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Résumé

Cette thèse étudie le lien entre la qualité du silicium microcristallin (µc-Si:H) et ses conditions

de dépôt par plasma dans la fabrication de cellules solaires en couches minces de silicium. Le

rôle des interfaces et de la qualité du µc-Si:H sur les performances du dispositif est analysé en

détail.

Du fait de la faible absorption du µc-Si:H aux grandes longueurs d’onde, son utilisation dans

des cellules solaires nécessite le dépôt de couches photo-actives avec des épaisseurs typiques

de quelques micromètres. La croissance a généralement lieu sur des surfaces très texturées,

qui permettent d’augmenter le piégeage de lumière—et donc son absorption—, mais qui

peuvent potentiellement induire des défauts structurels dans le film lors de sa croissance. Par

conséquent, l’un des principaux défis de cette technologie est l’identification des paramètres

de dépôt de plasma permettant la croissance d’un film de µc-Si:H de très haute qualité à une

vitesse de dépôt élevée et ce, sur des substrats texturés qui garantissent une bonne efficacité

de piégeage de la lumière.

Dans une première approche, les rôles de la fraction de dissociation du silane et de la pres-

sion du dépôt sont étudiés. Avec une pression et une dissociation de silane croissantes, la

densité de défauts du µc-Si:H est considérablement réduite conduisant à l’amélioration des

performances des cellules solaires. Une estimation de l’énergie moyenne avec laquelle les ions

bombardent le substrat soutient l’hypothèse que le bombardement ionique est le principal

responsable des différences observées.

Un aspect fondamental du dépôt du µc-Si:H sur des substrats hautement texturés est mis en

évidence : deux phases distinctes du µc-Si:H contribuent à l’efficacité globale de la cellule

solaire, et peuvent toutes deux contrôler les performances des cellules. La première phase

concerne le corps du matériau, et domine les performances sur substrats plats. Sur morpholo-

gies rugueuses cependant, des zones nanoporeuses défectueuses induites par le substrat—la

deuxième phase—se développent et se révèlent beaucoup plus sensibles aux conditions du

dépôt par plasma et à la morphologie du substrat. L’importance relative de cette phase défec-

tueuse secondaire est mise en évidence au travers de nouvelles expériences d’exposition à

l’humidité. L’utilisation de couches dopées d’oxyde de silicium permet d’atténuer l’influence

de ces régions nanoporeuses sur le rendement des cellules solaires.

Une étude comparative des fréquences d’excitation du plasma de 13,56 MHz (RF) et 40,68

MHz (VHF) montre que, même si les deux permettent la croissance du corps du matériau de

très bonne qualité, le rendement des cellules préparées en VHF est toujours en retrait pour

des vitesses de croissance inférieures à 5 Å s−1. Cette différence est reliée à une densité plus
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élevée de régions nanoporeuses défectueuses dans les cellules préparées en VHF comme en

témoignent les expériences d’exposition à l’humidité, conduisant à de fortes instabilités de

la tension en circuit ouvert de ces cellules solaires. Cependant, l’utilisation du VHF s’avère

bénéfique à plus haute vitesse de dépôt, grâce notamment à un bombardement ionique

moindre et au maintien d’une qualité du corps du matériau plus élevée par rapport au RF.

L’interaction cruciale entre la vitesse de croissance du µc-Si:H et la morphologie du substrat à

l’égard de la formation des régions nanoporeuses est examinée plus en détail. Il est démontré

que les régimes à haute dissociation de silane (avec un flux d’hydrogène réduit) ou une

pression accrue conduisent au développement d’un µc-Si:H plus dense bien qu’ils soient

associés à une augmentation des réactions secondaires en phase gazeuse et à la formation de

poudre. L’utilisation d’une distance interélectrode réduite permet d’atteindre une vitesse de

croissance duµc-Si:H plus élevée en maintenant une qualité du corps du matériau plus grande.

Des simulations de plasma, effectuées dans le cadre d’une collaboration avec l’Université de

Patras, suggèrent que les améliorations observées sont principalement liées à une contribution

relative accrue de monoradicaux de silane moins réactifs, tels SiH3 ou Si2H5.

Ensuite, dans le but de mieux comprendre la formation de ces deux phases distinctes du

silicium microcristallin, les contraintes intrinsèques du matériau sont étudiées et corrélées à

la densité de défauts dans le corps du matériau.

Enfin, les performances des cellules en couches minces de silicium sont améliorées grâce

à l’utilisation d’une nouvelle couche tampon d’oxyde de silicium à l’interface p-i . Pour les

cellules µc-Si:H, tous les paramètres électriques peuvent être améliorés. En ce qui concerne

les cellules en silicium amorphe, la dégradation induite par la lumière est réduite permettant

ainsi d’atteindre des rendements stabilisés plus élevés. En outre, cette couche tampon agit

comme une barrière efficace à la contamination au bore.

Globalement, ce travail a contribué à mieux comprendre les exigences du µc-Si:H pour les

applications photovoltaïques et de quelle manière ses propriétés sont liées aux conditions de

dépôt par plasma. Grâce aux développements mentionnés ci-dessus, des progrès significatifs

ont été accomplis à la fois dans la compréhension et dans la réalisation de cellules solaires.

Une cellule solaire simple-jonction microcristalline avec une remarquable efficacité de 10.9%

a ainsi pu être obtenue ; ce qui à notre connaissance est la valeur la plus haute jamais rapportée

dans la littérature. Ce travail a également participé au développement de cellules solaires

tandem et triple-jonction de très haute efficacité au PV-Lab.
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tion, dopage, compensation, nucléation, oxyde de zinc, oxyde de silicium, couches optiques,

anti-reflet, conductivité transverse, matériau à phase mixte, nanostructure, rugosité, chaleur

humide, stabilité électrique, contrainte intrinsèque, contrainte en compression.
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Abstract

This thesis investigates the link between the plasma deposition conditions and microcrys-

talline silicon (µc-Si:H) material quality for thin-film silicon photovoltaic applications. The

role of interfaces and the µc-Si:H material quality on the device performance are analyzed in

detail.

The low absorption of µc-Si:H at long wavelengths requires the deposition of absorber layers

with thicknesses of typically a few micrometers for use in multi-junction TF Si solar cells.

The growth typically takes place on highly textured surfaces, which provide increased light

absorption—often called light trapping—but which potentially induce structural defects in

the film during its growth. Therefore, to further improve the TF Si technology, one of the main

challenges is the identification of the determinant plasma deposition parameters that result in

the growth of very high-quality µc-Si:H at an increased deposition rate on textured substrates

that guarantee efficient light trapping.

As a first approach to better understand the plasma conditions necessary for the growth

of high-quality µc-Si:H, the roles of both the silane depletion fraction and the deposition

pressure are studied in an industrial-type large-area KAI reactor. With increasing pressure

and silane depletion, the µc-Si:H defect density is significantly lowered leading to improved

solar cell performance. An estimation of the average energy with which ions impinge on

the substrate supports the hypothesis that ion bombardment is mainly responsible for the

observed differences.

Then, a fundamental aspect of µc-Si:H deposition on highly textured substrates is highlighted:

two different phases of µc-Si:H material contribute to the overall solar cell efficiency, both of

which can drive cell performance. The first phase relates to the bulk material and dominates

the performance of cells on flat substrates. However, on rough morphologies, substrate-

induced defective localized nanoporous regions—the second phase—develop and are found

to be significantly more sensitive to the plasma process conditions and substrate morphology

than the bulk phase. The relative importance of this secondary defective phase is shown

through the use of new damp-heat experiments. Silicon oxide doped layers are demonstrated

to mitigate the influence of these nanoporous regions on the solar cell performance.

