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Abstract
The mechanism regulating the equilibrium electrostatic potential in the scrape-off layer (SOL)
of magnetic confinement devices is elucidated. Based on a generalized Ohm’s law and the
boundary conditions at the magnetic presheath entrance, an analytical expression for the
equilibrium electrostatic potential is derived. Results imply that the relative importance of the
plasma dynamics at the sheath and far away from the wall in setting the value of the
electrostatic potential depends on the density and temperature drops that are established
between the two regions. Global, three-dimensional fluid simulations of tokamak SOL
turbulence in a simple configuration are performed, confirming the validity of our predictions.
The results presented here are general and can be applied to other open-field-line
configurations, including linear devices and simple magnetized toroidal devices.

(Some figures may appear in colour only in the online journal)

1. Introduction

Understanding the plasma dynamics in the scrape-off layer
(SOL) of magnetic confinement devices, namely the region
where the magnetic field lines are open and the plasma interacts
with the solid walls, is crucial for the achievement of magnetic
fusion. In fact, the SOL determines the boundary conditions
for the core plasma, and controls the plasma refuelling, heat
losses and impurity dynamics, largely governing the fusion
power output of the entire device [1, 2]. In particular, the origin
of a high-confinement regime, where turbulence is suppressed
and the formation of a plasma pedestal is observed, is still
not fully understood and is the subject of intense theoretical
and experimental research. There is nonetheless increasing
experimental evidence for the role of the SOL in regulating the
low-to-high (L–H) confinement mode power threshold as well
as the toroidal rotation profiles of the entire plasma volume [3].

An essential quantity for the understanding of mean
flows and pedestal formation during the L–H transition in
a magnetically confined plasma is the self-generated radial
electric field. Typically, the relation eφ ∼ 3Te is invoked
for the SOL, where φ is the electrostatic potential and Te is the

electron temperature, thus leading to an estimate of the radial
electric field as Er ∼ −3∂rTe/e [4]. This relation is based on
the assumption that φ in the SOL is governed by its value at
the sheath, the region where the plasma interacts with the wall.
More precisely, if one uses Bohm’s law for the sheath parallel
current [4], j|| = encs[1 − exp (# − eφ/Te)], then ambipolar
outflow in the parallel direction imposes eφ = #Te at the
sheath edge. Here n is the plasma density at the sheath edge,
cs is the plasma sound speed and # = log[

√
mi/(2πme)] ≈ 3

for hydrogen plasmas. However, the generality and correctness
of this result remain unclear. For instance, as we show later
the parallel dynamics far from the walls can also determine
the value of φ, e.g. through the electron adiabaticity condition.
As a matter of fact, the mechanism setting the value of the
plasma potential in the SOL of magnetic confinement devices
remains an open and very general issue, as it arises in all open-
field-line magnetized plasma configurations, including linear
devices and simple magnetized toroidal devices.

In the present article we address this question by means of
an analytical model that describes the electrostatic potential
in an open-field-line configuration. We provide a general
analytical relation between the equilibrium electrostatic
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potential and the equilibrium electron temperature and plasma
density, φ̄ = φ̄(T̄e, n̄), which includes the combined effect
of both the sheath and the main SOL plasma dynamics (the
overbar denotes time-averaged values). The analytical results
suggest that, depending on the density and temperature drops
established between the two regions, one mechanism can
dominate over the other. This implies that the radial electric
field in the SOL may be determined by different mechanisms
depending on the particular regime of operation, i.e. the
sheath-limited regime as opposed to the detached regime.
In order to confirm our analytical predictions, we perform
numerical simulations of SOL turbulence using GBS [5], a
global, three-dimensional, flux-driven, full-n, two-fluid code
based on the drift-reduced Braginskii equations and a proper
set of boundary conditions to describe the sheath dynamics.

This paper is structured as follows. After the introduction,
in section 2 we derive an analytical expression relating φ̄
with T̄e and n̄ in the SOL. The GBS code is described in
section 3 with the simulation results and the confirmation of
the theoretical predictions. The conclusions and an outlook
follow.

