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ABSTRACT  

High slip of tractor traction tyres causes topsoil damage in terms of soil cutting effect with the formation of a strengthless layer strongly 
exposed to erosion and an underlying layer where shear deformations contribute to the alteration of soil structure functionalities. The cutting 

effect is clearly indicated by longitudinal topsoil shear displacement. In spite of a recognized need for limiting the slip of tractor tyres, no 

theoretical approaches have been presented so far to indicate a range where no topsoil damage occurs. In this paper mechanica l conditions 

along the soil-tyre contact surface which lead to topsoil cutting were analysed with a soil-tyre interaction model and discussed on the basis of 

traction tests with a MFWD tractor on an agricultural silt loam Calcaric Fluvisol. The longitudinal topsoil shear displacement was measured 
for a slip ranging between 5% and 48%. An evident topsoil failure took place as  soon as the shear stress along the soil-tyre contact 

approached the soil strength. Values of slip at which this condition was reached were identified for three tractor configurat ions. These slip 

values should be regarded as indicative limits not to be exceeded in tillage operations in order to avoid topsoil damage in t he conditions 

considered. 

Keywords: topsoil displacement; traction performance; soil-tyre interaction model; wheel slip . 

I. INTRODUCTION 

Tractor traction tyres interact with soil by a system of 

normal and tangential stresses along the soil-tyre contact 

surface. In this interaction both soil and tyre deform 

according to their own stress -strain relationships. Soil 

deformation results in the formation of a rut as well as in 

topsoil displacement along the soil-tyre contact surface. The 

topsoil displacement depends on shear stress which soil 

undergoes at contact with tyre. The shear stress -

displacement relationship characterizing the soil layer which 

interacts with the traction tyre has been studied for a long 

time as it  strongly affects the relationship between traction 

force and wheel slip, usually referred to as traction 

performance of the soil-wheel system (Becker, 1956; Janosi 

and Hanamoto, 1961; Wills, 1963; Wong and Preston-

Thomas, 1983) 

High traction forces are obtained by mobilizing the 

strength of soil elements among tyre lugs, so it follows that 

they main ly depend on the strength of the soil which 

interacts with the tyre tread rather than on tyre material-soil 

interfacial resistance (Yong et al., 1984). As soon as the 

whole strength is mobilized, the soil elements among tyre 

lugs fail (soil cutting) with the consequent formation of a 

strengthless layer (fig. 1) and an underly ing layer which 

shows high shear deformations.  

The soil strength has long been recognized as one of the 

main factors limit ing soil erosion processes (Fan and Wu, 

2001; Nearing and West, 1988; Watson and Laflen, 1986). 

Effects of shear deformations on soil structure with regard 

to the alteration of the pore system functionalit ies have been 

pointed out by different researchers  (Kirby, 1991; 

O’Sullivan et al., 1999). 

 

Figure 1. Example of soil cutting with a residual strengthless layer exposed 
to erosion in an agricultural silt  loam (SiL) Calcaric Fluvisol with maize 

stubble.  

Shear deformations have been proved to affect air 

permeability (Kirby, 1991; O’Sullivan et al., 1999) and gas 

diffusivity (O’Sullivan et al., 1999) in soil samples. The role 

of shearing, in addition to vertical compaction, in soil 
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homogenisation and particle rearrangement with reduction 

of hydraulic conductivity was described by Horn (2003). 

More recently, also Alaoui et al. (2011) and Berisso et al. 

(2013) remarked the influence of shear stress -strain due to 

traffic of agricu ltural vehicles on the alteration of: the soil 

pore system, the soil hydraulic propert ies such as soil water 

retention curve and unsaturated hydraulic conductivity 

(Alaoui et al., 2011), and the air permeability and pore 

continuity (Berisso et al., 2013). 

Moreover, the slip has been recognized to contribute in  
causing soil compaction pointed out by increased soil 
density (Raghavan et al., 1977; Raghavan et al., 1978), 

whereas Davies et al. (1973) showed how wheel slip  is more 
important in causing compaction than additional wheel 

loading.  

The remarkab le influence of shear stress at wheel-soil 

interface on the magnitude of the major principal stress in 
the upper soil layer was pointed out by Olsen (1988). He 
also reported experimental results showing an increase in 

soil density due to the application of shear stress and 
observed shear strain under a simple shear plate in the upper 

2 cm of soil below the plate. 