Next, a comparative study of the plasma excitation frequencies of 13.56 MHz (RF) and

40.68 MHz (VHF) shows that, while both allow for the growth of very good-quality bulk mate-

rial, the efficiency of VHF-prepared cells is always poorer compared to that of RF-prepared

cells within the range of our study for growth rates below 5 Å s−1. This decrease in solar cell

performance is related to a higher density of nanoporous regions in the VHF-prepared cells as
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evidenced by damp-heat experiments, leading to strong open-circuit voltage instabilities. Still,

the use of VHF is shown to be beneficial at increased deposition rates, thanks to reduced ion

bombardment and improved bulk material quality.

The crucial interplay between µc-Si:H growth rate and substrate morphology with regard to

the formation of nanoporous regions is further discussed for regimes with high deposition

rates of around 10 Å s−1. It is shown that high-silane-depletion regimes with significantly

reduced H2 flow rate or increased pressure lead to a denser µc-Si:H material but are associated

with increased secondary gas-phase reactions and powder formation. The use of a reduced

interelectrode distance is demonstrated to allow for the growth of µc-Si:H with significantly

improved bulk material quality at higher growth rates. Plasma simulations performed in

collaboration with the University of Patras are presented and suggest that improvements

observed in the µc-Si:H material quality are related mainly to an increased contribution of

less reactive silane monoradicals, such as SiH3 and Si2H5, to the growing film, as compared to

highly reactive ones such as SiH2 and SiH.

Then, in an effort to better understand the formation of these two distinct µc-Si:H phases, the

intrinsic stress within µc-Si:H i -layers is studied and correlated with the bulk defect density.

Further improvements to both µc-Si:H and a-Si:H solar cells are obtained by introducing a

novel intrinsic silicon oxide buffer layer at the p-i interface. Forµc-Si:H solar cells, all electrical

parameters are improved unless the i -layer is significantly more amorphous-rich and high

quality, in which case an improvement only in carrier collection in the blue region is observed.

In a-Si:H solar cells the silicon oxide buffer is shown to lower light-induced degradation,

which is one of the weak points of TF Si technology. Furthermore, for both a-Si:H and µc-

Si:H solar cells, the buffer can also act as an efficient barrier to boron cross-contamination,

eliminating the need for additional time-consuming processing steps such as a water flush for

single-chamber processes.

Overall, this work contributes to a better understanding of the µc-Si:H material requirements

for PV applications and how they relate to the plasma deposition conditions. Based on all the

aforementioned developments, significant progress has been made in the understanding and

the fabrication of thin-film silicon solar cells based on µc-Si:H. An outstanding single-junction

µc-Si:H solar cell of 10.9% was attained; to our knowledge this is the highest reported in the

literature. This work also contributed to the development of very high-efficiency tandem and

triple-junction thin-film silicon solar cells at PV-Lab.
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cal stability, intrinsic stress, compressive stress.

vi



Contents

Abstract (Français/English) v

1 Introduction 1

1.1 General context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Photovoltaic energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Thin-film silicon photovoltaics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Current status of research on µc-Si:H . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 The goals and structure of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.6 Contribution of this thesis to the research field . . . . . . . . . . . . . . . . . . . 13

2 Experimental details 15

2.1 Solar cell preparation overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Plasma conditions analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Solar cell measurement and material characterization . . . . . . . . . . . . . . . 22

3 Influence of the deposition pressure and silane depletion onµc-Si:H quality and so-

lar cell performance 25

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Study of µc-Si:H deposition conditions in a CCP-VHF discharge . . . . . . . . . 26

3.2.1 Influence of the deposition pressure . . . . . . . . . . . . . . . . . . . . . . 26

3.2.2 Influence of the hydrogen flow rate and silane depletion . . . . . . . . . . 29

3.3 Material characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.1 Defect density of the µc-Si:H intrinsic layer . . . . . . . . . . . . . . . . . 31

3.3.2 Amorphous to microcrystalline transitions . . . . . . . . . . . . . . . . . . 33

3.4 Simple model for ion bombardment energy . . . . . . . . . . . . . . . . . . . . . 34

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Highlighting the contributions of two different phases ofµc-Si:H material to overall

solar cell performances 39

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Role of plasma process conditions on material porosity . . . . . . . . . . . . . . 40

4.2.1 SiOx doped layers in µc-Si:H solar cells deposited at a high-deposition rate 40

4.2.2 In depth µc-Si:H material characterization . . . . . . . . . . . . . . . . . . 43

4.3 Interplay between substrate roughness and PECVD process . . . . . . . . . . . . 47

vii



Contents

4.4 Material stability and evidence of the nanoporous phase . . . . . . . . . . . . . . 48

4.5 On the role of the SiOx doped layers . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Comparison of plasma excitation frequencies for the growth of high-qualityµc-Si:H

i -layers 53

5.1 On the use of very-high frequency in capacitively coupled plasmas . . . . . . . 53

5.2 22-mm-gap reactor configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2.1 Standard-gap deposition regimes . . . . . . . . . . . . . . . . . . . . . . . 57

5.2.2 Analysis of solar cell performance . . . . . . . . . . . . . . . . . . . . . . . 58

5.2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3 12-mm-gap reactor configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3.1 13.56 MHz excitation frequency . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3.2 40.68 MHz excitation frequency . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.4 Material analysis and stability study . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.4.1 FTPS comparison of cells prepared using RF and VHF . . . . . . . . . . . 76

5.4.2 Stability study of µc-Si:H-based solar cells . . . . . . . . . . . . . . . . . . 77

5.4.3 Conclusion and current view . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6 High deposition rate of device-gradeµc-Si:H 83

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.2 PEPPER project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.3 Influence of pressure and hydrogen flow . . . . . . . . . . . . . . . . . . . . . . . 85

6.4 Impact of the substrate morphology . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.4.1 On the sharpness of the LPCVD ZnO front contacts . . . . . . . . . . . . . 89

6.4.2 Single-junction µc-Si:H solar cells . . . . . . . . . . . . . . . . . . . . . . . 90

6.4.3 Filtered µc-Si:H solar cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.5 Influence of the interelectrode gap . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.6 RF vs. VHF with reduced interelectrode distance . . . . . . . . . . . . . . . . . . 98

6.7 Modeling of gas-phase and µc-Si:H film growth mechanisms . . . . . . . . . . . 99

6.7.1 On the role of radicals contributing to the growth . . . . . . . . . . . . . . 100

6.7.2 Simulations of PECVD of µc-Si:H . . . . . . . . . . . . . . . . . . . . . . . . 101

6.7.3 Conclusions and perspectives on the plasma simulations . . . . . . . . . 104

6.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7 Intrinsic stress inµc-Si:H 107

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.2 Experimental details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.3 First observations at low deposition rates . . . . . . . . . . . . . . . . . . . . . . . 109

7.3.1 Plasma deposition conditions . . . . . . . . . . . . . . . . . . . . . . . . . 109

viii



Contents

7.3.2 Material characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.3.3 Solar cell performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.4 Relationship to µc-Si:H bulk defect density . . . . . . . . . . . . . . . . . . . . . . 114

7.5 Intrinsic stress and µc-Si:H porosity in complete solar cells . . . . . . . . . . . . 116

7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

8 Silicon oxide buffer layer at the p-i interface inµc-Si:H and a-Si:H solar cells 119

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

8.2 SiOx buffer layer in single-junction µc-Si:H solar cells . . . . . . . . . . . . . . . 120

8.2.1 Role of the i -layer crystalline fraction . . . . . . . . . . . . . . . . . . . . . 121

8.2.2 Extremely fast and efficient single-chamber deposition process . . . . . 124

8.2.3 Gains as a function of substrate morphology for cells deposited at a high

rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8.2.4 Gains with improved i -layer material quality and lower φc . . . . . . . . 128