2. Analytical model for the value of φ̄ in an
open-field-line configuration

An electrostatic drift-reduced fluid model is suitable to
describe the SOL [6, 7], and we use it here for the description
of the plasma dynamics. In fact, the electron mean free path
is much smaller than the connection length, λe % L||, and
trapped particles play a minor role since ν∗

i,e ' 1 [8]. Of
crucial importance for the SOL is the description of the plasma
losses at the vessel, which are determined by sheath physics [4].
While fluid models that are based on the drift approximation
cannot describe the plasma–wall transition region, boundary
conditions have been derived to supply the sheath physics to
such models [9]. We remark that a fluid approach is in general
reasonable for open-field-line configurations, since the plasma
is not well confined and thus remains always sufficiently cold
for kinetic effects to play an important role.

Within a drift-reduced fluid model, the momentum
equation for the electrons in the parallel direction leads to a
generalized Ohm’s law,

men
dV||e

dt
= en∇||φ − ∇||pe − 0.71n∇||Te + enνj||, (1)

where V||e is the electron parallel velocity, d/dt = ∂t +V||e∇|| +
vE ·∇⊥ is the Lagrangian derivative, vE is the E ×B velocity,
pe = nTe is the electron scalar pressure, j|| = en(V||i −V||e) is
the parallel current and ν is the plasma resistivity. The absence
of the electron diamagnetic drift in the material derivative is due
to the so-called diamagnetic cancellation, which arises from
the lowest-order term in the pressure tensor [10]. Higher-order
terms in the pressure tensor, which correspond to the effect of
finite electron viscosity, are smaller than the other terms by a
factor λe/L|| % 1 and thus are neglected. While the electron
inertia and the resistivity terms in equation (1) can play an
important role in the plasma dynamics (e.g., they can make
drift waves unstable by breaking the electron adiabaticity), the

equilibrium profiles do not depend significantly upon those.
In fact, the ratio of the inertia term to the parallel electric field
term is of the order of the mass ratio me/mi % 1. Similarly,
the resistive term is negligible as long as the electron mean free
path is not too small, namely if

√
me/mi % λe/L|| % 1. Time-

averaging equation (1) and neglecting inertia and resistivity, we
are led to an equation balancing the parallel electric field force
with the parallel pressure and thermal forces,

e∇||φ̄ − T̄e

n̄
∇||n̄ − 1.71∇||T̄e + 0, (2)

where we have assumed that (Te/n)∇||n + (T̄e/n̄)∇||n̄. While
equation (2) is valid along each magnetic field line in the
SOL, it breaks down at the magnetic presheath entrance, where
the drift-reduced approximation is violated [9]. Integrating
equation (2) along the parallel direction z, from z = −L||/2
to z (where L|| is the parallel connection length, and z = 0
is defined half way between the two ends of a field line), we
can write

eφ̄(z) = eφ− + 1.71
[
T̄e(z) − T −

e

]
+

∫ z

−L||/2

T̄e

n̄

∂n̄

∂z′ dz′, (3)

where we denote φ± = φ̄(±L||/2) the electrostatic potential
at the magnetic presheath entrance at both ends of a field line.
Analogously, φ̄(z) can be obtained by integrating equation (2)
from z = +L||/2 to z, i.e.

eφ̄(z) = eφ+ + 1.71
(
T̄e(z) − T +

e

)
+

∫ z

+L||/2

T̄e

n̄

∂n̄

∂z′ dz′. (4)

We can estimate φ̄(z) as the average of the values given
by equations (3) and (4),

eφ̄(z) = 1
2 (eφ+ + eφ−) + 1.71

[
T̄e(z) − 1

2 (T +
e + T −

e )
]

+ 1
2

[
I +(z) + I−(z)

]
, (5)

where we have defined

I±(z) =
∫ z

±L||/2

T̄e

n̄

∂n̄

∂z′ dz′. (6)

In order to progress analytically, we write

I±(z) = σ±
0

∫ z

±L||/2

∂n̄

∂z′ dz′, (7)

where

σ±
0 =

∫ z

±L||/2 σ(z′) ∂n̄
∂z′ dz′

∫ z

±L||/2
∂n̄
∂z′ dz′

, (8)

and we have introduced the function σ(z) = T̄e(z)/n̄(z). In
the case that σ(z) does not vary significantly along the field
line, we can assume σ +

