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ABSTRACT  
 
This paper presents a methodology that improves fatigue-performance evaluations using model-based data 
interpretation. The accuracy of stress-range values is essential for quantifying fatigue damage. These values are 
usually predicted using physics-based models such as those used within finite element analyses. In the 
modelling process, simplifications are inevitable, thus causing systematic errors in model predictions. Structural 
health monitoring coupled with model-based data-interpretation approaches have the potential to reduce 
uncertainties associated with the evaluation of stress-range predictions. Because of the presence of modelling 
and measurement uncertainties, many models may explain the true structural behaviour. A model falsification 
approach, which is able to cope with incomplete knowledge of uncertainties, is used to isolate candidate models 
from an initial population of models. This approach is robust for systematic errors that are correlated spatially. 
The candidate models that are identified using the model-falsification approach predict stress ranges in 
structural members, from which the remaining fatigue life is determined. Due to the uncertainty reduction in 
model predictions during data interpretation, the accuracy of the fatigue prognosis is improved. A steel beam 
composed of a circular hollow-section truss is studied for illustration. Monitoring data that is interpreted using a 
model-falsification methodology shows potential for improving evaluations of remaining fatigue life. 
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INTRODUCTION  

 
Economic and environmental issues associated with the retrofit and the replacement of existing structures is of 
growing importance. This creates a demand for new techniques that are able to predict accurately their 
behaviour in order to reduce uncertainties related to decision making. Structural health monitoring provides 
useful data for supporting such techniques. During the last decade, leveraging the availability of measuring 
instruments, many studies have emerged for improving fatigue assessment of existing structures. While 
monitoring structural behaviour helps reduce uncertainties, measured data alone is not sufficient to evaluate the 
structural performance. According to Papadimitriou et al. (2011), direct measurements are able to provide 
accurate predictive assessment of structural behaviour, however, the prediction locations are limited to the 
monitored locations. Thus, behaviour models are necessary to link effects at other locations to causes and further, 
to make prognoses related to structural performance. 
 
Some studies proposed to evaluate fatigue damage based on stress-range predictions that are calculated using 
finite-element analyses (Guo et al. 2012; Liu et al. 2010; Siriwardane et al. 2008). However, the finite-element 
model that is used is validated based on simple comparisons of load-test data with model predictions. This 
validation does not ensure the accuracy of the model predictions. Model-based data-interpretation techniques are 
required to make sense of measurement data. Techniques such as model calibration and Bayesian model 
updating have been used to identify the unknown parameters of models. However, the validity of predictions of 
a calibrated model is limited to the calibration data (ASME 2006) and thus predictions made using this approach 
cannot be used for remaining-fatigue-life evaluations. In addition, due to measurement and modelling 
uncertainties, multiple models explain the true structural behaviour. Bayesian model updating leads to right 
diagnosis in cases where modelling errors and their dependencies can be described completely by random 
variables (Cheung and Beck, 2009; Strauss et al. 2008; Zhang et al. 2011). However, for complex civil 
structures, models have systematic biases that are correlated spatially and among quantities in unknown ways. 
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In order to meet these challenges, Goulet and Smith (2011 and 2013) proposed a probabilistic 
model-falsification approach. This data-interpretation technique that uses population of models has shown to be 
well-suited for diagnosis of systems where the uncertainty is not defined. However, the result of this technique 
has never been used to perform structural prognosis. 
 
This paper presents a methodology that improves the remaining-fatigue-life of structures using model-based 
data interpretation. The methodology takes advantage of a model-falsification approach to identify the true 
behaviour of structures and further, perform remaining-fatigue-life assessment of critical details. These results 
are then compared with the design-model provisions in order to quantify the benefit provided by the 
measurement data. 
 
The next section presents the methodology for remaining-fatigue-life predictions using data interpretation. In the 
following section, the prognosis methodology is illustrated with a steel beam composed of a circular 
hollow-section truss that was tested experimentally under fatigue loading.  
 
