [9, II.12.9, II.10.17(2)], the number of non-equivalent non-split
extensions of V0 by V2kω1

is equal to the number of non-equivalent non-split exten-
sions of V0 by Vω1

. So every non-split extension of V0 by V2kω1
can be obtained by

a Frobenius twist from a non-split extension of V0 by Vω1
. Therefore, it suffices to

deal with µ = ω1. Replacing if necessary V by its dual, by Lemma 2.2, we deduce
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that V is a quotient of W (ω1), the Weyl module with highest weight ω1, whose
dimension is 2n+1. So V ∼= W (ω1). Furthermore, there is an indecomposable FG-
module of dimension 2n+ 1 with quadratic form Q defining the orthogonal group
O(2n+ 1, F ), and this module fixes a non-zero vector, as per our earlier discussion
concerning the natural Bn-module. The group SO(2n + 1, F ) is known to be of
type Bn, see [1, Sections 23.4 and 23.5]. By the above remarks, this representation
is also a twist of the Weyl module W (ω1). As O(2n + 1, F ) is stable under the
Frobenius endomorphism, it follows that φ(G) coincides with SO(2n+ 1, F ). This
implies (1).

(2) Suppose the contrary, and let u ∈ G be a unipotent element having one
Jordan block in its action on V , so V is uniserial as an F 〈u〉-module. So the socle
of the FG-module V is 1-dimensional and hence φ(G) preserves a quadratic form
on V by (1). Then u stabilizes a totally singular subspace W of dimension n− 1.
Then StabG(W ) is a parabolic subgroup P of G, and u ∈ P . Then X := W⊥/W
is a vector space of dimension 3, and the quadratic form Q induces on X a non-
degenerate quadratic form defining therefore an orthogonal group O(3, F ). As both
W , W⊥ are u-stable, and V is uniserial for u, so is X . Therefore, SO(3, F ) contains
a uniserial element u′, say, which is the projection of u. Obviously, the order of
u′ is 4. However, this is false as SO(3, F ) ∼= SL(2, F ), so all unipotent elements of
SL(2, F ) are of order 2. �

Lemma 2.9. Let p = 2 and G = G2. Suppose that G ⊂ H = SL(7, F ). Then G
contains no regular unipotent element of H.

Proof. It is well-known that the minimal dimension of a non-trivial FG-
module is 6 with highest weight µ = 2kω1, and that there is no 7-dimensional
irreducible FG-module. Therefore, the composition length of G on the natural
module V for H is 2. Let µ be the highest weight of the non-trivial FG-composition
factor of V . Arguing as in the proof of the previous lemma, applying again [9,
II.12.9, II.10.17(2)] and Lemma 2.2, we see that we may assume that V is a quotient
of the Weyl module of highest weight µ = ω1; but this latter is of dimension 7, so
we have that V is isomoprhic to the Weyl module of highest weight ω1.

We now apply a result of [24] which describes the action of the fundamental
root group elements of G = G2 on W (ω1). Let Eij ∈ GL(7, F ) denote the matrix
with 1 at the position (i, j) and zero elsewhere. As p = 2, [24, the proof of Theorem
3.0, p.43] shows that the matrix of xα1

(1)xα2
(1) (a regular unipotent in G) with

respect to a fixed basis of W (ω1) is (1 +E12 +E45 +E67 +E35)(1 +E23 +E56) =
1 +E12 +E45 +E67) +E35 +E23 + E56 + (E13 +E46 +E36. This is not a regular
unipotent in SL(7, F ) as the term E34 does not occur in this expression. Since
regular unipotent elements of G2 form a singleG2-conjugacy class, the result follows
from Lemma 2.1. �

The following lemma is the result [23, 1.9], which is crucial in our analysis.