0 = σ−
0 = σ0 and the value σ0 can be

estimated, for example, as σ0 + 〈σ 〉z, where 〈·〉z denotes the
average along the field line. Equation (5) thus becomes

eφ̄(z) = 1
2 (eφ+ + eφ−) + 1.71

[
T̄e(z) − 1

2 (T +
e + T −

e )
]

+ σ0
[
n̄(z) − 1

2 (n+ + n−)
]
. (9)

We now use the boundary conditions at the magnetic
presheath entrance in order to determine the value of φ±. We

2



Plasma Phys. Control. Fusion 55 (2013) 124019 J Loizu et al

shall assume that the time-average current towards the wall at
the magnetic presheath entrance, jm, is approximately zero,
so that quasi-neutrality is ensured in the main plasma. This
current is jm = j|| sin α + j⊥w cosα, where j|| = en(v||i − v||e)
is the parallel current at the magnetic presheath entrance, α
is the angle between the magnetic field line and the wall, and
j⊥w = en(v⊥w,i−v⊥w,e) is the component of the perpendicular
current at the magnetic presheath entrance that is directed
towards the wall. Imposing the condition jm = 0 at the
magnetic presheath entrance by using the boundary conditions
derived in [9], which are listed in section 3, we find that the
electrostatic potential at both ends of the field line must satisfy

eφ± +
(
# ± θTe

2
− θn

)
T ±

e , (10)

where for a generic quantity A we define θA = ρs/(2LA tan α),
ρs is the ion sound larmor radius, and LA is the radial
equilibrium scale length of A. Taking typical SOL parameters,
e.g. ρs/LT + 10−2 and α = 0.03 + 2◦ [11], we have
that θTe + 0.1, and similarly for θn. We therefore expect
that the electrostatic potential at both ends of a magnetic field
line will be approximately eφ± + #T ±

e . We remark that
the electrostatic potential is measured with respect to the wall
potential, which is assumed to be zero. We can thus write
equation (9) as

eφ̄(z) = 1
2#(T +

e + T −
e ) + 1.71

[
T̄e(z) − 1

2 (T +
e + T −

e )
]

+ σ0
[
n̄(z) − 1

2 (n+ + n−)
]
. (11)

Equation (11) is an analytical relation between the
equilibrium electrostatic potential, the equilibrium electron
temperature and density in the SOL, φ̄ = φ̄(T̄e, n̄). The first
term on the right hand side of equation (11) represents the effect
of the sheath in determining the value of φ̄, while the second
and third terms correspond to the effect of the bulk dynamics.

We now discuss a few interesting limits of equation (11).
First, in the limit of constant density and temperature along the
field line, T̄e(z) ≡ T0 and n̄(z) ≡ n0, equation (11) implies
that φ̄ is constant as well, more precisely:

eφ̄(z) = #T0, (12)

and therefore, in this particular limit, the electrostatic potential
is exclusively determined by the sheaths. Equation (12) is
the widely used relation justifying the estimate of the radial
electric field as Er = −3∂rTe/e. However, this is a slightly
unrealistic limit, since even in the sheath-limited regime, where
the temperature is about constant along the field lines, the
density always drops when approaching the wall due to the
sink action of the sheaths [4].

Second, another interesting limit of equation (11) is the
case T +

e = T −
e = 0 and n+ = n− = 0, namely the case

where both the temperature and density drop substantially
when approaching the walls. This corresponds to the detached
regime, where the plasma strongly recombines and cools down
before interacting with the walls [4]. In this particular limit,
equation (11) gives

eφ̄(z) = 1.71T̄e(z) + σ0n̄(z), (13)

and therefore the electrostatic potential is exclusively
determined by the value of density and temperature in the
plasma bulk.