8.3 SiOx buffer layer in single-junction a-Si:H solar cells . . . . . . . . . . . . . . . . 132

8.3.1 Improved a-Si:H stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

8.3.2 Boron cross-contamination analysis . . . . . . . . . . . . . . . . . . . . . . 135

8.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

9 Notable solar cell results 137

9.1 Single-junction µc-Si:H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

9.2 Micromorph solar cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

9.3 Triple-junction solar cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

10 Conclusion and perspectives 143

10.1 General conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

10.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

A Detailed solar cells performances of the comparative study of RF and VHF 149

B On the use of the differential pumping for high pressure plasmas 151

C LPCVD ZnO-based intermediate reflector for Micromorph tandem solar cells 155

Bibliography 168

Curriculum Vitae 197

Remerciements 199

ix





1 Introduction

1.1 General context

The explosive growth of energy consumption observed today is sustained by the strong eco-

nomic and industrial expansion of developing countries along with the steadily increasing

demand of highly developed countries. According to a recent report from the International

Energy Agency (IEA) [IEA 12], more than 81% of the energy consumed every day comes from

non-renewable sources such as fossil fuels (oil, coal and natural gas). However, the increasing

exploitation of these limited resources presents risks for the environment, including pollution

and greenhouse gas emissions. Although there are significant uncertainties in the known fossil

fuel reserves, the supply may become exhausted in just a few generations with the current

global demand.

While nuclear energy alone currently accounts for almost 6% of the world energy supply, its

inherent massive threats to the environment and humankind cannot be disregarded. Long-

lasting damage is associated with (i) the extraction of raw uranium ore (e.g. leaks and spills of

contaminated water affecting the life in the surrounding regions), (ii) high-level radioactive

hazardous wastes (e.g. long-term management, illegal dumping, accidents, etc.) and (iii) the

inevitable and seemingly unending list of radioactive incidents and potential major nuclear

disasters. Hence the benefits and risks posed by nuclear energy production suggest that it is

not the complete answer and that sustainable alternatives have to be found and efficiently

implemented to replace it.

Furthermore, the geographic concentration, as well as uneven distribution, of fossil fuels and

uranium reserves poses additional problems of security of supply and energy independence

for countries. As a direct consequence, land conflicts threaten peace even more and regional

or international crises are inevitable in this context.

In view of these facts, the deployment of renewable energies (e.g. wind, solar, tidal, geother-

mal, etc.) has a considerable potential to ensure both a secure and sustainable develop-

ment. Although considered optimistic, the current Greenpeace EU Energy [R]evolution sce-
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Chapter 1. Introduction

nario [Greenpeace 12] gives an in-depth review and analysis of the actual requirements needed

to phase out fossil fuels and cut CO2 emissions. More importantly it provides clear pathways

for how to accomplish the shift from our current energy system towards a global integration of

renewable sources. In addition to renewable energy generation, a necessary step is the devel-

opment of grid energy storage solutions and a lot of research has to be done in that direction

as well, e.g. in batteries, hydrogen storage, flywheels, electric vehicles, compressed-air power

plants, seasonal hydro pump storage, etc. This vision of global renewable energy integration

is not purely fictional, but efficient incentives are required for its effective development and

implementation in our current energy infrastructure.

1.2 Photovoltaic energy

Photovoltaic (PV) solar energy in particular is expected to grow dramatically in the coming

years. Many institutions have developed possible growth scenarios for PV electricity genera-

tion capacity over the next decades, and these are compared in the Renewable Energy Snap-

shots 2012 [Jaeger-Waldau 13]. According to the IEA’s latest PV technology roadmap [IEA 10],

solar power could reach retail grid parity in many regions by 2020, provide around 11%

(3100 GW capacity) of global electricity production by 2050 and avoid 2.3 gigatonnes of CO2

emissions per year. Due to the rapid price drop of PV these last years, grid parity is is in fact

already attained in many countries, e.g. Germany, Spain, Italy, Mexico, Australia, etc. Of

course, such figures suppose the adoption by governments of a framework with efficient poli-

cies and sustained effort in PV research and development. The flexibility of PV technology in

terms of its implementation is one of its main advantages: it can be used either in centralized

large industrial power plants of several hundreds of kilowatts to gigawatts, or in distributed

smaller-scale commercial and residential systems that are grid-connected or stand-alone

installations.

Figure 1.1 gives an overview of the whereabouts of recent PV production and installation.

Figure 1.1: Left: World PV production from 2000 to 2012. Right: Cumulative PV installations
from 2000 to 2012. (Source: EU Renewable Energy Snapshots 2012 [Jaeger-Waldau 13]).
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We see that China and Taiwan now account for more than 65% of the global production, and

most of these modules are installed in Europe.

Even though the PV market is currently dominated by crystalline silicon (c-Si) technologies

with around 85–90% market share [IEA 10], thin-film technologies which currently account

for 10–15% of the market, are an attractive alternative. Thin-film solar cells are currently

based on four types of materials: silicon (Si), cadmium telluride (CdTe), copper indium

gallium selenide (CIS or CIGS), and organic molecules. Although thin-film solar cells can

potentially be produced at a lower cost than typical c-Si solar cells, a lot of pressure has been

put on thin-film manufacturers these last 4–5 years. Aggressive development of the already

mature c-Si technology has favored the further ramping up and allowed for economies of scale.

Additionally, the Chinese government has offered significant indirect subsidies to domestic

PV companies. As a result of this, the production costs of c-Si PV systems plummeted, the

market ended up being in overcapacity and companies flooded the global market with PV

modules, distorting the real production prices. This has been followed by a strong industry

consolidation, so that only a few thin-film PV manufacturers remain.

However, thin-film manufacturers can still reduce production costs, increase efficiency, benefit

from economies of scale, and have significant other advantages. First of all, thin-film modules

can be made much lighter and more flexible than c-Si PV modules, reducing installation costs

and also enabling new applications. They also perform much better under high temperatures

and are more shade tolerant; hence they sustain a higher relative power output. Their relative

lower efficiency is easily compensated by these advantages in a large-scale industrial PV power

plant of several hundreds of kW or more, for which the space needed is less important than,

e.g. on a rooftop. Last but not least, their homogenous appearance favors their integration

into buildings (with possible variations in color and transparency) and overall acceptance by

society which is a very important factor for widespread integration of PV. All of these features

may justify the continued existence of the thin-film manufacturers who survive the current

crisis.

1.3 Thin-film silicon photovoltaics

TF Si solar cell technology in particular is recognized having a tremendous potential for low-

cost mass production of PV electricity worldwide in the coming years [IEA 10, Jacobson 11].

Its main advantages are the large availability and non-toxicity of the raw materials used,

providing excellent scale-up capability to terawatt levels [Feltrin 08]. Another advantage lies

in its compatibility with mass-production and low-temperature processes for both superstrate

and low-cost flexible substrate configurations. TF Si solar cells are likely to play a major role in

the upcoming years in meeting the massive demand for PV energy. However, the technology

must overcome two main challenges to remain competitive: significantly improving efficiency

and to further reducing production costs.

Originally based on the use of hydrogenated amorphous silicon material (a-Si:H) as sole
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absorber material, TF Si solar cells have since combined a-Si:H with hydrogenated micro-

crystalline silicon (µc-Si:H) in tandem or triple junctions. This multi-junction approach was

proven to be the key for achieving higher conversion efficiencies [Shah 04, Saito 05, Yunaz 07b,

Matsui 10, Konagai 11, Yan 11]. Indeed, such configurations allow for a better use of the solar

spectrum energy since µc-Si:H has a lower bandgap of 1.1 eV, compared to 1.7 eV for a-Si:H,

and can thus absorb the infrared (IR) light that passes through a-Si:H. Moreover, µc-Si:H

material is considered to be stable with regard to light-induced degradation (LID) unlike

a-Si:H [Staebler 77]. As of yet, the micromorph tandem cell configuration [Meier 96]—based

on the monolithic interconnection of an a-Si:H top cell and a µc-Si:H bottom cell—represents

one of the most effective approaches for the fabrication of relatively thin (1–3 µm) yet highly

efficient TF Si solar cell devices, that are approaching for 14% stable efficiency in the short

term [Meillaud 06] and possibly going over 16–18% with triple-junction. The micromorph

concept is illustrated in Figure 1.2.