METHODOLOGY 
 

Error-Domain Model Falsification 

 
Goulet and Smith (2011, 2013) proposed a solution for shortcomings of traditional approaches and specially for 
situations where the error structure is unknown. This approach is named error-domain model falsification. The 
physical system is described by a behaviour model g�. � , which is created among several possible classes of 
model. This model has a set of n�  unknown physical parameters 	� = [θ�, θ�, … , θ��]

� describing the 

uncertainty related to the unknown geometrical and material characteristics of the structure, as well as the 
uncertainty on the connections and the support conditions. Error-domain model falsification compares predicted 
and measured values. Eq. 1 gives the general formulation that is used to compare predicted and measured 
quantities. 

g���� − ϵ�����,�
∗ = y� − ϵ���� !�,�

∗                            (1) 
 
The discrepancy between the predicted value g���� and the observed value	y� represents the observed residual, 
where i corresponds to the location where these values are compared	�i ∈ {1, … , n�}�. Model errors (ϵ�����,�

∗ � 
and measurement errors (ϵ���� !�,�

∗ ) are represented by the random variables U�����,� and	U���� !�,� . The 
combination of these uncertainties determines a random variable U(,� describing possible outcomes of the 
differences between predicted and measured values.  
A model instance is falsified if, for any measurement location, the observed residual is outside the interval 
defined by threshold bounds [T��*,�, T+�,+,�	] (see Eq. 2). A model instance is thus accepted only if this residual 
lies inside the bounds at every location	i. 

∀i ∈ {1, … , n�}:	T��*,� ≤ g���� − y� ≤ T+�,+,�                           (2) 
 
The combined uncertainty probability distribution function f12,34ϵ5,�6 is used to determine threshold bounds for 

every location i. They delimit the shortest intervals that contain simultaneously a target probability φ and 
satisfying Eq. 3. The value φ is the target reliability of the data interpretation. This is the probability that the 
correct model remains in the candidate model set after falsification. The definition of threshold bounds also uses 
the Sidak correction, which takes into account the effects of multiple measurements in the comparison of models 
(Sidak, 1971). This procedure has the advantage of providing conservative threshold bounds, regardless of the 
interdependencies between uncertainties (JCGM, 2011).  

∀i ∈ {1, … , n�}:	φ
8
9: = ; f12,34ϵ5,�6dϵ5,�

�=3>=,3
�?@A,3

                      (3) 

After falsification, the remaining models compose the candidate model set that instantiation of the identified 
parameters �∗ . This models are compatible with all measurements while accounting for modelling and 
measurement uncertainties. Remaining-fatigue-life provisions are then based on the predictions of the candidate 
model set.  
 
Prognosis Methodology  
 
Instead of basing remaining-fatigue-life predictions on a single model class and on a single set of parameter 
values, all candidate models identified are employed to calculate lower and upper bounds for predicted values. 
For fatigue prognosis, the number of cycles to failure are evaluated based on the number of cycles under 
constant stress-range level. The stress-range predictions of each candidate models are combined with the 
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modelling uncertainties. The number of cycles to failure for the n55 critical connections is determined using the 
S-N curve of the appropriate detail category given in the codes (SIA 263, 2003). This process is achieved by a 
Monte-Carlo analysis using one million samples. Eq. 4 presents the calculation of a sample of the number of 
cycles of the critical connection B. 

∀j ∈ {1, … , n55}:	NE,F = C ∙ 4∆gF��∗� − ∆ϵ�����,F6
J�

                       (4) 
∆gF��∗�  is the stress-range prediction obtained using a candidate model. ∆ϵ�����,F  is a sample of the 
stress-range modelling uncertainty. K and L are constant values that are related to the S-N curve and the 
detail category. For the probability distribution of the number of cycles, a prediction interval is determined for a 
prediction reliability of φ�!��, representing the shortest interval for which the probability content reaches the 
reliability value. 
 
By reducing uncertainties related to the prediction of the number of cycles, the reserve capacity of the structure 
is quantified more accurately. In the following section, an application of this methodology is presented. 
 