Issues concerning topsoil da mage due to tyre slip should 

be taken into account and further investigated (Diserens and 
Battiato, 2012). Although the slip is strictly related to the 

application of a tract ion force and therefore seems to be 
unavoidable, it should be controlled and properly limited in 
order to preserve topsoil structure and reduce erosion. In 

spite of this recognized need for limiting the slip of t ractor 
tyres, no theoretical approaches have been presented so far 

to indicate a range of slip values where no topsoil cutting 
effect occurs. 

The aim of this paper is to propose a mechanistic 

approach to define conditions which lead to soil cutting due 

to slip of tractor tyres. The approach is validated on the 

basis of field traction tests with a MFWD tractor on an 

agricultural silt loam (SiL) Calcaric Fluvisol. Indicat ive 

limits of slip values not to be exceeded in tillage operations 

in order to avoid  soil cutting effect are suggested for the 

conditions considered.  

II. MATERIALS AND METHODS 

A. Soil-Tyre Interaction Modelling for a MFWD Tractor 

The stress-strain interaction at soil-tyre contact was 

analysed by means of a model which simulates traction 

performance of a deformable wheel (Osetinsky and 

Shmulevich, 2004; Shmulevich and Osetinsky, 2003).  

The main forces acting on the wheel are shown in fig. 2 

with a detail of the elementary forces acting at soil-tyre 

contact. 

The model assumes the soil to behave as a plastic non-

linear medium, the wheel to roll in steady-state motion at a 

low velocity, and the tyre to deformation in linear elasticity. 

The soil-tyre contact surface in the longitudinal direct ion 

has a parabolic form with the apex at the rear point of 

contact A (fig. 2), and the wheel-soil interaction is two 

dimensional (p lane-strain problem). This latter assumption 

implies that the rut depth is the same across the width, and 

the width is the same along the contact surface, moreover all 

values are referred to the unit width of the wheel. 

 

Figure 2.  Interaction between soil and a driven pneumatic wheel (a) with the detail of the elementary forces at soil-tyre contact (b) according to Shmulevich 

and Osetinsky (2003). 

The dynamic wheel load due to load transfer effect was 

considered on the basis of the equilibrium condition of the 

tractor body (fig. 3), as follows: 

WWW rr  ,0                                    (1) 

for the front wheel and  

WWW ff  ,0                                 (2) 

for the rear wheel.  

The terms W0,f and W0,r are the stationary wheel loads on 

the front wheel and rear wheel respectively, whereas Wf and 

Wr are the wheel loads in dynamic conditions on the front 

wheel and rear wheel respectively. The term W is the 
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difference between the wheel load in stationary and 

dynamic condition due to the load transfer effect.  

According to fig. 3 W is calculated as: 

    
L

RRNTRhNTNTTT
W

frrrfrrrfrf ,,, 
           (3) 

in which Tf, NTf, Rr,f and Tr, NTr, Rr,r are in  order the total 

driving torque, the net traction and the rolling radius of the 

front wheel and the rear wheel respectively, h is the height 

of the drawbar measured on the field in the operating 

configuration and L is the wheelbase of the tractor. 

Equation 3 is derived assuming the rolling radius to be a 

good approximat ion of the height of the wheel hub and to be 

constant, and the rut depth small enough to be neglected in 

the calculation. Moreover this equation is valid when the 

pulling force is applied horizontally, which means that the 

total tractor weight remains constant and only its 

distribution between the front and rear axles changes. 

The multipass effect accounts for the different 

mechanical behaviour of soil interacting with the front 

wheel and the rear wheel, this can be considered by means 

of a differentiated soil mechanical characterization  with 

bevameter tests before tractor passage as well as on the rut 

left from the passage of the front wheel, according to 

Bekker (1960). 

For a tractor with rigid coupling between the front and 

the rear axles, the ratio o f the theoretical speed of the front 

wheel to that of the rear wheel Ks is fixed, and therefore 

there is a precise relationship between the slip of the front 

wheel ifront and that of the rear wheel irear in straight line 

motion:  

 

s

rear
front

K

i
i




1
1                               (4) 

 

Preliminary  tests with the MFWD 65 kW tractor have 

indicated values of Ks very close to 1 (0.997 and 1.002 

respectively with tyre inflation pressures of 160 kPa and 60 

kPa), allowing a simplified analysis in which the slip of the 

front wheel and that of the rear wheel are assumed to be the 

same.  

