
Scala.js: Type-Directed Interoperability
with Dynamically Typed Languages

Sébastien Doeraene
École polytechnique fédérale de Lausanne

sebastien.doeraene@epfl.ch

Abstract
Interoperability between statically typed and dynamically typed
languages is increasingly important, as can be witnessed by the
many statically typed languages targeting JavaScript. Interoper-
ating with both the object-oriented and functional features of
JavaScript is essential, if only to manipulate the DOM, yet existing
languages have very poor support for this.

We present Scala.js, a dialect of Scala compiling to JavaScript.
Its interoperability system is based on a powerful and intuitive
framework for type-directed interoperability with dynamically
typed languages. The framework combines facade types for JavaScript
values; user-defined, implicit, type-directed cross-language con-
versions; and a Dynamic type building on facade types and im-
plicit conversions. It accommodates both the functional and object-
oriented features of Scala and JavaScript, and provides very natural
interoperability between the two languages. It is expressive enough
to represent the DOM and jQuery APIs, among others, both in its
statically typed and dynamically typed flavors.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features

General Terms Languages, Design

Keywords interoperability, static types, dynamic types, Scala,
JavaScript

1. Introduction
With the advent of JavaScript as a platform for large-scale Web
application development rather than tiny scripts on Web pages, a
number of efforts have been made to compile higher-level lan-
guages down to JavaScript. In particular, source languages support-
ing some form of static typing are common.

We can divide these languages in two radically different ap-
proaches. The first approach is to start from JavaScript itself, and
either provide new syntactic sugar (e.g., CoffeeScript [7]), or add
various forms of static typing. Typing JavaScript, as any other dy-
namically typed language, is hard. Various strategies have been
studied both for JavaScript itself, or for idioms found in JavaScript:
soft typing [4, 26], gradual typing [15, 24, 25], dependent types [5],
or occurrence typing [27]. However, none of these approaches for
types has really made it for JavaScript, the aborted ECMAScript 4
proposal being the most prominent example of failed attempt. An
apparently successful approach is conducted by TypeScript [18],
which has simply chosen to embrace unsoundness. The golden
rule or motto of all these languages is some variation of “It is just
JavaScript.”

Although interesting and useful, these approaches do not add
that much expressiveness to the language. They do not add lan-
guage constructs or concepts that cannot be translated trivially and
locally into JavaScript.

The other approach is to start from a very different language,
designed with application-scale development in mind, typically in-
volving static typing. Both implementations of new languages de-
signed specifically for JavaScript (Dart, Haxe, etc.) and ports of
existing languages (Java, Standard ML, etc.) have been done. This
approach typically gives more powerful languages, with higher ab-
stractions, and that also avoid the typical quirks of JavaScript (lack
of lexical scoping, non-trivial semantics for operators, etc.). How-
ever, all of these languages perform poorly in terms of interoper-
ability with JavaScript libraries.

Now, interoperability with JavaScript is essential, if only be-
cause this is the way to interact with the Document Object Model
(DOM). Languages taking this approach define their own API to in-
teract with the DOM, and provide obscure bindings under the hood.
But this is not very flexible, as it does not scale well to user-defined
JavaScript libraries, often requiring the developer to use embed-
ded JavaScript from within the host language. It is also difficult to
call such code from JavaScript. The reason for this poor interop-
erability is that these languages do not consider JavaScript values
and objects to be first-class citizens of the host language. Addition-
ally, with the exception of Dart (which is only partially typed), their
commitment to a static type system prevents the developer to inter-
act with JavaScript libraries without giving proper types of some
sort to them.

Scala.js. In this paper, we present Scala.js, yet another language
compiling to JavaScript. As its name implies, it is a port of the pop-
ular functional and object-oriented language Scala [20]. Scala has a
very powerful type system with a unique combination of features:
traits, implicit conversions, higher-order functions, generics, and
user-defined dynamic types. As a functional and object-oriented
language, its concepts are also very close to JavaScript, behind the
type system: no static methods (only objects), first-class functions,
etc.

Scala.js is obviously part of the second set of languages tar-
geting JavaScript. However, it was designed with interoperability
in mind, and as a result provides the best interoperability with
JavaScript of all these languages that we know of. Ironically,
Scala.js leverages the powerful type system of Scala to provide in-
teroperability with the dynamically typed language JavaScript. In
particular, it is built on two unusual features of the Scala type sys-
tem: user-defined implicit conversions and user-defined dynamic
types.

Type-directed interoperability between statically typed and dy-
namically typed languages is not novel, but they have mostly cov-
ered only functional languages [17]. Most importantly, they only
allow builtin conversions from JavaScript values from and to the
host language data types, i.e., there is no user-defined conversions.
Another limitation is that they either (a) do not support untyped JS
values at all or (b) consider them as blackboxes.

1 2013/12/14

Scala.js combines the best of existing state-of-the-art frame-
works (type-directed interoperability [17], static type facades for
object-oriented JS types [18], the Scala type system itself) with
novel ideas of its own (user-defined cross-language conversions,
type-directed interoperability in the presence of object-orientation
and a type-directed dynamic type) to provide outstanding interop-
erability with JavaScript.

Scala.js has been successfully implemented as a new backend
for the Scala compiler, that is loaded as a compiler plugin. It sup-
ports the whole Scala language, modulo some semantic adaptations
(most notably for overflows in arithmetics), and programs written
in Scala.js can use the Scala collection library, as well as interop-
erate with JavaScript libraries. The interoperability framework is
built on top of implicit conversions and user-defined dynamic types
of Scala, so that the type system need not be modified. The compiler
supports separate compilation and incremental compilation (just as
the standard Scala compiler does).

Contributions. This paper brings the following contributions.
We build upon existing type-directed interoperability for func-

tional features [17] and show how to extend it to mutable object-
oriented values through first-class static type facades, and how to
allow for user-defined, type-directed cross-language conversions.

We also show how to integrate dynamically typed values of
JavaScript as first-class citizens of a statically typed language,
and how type-directed interoperability still applies in that setting,
providing whitebox, intuitive interoperability.

Finally, we show how the framework can be built on top of user-
defined implicit conversions, and user-defined dynamic types, as
available in Scala, with no changes to the core language and its
type system.

2. Overview of Scala.js
Scala.js is a dialect of Scala which is meant to be compiled to
JavaScript, instead of the JVM. The goal of this project is to allow
front-end developers to write the client-side of Web applications
entirely in Scala, and have it compiled to standard JavaScript [8]
for execution in Web browsers, as part of Web pages.