Figure 1.2: Micromorph tandem cell concept based on the monolithic interconnection of an
a-Si:H top cell and µc-Si:H bottom cell with different spectral ranges of absorption. Right:
External quantum efficiency of a micromorph cell.

Based on this tandem configuration, record-low production costs of 0.5 dollars per watt-

peak were announced to be within reach even at modest production volumes of around

150 MW [Oerlikon Solar 12]. Triple-junction a-Si:H/µc-Si:H/µc-Si:H solar cell devices further

push stabilized efficiencies even further thanks to the use of a thinner a-Si:H top cell leading to

reduced LID. However, in this case, much thicker µc-Si:H active layers are required to ensure

sufficiently high currents in all of the subcells, significantly increasing the cost of this solution.

Extensive information and references on TF Si solar cells can be found in a recently released

reference book [Shah 10].

1.4 Current status of research onµc-Si:H

Intrinsicµc-Si:H growth

First developments of radio-frequency (rf ) glow discharge deposition of a-Si:H layers started

in the late 1960s with the experiments of Sterling and Chittick [Sterling 65, Chittick 69]. At
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that time, the first tests were done simply with pure silane (SiH4) in a quartz reaction tube

surrounded by a high-impedance coil operated with a 500 W 1 MHz oscillator. Plasma-

enhanced chemical vapor deposition (PECVD) and the analysis of the silicon-based material

deposited has come a long way since then. While at first µc-Si:H could be prepared only

by chemical transport in a low-pressure hydrogen (H2) plasma [Veprek 68], Japanese groups

later demonstrated that µc-Si:H could be obtained as well directly from SiH4 rf glow dis-

charges [Usui 79, Matsuda 80]. µc-Si:H is a complex mixed-phase material, consisting of small

crystalline grains (typically in the range of 3–30 nm) embedded in an amorphous matrix

and arranged in large conglomerates (with a typical size of hundreds of nm), together with

disordered regions and voids. It was established that the microstructure of the material can be

varied from a completely amorphous phase to a microcrystalline phase in the same reactor

simply by adjusting the deposition conditions.

A breakthrough happened in 1994 at IMT Neuchâtel when Meier et al. showed for the first

time a µc-Si:H intrinsic layer (i-layer) that could effectively be used as an absorber layer of

a p-i -n solar cell with an efficiency of 4.6% [Meier 94b]. This was realized thanks to slight

boron-compensation of the i -layer through micro-doping. Since then, development has been

ongoing with regard to device-grade µc-Si:H for absorber layers in p-i -n or n-i -p single- and

multi-junction solar cells. In particular, better control of oxygen contamination was found to

be key for obtaining a high-quality µc-Si:H with improved transport properties [Torres 96].

Multiple deposition plasma techniques were developed to deposit µc-Si:H, including the layer-

by-layer technique at first (which alternates a thin a-Si:H layer and a H2 plasma treatment to

induce crystallization). However, since then, the standard SiH4/H2 dilution technique using a

capacitively coupled plasma with excitation frequencies of 13.56 MHz or above remains one

of the best way to obtain high-quality µc-Si:H [Rath 03].

The use of diluent gases other than hydrogen, such as argon or helium, can induce sig-

nificant modifications of the plasma conditions (electron temperature, ion bombardment,

powder formation) and layer properties (nucleation conditions, grain sizes); however, no

significant advantage has ever been observed compared to the standard H2 dilution for

the µc-Si:H i -layer quality. The use of fluoride gases is known to be advantageous for a-

Si:H [Ovshinsky 78, Bruno 09] and its alloys [Perrin 90, Cicala 98] (improved mobility, reduced

defect density, denser microstructure), and can control hydrogen content of silicon films.

Interesting observations were made lately showing that fluorine can, under specific deposition

conditions, favor the growth of larger crystallites in µc-Si:H [Djeridane 08].

Further comprehension of the underlying physics of the deposition mechanisms remains a

critical barrier to reaching higher efficiencies at higher growth rates. For example deposition

of a 1-µm-thick µc-Si:H layer for a typical bottom cell takes one hour at 3 Å s−1. Considering

the cost of hardware and deposition time, fast deposition of high-quality µc-Si:H is a key issue

that remains to be solved, particularly on textured substrates that guarantee efficient light

trapping.
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Crystallinity and control of the microstructure ofµc-Si:H

Three major models have been proposed to explainµc-Si:H growth and formation as a function

of plasma species—with a particular focus on hydrogen—and deposition conditions. These

models are [Matsuda 04]:

• The surface diffusion model, in which extensive hydrogen at the surface induces local

heating (chemical reactions). This leads to increased diffusion of radicals on the growth

surface and, thus, a larger probability for them to find energetically favorable sites. As a

result, a more ordered structure is obtained.

• The selective etching model, in which incoming atomic hydrogen breaks the weak Si-Si

bonds from the defective a-Si:H lattice network (a factor of 10 has been observed for the

etch rate compared to µc-Si:H [van Oort 87]). Sylil (SiH3) radical precursors can then

replace weakly bound Si atoms and form stronger Si-Si bonds.

• The chemical-annealing model, in which the subsurface becomes hydrogen rich through

permeation. Exothermic reactions can take place (H2 molecule + dangling bond formed),

and energy dissipated in the network induces bulk structural rearrangement, leading

to a more “flexible” network, i.e. to conditions favorable to the formation of a µc-Si:H

network.

A critical parameter of the µc-Si:H microstructure is the Raman crystallinity factor. For in-

tegration in a p-i -n single-junction or tandem solar cell, the best Raman crystallinity factor

for the µc-Si:H absorber layer was observed to be around 60% [Vetterl 00]. This requirement

Figure 1.3: Schematic diagram of the transition from µc-Si:H on the left to a-Si:H on the
right [van den Donker 06].

also defines a limited window of operation when tuning the process parameters. A schematic

diagram of the transition from amorphous to fully crystalline material is shown in Figure 1.3.

Although a Raman crystallinity factor of approximately 60% gives the “best” material for a

given deposition regime, it is not sufficient to ensure that the material is device grade. For
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instance, poor material quality, linked with post-deposition oxidation, has been attributed

to the presence of poorly passivated crystalline surfaces by hydrogen (mono-, di- or trihy-

dride) [Smets 08], observable by Fourier transform infrared spectroscopy (FTIR). The absence

of this hydrogen FTIR signature is required for device-grade µc-Si:H, with well-passivated crys-

talline grain boundaries by a-Si:H, but this does not strictly ensure the highest performance in

solar cells (as will be discussed in Chapter 4).

The preponderant role of the ratio of the atomic hydrogen to silicon radicals fluxes toward the

growth surface, κ= ΓH/ΓSi was recognized early as a key aspect for determining the transition

from a-Si:H to µc-Si:H. The reason is that a high hydrogen dilution (i.e. low silane concentra-

tion c = SiH4/(SiH4 +H2)) was typically required to obtain a more crystalline material. Only

recently, however, has κ been quantified using different methods [Klein 05, Dingemans 08,

Nunomura 09]. κ can vary depending on the growth surface effective temperature and addi-

tional effects from the ion energy bombardment contribution. Lately, a simple, yet elegant,

model, established a direct link between κ and the actual silane concentration in the plasma

cp [Strahm 07c, Howling 10], making the latter a determining factor in the a-Si:H/µc-Si:H

transition. As shown in Figure 1.4 µc-Si:H can be obtained within the transition region for

any c, provided the silane depletion fraction D (cp = c(1−D)) is sufficiently high to reach the

threshold ratio κ.