TRUSS-BEAM EXAMPLE 

 

In this section, the prognosis methodology is applied to a steel beam composed of a circular hollow-section truss. 
This beam is subjected to a fatigue-load test in laboratory conditions. Figure 1 shows the geometry of the 
simply-supported beam with the position of the displacement gauge D1 and 36 strain gauges that are numbered 
between 1 and 45. Truss beam is made of standardized laminated ROR profiles. The diagonals are welded to the 
upper and lower chord edge surface. The beam span is 8621 mm long between the support-plate edges and its 
height is 1800 mm. The upper chord is simply supported on the plate and is also tied up using straps to prevent 
an uplift during the cyclic load test. The support plates are 150 mm large and their edges are 40 mm distant from 
the end-diagonal weld toe. Although there is no clear information about the strap positions, they are assumed to 
lie on the support plates. A cyclic load of amplitude 550 kN is applied on the top-middle of the beam. 
 

 
Figure 1. Truss-beam description (dimensions in mm) 

 
In this example, the measurements of an initial load test are used to identify the true structural behaviour of the 
beam.  Several unknown characteristics of the structure, such as the Young’s modulus of steel and the 
rotational stiffness of the welded connections, are parameterised. The analysis of measurement data, which are 
provided by Acevedo (2011), shows differences between the values of symmetrically positioned strain gauges, 
as shown in Table 1. The highest relative difference is observed on the gauges located on the upper chord (#35 
and #43, #37 and #45, see Figure 1). This means that asymmetrical boundary conditions have to be considered 
in order to find compatibility between model predictions and measurements. This is achieved by modelling 
rotational springs at the supports in order to consider the rotational constraint created by the lever arm between 
the strap and the actual contact region of the chord with the support plate. In addition, the uncertain position of 
the strap and the contact region of chord is modelled by two supplementary parameters. These parameters and 
their possible range values are given in  
Table 2. Each combination of parameter values is an instantiation of the initial model set, which is composed of 
24’500 model instances. Figure 2 describes the finite-element model and the parameters that are used for data 
interpretation. 
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Table 1. Measured strain during initial load test (Acevedo 2010) 

Symmetric 
strain-gauge 

pairs 

Measured 
strain pairs 

[MN] 

Differences 
relative to second 

strain value 
5, 9 114, 110 4% 

7, 10 373, 375 -1% 
23, 32 620, 602 3% 
25, 31 847, 840 1% 
35, 43 -326, -284 13% 
37, 45 -231, -262 -13% 

 
Table 2. Initial-model-set parameter ranges and their discretization intervals 

Parameter θ Units Range 
Number of 

discretization 
intervals 

Young’s modulus of steel GPa 207-210 4 
Rotational stiffness of truss connections MNm/rad 0.1-1000 5 
Rotational stiffness of the south support MNm/rad 0.1-1000 5 
Rotational stiffness of the north support MNm/rad 0.1-1000 5 
South support drift mm 0-150 7 
North support drift mm 0-150 7 

 
 

 
Figure 2. Finite-element model of the truss beam and parameter description 

 
Values for OPQRST,U and	OPSVWXYS,U 	are estimated based on uncertainty sources and their probability density 
function (PDF) shown in Table 3. These values are determined using field data and by engineering experience. 
The values for the variability of the profile dimensions are given by steel code specifications (SZS, 2005) and 
the uncertainty is evaluated through model-prediction variance using Monte-Carlo simulations. 
 