Lemma 2.10. Let φ : G → H = SL(n, F ), n > 1, be a non-trivial irreducible
representation of the simple algebraic group G, with highest weight λ = a1ω1+ · · ·+
aℓωℓ. Suppose that φ(G) contains a regular unipotent element of H. Then one of
the following holds (where k ≥ 0 is an integer and k = 0 if p = 0):

(i) G = A1, λ = pkmω1 and n = m+ 1 ≤ p if p > 0;

(ii) G = Aℓ, ℓ > 1, λ = pkω1 or pkωℓ and n = ℓ+ 1;
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(iii) G = Cℓ, ℓ > 2, λ = pkω1 and n = 2ℓ;

(iv) G = C2, λ = pkω1 and n = 4, or λ = pkω2 and n = 5 for p 6= 2 and n = 4
otherwise;

(v) G = Bℓ, ℓ > 2, λ = pkω1 and n = 2ℓ+ 1 for p 6= 2 and n = 2ℓ otherwise;

(vi) G = G2, p 6= 3, λ = pkω1, and n = 7 if p 6= 2 and 6 otherwise;

(vii) G = G2, p = 3 and λ = pkω1 or pkω2 and n = 7.

Proposition 2.11. Theorem 2.5 is true for H = SL(n, F ).

Proof. Suppose the contrary, that is, that G is H-reducible, so G acts re-
ducibly on the natural FH-module V . Let u ∈ G be a unipotent element that is
regular in H . This is equivalent to saying that dimV u = 1, where V u is the fixed
point subspace of u on V . It follows that every FG-submodule of V is indecompos-
able. Let 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vt = V be a composition series for the FG-module
V ; we have t > 1. Then u|V2

is a regular unipotent element in SL(V2). Note that
as V2 is indecomposable, and u|V1

and u|V2/V1
are regular elements, we may assume

that the composition factors have highest weights as specified in Lemma 2.10.
We will apply the results of Jantzen [8] and McNinch [12]. One of them asserts

that any FG-module of dimension m is completely reducible if m ≤ p · ℓ, where ℓ is
the rank of G (see [8, Theorem A] for the case G = A1 and [12, Corollary 1.1.1] for
the general case). We first note that for G = A1, since u has order p, the dimension
of V2 is at most p. In particular, the above criterion shows that V2 is completely
reducible, contradicting our assumptions. Now we turn to the other representations
of Lemma 2.10. We have dimV2 ≤ 2(ℓ+1), respectively 4ℓ, 10, 2(2ℓ+1), for G as in
(ii), respectively (iii), (iv), (v) of Lemma 2.10. Again applying the criterion of [12]
and recalling that V2 is indecomposable, we reduce to the following configurations.

(a) G = Aℓ, ℓ > 1 and p = 2;

(b) G = Cℓ and p ≤ 3;

(c) G = Bℓ and p ≤ 3;

(d) G = G2.

For the cases (a) - (d), we use a stronger result [12, Theorem 1], which asserts
that an FG-moduleW of dimension at most p·C is completely reducible (where C =
ℓ(ℓ+1)/2 for G of type Aℓ, ℓ(ℓ− 1) for types Bℓ, Cℓ and 3 for type G2), unless the
highest weights of the composition factors ofW occur in [12, Table 5.1.1]. Applying
this to the cases (a) - (d), we obtain a contradiction to the indecomposability of
V2 unless either p = 2, G ∼= Bℓ or Cℓ and the highest weights of the composition
factors are 0 and 2kω1, or G ∈ {C2, G2} and p ≤ 3. In the first case, note that
there is a surjective homomorphism Bℓ → Cℓ when p = 2, and the highest weight of
the irreducible Bℓ-module induced by the irreducible Cℓ-module of highest weight
ω1 is ω1 as well. Thus it suffices to consider only the Bℓ case. Thus V2 is an
indecomposable Bℓ-module of composition length 2 with factors of highest weights
2kω1 and 0. By Lemma 2.8, the image of Bℓ in H (and hence the subgroup Cℓ ⊂ H)
contains no regular element of H .

