000190790 001__ 190790
000190790 005__ 20190316235749.0
000190790 0247_ $$2doi$$a10.1002/rob.21495
000190790 022__ $$a1556-4959
000190790 02470 $$2ISI$$a000337679200002
000190790 037__ $$aARTICLE
000190790 245__ $$aA Collision Resilient Flying Robot
000190790 269__ $$a2014
000190790 260__ $$bJohn Wiley & Sons$$c2014$$aHoboken
000190790 300__ $$a14
000190790 336__ $$aJournal Articles
000190790 500__ $$ain press (airburr)
000190790 520__ $$aFlying robots that can locomote efficiently in GPS-denied cluttered environments have many applications, such as in search and rescue scenarios. However, dealing with the high amount of obstacles inherent to such environments is a major challenge for flying vehicles. Conventional flying platforms cannot afford to collide with obstacles, as the disturbance from the impact may provoke a crash to the ground, especially when friction forces generate torques affecting the attitude of the platform. We propose a concept of resilient flying robots capable of colliding into obstacles without compromising their flight stability. Such platforms present great advantages over existing robots as they are capable of robust flight in cluttered environments without the need for complex sense and avoid strategies or 3D mapping of the environment. We propose a design comprising an inner frame equipped with conventional propulsion and stabilization systems enclosed in a protective cage that can rotate passively thanks to a 3-axis gimbal system, which reduces the impact of friction forces on the attitude of the inner frame. After addressing important design considerations thanks to a collision model and validation experiments, we present a proof-of-concept platform, named GimBall, capable of flying in various cluttered environments. Field experiments demonstrate the robot's ability to fly fully autonomously through a forest while experiencing multiple collisions.
000190790 6531_ $$aInsect
000190790 6531_ $$aFlying Robots
000190790 6531_ $$aCollisions
000190790 6531_ $$aBiology
000190790 6531_ $$aResilience
000190790 6531_ $$aRobustness
000190790 6531_ $$aGimbal System
000190790 6531_ $$aGimball
000190790 6531_ $$aAerial Robotics
000190790 700__ $$0243231$$g166588$$aBriod, Adrien
000190790 700__ $$0248988$$g222595$$aKornatowski, Przemyslaw Mariusz
000190790 700__ $$0240674$$g104340$$aZufferey, Jean-Christophe
000190790 700__ $$0240742$$g111729$$aFloreano, Dario
000190790 773__ $$j31$$tJournal of Field Robotics$$k4$$q469-509
000190790 8564_ $$uhttps://infoscience.epfl.ch/record/190790/files/collision_resilient_flying_robots_LIS2014.pdf$$zPreprint$$s3425865$$yPreprint
000190790 909C0 $$xU10370$$0252161$$pLIS
000190790 909C0 $$pNCCR-ROBOTICS$$xU12367$$0252409
000190790 909CO $$qGLOBAL_SET$$pSTI$$particle$$ooai:infoscience.tind.io:190790
000190790 917Z8 $$x166588
000190790 917Z8 $$x166588
000190790 917Z8 $$x222595
000190790 917Z8 $$x222595
000190790 917Z8 $$x222595
000190790 917Z8 $$x222595
000190790 917Z8 $$x222595
000190790 917Z8 $$x222595
000190790 917Z8 $$x255330
000190790 937__ $$aEPFL-ARTICLE-190790
000190790 973__ $$rREVIEWED$$sPUBLISHED$$aEPFL
000190790 980__ $$aARTICLE