Third, we may assume arbitrary density and temperature
profiles with a constant ratio σ(z) + σ0. This is a reasonable
assumption at least if the particle and heat sources in the
SOL have similar locations, a situation that is encountered in
low-recycling regimes where most of the plasma in the SOL
is refuelled by the core. Under this assumption, equation (11)
gives

eφ̄(z) = 1
2#(T +

e + T −
e ) + 2.71

[
T̄e(z) − 1

2 (T +
e + T −

e )
]
. (14)

Equation (14) is a simple relation between the equilibrium
electrostatic potential and the equilibrium electron temperature
in the SOL. As in equation (11), the value of φ̄ is determined
by the combined effect of the sheath and the bulk dynamics.
Their relative importance depends on the magnitude of the
temperature drop established between the bulk and the sheaths.
More precisely, we can write equation (14) as

eφ̄(z) = [#fsh + 2.71(1 − fsh)] T̄e(z), (15)

where we have defined

fsh(z) = T +
e + T −

e

2T̄e(z)
. (16)

If the temperature is constant along the field line
then fsh = 1, whereas fsh → 0 if the temperature drops
substantially when approaching the walls. These two limits
are roughly representative of the sheath-limited and detached
regimes, respectively. In fact, equation (12) is retrieved in the
limit fsh = 1, while equation (13) is retrieved for fsh → 0 in
the case where σ(z) + σ0.

We would like to remark that since # is very close
to 2.71 for hydrogen, equation (15) approximately gives
φ̄(z) = 3T̄e(z). This means that the widely invoked relation
Er ∼ −3∂rTe should be used carefully. For example, strongly
varying temperature profiles along the field line imply that
the radial electric field varies accordingly, and thus it must be
computed by using the local values of temperature.

3. Simulations in SOL conditions

The validity of the analytical prediction for the equilibrium
electrostatic potential in the SOL, equation (11), is assessed in
the present section by means of global, three-dimensional fluid
simulations of SOL turbulence performed with the GBS code
[5]. GBS is a global, three-dimensional, full-n, flux-driven,
two-fluid code based on the drift-reduced Braginskii equations
in the limit Ti % Te. GBS evolves the plasma dynamics with
no separation between equilibrium and fluctuating quantities,
as a balance between density and heat sources, the turbulent
cross-field transport produced by plasma instabilities, and
the losses at the sheaths, where the magnetic field lines
terminate on the walls. We remark that, at the moment,
GBS simulations do not describe ionization, recombination
or radiative processes. Thus we can only expect to access
sheath-limited regimes where convection is the dominant
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mechanism for particle and heat transport along the field lines,
and parallel gradients are relatively small. Simulations capable
of describing high-recycling and detached regimes, where
heat conduction becomes important and parallel gradients are
larger, are planned and will represent a testbed of the analytical
predictions in these regimes.

In order to progressively approach the complexity of
tokamak edge simulations, the GBS code was initially
developed and used to simulate the turbulent dynamics in
basic plasma physics devices of increasing complexity, namely
linear devices such as LAPD [12] and simple magnetized
toroidal devices such as TORPEX [13, 14] and Helimak [15].
In particular, GBS simulations of the LAPD revealed the
crucial role of sheath physics in determining the nature of
turbulence, showing that most of the cross-field transport
arises from sheath-driven Kelvin–Helmholtz instabilities [16].
GBS results were also fully validated against experimental
measurements in the TORPEX device [17, 18]. The code was
further developed to simulate the SOL of circular, limited
tokamak plasmas with a large aspect ratio [5]. Recently
updated with a complete set of boundary conditions that are
consistent with the physics at the magnetic presheath entrance
[9], GBS is now capable of describing in detail the effect of
the sheath on the SOL equilibrium and turbulence. Therefore
GBS is an adequate tool to assess the validity of the analytical
predictions for the equilibrium electrostatic potential derived
in the previous section.

The system of equations evolved by GBS to study
SOL turbulence is, in the electrostatic limit and with no
magnetic shear,

dn

dt
= 2

eB

[
Ĉ(pe) − enĈ(φ)

]
− ∂(nV||e)

∂z
+ Sn, (17)

d∇2
⊥φ

dt
= 2B

nmi
Ĉ(pe) − V||i

∂∇2
⊥φ

∂z
+

mi+
2
ci

e2n

∂j||

∂z
(18)

dTe

dt
= 4

3
1

eB

[
7
2
TeĈ(Te) +

T 2
e

n
Ĉ(n) − eTeĈ(φ)

]

+
2
3

Te

en
0.71

∂j||

∂z
− 2

3
Te

∂V||e

∂z
− V||e

∂Te

∂z
+ ST (19)

me
dV||e

dt
= −meV||e

∂V||e

∂z
− Te

n

∂n

∂z
+ e

∂φ

∂z
− 1.71

∂Te

∂z
+ eνj||

(20)

mi
dV||i

dt
= −miV||i

∂V||i

∂z
− 1

n

∂pe

∂z
. (21)