 

Figure 3. Forces on a MFWD tractor. 

 
Figure 4.  Layout of the traction  test in steady-state motion along a corridor (a) and specification of the system of spray painted strips for the measurement of 

the topsoil displacement (a and b). 

B. Design of Field Tests 

Field tract ion tests were carried out on an  agricu ltural 

silt loam (SiL) Calcaric Fluvisol with maize stubble (fig. 1) 

in Frauenfeld (CH) [47° 34’ 32” N, 8° 52’ 20” E].  

Several corridors 4 m wide and with a length ranging 

between 45 m and 85 m, according to the field geometry, 

were delimited in the field. Each  corridor was driven in 

steady-state motion in which the slip of the pulling tractor 

was kept constant by controlling the developed drawbar pull 

with a braking tractor. The drawbar pull developed was 

varied from one corridor to the next  and consequently also 

the slip. This latter ranged between 5% and 48%. 

The longitudinal topsoil shear displacement due to tyre 

slip was chosen as a suitable indicator of the soil cutting 

effect and measured along the tracks of the pulling tractor 

after tractor passage. The pulling tractor and the braking 

tractor did not move in  alignment during the test, this 

allowed the two tractors to have independent tracks and the 

longitudinal topsoil shear displacement to be measured on a 

track trafficked by the pulling tractor only. 
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In order to measure the longitudinal topsoil shear 
displacement, a system of strips orthogonal to the tractor 

track was spray painted on the topsoil surface, around 10 m 

apart, before tractor passage. The topsoil shear displacement 

was measured in each corridor with 2 or 3 repetitions. The 

layout of the traction test in steady-state motion along a 

corridor and the specificat ion of the system of spray painted 

strips for the measurement of the topsoil displacement are 

sketched in fig. 4. The pulling tractor moved with locked 
differential in  order to obtain the highest traction 

performance. The drawbar pull in the longitudinal direction 

was obtained by taking into account the angle γ of the steel 

cable used to connect the two tractors (fig. 4). Th is angle 

was around 3° (in fig. 4 a distorted scale is used). 

A MFWD Hürlimann H488 DT tractor of 65 kW engine 

power and weighing 40.8 kN was employed as pulling 

tractor. A John Deere 6920 tractor weighing 66.7 kN was 

used as braking machine. The drawbar pull was measured 
by a 200 kN load cell in section with the steel cable used to 

connect the two tractors, the actual forward velocity was 

measured by a radar velocity sensor, whereas the wheel 

rolling velocity was registered by means of a wireless wheel 

speed sensor (two pulses per wheel revolution) set on a rear 

wheel of the pulling tractor. All these parameters were 

recorded and displayed by an automatic acquisition system 

in the braking tractor. The load acting on the wheels in the 

stationary condition was measured with a flat bed wheel 
load scale. The pulling tractor was equipped with 

380/85R24 front tyres and 420/85R34 rear tyres. The tyre 

inflation pressure was measured with a tyre pressure gauge. 

The tests were carried out using three configurations, 

hereinafter referred to as case 1, case 2, and case 3: in case 1 

the tyre inflation pressure was set to 60 kPa, in case 2, to 

160 kPa, whereas in case 3 dual tyres were used, 11.2R28 at 

the front axle and 11.2R42 at the rear axle, the inflation 

pressure was set to 60 kPa and the tractor weight was 
increased from 40.8 kN to 56.6 kN by means of front and 

rear ballasts. 

C. Characterization of the Topsoil and the Tyres 

Some physical parameters of the agricultural silt loam 

(SiL) Calcaric Fluvisol chosen as the location for the tests 

are listed in Tab le I along with the parameters for the soil-

tyre interaction model.  

TABLE I. SOME CHARACTERISTICS OF THE SILT LOAM SOIL USED IN THE 

TRACTION PERFORMANCE STUDIES. 