Table 3. Uncertainty sources and their estimated probability density function 
Uncertainty source Units PDF Min Max 

Profile thickness variability % Uniform -12.5 12.5 
Profile diameter variability % Uniform -1 1 
Sensor resolution (displacement gauge) mm Uniform -0.2 0.2 
Sensor resolution (strain gauge) µmm/mm Uniform -2 2 
Cable losses % Uniform -0.25 0.25 
Model simplifications % Uniform 0 5 

 
These uncertainties are combined and the threshold bounds are calculated for a target reliability φ 	 95%. 
Based on the comparison of 34 measurements, error-domain model falsification reveals a set of 107 candidate 
models. 
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These candidate models are used to calculate stress-range predictions for each critical connection on the beam 
lower chord that is acting in tension. Using a Monte-Carlo analysis, these predictions are combined with the 
stress-range modelling uncertainty ∆ϵ�����,F as described in Eq. 4. This uncertainty does not account for the 
profile-dimension variability that are already included explicitly by S-N design curves. Thus, this uncertainty is 
composed of the model simplifications exclusively. Prediction intervals are derived from the probability 
distribution of the number of cycles to failure for a prediction reliability φ�!�� 	 95%. Figure 3 presents the 
comparison of the prediction intervals for the initial model set and the candidate model set as well as the 
predictions for positions #3N, #1, #2 and #3S determined using a design model that is used in Acevedo (2011). 
This model is based on conservative assumptions such as pinned connections and the a-priori symmetrical 
behaviour of the beam with 0-values for drifts and support-spring stiffnesses, as well as 210 GPa for the Young’s 
modulus of steel. 
 

 
Figure 3. Comparison of the number-of-cycles-to failure predictions between the initial model set (IMS) and the 
candidate model set (CMS), as well as predictions made using a design model for positions #3N, #1, #2 and #3S, 

see Figure 1 (Acevedo, 2011) 
 

The results show a lower number of cycles for connections #3N and #3S than for connections #1 and #2 in 
agreement with the observations made during the fatigue-load test. The prediction intervals for connections #3N 
and #3S calculated using the initial model set is larger than the intervals for connections #1 and #2. This reveals 
a high variability of the predictions of those connections that are located at each end of the beam. This is due to 
the uncertainty that is mainly located at the boundary conditions that are next to connections #3N and #3S. 
By comparing the IMS-prediction interval and the CMS-prediction interval, a relative uncertainty reduction up 
to 95% for connection #3N (see Table 4) is observed. The relative reduction is determined based on the relative 
difference between the interval lengths. Because of the higher uncertainty of the end connections than of the 
centred connections, the relative reduction of uncertainty is higher for those connections. 
 
In addition, the comparison of the lower bound of CMS-predictions with the design-model predictions reveals 
an improvement of the remaining fatigue life up to 402% (see Table 4). This percentage is based on the relative 
difference between the CMS-lower prediction and the design-model prediction. Figure 3 presents a greater 
improvement for connections #3N than for the other connections. However, this does not mean that connections, 
for which the predictions are the most uncertain, are connections, for which the predictions are improved the 
most. Indeed, predictions of connection #3S is the second most uncertain and shows the least 
remaining-fatigue-life improvement. 
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Table 4. Relative reduction and remaining-fatigue-life prediction improvement for each critical connection 

 3N 1 2 3S 

Relative reduction [%] 95 88 77 89 

CMS-predictions lower bound  6979 7238 7454 4958 
Design-model predictions 1390 1671 1671 1390 
Prediction improvement [%] 402 333 346 257 

 
Thus, the gain of information provided by measurement data contributes to enhance the accuracy of the 
remaining-fatigue-life prediction. Model-based data-interpretation techniques are also able to improve 
remaining-fatigue-life prognoses from those that are based on conservative models. Moreover, the 
initial-model-set prediction intervals reveal a great sensitivity of the remaining-fatigue-life provisions to 
modelling uncertainties. 
 
CONCLUSIONS 

 
This paper presents a methodology that improves the remaining-fatigue-life evaluation of structures. This 
methodology is applied to a steel beam composed of a circular-hollow-section truss. Using measurement data 
originating from a fatigue-load test, this application leads to the following conclusions: 
• The remaining-fatigue-life accuracy is improved up to 95% in comparison with the initial-model-set 

predictions. 
• The remaining-fatigue-life predictions are enhanced up to 402% in comparison with design-model 

predictions. 
• As expected, the prediction accuracy is very sensitive to modelling uncertainties. 
 