Figure 1.4: Left: Raman crystallinity factor of samples deposited with various parameters as a
function of (a) the silane input concentration, and (b) the silane concentration in the plasma.
Right: Plot of the transition zone (shaded) defined by iso-cp curves, and experimental data as
a function of the silane depletion fraction and the silane input concentration c [Strahm 07c]
(right image was corrected for the silane depletion units, and the inverted iso-cp values).

This threshold can be reached, for example, either through enhanced residence time (through

increased pressure or lower total input flow rates), or simply by an increase of rf power

density, which explains why material in the transition can also be obtained by using pure SiH4
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only [van den Donker 05]. However, this model does not take into account polysilane and

powder formation, nor ion bombardment, which can affect the plasma conditions, dominate

the final microstructure of the deposited material, and eventually affect the µc-Si:H material

quality as we will see in this thesis.

High-pressure depletion regimes

High-pressure depletion (HPD) deposition regimes were first used by Guo et al. [Guo 98]

and allowed for higher growth rates of device-quality µc-Si:H. Before that, µc-Si:H was typ-

ically grown at pressures below 1 mbar. The HPD technique is thought to be favorable for

high deposition rates because of the reduction of the ion bombardment energy towards

the growth surface thanks to increased ion collisions in the sheath. Multiple studies have

been done to analyze the best HPD conditions to increase solar cell efficiencies. Matsui et

al. [Matsui 03b] showed that higher deposition pressure results in denser grain columns along

with improved IR spectral response. p-i -n solar cells with high stable efficiencies of 10.0% were

be prepared [Gordijn 06a] and the cells’ performances with respect to defect densities were

observed [Gordijn 06b]. Also, the negative impact of plasma-induced substrate heating during

high-power deposition, which can become especially important for high-deposition-rate

regimes, was demonstrated [van den Donker 06].

The exact effect of ion bombardment on solar cell performance is difficult to assess because

of the difficulty in measuring the ion energy in actual plasma deposition conditions. For

instance, retarded field energy analyzers—typically used to analyze the distribution of ion

energies—cannot operate above 1 mbar, as the ions’ mean free path becomes smaller than the

actual length they have to cross within the tool.

It is generally assumed that high ion energy is detrimental for the growth of the film because

of the defect creation, sputtering or even amorphization of the network. However moderate

energy directed toward the growth surface can also promote surface diffusion or desorption of

growth species, leading to a denser material. Furthermore ion bombardment has been proven

to be favorable for the nucleation as it favors the formation of a porous and hydrogen-rich

material [Kalache 03], with increasing compressive stress [Fujiwara 02], which in turn allows

effective nucleation. It was shown as well that moderate bias conditions led to an improved

grain boundary passivation and densification of the a-Si:H tissue [Bronneberg 12a]. One has to

remember that the mean ion energy on its own does not have a lot of significance, as the actual

energy distribution functions of all the specific ions impinging the growth surface should be

considered instead. Recently, the chemical nature of the positive ion population of SiH4/H2

discharges was measured by energy-filtered quadrupole mass spectrometry [Nunomura 08].

The species were measured thanks to a differentially pumped stage between the sampling

orifice and the analyzer, so that the study could be performed at high deposition pressures of

0.1–10 Torr, which are relevant to the actual HPD conditions for µc-Si:H growth. Interestingly,

we see in Figure 1.5b the significant contribution of higher polysilicon hydride ion groups
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with increasing pressure. The peak energy of the ion distribution function is also plotted in

Figure 1.5b(c). However, the orifice was located near the plasma edge (1 cm) and not directly

at the substrate position where plasma conditions can be different.

Figure 1.5: (a) Evolution of the best Voc of µc-Si:H solar cells [van den Donker 07]. (b) Relative
ion flux concentrations (a), relative neutral flux concentrations and nanoparticle abundance
(b), plasma parameters (c), ion density (ni) and ion saturation current Iis (d) as a function of
pressure [Nunomura 08].

As shown in Figure 1.5a, a very high open-circuit voltage (Voc) of 603 mV was be obtained

thanks to the combined use of SiH4 flow profiling, to control the microstructure over the

growth direction, with a p-i interface deposited by hot-wire chemical vapor deposition

(HWCVD) [van den Donker 07]. Although the exact origins of the Voc gains with HWCVD

are not yet clear, the study highlights the crucial role of the p-i interface in the overall µc-Si:H
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solar cell performance.

To conclude, dedicated plasma conditions are necessary to obtain high-quality µc-Si:H bulk

material (i.e. well-passivated crystalline grains with few dangling bonds and a dense structure

within the large conglomerates), but substrate morphology can have a crucial impact on the

material density and solar cell performance as we will see.

Alternative methods ofµc-Si:H deposition

Many other alternative plasma deposition methods have been evaluated for µc-Si:H growth,

e.g. microwave plasmas [Soppe 03, Jia 07], inductively coupled plasmas (ICPs) [Takahashi 07],

atmospheric PECVD [Kakiuchi 06, Kakiuchi 09], modified-cyclotron-resonance (ECR) plas-

mas [Dao 07, Kroely 10], expanding thermal (ETPs) plasmas [Bronneberg 12b], etc. However,

capacitively coupled PECVD, alone or with HWCVD [van den Donker 05], has been the only

one that allows the fabrication of very high-quality µc-Si:H for PV applications since then.

Other promising approaches, compatible with large-area processing, such as ladder-shaped

electrode [Takeuchi 01], multi-hollow cathode [Niikura 04, Smets 08], or CCP discharges using

the electrical asymmetry effect technique [Hrunski 13] are interesting and under development

as well. In particular, the modified hollow cathode from Sanyo [Terakawa 13] is interesting as

it provides a localized pumping along with a very high-density plasma localized at the tips

of the protruding cathode. In this configuration, and depending on the process conditions,

the electrodes effective surfaces seen by the plasma may be such that a strong self-bias could

in fact develop on the rf electrode, due to the apparent asymmetry, and reduce the ion

bombardment on the substrate.

Development of nanoporous regions in thin-film silicon solar cells

The µc-Si:H material can also have a less dense microstructure, being considered more

“porous” within the large conglomerates, i.e. what we usually refer to as the µc-Si:H bulk

material. Typically this can be observed by FTIR, with a poor passivation of the crystallites, and

leads to poor solar cell performances associated with post-oxidation and electrical instabilities

of the µc-Si:H films over time [Matsui 03b, Finger 03, Smets 08, Bronneberg 11] (e.g. reduced

EQE in the infrared similar to n-type contamination).

In the case of TF Si solar cell applications, µc-Si:H growth typically takes place on highly

textured surfaces that provide high light-trapping potential and increased short-circuit current.

However, such textures tend to promote the development of nanoporous regions (sometimes

refereed to as “cracks”) specifically where one growth front encounters another. This was

already noticed for a-Si:H growth on rough substrates [Sakai 90, Knoesen 95] but is even worse

for µc-Si:H [Nasuno 01]. The influence of the substrate’s geometrical parameters on these

regions in the case of µc-Si:H growth has been studied in greater detail [Python 08, Python 09,

Li 09, Naruse 12]. Deposition temperature may help alleviate this problem but it remains to
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be evaluated more precisely [Python 10]. The influence of the substrate morphology on the

formation of these nanoporous regions can be seen in Figure 1.6.

Figure 1.6: Up: SEM micrographs of ZnO surface treated with increasing time to go from a V-
to U-shape morphology. Down: corresponding bright field TEM cross-section micrographs of
µc-Si:H p-i -n cell on these ZnO substrates. Taken from [Python 08] (IMT PV-Lab).