Let G = C2. Consider first the case where p = 2. Then |u| = 4, and hence
dimV2 ≤ |u| = 4. But there exists no reducible nontrivial FG-module of dimension
4, so p > 2. Now let p = 3. Note that the central involution of C2 is non-
trivial in any irreducible representation of dimension 4. It follows that either both
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composition factors of V2 are of dimension 4, or V2 has no composition factor of
dimension 4. In the latter case dimV2 ≤ 6, and applying again [12] we get a
contradiction. Suppose that dimV2 = 8. By Lemma 2.10, the highest weights of
the composition factors of V2 are µ := 3kω1 and λ := 3mω1, and we may assume
k ≤ m. By [12, Lemma 2.3.3(b)], we can assume that k = 0, and m ≥ 1 by [12,
Lemma 2.3.1(b)]. Set ν = λ−µ = (q−1)ω1, for q = 3m. We now normalize the inner
product on ZΦ so that for α ∈ Φ a long root, we have (α, α) = 1. Then we will apply
[18, (6.2)], which shows that 2(λ+ω1+ω2, ν)− (ν, ν) must lie in (p/2)Z = (3/2)Z.

But a direct calculation shows that 2(λ + ω1 + ω2, ν) − (ν, ν) = (q−1)(q+5)
4 . (The

result [18, (6.2)] is a consequence of the strong linkage principle.)
Finally, for the case G = G2 and p ≤ 3, we see that u has order 9 if p = 3,

and order 8 if p = 2 (see Table 2). Then dimV ≤ 9, and again by [12], V is a
completely reducible FG-module unless p = 2, and by dimensions we have that V2

is a twist of the 7-dimensional indecomposable considered in Lemma 2.9. But in
this case Lemma 2.9 shows that u|V2

is not regular. This completes the proof. �

3. The case where H is classical

In this section we will establish Theorem 2.5 for the remaining classical groups.

Proposition 3.1. Theorem 2.5 is true if H is classical.

Proof. Suppose first that H is of type Bn, respectively Cn. Then a regular
unipotent element of H is regular in D, where D = SL(2n+1, F ), resp. SL(2n, F ).
Therefore, by Proposition 2.11, G is irreducible on V , and hence cannot be con-
tained in a Levi subgroup of H .

Let H be of type Dn for n > 3, and let V be the natural FH-module. By
Lemma 2.7 we may assume char(F ) = p > 0. Let u ∈ G be a regular unipotent
element of H . By [16, Lemma 1.2], the Jordan normal form of u on V consists of
two blocks with sizes 2n− 1, 1 if p is odd, and 2n− 2, 2 if p = 2.

Let V u be the fixed point space of u on V . Obviously, dimV u = 2. We deduce
two auxiliary observations from this.

(i) If X = X1 ⊕ X2, where X,X1, X2 are u-stable subspaces of V , then the
dimension of X1 or X2 is at most 1 if p > 2, and at most 2 if p = 2. (This follows
by looking at V u and V/V u.)

(ii) If up = 1 then p > 5. Indeed, if p = 2 then we have 2n− 2 ≤ 2, which is a
contradiction. If p > 2, we have 2n− 1 ≤ p, which implies the claim as n > 3.

We argue by contradiction and suppose that G is contained in a proper par-
abolic subgroup of H . Then G stabilizes a non-zero totally singular subspace of
V . Let W be a maximal G-stable totally singular subspace of V , k = dimW ,
and let P be the stabilizer of W in H . Then P is a parabolic subgroup of H
and G ⊂ P . Let L be a Levi subgroup of P , so L = (SL(k, F ) × Dn−k) · TH if
n − k > 1, and L = SL(k, F ) · TH if n − k ≤ 1. Let π : P → L be the natural
projection of P onto L. By Lemma 2.6, π(u) is a regular unipotent element of L.
Then π(u) ∈ [L,L] = SL(k, F ) × Dn−k if n − k > 1, otherwise π(u) ∈ SL(k, F ).
Denote by τ the further projection of π(G) into SL(k, F ). Then if k > 1, τ(G)
contains a regular unipotent of SL(k, F ) and so τ(G) is irreducible in SL(k, F ) by
Proposition 2.11; this is trivially true if k = 1. Set U := W⊥/W . It is well-known
that W and V/W⊥ are dual G-modules.
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Suppose first that U = 0. As mentioned above, τ(G) is irreducible on W ; in
particular, τ(G) belongs to the list of Lemma 2.10. For groups G of type A1, Cℓ,
Bℓ and G2, all irreducible representations are self-dual [18, 1.8], so we have a self-
extension here; however, every self-extension splits ([9, II.2.12(1)]), which means
that V is the direct sum of twoG-submodules each of dimension equal to (dim V )/2,
which contradicts the observation (i) above. For the remaining configuration of
Lemma 2.10, G = Aℓ with ℓ > 1. Then the highest weights of G on W and V/W⊥