Here df/dt = ∂tf + (1/B){φ, f }, ∇2
⊥ = ∂2

x + ∂2
y and

+ci = eB/mi, where we have defined the Poisson bracket
as {f, g} = ∂yf ∂xg − ∂yg∂xf . Small diffusive terms
are introduced for all quantities (see [5] for their detailed
expression). In particular, we remark that the parallel electron
heat conductivity κ|| leads to a diffusive term, κ||∇2

||Te, which is
small in the sheath-limited regime where convection dominates
over conduction. The coordinate z refers to the direction
along the magnetic field B, x is the radial coordinate and y

is the coordinate perpendicular to both x and z (equivalent
at large aspect ratio to a poloidal coordinate). In the SOL

configuration, a toroidal limiter at a given poloidal location
θl defines the boundaries of the system along the y direction.
The curvature operator is Ĉ = sin θ∂x + cos θ∂y , with θ =
θl + y/a (θ = 0 at the low-field-side midplane, y = 0 and
y = 2πa at the two sides of the limiter, and a is the minor
radius). The source terms, Sn = Sn0 exp[−(x − xS)

2/λ2
S] and

ST = ST0 exp[−(x − xS)
2/λ2

S], mimic the particle and heat
outflowing from the tokamak core and thus the x > xS region
is the one of interest in the simulations. Equations (17)–(21)
are solved in a domain that covers the full toroidal and poloidal
angles and extends radially from x = 0 to x = Lx . Neumann
boundary conditions are applied along the x direction. In the
poloidal direction, magnetic presheath boundary conditions
are imposed at the plasma-limiter interface,

V||i = cs

[
±1 + θn ∓ 1

2
θTe − 2φ

Te
θφ

]
(22)

V||e = cs

[
± exp (# − eφ/Te) − 2φ

Te
θφ + 2(θn + θTe)

]
(23)

∂φ

∂y
= −mics

e

[
±1 + θn ± 1

2
θTe

]
∂V||i

∂y
(24)

∂n

∂y
= − n

cs

[
±1 + θn ± 1

2
θTe

]
∂V||i

∂y
(25)

∂Te

∂y
= 0 (26)

∇2
⊥φ = −mi cos2 α

e

[ (
1 + θTe

) (
∂V||i

∂y

)2

+ cs
(
±1 + θn ± θTe/2

) ∂2V||i

∂y2

]
. (27)

A detailed derivation of this set of boundary conditions
can be found in [9]. We note that while the boundary condition
for the electrostatic potential, equation (24), does not impose
φ = #Te, the latter is expected to fluctuate around this value to
ensure that the average current to the wall is essentially zero.

Finally, GBS works with normalized quantities by
defining an arbitrary reference temperature Te0, density n0

and magnetic field B0. In particular, the electron temperature
and the electrostatic potential are normalized such that
Te → Te/Te0 and φ → eφ/Te0, and analogously for the
density, n → n/n0. The perpendicular coordinates x and
y are normalized with respect to ρs0 = cs0/+ci0, where
cs0 =

√
Te0/mi and +ci0 = eB0/mi.

For the simulations presented below, a toroidal limiter is
located on the high field side midplane, i.e. θl = π , and we use
the following model parameters: major radius R = 500ρs0,
aspect ratio a/R ≈ 0.25, radial extension Lx = 100ρs0, and
safety factor q = 4. Thus the angle α between the magnetic
field and the limiter is such that tan α = a/qR ≈ 0.0625,
corresponding to α ≈ 3.6◦. The ion-to-electron mass ratio
is mi/me = 200. The particle and heat sources are radially
localized at xs = 35ρs0. The resistivity ν is such that the
electron mean free path satisfies λe/L|| + 1/70 % 1.