Although described as a dialect, Scala.js supports all the type
system and all the constructs of Scala, including pattern matching,
mixin composition, and so on. As such, Scala.js can compile any
existing Scala code. Actually, Scala.js compiles the entire Scala
standard library (modulo system-dependent parts) which is there-
fore available to Scala.js programs and libraries. It is a dialect be-
cause the semantics of some primitive operations are a bit differ-
ent, mostly to accommodate the fact that only Doubles exist in
JavaScript.

Moreover, Scala.js features outstanding interoperability with
JavaScript libraries. Unlike previous similar attempts, which pride
themselves on supporting some limited, simple, and sometimes
awkward interactions with the DOM [9], Scala.js supports all in-
teractions with the DOM and any other user-defined library, within
a simple and consistent framework for type-directed interoperabil-
ity.

Support for all of Scala. The Scala.js compiler supports all of
the Scala language. Hence, it can compile the entire Scala standard
library, which is then available to programs in Scala.js. Hence the
following program, which is valid Scala, is also valid Scala.js and
will print the first 10 squares to the standard output (in a browser,
the “standard output” is the logging buffer, accessible through the
console.log() function):
object Main {

def main(): Unit = {
val nums = (1 to 10).toList
val squares = nums map (x => x*x)

for ((x, x2) <- nums zip squares)
println(s"$x -> $x2")

}
}

Scala.js emits standard JavaScript, which can be run by any
JavaScript interpreter conforming to ECMAScript 5.1 (in browsers,
or standalone such as d8 from V8 or Node.js, or embedded such
as Rhino). The Scala.js development kit (taking the form of an
sbt plugin) includes a builtin mechanism to run Scala.js programs
through Rhino, for testing purposes (including unit testing).

Since Scala as a language, and also its standard library, rely on
core parts of the Java standard library, it is impossible to support
all of Scala without supporting some of Java. Hence, Scala.js also
includes a partial port of the Java standard library written in Scala.js
itself.

Finally, it is also worth mentioning that Scala.js does support
macros [3] and compiler plugins [19], just as regular Scala; al-
though this is not the result of our work, but rather due to the mod-
ularity of the Scala compiler.

Semantics for numbers. Scala has defined its primitive types, and
in particular, its numeric types, with the JVM in mind, which offers
signed integers of sizes 8, 16, 32 and 64 bits, and floating point
numbers of size 32 and 64 bits. JavaScript, however, has only one
number type, equivalent to the Double type of Scala. Although it
would be possible to encode faithfully the wrapping semantics of
integers of various sizes, the runtime overhead would be too great.
Every primitive arithmetic operation would have to be programmed
with non-trivial JavaScript code.

Our implementation instead translates all numeric types (as well
as characters) to JavaScript numbers. The semantics are preserved
for integers as long as no logical overflow happens, i.e., an oper-
ation that would overflow in Scala, but does not in JavaScript. In-
teger division is preserved by truncating the result of the division
between two numbers statically typed as integers.

This approach for encoding numbers has been used by all ma-
jor ports of existing languages to JavaScript, e.g., GWT [13] and
ClojureScript [6].

Runtime reflection. Java and, by extension, Scala, have a rela-
tively powerful runtime reflection subsystem. Scala.js, given con-
siderations about aggressive code optimization (see next para-
graph), does not support runtime reflection. Limited support is
given to support heavily used idioms of Scala. This includes (a)
runtime type tests (isInstanceOf[T]), including for interfaces
and (b) ClassTags. Full-fledged reflection could be implemented
without much trouble, and is intended for future work.

Fast development cycle and optimized production code. The
Scala standard library is huge, by JavaScript’s standards. To sup-
port fast, incremental development cycles, which is dear to front-
end developers, Scala.js supports separate compilation, and even
incremental compilation. It also emits source maps, which allows
to debug the original Scala.js code instead of the obscure, emitted
JavaScript code.

For production deployment, a much smaller code is necessary.
Scala.js produces code that can be optimized by the Advanced
Optimizations mode of Google’s Closure Compiler [11]. These
optimizations use whole program analyses to perform aggressive
renaming, dead code elimination, namespace flattening, and so on.

Interoperability with JavaScript. All of the above would be
worthless if Scala.js was not able to interoperate with JavaScript
code, as we explained in the introduction. Scala.js features a
unique, type-directed interoperability, which is the main contri-
bution of our work, and which we describe in details in Section
4.

2 2013/12/14

3. Fancy features of the Scala type system
Before describing our interoperability framework, we give an in-
troduction to the two “fancy” features of the Scala type system
on which we build the framework. They are user-defined, type-
directed implicit conversions, and user-defined dynamic types. We
will show that our framework can be implemented without chang-
ing the host language’s type system, as long as it supports these two
features.

3.1 Implicit conversions
In Scala, one can define implicit conversions as methods with the
implicit keyword, e.g.,
case class ID(val id: String)
implicit def stringToID(s: String): ID = ID(s)

When an implicit conversion from some type A to some other type B
is in the lexical scope, and a term is typed as an A but is expected to
be of type B (or some supertype of B), the Scala type-checker inserts
a call to the implicit conversion. For example, given the implicit
conversion from String to ID defined above, the following code
def lookup(id: ID): Book = { ... }
val book = lookup("foo")
val id: ID = "bar"

is valid, because the type-checker will rewrite it as
val book = lookup(stringToID("foo"))
val id: ID = stringToID("bar")

Implicit conversions can also be invoked automatically when
selecting a member m of some value of type A, if m is not defined
in A, but there exists an implicit conversion from A to some other
type B in scope, and m is defined in B. This is typically used for
defining extension methods, as illustrated by the following snippet,
extracted from the Scala standard library:
class RichInt(self: Int) {

def to(end: Int): Range =
Range.inclusive(self, end)

}
implicit def int2richInt(i: Int): RichInt =

new RichInt(i)

which is why we can write
val nums = (1 to 10).toList

which is equivalent to
val nums = 1.to(10).toList

which itself is rewritten by the type-checker into
val nums = int2richInt(1).to(10).toList

Implicit values in scope can also be instantiated implicitly to be
given to implicit parameters with the appropriate type, as studied in
[21, 22]. Since our framework does not use this aspect of implicits
directly, we do not include the details here.

3.2 User-defined dynamic types
Since version 2.10, Scala features a special trait, scala.Dynamic,
which can be used to define custom dynamic types. This trait itself
does not define any member, but can be mixed into a user-defined
class or trait to enable the dynamic rewriting upon access of a
member of this type. When selecting a member x.m of a value x
of some type D <: scala.Dynamic, and m cannot be found by
all other type-checking rules (direct selection, but also selection
available through an implicit conversion in scope), the following
rules apply.