Soil property 0-0.10 m 

Sand (g kg
-1

) 200 
Silt  (g kg

-1
) 530 

Clay (g kg
-1

) 270 
Texture (USDA) Silt  loam (SiL) 

Soil classification (IUSS Working Group WRB, 
2006) 

Calcaric Fluvisol 

Dry bulk density (Mg m
-3

) 1.33 

Total porosity (%) 50.1 
Volumetric water content (%) 40.2 
Matric suction (kPa) 1.60 
Cohesive modulus of deformation Kc (kN m

-(n+1)
) 298.2 

Frictional modulus of deformation Kφ (kN m
-(n+2)

) 479.0 
Exponent of deformation n 0.778 
Cohesion c (kPa) 15.9 
Angle of shear resistance φ (°) 25.6 

Shear deformation modulus k (m) 0.01 

A tractor-mounted bevameter was employed to 
characterize topsoil mechanical behaviour. An exhaustive 

description of this bevameter was reported by Diserens and 
Steinmann (2003). 

The vertical plate penetration tests were carried out with 
two circular plates of 0.2 m and 0.3 m in diameter. The 

values of Kc and Kφ  and exponent of deformation n (Table I) 
were determined according to Wong (1980). 

The horizontal p late shear deformat ion tests were 

performed by means of an annular plate with an outer 
diameter of 0.3 m and an inner d iameter o f 0.2 m. The soil 

shear stress-displacement curves were measured at vertical 
pressure ranging between 21 kPa and 155 kPa, and values of 

c, φ and k  (Tab le I) were determined accord ing to Wong 
(1980). 

The vertical plate penetration tests and the horizontal 

plate shear deformation tests were executed before t ractor 
passage as well as on the rut left from the passage of the 

front wheel, however, no significant differences in soil 
mechanical behaviour were observed and therefore a unique 

characterization was adopted. 

 

Figure 5.  Soil shear stress-displacement curve obtained in horizontal plate 

shear deformation test with a bevameter at 38 kPa of vertical pressures with 
repetitive shearing. 

An additional repetitive shearing test at vertical pressure 

of 38 kPa, reported in fig. 5, indicates three main phases of 
soil behaviour under shear stress: in a first very limited 

interval of displacements the soil seems to show an elastic 

behaviour, afterwards the elastic behaviour is associated 
with p lastic deformat ions in a hardening elastoplastic phase, 

whereas the last phase is characterized  by big p lastic 
deformations under almost constant stress, indicating that 

soil failure is occurring.  

Table II shows some specifications of the tractors used 

in the traction performance studies for the three cases tested.  

The tyre rolling radius Rr (Table II) was determined 

according to ASABE (1983) as the distance travelled per 

revolution of the wheel d ivided by 2 when operating  at the 
specified zero condition. Th is latter was here assumed as the 

vehicle operating in self-propelled condition on a hard 
surface, such as a smooth road, according to Wismer and 

Luth (1973). Parameters Kcarc and Kp which characterize 
tyre stiffness were determined on the basis of the tyre 

specifications as in Lines and Murphy (1991). In case 3 the 
system of dual tyres was modelled, at  least in  first 

approximation, as one tyre having width and stiffness given 
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by the sum of those of the  two independent tyres.  

III. RESULTS  

The relationship between the drawbar pull developed by 

the tractor and the slip of tractor wheels is shown in fig. 6. 
Here experimental measures are seen alongside the model 

simulation for the three cases under consideration.  

The highest traction performance in case 3 was due to 

the use of dual tyres, the tractor ballasting, and besides the 
low tyre inflation pressure. 

In case 1 the use of low tyre inflation pressure turned out 

in traction  performance higher than in case 2. The model 
simulations showed general good agreement with the 

experimental results (root mean square error RMSE of 2.71 
kN).  

Simulations of the geometry of the soil-tyre contact 

surface and distributions of the normal stress , the shear 

stress  and the soil strength τmax along the soil-tyre contact  
surface are shown in figs. 7 and 8. For each point of the 
contact surface, the normal stress and the shear stress are 

calculated according to Shmulevich and Osetinsky (2003), 

whilst the soil strength max is given by the following: 

  tanmax  c                           (5) 

 

Figure 6.  Measured and simulated relationship between drawbar pull and 

wheel slip for the 65 kW MFWD tractor in the three configurations 
considered: (case 1) tractor weight 40.8 kN and tyre inflation pressure 60 
kPa; (case 2) tractor weight 40.8 kN and tyre inflation pressure 160 kPa; 
(case 3) tractor weight 56.6 kN, tyre inflation pressure 60 kPa, front and 

rear dual tyres. 

This latter is the soil failure condition under a g iven 
normal pressure.  

Figure 7 refers to the tractor configuration of case 1 and 
reports simulations for slip values of 5% and 15% for the 

front wheel (figs. 7a and 7c, respectively) and for the rear 
wheel (figs. 7b and 7d, respectively).  