Figure 1 shows typical snaphots of plasma turbulence in
a poloidal cross-section for the fields of interest here. For
this simulation, we have used # = 3 for the sheath boundary
conditions, approximately corresponding to the value for
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Figure 1. Snapshots in a poloidal cross-section of the electrostatic
potential φ, the electron temperature Te, the density n, and the
parallel current j‖. Results are obtained from the GBS simulations
of a limited tokamak SOL, as described in section 3. The limiter
plate is located at θl = π . The snaphot covers the radial
extension (xs, Lx).

hydrogen. In this simulation, the time-averaged Ohm’s law is
fairly well described by the balance given by equation (2). In
fact, figure 2 shows that the first term in equation (2), namely
the parallel electric field force, is almost perfectly balanced
by the sum of the pressure and thermal forces. Also, the
difference between the two can be explained by the finite
effect of the resistivity. This is due to the fact that the
condition

√
me/mi % λe/L|| is not exactly satisfied. We can

nevertheless conclude that equation (2) is a very reasonable
approximation.

Figure 2. Balance of the dominant terms in the time-averaged
Ohm’s law at a given radial location x = 50ρs0, as a function of the
poloidal coordinate. The parallel electric field force term e∇||φ̄
(black) is almost balanced by the sum of the terms related to
pressure and thermal forces, T̄e∇||n̄/n̄ + 1.71∇||T̄e (red). The
difference of the two is shown in dashed-violet. The resistivity term
νj̄||/n̄ (solid-violet) accounts for this difference.

We now assess the validity of the analytical prediction for
the equilibrium electrostatic potential, equation (11). Since the
system is toroidally symmetric, the equilibrium quantities only
depend on x and y and thus the results are shown in a poloidal
cross-section. Figure 3 (left column) shows the time-averaged
electrostatic potential as given by the GBS simulation, and
compares it with the prediction of equation (11). Also, the
widely used expression φ̄ = #T0, equation (12), is shown
for comparison. The prediction of equation (11) agrees rather
well with the simulation result, as it is able to capture both
the magnitude and the radial and poloidal structure of the
electrostatic potential. The relation φ̄ = #T0 does not capture
so well the poloidal structure of the potential, but it nevertheless
gives the correct order of magnitude. We note that this could
be due to the fact that # is comparable to 2.71, thus the
agreement being a simple coincidence. However, as shown
in figure 3 (middle and right columns), simulations with an
artificially high value of # show that φ̄ = #T0 is also a
reasonable prediction for the order of magnitude of φ̄. In fact,
in the sheath-limited simulations presented herein, the parallel
gradients are not very large and fsh ≈ 0.8, thus the effect of
the sheath is expected to play a dominant role in setting the
value of φ̄ in the SOL.

4. Conclusions

The electrostatic potential in an open-field-line plasma
configuration, e.g. in the SOL of tokamaks, is set by the
combined effect of two different mechanisms. On the one
hand, the sheath physics regulates the value of φ at the
end of the field lines to ensure quasi-neutrality in the main
plasma. On the other hand, the electron adiabaticity sets
the parallel electric field in the main plasma. We have

5



Plasma Phys. Control. Fusion 55 (2013) 124019 J Loizu et al

Figure 3. Equilibrium profile of the electrostatic potential φ̄ in a poloidal cross-section as given from GBS simulations (top row), from
equation (11) (middle row), and from the widely used estimate φ̄ = #T0 (bottom row) with T0 = (T +

e + T −
e )/2. Here # = 3 (left column),

# = 6 (middle column), and # = 10 (right column).

provided a general analytical relation between the equilibrium
electrostatic potential and the equilibrium electron temperature
and density, φ̄ = φ̄(T̄e, n̄), which implies that the relative
importance of the two mechanisms in setting the value of
φ̄ depends on the density and temperature drops that are
established between the bulk plasma and the sheaths. This
suggests that one must be careful when estimating the radial
and poloidal electric fields in the SOL of tokamaks, as it may
depend on the particular regime of operation: sheath-limited
regime, low and high-recycling regimes, or detached regime.
We would like to remark that the equilibrium radial electric
field plays a crucial role in setting the plasma poloidal
rotation and turbulence suppression, if the shear flow becomes
sufficiently large. Moreover, the poloidal flows are recirculated
at the sheath in the parallel direction [9], which in turn can lead
to the generation of plasma toroidal flows [19].

The validity of equation (11) has been assessed via
global, three-dimensional SOL turbulence simulations in the
sheath-limited regime. Future simulations of high-recycling
and detached regimes will be a good testbed of our analytical
predictions.
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