are piω1, p
iωℓ; then this extension splits by Lemma 2.2 and we once again have a

contradiction.
We now have that dimU > 0, so dimU ≥ 2. We first show that p > 2. Suppose

p = 2. Then the Jordan normal form of u has a block J2n−2 of size 2n−2 on V , and
τ(u) has a block (on W ) of size at most k ≤ n− 1. This implies that |u| > |τ(u)|,
which is false. Thus, we assume until the end of the proof that p > 2.

Suppose that dimU = 2. Then G acts trivially on U , since U is equipped
with a non-degenerate G-invariant symmetric bilinear form; hence the restriction
of G to W⊥ is an extension of τ by a trivial representation of G. We show that
this extension splits. Indeed, if G ∼= A1 then |u| = p, and hence dim τ ≤ p. By
statement (ii) above, p > 5 here. If dimW < p, then the splitting follows from [12,
Corollary 1.1.1]. If dimW = p, then the highest weight of τ is pj(p− 1)ω1 for some
integer j ≥ 0, and we can use the linkage principle [7, 3.6]. The dominant weights
linked in A1 to 0 are of shape ip − 2 for some integer i > 0. This is not equal to
pj(p− 1) for p > 2.

Continuing with the case dimU = 2, we must consider the groups of rank
greater than 1. Note that dimW = k ≤ ℓ + 1, 2ℓ, 5, 2ℓ + 2, 7, 7 in the cases
(ii) - (vii), respectively, of Lemma 2.10. Then dimW⊥ = k + 2 ≤ ℓ + 3, 2ℓ + 1,
7, 2ℓ + 3, 9, 9, respectively. By [12, Corollary 1.1.1], if dimW⊥ ≤ ℓp then W⊥

is a completely reducible FG-module, which contradicts (i) above. Therefore, we
have only to deal with the cases where dimW⊥ > ℓp. This yields the inequalities
ℓ+ 3 > ℓp, 2ℓ+ 2 > ℓp, 7 > 2p, 2ℓ+ 3 > ℓp, 9 > 2p, 9 > 2p, respectively. Recalling
that p > 2, it follows that the possible configurations are when p = 3 in the cases
(iv) and (vii).

Consider the case (vii). Then p = 3, so k = 7, |u| = 9, and hence 2n− 1 ≤ 9,
which violates k = 7 (since here we have dimV = 2dimW + 2 = 2k + 2). Finally,
suppose that p = 3 in case (iv). Then G is of type C2 or B2 (they are isomorphic).
Then W⊥ is completely reducible by [12, Theorem 1], giving a contradiction as
above. (Recall that W⊥ is an extension of W by a trivial module and W is as in
Lemma 2.10(iv).)

We have now reduced to the case dimU > 2. Let σ : G → SO(U) denote the
representation of G induced by φ. Note that σ 6= 1 as σ(G) contains a regular
unipotent element of Dn−k. If dimU = 4 then SO(U) is a semisimple group of type
A1A1, so G ∼= A1, and hence p > 5 (by (ii) above) and k ≤ p. As the Jordan form
of u on V has a block of size 2n − 1, it follows that 2n − 1 ≤ p. As n = k + 2,
we have 2k + 3 ≤ p, and hence dimW⊥ = k + 4 ≤ (p + 5)/2. But since p > 5,
(p+ 5)/2 ≤ p, and [12, Corollary 1.1.1] implies that W⊥ is a completely reducible
FG-module, contradicting (i).