The load transfer effect caused the length of the contact 

surface and the rut depth of the front wheel to decrease as 
slip increased, with an  opposite result for the rear wheel. 

The maximum normal stress at soil-tyre contact decreased 
with slip in the front wheel, and increased with slip in the 

rear wheel. 

The shear stress at soil-tyre contact rose sharply with 

slip. At slip o f 5% it assumed values very far from the soil 
strength, whereas at slip of 15% it approached the soil 
strength over a wide part of the contact surface.  

At the rear point of the soil-tyre contact the shear stress 
was closer to the soil strength, and this latter, according to 

equation 5, corresponded to the soil cohesion c.  

The ratio /max varied along the contact surface as a 

function of the soil shear displacement j: 

 kje 1
max

                                    (6) 

In fig. 8 are reported the simulations of the geometry of 
the soil-tyre contact surface and the stress distribution at 
soil-tyre contact of the rear wheel at a slip of 15% for cases 

2 and 3.  

In case 2 the contact surface was shorter and deeper than 

in case 1 (fig. 7d), with  higher maximum normal stress. In 
case 3 the contact surface was shorter than in case 1 and 

longer than in case 2, and the rut depth resulted close to case 
2. The maximum normal stress was lower than in cases 1 

and 2. 

         TABLE II. SOME SPECIFICATIONS OF THE TRACTORS USED IN THE TRACTION PERFORMANCE STUDIES.  

Braking tractor John Deere 6920 (110 kW) 

Pulling tractor Hürlimann H488 DT (65 kW) 

Wheelbase pulling tractor L (m) 2.34 

 case 1 case 2 case 3 

Height of the drawbar h (m) 0.80 0.83 0.77 

 front axle rear axle front axle rear axle front axle rear axle 

Tyre 380/85R24 420/85R34 380/85R24 420/85R34 380/85R24 420/85R34 

Dual tyre - - - - 11.2R28 11.2R42 

Stationary wheel load W0 (kN) 9.3 11.1 9.3 11.1 11.6 16.7 

Tyre width b (m) 0.38 0.44 0.38 0.44 0.38/0.29
*
 0.44/0.30 

Tyre unloaded radius R (m) 0.63 0.79 0.63 0.79 0.63/0.63 0.79/0.79 

Tyre rolling radius Rr (m) 0.58 0.76 0.59 0.77 0.58 0.76 

Tyre inflation pressure Pin (kPa) 60 60 160 160 60/60 60/60 

Rim diameter Drim (m) 0.61 0.86 0.61 0.86 0.61/0.71 0.86/1.07 

Tyre stiffness (kN m
-1
) 202.8 232.0 324.8 432.2 202.8/187.7 232.0/198.9 

Tyre carcass stiffness Kcarc (kN m
-1
) 129.5 111.8 129.5 111.8 129.5/122.4 111.8/97.6 

Inflation pressure dependence of the tyre Kp (kN m
-1

 kPa
-1
) 1.22 2.00 1.22 2.00 1.22/1.09 2.00/1.69 

* VALUES AFTER SLASH REFER TO THE DUAL TYRE. 
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Figure 7.  Soil-tyre contact surface with distribution of normal stress, shear stress and soil strength at slip of 5% and 15% for the front and the rear wheels of 

the 65 kW MFWD tractor (weight 40.8 kN, tyre inflation pressure 60 kPa): (a) front wheel at slip of 5%, (b) rear wheel at slip of 5%, (c) front wheel at slip of 
15%, (d) rear wheel at slip of 15%. 

 

 

 

Figure 8.  Soil-tyre contact surface with distribution of normal stress, shear stress and soil strength at slip of 15% for the rear wheel of the 65 kW MFWD 

tractor in configurations 2 and 3: (a) tractor weight 40.8 kN and tyre inflation pressure 160 kPa; (b) tractor weight 56.6 kN, tyre inflation pressure 60 kPa, 

front and rear dual tyres. 
 
 

In fig. 9 the soil stress paths along the contact surface with 

the tyre for the rear wheel in case 1 are represented in terms 

of mean stress p = (1+3)/2 and deviatoric stress q = (1-

3)/2. 
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Figure 9.  Soil critical state line CSL and stress paths along the soil-tyre 

contact surface at different slip for the rear wheel of the 65 kW MFWD 
tractor (weight 40.8 kN, tyre inflation pressure 60 kPa). 