This substrate-induced nanoporous zone development also affects the performance stability

of cells over time. It was shown to occur more easily on rougher substrates [Boccard 11], but

is also very dependent on the deposition conditions [Frammelsberger 10]. The nanoporous

regions act like bad diodes and generate shunting issues in the solar cells. An equivalent circuit

model consisting of parallel connected diodes with different electronic quality showed that

variations of the local saturation current density result in a degradation of the overall Voc and

fill factor [Grabitz 05]. Hence, the deposition requirements for homogeneously dense µc-Si:H

remain to be understood. This would also permit the use of highly textured substrates with

greater light-trapping potential in the future.

1.5 The goals and structure of this thesis

The objectives of this thesis are to

• Identify the determinant plasma deposition parameters that affect the quality of µc-

Si:H material deposited in the transition zone from the a-Si:H to µc-Si:H phases using

PECVD for TF Si PV applications.
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• Analyze in detail both the defect density of the bulk µc-Si:H material and the formation

of substrate-induced nanoporous regions during the growth and link them to solar cell

performance.

• Evaluate the use of an industrial-type large-area reactor specifically for the growth of

high-quality µc-Si:H.

• Increase the growth rate of µc-Si:H significantly while keeping reasonable material

quality.

• Find solutions to improve the material quality and the overall TF Si solar cell perfor-

mance through improved cell design.

The structure of this thesis is as follows: Chapter 2 first details the basics of TF Si solar cell fabri-

cation and measurement, together with plasma and material characterization. However, each

subsequent chapter still contains sufficient information regarding the relevant experimental

details to ensure comprehension independent of the reading of previous chapters.

In Chapter 3, the roles of both the deposition pressure and silane depletion fraction on the µc-

Si:H material quality are evaluated with an emphasis on very high depletion regimes. Benefits

from the use of higher deposition pressure and depletion regimes are linked to a significant

reduction of the bulk defect density in µc-Si:H i -layers. An amorphization process is observed

and attributed to high ion bombardment conditions. A simple evaluation of the mean ion

energy is proposed which underlines the importance of controlling ion energies to improve

µc-Si:H quality.

Chapter 4 highlights the contribution of two different phases of µc-Si:H to the overall solar cell

performance. The first phase relates to the bulk material and dominates cell performance on

flat substrates. However, TF Si solar cells are typically grown on rough substrates to increase

light trapping, in which case defective localized nanoporous regions appear and dominate cell

performance. It is observed that material characterization alone cannot discriminate between

the deposition regimes leading to this secondary phase; only the actual solar cell performance

and its stability with regard to a new damp-heat test can assess the relative importance of the

secondary phase. We demonstrate that the influence of these defective zones can be mitigated

by suitable plasma processes and silicon oxide doped layers to reach high-efficiency, stable,

TF Si solar cells.

A comparative study of the 13.56 MHz and 40.68 MHz rf plasma excitation frequencies for the

growth of very high-quality µc-Si:H is presented in Chapter 5 for two interelectrode distances.

Transport properties are evaluated directly within µc-Si:H single-junction solar cells by thick-

ening the i -layer and observing the associated performance losses due to recombination in

the bulk. A systematic defect density evaluation demonstrates that comparable high-quality

bulk material can be obtained using both frequencies. However, the µc-Si:H material grown

on rough substrates using the lower frequency is more dense and leads to better performance
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overall. Still, the use of the higher frequency is shown to be beneficial for increased deposition

rate, limiting the power density requirements compared to 13.56 MHz and resulting in reduced

ion bombardment and improved bulk material quality.

After these detailed investigations into the material properties of µc-Si:H deposited with the

most favorable conditions, we study in Chapter 6 the very high-rate deposition of µc-Si:H solar

cells. It is shown that high depletion regimes with significantly reduced H2 flow or increased

pressure are associated with significantly more secondary gas-phase reactions and powder

formation. The crucial interplay between µc-Si:H growth rate and substrate morphology with

regard to the formation of nanoporous regions is then further discussed. The use of a reduced

interelectrode distance is shown to allow for the growth of µc-Si:H material with improved

bulk material quality at higher rates. Results from a collaboration with the University of Patras

to perform plasma simulations of known conditions are then presented and discussed.

In Chapter 7, intrinsic compressive stress within µc-Si:H i -layers is studied. Low-stress µc-

Si:H material seems to correspond to improved solar cell performance. Further experiments

demonstrate a clear correlation of intrinsic stress with the bulk defect density of µc-Si:H

i -layers, both being symptomatic of a change in the ion bombardment energy conditions

during deposition. It was however not possible to correlate intrinsic stress of the i -layer with

the disappearance of nanoporous regions once the µc-Si:H material is integrated in actual

solar cells, on rough substrates.

The use of a novel intrinsic silicon oxide buffer layer at the p-i interface of TF Si solar cells is

presented in Chapter 8. Significant improvements are observed for both µc-Si:H and a-Si:H

solar cells. For µc-Si:H solar cells, all electrical parameters are improved unless the i -layer is

significantly amorphous-rich and of improved quality, in which case only an improvement in

carrier collection in the blue region is observed. Still, µc-Si:H i -layer nucleation is favored on

top of such a buffer layer. In a-Si:H solar cells, the silicon oxide buffer layer acts as an efficient

barrier to boron cross-contamination, eliminating the need for additional time-consuming

processing steps such as water flush.

The last chapter briefly summarizes the best TF Si solar cell efficiencies obtained in the

laboratory as a result of the µc-Si:H development presented in this thesis. Results include

single-junction and multi-junction cells in both the p-i -n and n-i -p configurations.

The general conclusions of this thesis are then drawn and perspectives are discussed. The use

of differential pumping for high-pressure regimes is discussed in Appendix B while detailed

solar cell results from Section 5.2.1 are presented in Appendix A.

1.6 Contribution of this thesis to the research field

This thesis contributes many different results—given below—to the field of TF Si solar cells.
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• The specific roles of the silane depletion fraction and deposition pressure for depositing

high-quality µc-Si:H were examined. A simple mean ion bombardment energy model

shows that increased pressure is favorable for better-performing solar cells.

• The contribution of two distinct µc-Si:H material phases on solar cell performance on

textured substrates was demonstrated. Assessing the material quality only by evaluating

the bulk phase is not sufficient. The formation of a secondary phase, which consists

of nanoporous regions, was shown to be highly sensitive to the deposition conditions

and substrate geometry, especially at high deposition rates. The porosity of the material

was demonstrated through new damp-heat experiments done directly on solar cells

deposited on rough substrates.

• The use of silicon oxide doped layers was shown to mitigate the negative impact that the

nanoporous regions have on the overall cell performance, while the implementation of

an undoped silicon oxide layer at the p-i interface results in superior performances for

both a-Si:H and µc-Si:H solar cells. An enhanced anti-reflective effect and improved nu-

cleation conditions of theµc-Si:H i -layer were observed. For a-Si:H, stabilized efficiency

is improved and the buffer layer also effectively reduces boron cross-contamination in a

single-chamber process.

• The use of a lower plasma excitation frequency for the growth of high-quality µc-Si:H

was demonstrated to lead to a denser material and better-performing solar cells. Still,

above a certain growth rate, the use of higher excitation frequencies becomes favorable

again, as the bulk phase quality dominates cell performance.

• Plasma conditions at the onset of powder formation (reached by either by increasing

the pressure or reducing the H2 flow) during growth of the i -layer were shown to lead to

better-performing solar cells at a higher growth rate thanks to denser µc-Si:H material.

• A reduction of the interelectrode gap distance was shown to be very beneficial for the

bulk material quality of µc-Si:H deposited at high rates, and is associated with improved

solar cell performance.

• A correlation between reduced intrinsic stress of µc-Si:H material, improved bulk mate-

rial quality, and solar cell performance was highlighted.