ACKNOWLEDGMENTS 

 
The authors acknowledge J.-A. Goulet for discussions and ICOM (Steel Structures Laboratory), EPFL (A. 
Nussbaumer and C. Acevedo) for providing test results.  
 
REFERENCES 

 
Acevedo, C. (2011). Influence of Residual Stresses on Fatigue Response of Welded Tubular K-joints, PhD thesis 

5056, EPFL, Lausanne. 
ASME (2006). “Guide for verification and validation in computational solid mechanics”, ASME. 

Cheung, S.H & Beck, J.L. (2009). “Bayesian model updating using hybrid Monte Carlo simulation with 
application to structural dynamic models with many uncertain parameters”, Journal of Engineering 

Mechanics,135(4), 243-255. 
Goulet, J.-A. and Smith, I.F.C. (2011). “Prevention of over-instrumentation during the design of a monitoring 

system for static load tests”, In 5th International Conference on Structural Health Monitoring on Intelligent 

Infrastructure (SHMII-5). Cancun, Mexico. 
Goulet, J.-A. and Smith, I.F.C. (2013). “Predicting the usefulness of monitoring for identifying the behavior of 

structures”, Journal of Structural Engineering, in press. 
Guo, T, Frangopol, D.M, Chen, Y. (2012). “Fatigue reliability assessment of steel bridge details integrating 

weigh-in-motion and probabilistic finite element analysis”, Computers & Structures, 112:245-257. 
JCGM (2011). “Evaluation of measurement data - Supplement 2 to the "Guide to the expression of uncertainty 

in measurement" - Extension to any number of output quantities”, JCGM Working Group of the Expression 

of Uncertainty in Measurement, JCGM 102, 72p. 
Liu, M., Frangopol, D.M., Kwon, K. (2010). “Fatigue reliability assessment of retrofitted steel bridges 

integrating monitored data, Structural Safety, 32(1):77-89. 
Papadimitriou, C., Fritzen, C.-P., Kraemer, P., Ntotsios, E. (2011). "Fatigue predictions in entire body of metallic 

structures from a limited number of vibration measurements using Kalman filtering", Structural Control 

and Health Monitoring, 18, 554-573. 
SIA 263 (2003). “Norme SIA 263: Steel structures”, Société suisse des ingénieurs et des architectes (SIA), 

Zurich. 
Sidak, Z. (1971). “On probabilities of rectangles in multivariate Student distributions: their dependence on 

correlations”, The Annals of Mathematical Statistics, 169-175. 
Siriwardane, S., Ohga, M., Dissanayake, R., Taniwaki, K. (2008). “Application of new damage indicator-based 

sequentual law for remaining fatigue life estmation of railway bridges”, Journal of Constructional Steel 

Research, 64(2):228-237. 

R. Pasquier, Y. Reuland  and I. F.C. Smith.  
Improving Remaining-Fatigue-Life Evaluation Using Data Interpretation.  
Proceedings of 6th International Conference on Structural Health Monitoring of Intelligent Infrastructure (SHMII), Hong-Kong, 2013.



Strauss, A., Frangopol, D.M., Kim, S. (2008). “Use of monitoring extreme data for the performance prediction 
of structures: Bayesian updating”, Engineering Structures, 30(12), 3654-3666. 

SZS (2005). “Konstruktionstabellen. C5/05 steel work”, Stahlbau Zentrum Schweiz. 130p. 
Zhang, E.L., Feissel, P., Antoni, J. (2011). “A comprehensive Bayesian approach for model updating and 

quantification of modelling errors”, Probabilistic Engineering Mechanics, 26(4), 550-560. 
 

R. Pasquier, Y. Reuland  and I. F.C. Smith.  
Improving Remaining-Fatigue-Life Evaluation Using Data Interpretation.  
Proceedings of 6th International Conference on Structural Health Monitoring of Intelligent Infrastructure (SHMII), Hong-Kong, 2013.