 

The terms 1 and 3 are respectively the greatest 

principal stress and the smallest principal stress which are 

univocally defined when the tangent plane to each point of 

the soil-tyre contact surface is assumed as the critical plane, 

i.e. the plane on which the ratio /  is maximum. Intercept 

A and slope M of the critical state line CSL were derived as 

a function of the soil cohesion c and the angle of soil shear 

resistance φ for a plane stress state: 

coscA                                         (7) 

sinM                                         (8) 

The stress paths at slip  of 5%, 10% and 15% indicated 

that the soil stress state varied significantly along the contact 

surface and with slip. Moreover, the last point of the stress 

path which corresponded to the rear contact point turned out 

to be the closest to the critical state condition. At slip of 

15% a wide part of the soil stress path lay on the critical 

state line CSL, indicating that the crit ical state condition was 

fully reached.   

Figure 10 shows the evolution of the measured topsoil 

shear displacement j with slip i fo r case 1 (fig. 10a), case 2 

(fig. 10b) and case 3 (fig. 10c). Th is is set alongside the 

evolution of the maximum rat io between shear stress  and 

soil strength max for the front and rear wheels. 

As long as the shear stress along the contact surface of 

both the front tyre and the rear tyre with soil was 

considerably lower than soil strength and consequently the 

maximum ratio  /max assumed values to a great extent 

lower than 1, the topsoil shear displacements measured were 

very small, moreover they did  not vary significantly  with 

slip. When the maximum ratio /max along the contact 

surface approached a value of 1, the topsoil shear 

displacements measured rose sharply in  the three cases 

under consideration. According to equation 6 the ratio /max 

assumes the value 1 as an asymptotic value, however, in 

practice a ratio /max of 0.99 could be regarded as a limit 

beyond which soil strength is considered entirely mobilized.  

Such a limit was reached in case 1 at soil-front tyre 

contact for slip of 11% and at soil-rear tyre contact for slip 

of 13%, in case 2 at both soil-front tyre contact and soil-rear 

tyre contact for slip of 11%, and in case 3 at both soil-front 

tyre contact and soil-rear tyre contact for slip of 13%. 

IV. DISCUSSION  

Tractor traction tyres interact with soil by a system of 

normal and tangential stresses along the soil-tyre contact 

surface, in  this interaction the traction force is developed by 

 

 

 

 

Figure 10. Evolution of topsoil shear displacement with wheel slip 

compared with the evolution of the maximum ratio /max with wheel slip 
for the front wheel and the rear wheel of the 65 kW MFWD tractor in the 

three configurations considered: (a) tractor weight 40.8 kN and tyre 
inflation pressure 60 kPa; (b) tractor weight 40.8 kN and tyre inflation 
pressure 160 kPa; (c) tractor weight  56.6 kN, tyre inflation pressure 60 kPa, 

front and rear dual tyres. 

progressively mobilizing the topsoil strength at contact with 

tyre, and as soon as the whole strength is mobilized the soil 

elements among tyre lugs fail (soil cutting), causing topsoil 

damage. This damage in terms of cutting effect due to slip 

of tractor tyres has never been properly considered so far 

(Diserens and Battiato, 2012). 
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The analytical approach presented was aimed at  defin ing 

the mechanical condition at soil-tyre contact under which 

this topsoil damage occurs, and providing indicative limits 

of tyre slip for the conditions considered.  

The soil-tyre interaction model used as a theoretical 

framework provided reliable simulations of traction 

performance in  terms of drawbar pull and slip (fig. 6) fo r the 

65 kW MFWD tractor on the silt loam Calcaric Fluvisol 

(Table I) in the three configurations considered (Table II).  

Simulations of the geometry of the soil-tyre contact 

surface and the distribution of stresses at soil-tyre contact 

(figs. 7 and 8) indicated the influence of the tractor 

configuration, the slip of the wheels and the load transfer 

effect on the soil stress state at contact with tyre. The shear 

stress  turned out to vary considerably with slip, 

approaching the soil strength max. The ratio /max varied 

over the contact surface with tyre as a function of the soil 

shear displacement j according to equation 6, and its 

maximum value rose sharply with slip as long as a value of 

0.99 was reached (fig. 10).  