• If m is selected as read access of a field, i.e., under the form
x.m anywhere but in the left-hand side of an assignment, the
type-checker rewrites x.m as x.selectDynamic("m").

• If m is selected as write access of a field, i.e., under the form
x.m = y for some expression y, then the type-checker rewrites
x.m = y as x.updateDynamic("m")(y).

• If m is selected as a method call, i.e., under the form x.m(arg1,
..., argn), then the type-checker rewrites the call as
x.applyDynamic("m")(arg1, ..., argn).1

The rewritings are type-checked recursively, with the exception
that the dynamic rewriting cannot be used for x anymore (it can be
used when type-checking subexpressions).

For example, given the following definition:
class DynExample extends scala.Dynamic {

def applyDynamic(n: String)(args: Int*): Int = ...
def selectDynamic(n: String): Int = ...
def updateDynamic(n: String)(v: Int) = ...

}

the following snippet is valid
val d = new DynExample
val i: Int = d.foo(5, 3)
d.bar = d.foobar * 2

since it can be rewritten as
val i: Int = d.applyDynamic("foo")(5, 3)
d.updateDynamic("bar")(

d.selectDynamic("foobar") * 2)

4. Type-directed interoperability with JavaScript
In addition to being able to support the entire Scala language, a
crucial design requirement of Scala.js was to have outstanding,
easy-to-use and intuitive interoperability with JavaScript code. This
section presents type-directed interoperability between Scala.js and
JavaScript code, which is the main contribution of this paper. Us-
ing a combination of facade types, type-directed user-defined con-
versions, and a Dynamic type (itself also type-directed), Scala.js
features the most powerful type-directed interoperability with a dy-
namically typed language that we know of.

Although we present the features in the context of Scala.js,
they could be applied to any such language, as long as the type
system of the host language supports the appropriate features, i.e.,
user-defined dynamic types and implicit conversions. Ideally, both
languages should support the same main paradigms, which is the
case for Scala and JavaScript which both combine object-oriented
and functional features.

4.1 Why interoperability matters
Before discussing type-directed interoperability, it is worth under-
standing why interoperability matters at all. Why cannot we just
do nothing? After all, ours is not an interoperability between two
different runtime systems (like JNI which is JVM-C). The interop-
erability discussed here is one between languages. But why is it
hard?

Supporting all of Scala is great, but it has consequences. Two
representative features that require particular care are overload-
ing, and isInstanceOf tests (necessary to support pattern match-
ing). JavaScript has neither of those, although one can argue that
JavaScript supports callee-handled overloading using type tests
and testing the number of arguments passed to the function; and
that there exists the instanceof operator. However, caller-handled
overloading cannot reproduce all the behavior of compiler-handled
overloading, because it does not have the static type of the argu-
ments (it only has their dynamic type). And instanceof is only
meaningful for classes, not for interfaces or traits, since interfaces

1 A fourth rule exists for named parameters, which we do not used here.

3 2013/12/14

do not even exist in JavaScript. In order to support those features
(and some others), Scala.js encodes the classes and traits it emits.

Overloading is simple to encode, starting from the specifications
of both languages. In JavaScript, the choice of the method to apply
is only dictated by its name; whereas in Scala (or more precisely, in
the JVM), the method is identified by its name, the erased types
of its formal parameters and its erased result type. The logical
conclusion is to encode the JavaScript name so that it contains all
of the JVM identity: the name of the method, and the fully qualified
names of the parameter types and result type. For example, the
following functions
def foo(x: Int): Int
def foo(x: String): Int
def bar(x: Any, y: Int => Int): Unit

would have the following names in JavaScript, respectively,
foo__I__I
foo__Ljava_lang_String__I
bar__Ljava_lang_Object__Lscala_Function1__V

where I stands for the primitive Int and V for Void (i.e., Unit).
Supporting accurate isInstanceOf tests is more involved.

Scala.js adds a special field $classData to the prototype of the
classes it emits. Its value is an instance of a supporting JavaScript
class ClassTypeData, containing various runtime type informa-
tion of the class. Among others, it contains a field ancestors,
which is a dictionary whose keys are the fully qualified name of
all the ancestors of the class (including itself, superclasses, and
also interfaces it implements), and whose values are all true. For
example, the dictionary for the class scala.Option is
{

scala_Option: true,
scala_Serializable: true,
java_io_Serializable: true,
scala_Product: true,
scala_Equals: true,
java_lang_Object: true

}

Given this structure, we can implement, e.g., the instance test for
the Product interface like so:
function isInstanceOf__scala_Product(obj) {

return !!(obj && obj.$classData &&
obj.$classData.ancestors.scala_Product);

};

Other encodings are possible, and deciding which one to use
is a matter of optimization, which will be investigated in future
work. The point we want to make here is that, in order to support
all of Scala, we cannot just translate Scala classes to bare JavaScript
classes. It is necessary to apply some sort of encoding that produces
classes in JavaScript that do not look like JavaScript classes. For the
same reason, we cannot implement Scala arrays as bare JavaScript
arrays; nor can we implement Scala functions as bare JavaScript
functions.

At a more fundamental level, and this is why the discussion
is relevant here, it means that Scala values and corresponding
JavaScript values cannot always have the same runtime data repre-
sentation: Scala.js classes have an additional field, and their method
names are mangled. Hence, the need for some sort of interoperabil-
ity machinery.

New languages targeting specifically JavaScript completely
avoid that kind of concerns by not introducing such constructs
in the first place. If Scala.js wanted to avoid these issues, then it
would not be Scala anymore. There would be no pattern matching,
no overloading, no functions-are-just-classes property, and so on.

js.Any

js.Number js.Object

js.Date js.Array[A] js.Function

js.Function0[+R] js.Function1[-T1,+R] . . .

js.RegExp

js.Boolean js.String

Figure 1. Core JS types in Scala.js

4.2 Facade types
The interoperability with JavaScript is entirely type-driven. Fig-
ure 1 shows the core types defined in the Scala.js standard library,
which are facade types for standard ES5 data types. The various
js.FunctionN types represent functions of various arities, just
like FunctionN types in Scala do. They are obviously contravari-
ant in parameter types (-T1) and covariant in result types (+R).

Facade types are first-class citizens of the host language’s type
system: they can participate in higher-order types, have type param-
eters, have abstract type members, and so on. For example, one can
have a List[js.Number] or a js.Array[Option[Int]]. Sim-
ilarly, values of facade types are first-class terms in the host lan-
guage: they can be stored in variables of the appropriate type, can
be properly assigned to values of type Any, their methods can be
called using regular syntax, and so on. This is in contrast to previ-
ous efforts at interoperability, in which such values are considered
as blackboxes, and the types are at best phantom types in the host
language (e.g., in SMLtoJs [9]). In both cases, they just do not feel
right or natural at all. Our facade types, being first-class citizens of
the host type system, feel very natural and easy to use.