Based on all of these developments, significant progress has been made in the understanding

and the fabrication of TF Si solar cells based on µc-Si:H material. Furthermore, an outstanding

single-junction µc-Si:H solar cell efficiency of 10.9% was attained, the highest reported in

the literature according to our knowledge. Several articles were published in peer-reviewed

journals as a first-author [Bugnon 09, Bugnon 10, Bugnon 11a, Bugnon 12, Bugnon 13]. A

dedicated study on LPCVD ZnO-based intermediate reflector in micromorph tandem solar

cells was also published [Bugnon 11b], and is simply reported in the Appendix C. As part of

this ongoing effort, three patents were filled.
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2 Experimental details

This chapter details the main experimental methods used thorough this thesis work. First,

Section 2.1 gives some insights into solar cell realization and details the deposition reactors.

Section 2.2 describes some of the tools used to analyze the plasma conditions and Section 2.3

presents the techniques used to characterize the solar cells and the deposited material.

2.1 Solar cell preparation overview

The preparation of a TF Si solar cell involves the deposition of many different layers which

will be detailed in this section. All the cells presented in this thesis are in the superstrate

configuration, also called p-i -n configuration, as the p-layer is deposited first on glass covered

with front electrode. This means that the glass, used as a supporting structure during the

manufacturing of all the layers, will eventually be facing upward and act as a window layer

to couple sunlight into the solar cell device behind it. A scanning electron microscopy (SEM)

image of such a ssuperstrate configuration is shown for a micromorph tandem cell in Figure 2.1.

Figure 2.1: Cross section SEM image of a thick micromorph tandem cell incorporating a ZnO-
based intermediate reflector, where all the main layers are indicated. The solar cell and SEM
imaging were done by Dr. Didier Dominé (IMT-PV-Lab).
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Chapter 2. Experimental details

Single-junction and multi-junction p-i -n are typically prepared according to the following

sequences: first, a 0.5 mm-thick alumino-borosilicate glass (Schott AF45) is cleaned. It is

then coated with a transparent conductive oxide (TCO) layer that will act as front contact. At

IMT, we typically use zinc-oxide (ZnO) obtained by low-pressure chemical vapor deposition

(LPCVD). Next, the single-junction or multi-junction p-i -n cell is deposited on top of it using a

PECVD reactor (in the case of tandem or triple junction, the p-i -n subcells are simply stacked

on top of each other). After that, the cells are patterned to 0.25 cm2 or 1.0 cm2 before being

covered by a LPCVD ZnO layer again, which will be used as the back electrode. Structuration

of cells may also be made by use of laser scribing (P3 step) with the removal of silicon and back

TCO around the cell. Single-junction µc-Si:H solar cells are typically patterned to a 0.25 cm2,

so that 16 cells can be obtained on a 4 × 4 cm2 substrate. For multi-junction solar cells, they

are patterned to 1.0 cm2 leading to 6 cells per substrate.

LPCVD ZnO:B contact layers

As just mentioned, both the front- and back-contact typically consist in LPCVD ZnO thin-

films. Under our deposition conditions, ZnO layers naturally evolve as randomly distributed

pyramidal-shaped structures as shown in Figure 2.2a [Faÿ 10, Nicolay 09]. Such textured

surfaces are important in the case of TF Si solar cells, as they induce an efficient light scattering

within the solar cell (see Figure 2.2b), increasing light absorption and photo-generated current.

ZnO layers also need to be highly transparent and sufficiently conductive: for this purpose

diborane (B2H6) is used as a dopant gas, while diethylzinc (DEZ) and water vapor are used as

precursors gas. The doping can then be controlled by adjusting the B2H6/DEZ ratio.

Figure 2.2: (a) SEM (top) and TEM (bottom) micrographs of a 2 µm-thick LPCVD ZnO:B layer.
(b) Total (TT) and diffuse (TD) transmittance of LPCVD ZnO with various thicknesses. The inset
picture consists of two micrographs of a thin (440 nm) and a thick (3 µm) ZnO layers. Taken
from [Faÿ 10] (IMT PV-Lab).

16



2.1. Solar cell preparation overview

For µc-Si:H single-junction solar cells, we typically use a lowly doped 4.5-µm-thick (Z5) ZnO

front-contact layer with large pyramids. These large structures can then be smoothed through

the use of an argon-based plasma [Bailat 06, Boccard 12a] and referred to as Z5 followed by

the Ar treatment time (in minutes). A Z5 treated for 45 minutes, which is our standard for

the development of µc-Si:H solar cells, will then simply be referred to as a Z5 45’. Please

note that the original plasma treatment was transferred to a new plasma etching system

during this study. Unless specified, the treatment was then always done in the new (Oxford)

system with a slightly faster process than in the previous (IPL) system. As a result the Z5 60’

done in IPL is equivalent to the standard Z5 45’ done in the Oxford. In some cases we also

completely flattened the surface of our reference substrate, through a mechanical polishing

step (Z5 P) [Cuony 11]. Thinner ZnO layers of 1.5 µm (Z1) and 2 µm (Z2) with a higher doping

concentration, along with Asahi U, were used as front electrodes as well. Table 2.1 summarizes

important morphology and electrical parameters of the ZnO layers used in this thesis.

Table 2.1: Details of the ZnO substrates used for the present study and the main parameters
describing their surface morphology.

Substrate Z1 Z2 Z5/2 Z5 Z5 20’ Z5 45’

Thickness (µm) 1.3 2.0 2.4 5.0 <5.0 <5.0

σRMS (nm) 49 79 100 184 168 106

Pyramid size (nm) 160 250 270 600 600 600

Average facet inclination (°) 30 40 - 45 - 18

Ironed surface (µm2) 142 155 138 167 137 115

Haze at 600 nm 12 37 55 96 87 68

Sheet Resistance (Ω�−1) 18 9 9 25 - -

Mobility (cm2 V−1 s−1) 24 37 41 48 - -

Electron density (1019 cm−3) 9.2 9.2 3.5 3.5 - -

Resistivity (10−3 Ω cm) 2.8 1.8 3.7 4.4 - -

Silicon layers deposition

In superstrate configuration, the p-layer is the first silicon layer deposited on the front contact.

It has to ensure a good ohmic contact with the front ZnO layer and induce a high built-

in voltage in the device. The p-layer is then followed by the deposition of the i - and n-

layers. All silicon layers were prepared in large-area PECVD systems, called KAI reactors,

composed of a PlasmaBox installed within a large vacuum chamber (see simple schematic

in Figure 2.3). The PlasmaBox chambers were developed by Unaxis Displays (which became

part of Oerlikon Solar and now TEL Solar), and are smaller versions of the large area industrial

KAI™systems [Schmitt 89, Bubenzer 90, Perrin 00].
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These plasma chambers consist of a closed aluminum plasma reactor with a showerhead

electrode at 24.5 mm from the grounded bottom electrode. This configuration offers the

possibility of a directed pumping from one of the plasma reactor’s wall, which allows rapid

plasma equilibration time [Howling 07] and uniform deposition [Sansonnens 00]. The pres-

ence of a differential pumping between the outer chamber and the PlasmaBox limits cross

contamination in the deposition chamber during the process. We will see however that this

differential pumping can lead to some issues when working at high deposition pressures (cf.

discussions in Appendix B). Isothermal heating is obtained in the deposition chamber thanks

to a resistive heating wire placed on both sides of the reactor.

Figure 2.3: Lateral view of a KAI PlasmaBox installed in a large vacuum deposition chamber
with a basic differential pumping implementation.

Radio-frequency power is supplied either via a 13.56 MHz (RF) or a 40.68 MHz (VHF) generator,

feeding the power through an automatic matching-box, directly connected to the center of the

cathode. Such industrial-type PECVD chamber is very close to a symmetric system, and the

measured self-bias voltage Vdc is usually smaller compared to to a typical laboratory system.

The peak-to-peak voltage Vpp is also routinely measured in the KAI-S with a calibrated high

impedance capacitive gauge on the cathode.