We consider one further special case, that is when dimU = 6, and show that
W⊥ is a completely reducible FG-module. We have Dn−k = D3

∼= A3; so |u| =
|σ(u)| = p, or p = 3 and |u| = 9. If |u| = p then p > 5 by (ii) above. In this case,
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2n − 1 ≤ p and n = k + 3 imply that dimW⊥ = k + 6 ≤ p+7
2 ≤ p, and so W⊥ is

a completely reducible FG-module as claimed. Thus we have p = 3 and |u| = 9.
But then 2n − 1 ≤ 9 implies that k ≤ 2. If k = 2 then |τ(u)| = 3, and hence
|u| = 3, a contradiction. So k = 1 and dimW⊥ = 7. As D3

∼= A3, by Lemma 2.10,
G is of type A3 or C2. In the first case, [12, Corollary 1.1.1] implies that W⊥ is
completely reducible; hence we may asume G = C2. Let X be the 4-dimensional
natural module for A3. Then, the highest weight of X |G is 3jω1. It is well-known
that U is the wedge square of X and that G acts reducibly with composition factors
of dimensions 5 and 1 on ∧2X . The highest weight of the non-trivial factor is 3iω2.
It follows that U is completely reducible (as it is obviously self-dual). By [9, II.12.9,
II.10.17(2)] and Lemma 2.2, W⊥ is completely reducible again as claimed. Using
the self-duality of V , in all cases, we have dimV u > 2, which is a contradiction.

We now consider the remaining cases, where dimU ≥ 8. Then σ(G) contains a
regular unipotent element of SO(U) ∼= Dn−k. So the Jordan form of σ(u) consists
of blocks of size 1 and 2n− 2k− 1. We show that σ is an irreducible representation
of G.

Indeed, suppose the contrary, that σ(G) acts reducibly on U . By maximality
of W , there is a proper σ(G)-invariant non-degenerate subspace U ′ of U (recall
that p > 2), and hence σ(G) stabilizes an orthogonal decomposition U = U ′ ⊕ U ′′.
Considering the Jordan form of σ(u), we may without loss of generality assume
that dimU ′′ = 1. Let Z be the preimage of U ′′ under the mapping W⊥ → W⊥/W .
Then dimZ = k + 1. We claim that Z is a completely reducible FG-module.
Indeed, if |u| = p then 2n − 1 ≤ p implies k = dimW ≤ n − 4 ≤ p−7

2 , and the
splitting follows from [12, Corollary 1.1.1]. If |u| > p, and so G 6= A1, again by
loc.cit, we can assume that dimZ > pℓ, equivalently, dimW > pℓ − 1. As above,
the dimension of W is at most ℓ + 1, 2ℓ, 5, 2ℓ + 1, 7, 7 in the cases (ii) - (vii)
of Lemma 2.10, respectively. As p > 2, this is at most pℓ − 1 unless p = 3 and
G = G2, and then |u| ≤ 9. As 2n − 1 ≤ |u|, it follows that 2n = 10, and hence
dimW = 1. Therefore, Z is a reducible FG-module of dimension 2, and hence
trivial, so completely reducible as claimed. Now set Z = W ⊕ Z1, where Z1 is a
1-dimensional, nondegenerate, G-invariant subspace. Then G embeds in SO(Z⊥

1 ),
a simple group of type Bn−1. Moreover, the image of G in this Bn−1 subgroup
must contain a unipotent element of the Bn−1 with a Jordan block of size 2n − 1
on Z⊥

1 , that is, a regular unipotent element. Since we have already established the
result in case H = Bn−1, we see that the image of G lies in no proper parabolic
subgroup of SO(Z⊥

1 ). But W ⊆ Z⊥
1 , hence a contradiction.

Thus, σ is irreducible; so either G = Dn−k or by [16, Theorem B(iv)], G ∼= A1,
or G ∼= B3 and σ is a Frobenius twist of the spinor representation of G. In the
first case, when G = Dn−k, we see that k = 1 since τ(G) must contain a regular
unipotent element of SL(k, F ) (see Lemma 2.10). Now since k = 1, we see that V |G
has precisely three composition factors, namely a twist of the natural module for
G, and 2 trivial modules; but then applying Lemma 2.2 and [9, II.12.9, II.10.17(2)],
we deduce that V is a completely reducible FG-module contradicting dimV u = 2.
Now for the remaining two cases, observe that σ is tensor indecomposable as σ(u)
is regular unipotent in Dn−k (see [16, 1.5]). In addition, tensor indecomposable
irreducible representations of SL(2, F ) of even dimension are symplectic, which rules
out the case with G = A1. Therefore, G is of type B3, and dimU = 8. Note that
the composition length of W⊥ equals 2, and the composition factors are given by τ
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Table 2. The maximal order of unipotent elements in the excep-
tional groups