The compiler knows that js.Any and its subtypes are facade
types for JavaScript values. It does not emit code for these. And
when calling a method of such a type, e.g., regexp.exec(s),
the compiler translates these as so-called raw JS method calls.
Basically, this disables Scala-related encodings, such as overload
mangling, accessors for vals and vars, and so on.

It is possible to declare, in user code, facade types for other
JavaScript types, by declaring traits inheriting directly or indirectly
from js.Object. A typical example would be types for the DOM
API:
trait Window extends js.Object {

def alert(msg: js.String): Unit
}

object Main {
def main(win: Window): Unit = {

win.alert("Hello world!")
}

}

Constructible types, i.e., whose instances can be constructed
with new in JavaScript, can simply be declared as facade classes.
Moreover, top-level objects in JavaScript can be given a facade
with Scala top-level objects inheriting from js.Object. A special
marker trait, js.GlobalScope, can be used to mark top-level
objects (including package objects) that give facade types to top-
level values, variables and functions, i.e., they represent the top-

4 2013/12/14

level, global scope of JavaScript. The following code uses such
facade types to manipulate the DOM.
object Window extends js.GlobalScope {

val document: DOMDocument
}
trait DOMDocument extends js.Object {

def getElementById(id: js.String): HTMLElement
}
trait HTMLElement extends js.Object {

def appendChild(child: HTMLElement): Unit
}
class Image extends HTMLElement {

var src: js.String
}

object Main {
def main(): Unit = {

val playground =
Window.document.getElementById("playground")

val img = new Image
img.src = "./path/to/img.png"
playground.appendChild(img)

}
}

The compiler will translate such a main() method into (an
equivalent of) the following JavaScript code:
ScalaJS.c.Main$.prototype.main__V = function() {

var playground =
document.getElementById("playground");

var img = new Image();
img.src = "./path/to/img.png";
playground.appendChild(img);

};

which is what you would expect. Note that Window.document was
translated to just document because Window is a js.GlobalScope.

Typing callable objects. In JavaScript, function values, which can
be called, are often extended with other properties and methods,
giving full-fledged objects which are, in addition, callable. For
example, the jQuery top-level object has methods like ajax()
and properties like fn, but it is also callable. It can be typed
accurately with a facade object that defines, among others, an
apply() method. In Scala, calling a value is syntactic sugar for
calling its apply method. For facade types, the compiler translates
calls to the apply method as calling the object directly instead.
jQuery would have a definition like
object JQuery extends js.Object {

def getJSON(url: js.String): js.Any
def apply(query: js.String): JQuery
def apply(element: HTMLElement): JQuery

}
trait JQuery extends js.Object {

def html(): js.String
def html(v: js.String): this.type

}

which could be used as
val p = JQuery("p #playground")
p.html(p.html() + " some more text")

Note also how runtime-handled overloading can be described with
compile-time overloading in facade types.

Typing higher-order methods. Higher-order methods can of
course be typed accurately using parameters of type js.FunctionN.
For example, jQuery objects have a method each() taking a func-
tion to be executed for each element in the query set.
trait JQuery extends js.Object {

def each(f: js.Function2[js.Number,
HTMLElement, _]): this.type

}

Scala type JavaScript type
Double ↔ js.Number
Other numeric types → js.Number
String ↔ js.String
Boolean ↔ js.Boolean
Array[A] ↔ js.Array[A]
FunctionN[T1,...,R] ↔ js.FunctionN[T1,...,R]

Table 1. Builtin conversions for interoperability

which can be called and given a lambda as in
JQuery("li").each { (i: js.Number, li: HTMLElement) =>

JQuery(li).html(i + " -> " + JQuery(li).html())
}

Facade types have a lot of other features enabling natural, intu-
itive ways of interfacing with JavaScript code. We will not cover all
of them here, as they are not relevant to the purpose of this paper.
A full coverage of these features is available in the documentation
for Scala.js.

4.3 Type-directed conversions
Facade types allow to manipulate JavaScript values from Scala
code, but they are not sufficient for true interoperability, as Scala
values cannot be converted to and from JavaScript values.

Conversions are provided on a type-directed basis, using the im-
plicit conversions introduced in Section 3.1. For example, conver-
sions are available between java.lang.String and js.String,
which allows to pass the literal "playground" (of type String)
to getElementById() above (which expects a js.String). Simi-
larly, Scala.js can convert between FunctionN and js.FunctionN,
which is why it is valid to give the lambda (of type Function2)
to the each() method above (which expects a js.Function2).
These conversions are defined as
implicit def stringS2JS(s: String): js.String
implicit def stringJS2S(s: js.String): String
implicit def function1S2JS[T1, R](

f: Function1[T1, R]): js.Function1[T1, R]
...

They do not have any body, because they are treated as primitives
by the backend of the compiler. Table 1 summarizes the builtin
conversions. The conversion for strings is optimized away by the
code generator, because String and js.String have the same
runtime representation (namely, a primitive JavaScript string). The
same applies to numeric types and booleans, but not to arrays and
functions.

These type-directed conversions are very much like those de-
scribed in [17]. However, in Scala.js, they are more general, be-
cause they are defined by implicit conversions, and hence are user-
defined.

Composing implicit conversions. The above conversions are pro-
vided as part of Scala.js, and are handled by the compiler, but de-
velopers can define their own conversions. For example, consider a
data type representing an immutable point, with two fields x and y.
The facade type for the JavaScript version could be defined as
class JSPoint(val x: js.Number,

val y: js.Number) extends js.Object

whereas the Scala version would probably be defined as
case class Point(x: Double, y: Double)

Note that although similar in syntax, these two data types have very
different runtime representations, for the reasons detailed in Sec-
tion 4.1. Moreover, code is emitted for Point, but not for JSPoint,
which is a facade class. User-defined implicit conversions can be
provided with

5 2013/12/14

implicit def pointToJS(p: Point): JSPoint =
new JSPoint(p.x, p.y)

implicit def pointFromJS(p: JSPoint): Point =
Point(p.x, p.y)

These two implicit conversions build upon the conversions between
Scala doubles and JavaScript numbers. Indeed, in pointToJS, we
give p.x which is a Double to the constructor of JSPoint which
expects a js.Number. Conversions are not only user-defined, but
also composable, just like data structures are composable. They are
therefore a very natural way to define conversions between data
structures.