During shear tests the silt loam (SiL) Calcaric Fluvisol 

considered in this study showed an elastoplastic behaviour 

with hardening (fig. 5). At low slip the soil was stressed in 

its domain of hardening behaviour and it deformed when 

shear stress increased. In this phase the soil was able to 

provide a high increase in traction fo rce (drawbar pull) 

corresponding to small variations in  slip (fig. 6). The topsoil 

shear displacements measured were very small in this phase 

(fig. 10), moreover, in spite of the big increase in traction 

(fig. 6), they did not vary significantly with slip.  

Soil failed as soon as its strength was approached, 

exhibit ing a rise in topsoil shear displacements (fig. 10). 

This condition may occur at different but close slip values 

for the soil-front tyre contact and the soil-rear tyre contact 

(fig. 10). Once the soil strength was approached at the rear 

point of the soil-tyre contact, the traction force (drawbar 

pull) continued to increase with slip because the available 

soil strength was progressively mobilized on more extended 

areas of the contact surface (figs. 7 and 8), but its gradient 

was greatly reduced (fig. 6).  

The value of the ratio /max of 0.99 proved to be an 

indicative limit, suitable for p ractice, beyond which soil 

cutting is expected to occur (fig. 10). This limit is reached at 

a certain slip of the tyre which depends on soil mechanical 

behaviour and tyre characteristics such as dimensions, 

rolling rad ius, carried load, inflat ion pressure, and stiffness. 

In the traction tests presented, the ratio /max of 0.99 was 

reached at first at soil-front tyre contact for slip of 11% 

when the tyre inflation pressure was set to 60 kPa (fig. 10a), 

at both soil-front tyre contact and soil-rear tyre contact for 

slip of 11% when the tyre inflat ion pressure was  set to 160 

kPa (fig. 10b), and at both soil-front tyre contact and soil-

rear tyre contact for slip of 13% when dual tyres were used 

at front and rear axles, the tractor was ballasted (from 40.8 

kN to 56.6 kN), and the tyre inflation  pressure was set to 60 

kPa (fig. 10c).  

The elastic phase of soil behaviour, which might precede 

the elastoplastic phase according to fig. 5, was not 

observable in the range of slip considered.  

The choice of the tractor configuration is a matter of 

primary importance in tillage operations for the optimization 

of traction performance, i.e. limit ing slip of the wheels 

which involves a significant energy loss. To a great extent 

this aspect affects the fuel consumption and the time 

required for soil t illage. Moreover, as pointed out in this 

study, limit ing slip  concurs in the preservation of the topsoil. 

From this point of view, the limit values of slip obtained for 

the silt loam (SiL) Calcaric Fluvisol in the three t ractor 

configurations should be regarded as indicative limits not to 

be exceeded in  field  operations in order to avoid soil cutting 

effect in the conditions considered. 

V. CONCLUSIONS 

High slip of tractor traction tyres causes topsoil damage 

in terms of soil cutting effect with the format ion of a 

strengthless layer strongly exposed to erosion and an 

underlying layer where shear deformations contribute to the 

alteration of soil structure functionalit ies. The soil cutting 

effect was clearly indicated by longitudinal topsoil shear 

displacement. This latter turned out not to vary  significantly 

at low slip. As soon as the soil strength was approached 

topsoil shear displacement rose, indicating that soil cutting 

was occurring.  

A ratio  /max of 0.99, as a maximum value along the 

soil-tyre contact surface, was identified  as the indicat ive 

limit beyond which soil cutting is expected to occur. This 

limit  corresponds to a certain tyre slip which depends on 

soil mechanical behaviour and tyre characteristics such as 

dimensions, rolling radius, carried load, inflat ion pressure, 

and stiffness.  

In the traction tests presented, a ratio /max of 0.99 was 

reached at first at soil-front tyre contact for slip of 11% 

when the tyre inflat ion pressure was set to 60 kPa (case 1), 

and at both soil-front tyre contact and soil-rear tyre contact 

for slip of 11% when the tyre inflat ion pressure was set to 

160 kPa (case 2), and for slip of 13% when dual tyres were 

used at front and rear axles, the tractor was ballasted (from 

40.8 kN to 56.6 kN), and the tyre inflat ion pressure was set 

to 60 kPa (case 3).  

These slip values should be regarded as indicative limits 

not to be exceeded in tillage operations in order to avoid soil 

cutting effect in the conditions considered.  
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