p 2 3 5 7 11 13 17 19 23 29

E8 25 34 53 72 112 132 172 192 232 292

E7 25 33 52 72 112 132 172

E6 24 33 52 72 112

F4 24 33 52 72 112

G2 23 32 52

and σ. By Lemma 2.10, τ is of highest weight 0 or piω1 for some integer i ≥ 0, and
σ is of highest weight pjω3. Then W⊥ splits as σ is faithful and τ is not faithful
for p > 2. Therefore, W⊥ = W ⊕ Y , where Y ∼= U is a G-stable subspace of W⊥.
As above, this implies that dimV u > 2, giving our final contradiction. �

4. The case where H is exceptional

In this section we will establish Theorem 2.5 in case H be a simple algebraic
group of exceptional type. By Lemma 2.7, we may assume char(F ) = p > 0 and
we let o(H) be the maximum order of a unipotent element of H . This coincides
with the order of a regular unipotent element of H . The value o(H) is explicitly
computed in [25]; we give these values when o(H) exceeds p, in Table 2.

We will rely heavily on [10, Theorem 1], where sufficient conditions for a
semisimple subgroup of a simple exceptional algebraic group H to be H-cr are
given.

Proposition 4.1. Let H be a simple algebraic group of exceptional type and
G a simple closed subgroup of H. If G contains a regular unipotent element of H,
then G does not lie in any proper parabolic subgroup of H. (So Theorem 2.5 is true
for G of exceptional type.)

Proof. Arguing by contradiction, we suppose that u ∈ G, for u a regular
unipotent element of H , and G ⊆ P , a proper parabolic subgroup of H . As a
proper Levi factor of H cannot contain a regular element of H (Lemma 2.6), G
does not lie in a Levi factor of P . Hence, we may use [10, Theorem 1] to reduce to
a small number of possibilities, where Table 3 (taken from [10]) gives the maximal
value N(G,H) of the prime p for which we must consider the pair (G,H). If there
is no value of p in the column corresponding to H , then G necessarily lies in a Levi
factor of H for all p.

We now compare the above restrictions on p with the information in Table 2,
where we give the orders of the regular unipotent elements in the exceptional groups.
For u ∈ H regular, u ∈ G implies that the order of u is at most the order of a regular
unipotent element in G, as regular unipotent elements are dense in the variety of
unipotent elements of G. If G is of type An, the regular unipotent elements have
order equal to the minimal power pa with pa > n. The regular unipotent elements
in Cn are regular in A2n−1 (in the natural representation of Cn). As mentioned
in the proof of Proposition 3.1, the regular unipotent elements in Dn acting on
the natural 2n-dimensional representation space have exactly two Jordan blocks of
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Table 3. N(G,H)

H = G2 F4 E6 E7 E8

G = A1 3 3 5 7 7
A2 3 3 5 5
B2 2 3 3 5
G2 2 3 7 7
A3 2 2 2
B3 2 2 2 2
C3 2 2 2 2

B4, C4, D4 2 2 2

sizes (2n − 1, 1) if p 6= 2, respectively, of sizes (2n − 2, 2) if p = 2. So the regular
unipotent elements in Dn have order equal to the minimal pa with pa ≥ 2n − 1,
respectively pa ≥ 2n − 2. Finally, we recall that the regular unipotent elements
in Bn are again regular in Dn+1, under the natural embedding of Bn in Dn+1.
Combining all of these results and comparing the orders, we see that o(H) > o(G)
unless G is of type G2, p = 5 and H is of type E7.