Typing monkey-patching. Monkey-patching is a technique used
in JavaScript and other dynamic languages to add functionality to
an existing class. A well-known example of encouraged monkey-
patching is jQuery plugins: the object $.fn is meant to be extended
from the outside by plugins that want to add methods to jQuery
objects. Typing statically this pattern can be non-trivial, e.g., Type-
Script allows to reopen already defined interfaces to add fields and
methods.

Scala has a safer abstraction (bound to lexical scope) to add fea-
tures to any given type, which is also based on implicit conversions.
It is sometimes known as the Pimp my Library pattern. Scala.js can
effectively type monkey-patches with separate types and implicit
conversions. Given JQuery a facade trait for jQuery objects, we
can define
trait JQueryGreenify extends JQuery {

def greenify(): this.type
}

implicit def jQuery2greenify(query: JQuery) =
query.asInstanceOf[JQueryGreenify]

When the implicit conversion jQuery2greenify is in scope,
calling x.greenify() on a JQuery value x is legal, and summons
the implicit conversion. At runtime, the jQuery2greenify is a
no-op, because calls to asInstanceOf[T] are erased when T is a
facade type. This effectively calls the greenify() method on the
original receiver x.

4.4 Dynamic type
Facade types and type-directed conversions allow rich, statically
typed interoperability between Scala and JavaScript. However,
sometimes, we do not want to, or cannot, give accurate facade
types to the JavaScript API we want to use. Scala.js features a type
js.Dynamic, which is a special facade type that can accommo-
date any JavaScript value. It allows to select or update any field,
call any method, and apply any JavaScript operator (including the
call operator) to a value of type js.Dynamic. It is possible to ac-
quire a dynamically typed reference to the global scope through
js.Dynamic.global.

Recall from the code snippet manipulating the DOM from Sec-
tion 4.2. We can rewrite it using dynamic typing as follows.
object Main {

def main(): Unit = {
val g = js.Dynamic.global
val playground =

g.document.getElementById("playground")
val img = js.Dynamic.newInstance(g.Image)()
img.src = "./path/to/img.png"
playground.appendChild(img)

}
}

Most operations work seamlessly and very naturally with dynam-
ically typed values, even though we are in a statically typed lan-
guage. Instantiating an object of a dynamic type is unfortunately
awkward due to technical reasons, requiring the use of a method
newInstance instead of the familiar keyword new. As another ex-

ample, we show how to use jQuery in a dynamically typed way to
create a button that, when clicked, displays a message.
val jQ = js.Dynamic.global.jQuery
val button = jQ("<button>")
button.appendTo(jQ("#playground"))
button.click { () =>

js.Dynamic.global.alert("You clicked me!")
}

which involves an anonymous function.
We build js.Dynamic on top of the scala.Dynamic feature of

Scala, introduced in Section 3.2. We can define js.Dynamic as a
special facade type that mixes in scala.Dynamic, like this:
trait js.Dynamic extends js.Any with scala.Dynamic {

def applyDynamic(name: String)(args: js.Any*): Dynamic
def selectDynamic(name: String): Dynamic
def updateDynamic(name: String)(value: js.Any): Unit

def apply(args: js.Any*): Dynamic

def +(that: js.Number): js.Number
def -(that: js.Number): js.Number
... // all JavaScript operator

}

Note that in the dynamic rewriting methods (which are consid-
ered as primitives by the backend of the compiler), input values
are expected to be of type js.Any, and result types are typed
as js.Dynamic. This means that, from a usage point of view,
methods whose receiver is a js.Dynamic always expect values
of type js.Any as arguments, and always return a js.Dynamic.
Similarly, accessing a field is typed as js.Dynamic, and assign-
ing a field expects an rhs of type js.Any. Hence, jQ and button
are both inferred to be of type js.Dynamic. The fact that input
values are expected to be of type js.Any drives the Scala type-
checker into applying implicit conversions to parameters as needed.
For example, when calling the click() method, we pass in a
lambda, which has type Function0[Unit]. It is implicitly con-
verted, thanks to type-directed conversions and facade types, into a
js.Function0[Unit] which can really be given to the JavaScript
API. This is necessary because Function0 and js.Function0 do
not have the same runtime representation.

In a bit more details, when typing g.document in the code
snippet above, with g of type js.Dynamic, the type-checker, being
unable to find an explicitly defined member named document in
js.Dynamic, attempts to rewrite the access as:
g.selectDynamic("document")

which succeeds, and typechecks as js.Dynamic according to stan-
dard typing rules. Hence, g.document is also typed as js.Dynamic.
Proceeding further, we can chain the call to getElementById
which is similarly rewritten as
document.applyDynamic("getElementById")("playground")

which is not quite well-typed yet, because applyDynamic expects
arguments of type js.Any, and "playground" has type String,
not js.String. This in turn triggers the implicit conversion from
Scala string to JavaScript string, just like in the statically typed
interoperability. The same applies when we call the click method
in the jQuery example: the Scala function is converted through
an implicit conversion to conform to the expected type js.Any.
Finally, the assignment to img.src works with the last rewriting:
img.updateDynamic("src")("./path/to/img.png")

which also triggers an implicit conversion. Those three dynamic
definitions cover all accesses to fields, and call to all methods.
They are complemented with statically typed definitions for all
JavaScript operators, including the call operator, represented by the
apply method, as is the case in the statically typed interoperability.

6 2013/12/14

Category # tests # passing % of tests passing
“pos” 1107 1104 99.7 %
“neg” 725 720 99.3 %
“run” 1385 686 49.5 %

Table 2. Coverage of the Scala test suite

The fact that type-directed conversions and facade types play a
crucial role even in the dynamically typed approach to interoper-
ability is a unique aspect of our framework. Because type-directed
conversions can be user defined, these automatic representation
conversions also apply to user-defined types, such as Point and
JSPoint.

5. Evaluation
We have evaluated Scala.js along three axes, which show that
Scala.js is a viable, real-world alternative to JavaScript and other
languages for front-end Web development.

5.1 Correctness of the compiler
We evaluate the correctness of the Scala.js compiler by having it
compile the full test suite of Scala, and run the resulting code with
the JavaScript interpreter Rhino. The Scala test suite consists of
thousands of independent tests, in the form of one or more source
files each. There are three categories of tests:

• “pos” tests: check that the test compiles,
• “neg” tests: check that the test does not compile, and that the

error message is the expected one, and
• “run” tests: check that the test compiles and runs, and that the

expected lines are output to the standard output.

For example, the source file for one of the “run” tests contains
class V(val x: Int) extends AnyVal
object Test {

def main(args: Array[String]) = {
val v = new V(2)
val s: Any = 2
println(2.getClass)
println(v.getClass)

}
}

and its expected standard output is

int
class V

Compiling the Scala file with Scala.js, then running the result-
ing JavaScript code, must output the lines int and class V
on the standard output. This particular example tests whether
getClass() works correctly for value classes.2

Table 2 shows the number of tests of the Scala test suite that
pass in the current implementation of Scala.js. Very few of the
non-passing tests are actual bugs. Most tests fail because they test
features of Scala that are not supported by Scala.js on purpose,
e.g., runtime reflection, runtime compilation, usages of the Java
collection library, etc. However, quantifying exactly how many
tests are legitimate is a time-consuming task that is still in progress.
Our current sampling exhibits less than 2 % of legitimate tests
among the failing tests, all of them related to the same bug.

2 getClass() and java.lang.Class.toString() are part of the run-
time reflection features supported by Scala.js.

Benchmark Engine dev (ms) opt (ms) js (ms) opt/js

Tracer V8 12,048 5,205 1,517 3.43
Node 15,454 7,925 3,259 2.43

Richards V8 962 431 110 4.83
Node 1,579 706 189 3.74

DeltaBlue V8 5,877 2,113 220 9.60
Node 6,564 2,897 290 9.99

DeltaBlue2 V8 1,982 894 220 4.06
Node 2,711 1,275 290 4.40

Table 3. Running times of benchmarks (less is better)

5.2 Performance
Since we argue that Scala.js can be a viable alternative to JavaScript
and other languages targeting JavaScript, we have to demonstrate
that the generated code is competitive with hand-written JavaScript,
or at least not too much slower. The JavaScript version of the bench-
marks of the Dart language [12] have been ported to Scala.js by
Jonas Fonseca [10]. The methodology was to rewrite the bench-
marks in idiomatic Scala code, while avoiding to deviate too much
from the original code.

We executed the hand-written JavaScript code, as well as both
the non-optimized and the optimized versions of Scala.js code.
The non-optimized (aka “dev”) version is the result of the fast
development cycle. The optimized (aka “opt”) version is the result
of optimizing the dev version with Google Closure Compiler.

The benchmarks were done on an Intel(R) Core(TM) i7-3770K
CPU @ 3.50GHz, running GNU/Linux 3.2.0-52-generic 64-bits
(Ubuntu distribution). Each test was run with the standalone in-
terpreters of both Node.js v0.10.1 and V8 3.22.15 (candidate).

Table 3 shows the results. The last column shows the normalized
running time of the opt version against the hand-written JavaScript
version (js). We can see that, depending on the benchmark, Scala.js
code is 2.5 to 10 times slower than hand-written JavaScript.

These results may seem unappealing, but a few things are worth
taking into account. First, we have not so much as begun to in-
vestigate possible optimizations to apply to the result of Scala.js
compilation. This means that there is potentially a lot of room for
improvement. In particular, no inlining of any kind is performed,
which is impairing a lot, because idiomatic coding in Scala tends
to produce a lot of small methods with lots of indirections. Worse,
all vals and vars are compiled with getters and setters (which is
needed to support overriding them), but most of these accessors
could be inlined with global code analysis.

The DeltaBlue benchmark performs particularly badly because
it uses heavily for loops on ranges (which is known to perform
badly even in standard Scala) and ArrayBuffers, which are im-
plemented in a highly suboptimal way since they were designed
for Java arrays which cannot grow or shrink natively. DeltaBlue2
is another implementation of the same benchmark, which avoids
those two performance killers, and thus performs more than twice
better, yielding results comparable to the other benchmarks. This
tells us that we could gain significant performance improvements
by reimplementing ArrayBuffer specifically for Scala.js.

5.3 Usefulness
Our main claim throughout has been that the interoperability sys-
tem in Scala.js is natural, intuitive, and more importantly, expres-
sive enough to interact with existing JavaScript APIs. In other
words, we claim that our interoperability framework is useful.

To support this claim, we have ported to Scala.js a few applica-
tions, previously written either in JavaScript, Java, or Scala. In the
process, we have used facade types written for the DOM and for

7 2013/12/14

jQuery, as well as the js.Dynamic type, thereby heavily exercis-
ing the interoperability framework of Scala.js.

Typing the DOM. Facade types for the DOM API have been
made available by Haoyi Li, based on a rough automated source-to-
source translation from TypeScript type definition files, for a total
of about 5,000 lines of code. These facade types have been used in
six applications written in Scala.js, with a combined size of about
1,000 lines of code. In this code, exactly two casts are required. The
first one casts the result of fetching an HTML element on the page
by its id to its actual element class:
val canvas = document.getElementById(

canvasName).asInstanceOf[HTMLCanvasElement]

Depending on the DOM tree itself, this cast is unavoidable in most
type systems, unless support for the DOM tree is included in the
type system itself, as recently proposed by Lerner et al. for jQuery
[16]. The other cast required specializing the type of graphics
context retrieved from the canvas:
val ctx = canvas.getContext(

"2d").asInstanceOf[CanvasRenderingContext2D]

The method getContext() returns a different type of context
depending on the value of the string argument. Encoding this in the
type system requires either dependent types, or a very weak special-
case based on overloading the method type on constant strings,
which we could write as follows:
def getContext("2d"): CanvasRenderingContext2D
def getContext("webgl"): WebGLRenderingContext

This weak form has been implemented in TypeScript, and is con-
sidered for Scala.js in future work. In addition to the few num-
ber of casts, no explicit invocation of cross-language conversions is
required. These measurements show that our framework can type
accurately large amounts of the DOM API, allowing to interact nat-
urally with all of the DOM with very few casts.

Typing jQuery. jQuery makes heavy use of higher-order methods
and runtime overloading, compared to the DOM, which exercises
more inheritance relationships. Facade types for jQuery have been
used similarly in two applications, of around 250 and 500 LoCs,
respectively.

As was the case for DOM manipulations, only two casts were
required: the same exact two casts, as it turns out.

Using js.Dynamic. All the previous programs can be rewritten
to use only js.Dynamic-based interoperability. In this case, entry
points (fetching the global scope, and instantiating new objects)
have a less nice syntax, as we saw when presenting js.Dynamic.

Compared to the statically typed versions, using js.Dynamic
for interoperability only adds casts where values must be converted
back to Scala values. A representative example is the following,
where coordinates of a click event are retrieved:
boardCanvas.click { (event: js.Dynamic) =>

val offsetX = (event.pageX -
boardCanvas.offset().left)

val x = (offsetX.asInstanceOf[js.Number].toInt /
SquareSizePx)

...
clickSquare(board(x)(y))

}

In our corpus, these JavaScript to Scala conversions happened to
be scarce, with about 20 casts needed. They all correspond to
fetching input values coming from DOM elements or DOM events.
Scala to JavaScript conversions never required any cast nor explicit
conversions.