We now consider this possibility in detail. Let P be proper a parabolic subgroup
ofH minimal with respect to containingG, and let P = QL be a Levi decomposition
of P , where Q = Ru(P ). If L′ has a simple factor of type Ak for some k, then the
minimality of P implies that G has a k+ 1-dimensional irreducible representation.
If L′ has a factor of type Dk for some k, again the minimality of P implies that
there exists an irreducible FG-module of dimension m for some m ≤ 2k, and on
which G stablizes a nondegenerate quadratic form. Given that p = 5, we reduce
therefore to the following configurations.

a) L′ is of type D4, G stabilizes a nonsingular 1-space of the natural module
for L′ and acts irreducibly on a non-degenerate complement to this space,

b) L′ is of type A6 and G acts irreducibly on the natural module for L′, or

c) L′ is of type E6.

In the first two cases, we will show that the semidirect product GQ has a unique
class of complements to Q, which implies that G is conjugate to a subgroup of L′,
contradicting Lemma 2.6. The main tool here is [10, 1.7]. We refer to the table
of highest weights of composition factors of Q|L′ given in the proof of [10, 3.4], as
well as to [10, 2.10] for the restriction of these composition factors to the image of
G in L′. Then for any such composition factor, say of highest weight µ, we use the
known information on the corresponding Weyl module W (µ) for G, when p = 5,
and we see that HomFG(rad(W (λ), F ) = 0. Then [10, 1.7] shows that there is
indeed a unique class of complements to Q in GQ.

So it remains to consider the case L′ of type E6. By minimality of P , π(G) is
L′-irreducible. Then [16, Theorem A] implies that π(G) ⊂ M , a maximal subgroup
of type F4. The Borel-Tits theorem [2] shows that π(G) is X-irreducible in every
intermediate subgroup X ⊂ L′, so π(G) lies in no proper parabolic subgroup of
M = F4. But then [16, Theorem A] provides a contradiction. �
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Proof of Theorem 1.2. As every unipotent element of G is contained in the
semisimple subgroup [G,G], we can assume that G is semisimple. By Proposi-
tion 2.3, G is simple. So the result follows from Theorem 2.5. �

5. Proof of Theorem 1.4

We can now apply the main theorem of [16] and Theorem 1.2 to determine the
semisimple closed subgroups of H which contain a regular unipotent element.

Let G ⊂ H be a semisimple closed subgroup and suppose u ∈ G for some
regular unipotent element of H . Let M ⊂ H be a maximal closed subgroup with
G ⊆ M , necessarily of positive dimension. Then Theorem 1.2 implies that M is
not a proper parabolic subgroup of H , and so M◦ is reductive. Moreover, u ∈
G = G◦ ⊂ M◦ and by Proposition 2.3, we see that [M0,M0] is in fact a simple
group. Now, if M◦ is normalized by a maximal torus of H , then its root system
corresponds to a subsystem of Φ(H) and therefore M◦ does not contain regular
unipotent elements of H . In addition, we once again apply what is known about
the Jordan block structure of regular unipotent elements in the classical groups.
Then by [16, Theorem A, Theorem B], we deduce that one of the following holds:

(i) M◦ = A1 and p > h, the Coxeter number for H .

(ii) M◦ = F4 ⊂ E6 = H .

(iii) M◦ = Bℓ ⊂ Dℓ+1 = H .

(iv) M◦ = Cℓ ⊂ A2ℓ−1 = H .

(v) M◦ = Bℓ ⊂ A2ℓ = H , p > 2.

(vi) M◦ = B3 ⊂ D4 = H . (Here there are three conjugacy classes of such
subgroups, interchanged by the graph automorphisms of H .)

(vii) M◦ = G2 ⊂ B3 = H , p > 2.

(viii) M◦ = G2 ⊂ C3 = H , p = 2.

(ix) M◦ = A2 ⊂ C4 = H , p = 2.

All of the above examples actually give rise to subgroups containing regular
unipotent elements, except the example of (ix). Here G acts irreducibly on V , the
natural 8-dimensional module for H , and V |G has highest weight 2j(ω1 + ω2), for
some j. However, Lemma 2.10 implies that the regular unipotent elements in G
are not regular unipotent in GL(V ) and hence are not regular in H .

We must now descend within in each of the above configurations. So we choose
a maximal positive-dimensional subgroup of M◦ arising as an example in the Saxl-
Seitz result. Then it is straightforward to see that this gives rise precisely to the
list of Theorem 1.4.
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