6. Related work
The three features of our interoperability framework, facade types,
type-directed conversions and the Dynamic type, although never
brought together in a unified, coherent framework, are variations of
features studied informally and formally by various authors. In this
section, we review similar work to each of them, and highlight the
differences with our variant and how they contribute to unifying the
framework.

6.1 Facade types
Variants of what we have called facade types, similar in spirit in that
they give static types to values for the purpose of interoperability,
have existed in a few recent, preliminary works.

In SMLtoJs [9], Elsman proposes to use phantom types to repre-
sent JavaScript values. However, they do not provide first-class ac-
cess to the methods of such values. Instead, bridge functions must
be manually written with embedded strings of JavaScript code, with
manual bindings for the this objects and arguments to the method.
Facade types of Scala.js are truly first-class and allow direct method
invocation, eliminating the need for manual bridges, and thus pro-
viding a more natural access to JavaScript APIs.

The concept closest to facade types is found in the TypeScript
programming language [18], although they are not used for inter-
operability. TypeScript does not need interoperability at all, since it
belongs to the “It is just JavaScript” category of languages. How-
ever, TypeScript aims at providing static types to JavaScript, and
hence needs type information for JavaScript APIs, which can be
written in type definition files, as ambient definitions. The am-
bient definitions of TypeScript have inspired the facade types of
Scala.js. However, a few differences exist, most of them being non-
fundamental, simply a better integration with Scala’s type system
in general. A key difference is our distinction between js.Any
and js.Dynamic. In TypeScript, the top-level type any is also the
equivalent of our dynamic type, as it supports all operations. This
is clearly unsound, as any value of type T, e.g., DOMDocument, can
be first assigned to a value of type any, then used as a dynamic
type. TypeScript embraces unsoundness, and this decision was mo-
tivated by one of their mottos which is that any JavaScript program
also typechecks as a TypeScript program. Free of this constraint,
we chose a more type-safe path in which js.Dynamic is a subtype
of js.Any. Explicit casts to js.Dynamic can be done if necessary,
but they make the intent explicit.

Finally, we relate facade types to like types as introduced and
formalized by Wrigstad et al. [28]. Like types have been proposed
to progressively add types to an untyped language (which is also the
goal of other approaches, most prominently gradual typing). A like
type like C can be instantiated for any class (or trait if we gen-
eralize the concept for Scala). When accessing a member of some
value x of type like C, the type system requires that the member
exist in class C. This avoids spelling mistakes and other type errors
in a code annotated with like types. However, it is always possible
to assign a value of any type to a value x of type like C. Since this
makes access to members of like types unsound, they are protected
by dynamic checks at runtime (whereas accesses to members of
full types can be optimized statically). Although facade types have
a very different goal, namely interoperability, they share a surpris-
ingly large amount of properties with like types. Any value can be
assigned to a facade types, although this requires an explicit cast
(but the cast is not checked at runtime), so accesses to members
of facade types are not completely sound. However, they are in-
herently protected by the underlying JavaScript interpreter, just as
like types are. Conversely, full types (Scala.js-emitted classes and
traits) are sound, since casts to such values are checked at runtime.
Therefore, a better optimizer could optimize accesses to Scala.js
members, for example by static inlining. Since like types have been

8 2013/12/14

formalized, they could provide inspiration for a formalization of
our interoperability framework.

6.2 Type-directed conversions
Type-directed conversions for interoperability have been studied
extensively by several authors [1, 23], and formalized recently by
Matthews and Findler [17]. In these works, however, the expected
type of the conversions from dynamically typed to statically typed
must be specified explicitly, and dynamic type checks are inserted
to verify the assumption. The corresponding frameworks, lacking
facade types, only support a dynamic type for values of the dynam-
ically typed language. They are in effect almost equivalent to hav-
ing only type-directed conversions and js.Dynamic in our frame-
work. The combination with facade types allows most conversions
from JavaScript to Scala to be entirely implicit, which simplifies
interoperating spots. Leveraging implicits as available in Scala and
formalized in [22] also allows for recursive conversion functions.

6.3 Dynamic type
The presence of a dynamic type in a statically typed language is
a common property of several recent languages, such as Thorn [2]
and Sage [14]. However, they are not used for interoperability, and
hence do not need any combination with cross-language conver-
sions. The js.Dynamic type of Scala.js is inspired by these in-
stances of dynamic types, but builds upon the statically typed in-
formation provided by facade types and type-directed conversions
to perform transparent, automatic cross-language conversions as
needed. Because methods of js.Dynamic take inputs of expected
type js.Any, and not Any as typical dynamic types, they trigger the
user-defined cross-language conversions available in scope. Hence,
our dynamic type is fully unified with the two other aspects of our
framework.

Our js.Dynamic type, interoperability concerns put aside (in-
cluding implicit conversions), can also be related to the dynamic
type of gradual typing (denoted ?), and in particular as studied by
Siek and Taha in the calculus Ob?

<: [24]. As is the case in Ob?
<:, the

js.Dynamic type is different from js.Any. However, we have de-
cided not to mimic, by default, the implicit coercions from ? to any
type and vice versa. Such coercions can instead be written explic-
itly in Scala.js using asInstanceOf. Note that, because implicit
conversions are user-defined, developers can define custom implicit
conversions from/to js.Dynamic for some or all types, as needed.
If the implicit coercions were introduced by default, they could not
be disabled, hence our choice. The other major difference between
our framework and Ob?

<: is that we do not perform runtime checks
when down-casting or invoking methods of js.Dynamic. This is
in line with the general semantics of asInstanceOf for JavaScript
values, which is not to perform runtime checking of the cast.

7. Conclusion
Interoperability between statically typed and dynamically typed
languages is an important problem. In this paper, we have presented
a framework for type-directed interoperability with dynamically
typed languages, which provides very powerful and natural inter-
operability. The framework is built on facade types, type-directed
implicit cross-language conversions, and a dynamic type which is
also type-directed.

Facade types provide type information to APIs and data types
written in the dynamically typed language. Type-directed, user-
defined, implicit conversions provide automatic conversion of run-
time data representation. They can be defined by the user to support
custom data types. Finally, the dynamic type allows to manipulate
values of the dynamically typed language in a whitebox way with-
out requring dedicated facade types. It builds on top of facade types

and type-directed conversions to provide the same runtime data rep-
resentation conversions.

We have implemented our framework in the Scala.js lan-
guage and its compiler, which is a dialect of Scala compiling to
JavaScript. We showed how the framework can be implemented
on top of the existing type system of Scala, without modifying
it, by using implicit conversions and custom dynamic types. Any
language supporting these two features could benefit directly from
our framework, without changing its typing rules. We have evalu-
ated the compiler and the approach for correctness, performance,
and most importantly usefulness of the interoperability framework,
thereby demonstrating that it can accurately type the DOM and
jQuery APIs.

Acknowledgments
We thank Jonas Fonseca for his ports of the Dart benchmarks to
Scala.js and Haoyi Li for his comments about the practical usability
of Scala.js.

References
[1] N. Benton. Embedded interpreters. J. Funct. Program., 15(4):503–

542, July 2005.

[2] B. Bloom, J. Field, N. Nystrom, J. Östlund, G. Richards, R. Strniša,
J. Vitek, and T. Wrigstad. Thorn: robust, concurrent, extensible script-
ing on the jvm. In Proceedings of the 24th ACM SIGPLAN conference
on Object oriented programming systems languages and applications,
OOPSLA ’09, pages 117–136, New York, NY, USA, 2009.

[3] E. Burmako and M. Odersky. Scala macros, a technical report. In
Third International Valentin Turchin Workshop on Metacomputation,
2012.

[4] R. Cartwright and M. Fagan. Soft typing. In Proceedings of the
ACM SIGPLAN 1991 conference on Programming language design
and implementation, PLDI ’91, pages 278–292, New York, NY, USA,
1991.

[5] R. Chugh, D. Herman, and R. Jhala. Dependent types for JavaScript.
In Proceedings of the ACM international conference on Object ori-
ented programming systems languages and applications, OOPSLA
’12, pages 587–606, New York, NY, USA, 2012.

[6] ClojureScript. ClojureScript, 2013. URL http://clojure.org/
clojurescript. [Online; accessed 29-October-2013].

[7] CoffeeScript. CoffeeScript, 2013. URL http://coffeescript.
org/. [Online; accessed 25-October-2013].

[8] ECMA International. ECMAScript 5.1 language specification, June
2011. URL http://www.ecma-international.org/ecma-262/
5.1/. [Online; accessed 25-October-2013].

[9] M. Elsman. SMLtoJs: hosting a standard ML compiler in a web
browser. In Proceedings of the 1st ACM SIGPLAN international
workshop on Programming language and systems technologies for
internet clients, PLASTIC ’11, pages 39–48, New York, NY, USA,
2011.

[10] J. Fonseca. Scala.js benchmarks, 2013. URL https://github.
com/jonas/scalajs-benchmarks. [Online; accessed 25-October-
2013].

[11] Google. Google Closure compiler, 2013. URL https://
developers.google.com/closure/compiler/. [Online; ac-
cessed 29-October-2013].

[12] Google. Dart, 2013. URL https://www.dartlang.org/. [Online;
accessed 30-October-2013].

[13] Google. Google Web Toolkit, 2013. URL http://www.
gwtproject.org/. [Online; accessed 29-October-2013].

[14] J. Gronsky, K. Knowles, A. Tomb, S. N. Freund, and C. Flanagan.
Sage: Hybrid checking for flexible specifications. In Scheme and
Functional Programming Workshop (Scheme), pages 93–104, Sept.
2006.

9 2013/12/14

[15] D. Herman and C. Flanagan. Status report: specifying JavaScript with
ML. In Proceedings of the 2007 workshop on Workshop on ML, ML
’07, pages 47–52, New York, NY, USA, 2007.

[16] B. S. Lerner, L. Elberty, J. Li, and S. Krishnamurthi. Combining
form and function: static types for jQuery programs. In Proceedings
of the 27th European conference on Object-Oriented Programming,
ECOOP’13, pages 79–103, Berlin, Heidelberg, 2013.

[17] J. Matthews and R. B. Findler. Operational semantics for multi-
language programs. ACM Trans. Program. Lang. Syst., 31(3):12:1–
12:44, Apr. 2009.

[18] Microsoft. TypeScript, 2013. URL http://www.typescriptlang.
org/. [Online; accessed 25-October-2013].

[19] A. B. Nielsen. Scala compiler phase and plug-in initialization, 2008.
URL http://www.scala-lang.org/old/sid/2.html. [Online;
accessed 29-October-2013].

[20] M. Odersky. The Scala language specification, 2009. URL http:
//www.scala-lang.org/documentation/. [Online; accessed 7-
November-2013].

[21] B. C. Oliveira, A. Moors, and M. Odersky. Type classes as objects
and implicits. In Proceedings of the ACM international conference
on Object oriented programming systems languages and applications,
OOPSLA ’10, pages 341–360, New York, NY, USA, 2010.

[22] B. C. Oliveira, T. Schrijvers, W. Choi, W. Lee, and K. Yi. The implicit
calculus: a new foundation for generic programming. In Proceedings
of the 33rd ACM SIGPLAN conference on Programming Language
Design and Implementation, PLDI ’12, pages 35–44, New York, NY,
USA, 2012.

[23] N. Ramsey. Embedding an interpreted language using higher-order
functions and types. In Proceedings of the 2003 workshop on Inter-
preters, virtual machines and emulators, IVME ’03, pages 6–14, New
York, NY, USA, 2003.

[24] J. Siek and W. Taha. Gradual typing for objects. In E. Ernst, edi-
tor, ECOOP 2007 – Object-Oriented Programming, volume 4609 of
Lecture Notes in Computer Science, pages 2–27. Springer Berlin Hei-
delberg, 2007. ISBN 978-3-540-73588-5.

[25] A. Takikawa, T. S. Strickland, C. Dimoulas, S. Tobin-Hochstadt, and
M. Felleisen. Gradual typing for first-class classes. In Proceedings
of the ACM international conference on Object oriented programming
systems languages and applications, OOPSLA ’12, pages 793–810,
New York, NY, USA, 2012.

[26] P. Thiemann. Towards a type system for analyzing javascript pro-
grams. In M. Sagiv, editor, Programming Languages and Systems,
volume 3444 of Lecture Notes in Computer Science, pages 408–422.
Springer Berlin Heidelberg, 2005.

[27] S. Tobin-Hochstadt and M. Felleisen. The design and implementation
of Typed Scheme. In Proceedings of the 35th annual ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, POPL
’08, pages 395–406, New York, NY, USA, 2008.

[28] T. Wrigstad, F. Z. Nardelli, S. Lebresne, J. Östlund, and J. Vitek. In-
tegrating typed and untyped code in a scripting language. In Proceed-
ings of the 37th annual ACM SIGPLAN-SIGACT symposium on Prin-
ciples of programming languages, POPL ’10, pages 377–388, New
York, NY, USA, 2010.

10 2013/12/14