Two KAI reactors were used for all the experiments presented in this thesis: a single-PlasmaBox

chamber KAI-S system and a dual-PlasmaBox chamber KAI-M reactor, with electrode areas of

46 × 56 cm2 and 49 × 60 cm2, respectively. The dual-PlasmaBox reactor is composed of two

chambers connected through a vacuum transfer chamber. The main advantage such dual

chamber system is the possibility to have a dedicated intrinsic chamber, hence limiting the

risks of dopant cross-contamination.

All µc-Si:H depositions performed in the KAI-S or the KAI-M were done at a temperature

T = 180 ◦C unless stated otherwise. The a-Si:H layers and corresponding p-i -n solar cells,

employed as top cell in micromorphs, were deposited in the KAI-S system, with a T set at

200 ◦C. Mixtures of SiH4 and H2 were used to prepare intrinsic silicon layers, while carbon

dioxide (CO2) was added to obtain SiOx layers. Trimethylboron (TMB) and phosphine (PH3)

gases were used for p-type and n-type doping, respectively. After each cell deposition the
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2.2. Plasma conditions analysis

systems were systematically cleaned by plasma using either SF6+O2, or later on, NF3+Ar

mixtures.

2.2 Plasma conditions analysis

Average residence time

In order to correlate plasma conditions and material quality or solar cell performances, typ-

ical plasma parameters such as gas residence time and silane depletion had to be moni-

tored as described in this section. The residence time τ, defined as the average amount

of time that a particle spends the system, is evaluated here for a PlasmaBox chamber that

we consider perfectly tight and leak-free as a first approximation. This closed-reactor con-

figuration allows very rapid equilibration times compared to a typical laboratory open re-

actor [van den Donker 06, Howling 07]. The calculation assumes steady-state conditions, a

single source gas with an input volumetric flow rate Q—as defined under standard conditions

for temperature and pressure (STP)—with constant gas density n and pressure p in the entire

reactor volume V . It follows that

τ= Number of gas molecules in the reactor volume

Source gas input rate

= N [part.]

S [part. s−1]
= V [m3]

S [part. s−1]
×n [part. m−3]

which, assuming STP conditions for the volumetric flow rate Q, leads to

τ=
(

V [m3]

Q [m3 s−1]
× T273K

patm.
×kB

)
× p

kB T

=
(

V [cm3]

Q [cm3 min−1]/60
× 273.15

1013.25

)
× p [mbar]

T [K]

withΦ [sccm] ≡Q [cm3 min−1], so that we get the residence time value simply through

τ= 16.2× V [cm3]p [mbar]

Φ [sccm]T [K]
. (2.1)

Silane depletion fraction

The silane depletion fraction D , defined as a measure of the reduction of silane partial pressure

due to dissociation by the plasma, was measured in the exhaust line of the KAI-M reactor

thanks to a tunable quantum cascade laser (QCL)-based absorption spectrometer. The setup

was developed and installed on our KAI-M system by Dr. Richard Bartlome. More details of this

installation can be found in [Bartlome 09]. This IR laser-based diagnostic technique is non-
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intrusive and very sensitive. Its very high resolution permits to resolve Doppler-broadened

rotovibrational absorption lines of silane in a single-pass in the evacuation line of the PECVD

system with excellent signal-to-noise ratio. Figure 2.4 presents a simple sketch of the setup

used for this measurement, as published in [Bartlome 09].

Figure 2.4: Optical setup of the quantum cascade laser based IR spectrometer for silane depletion
measurement in the exhaust line of the KAI-M reactor [Bartlome 09].

The Peltier-cooled IR QCL used for that purpose emits around 4.6 µm. Then, by varying the

current supplied to the QCL, the wavenumber can be tuned between 2241 and 2245 cm−1.

This range allows for a clean observation of the intense roto-vibrational absorption lines of

the ν3 band of SiH4, as it is free from any other absorbing species signature. The beam is first

collimated by a set of two lenses and chopped at a frequency of 1 kHz before entering the 3.7 m

evacuation line of the reactor. The QCL beam at the exit is then focused on a thermoelectric-

cooled Hg–Cd–Te photovoltaic detector and a lock-in amplifier is used to detect and measure

the signal.

Examples of silane absorption spectra acquired by this setup are shown in Figure 2.5. Silane de-

pletion fraction can then for example be obtained by comparing the peak center at 2243.827 cm−1

under steady-state conditions before and after ignition of the plasma. The time resolution is

also very good, being lower than 40 ms, allowing the acquisition of very fast transient phenom-

ena. When the setup was not available, the silane depletion fraction was simply derived from

the actual growth rate (method described in Chapter 3). When this technique is used instead,

it will be specified in the text.

Powder detection technique

Under particular conditions, powder formation can occur in silane-based plasmas [Dorier 92,

Takai 00]. A powder detection system was also developed by Dr. Richard Bartlome on the same

deposition system. Only the basics are presented here, more being available in his review

of laser-based applications for thin-film photovoltaics [Bartlome 10]. The technique relies

on laser light scattering (LLS) of the particles detected in the exhaust line, just behind the

pumping grid, thanks to a vacuum cross-piece.
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2.2. Plasma conditions analysis

Figure 2.5: The ν3 band of SiH4 acquired by a high-resolution FTIR (upper part of the figure),
the Doppler-resolved R(9) multiplet of SiH4 acquired by the QCL before and after igniting the
plasma in the high-deposition-rate regime (right hand side of the inset), and weak unassigned
absorption lines of SiH4 that only appear in the spectrum acquired by the QCL (left hand side of
the inset). For illustrative purposes, the spectrum of SiH4 acquired after igniting the plasma is
slightly shifted in the vertical axis. Figure and caption are taken from [Bartlome 09].

The light source consists in a low-cost high-power (500 mW) compact Nd:YAG laser emitting

at 532 nm. The beam is directed towards the center of the vacuum cross-piece, where it can

interact with large particles that scatter the light. A fast silicon-based photodetector then

retrieves the scattered light after it passed through a polarizer and an interference filter to

remove parasitic light emission. The time resolution is below 40 ms and the detectable particle

size estimated at around 50 nm. A simple schematic of the LLS setup is shown in Figure 2.6.

Figure 2.6: Principle of the LLS measurement done at the exhaust of the PlasmaBox, just behind
the pumping grid.
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Optical emission spectroscopy

Optical emission spectroscopy (OES) is a powerful, non-intrusive, diagnostic tool that permits

to retrieve important information about the plasma chemistry, as described in [Fantz 98,

Howling 07]. An Ocean Optics 2000+ OES on the viewport located on the side of the reactor,

was used in our work.

The set-up was used to integrate emission intensities from the H2 Fulcher (600–630 nm) and

G0B0 (461–464 nm) were integrated. Both originate from electron-impact excitation of the

H2 ground state but with a different emission rate coefficient as a function of the electron

temperature Te (the ratio Hα/Hβ originating from atomic hydrogen was also used sometimes

for the same purpose). Hence the ratio IG0B0 /IFul allows to check Te variation over time, and in

particular from ignition to steady-state equilibrium. SiH∗ emission (409–423 nm), originating

from electron impact SiH4 excitation, along with proper H∗
2 background subtraction (obtained

using similar plasma conditions with pure H2), was used to get silane density information in

the plasma [Strahm 09].

The set-up also permitted to confirm powder formation through the use of time-resolved OES

by observing the integrated intensity of H2 Fulcher lines, as this latter is proportional to the

plasma electron density [Strahm 09]. The oscillations observed on this quantity represent the

cycle of particle growth and ejection out of the plasma region,see Section 6.3.

2.3 Solar cell measurement and material characterization

Solar cell current-voltage and external quantum efficiency measurements

After structuration to 0.25 cm2 or 1 cm2 areas, solar cell performances are evaluated by means

of current-voltage (I -V ) and external quantum efficiency (EQE) to calculate their conversion

efficiency.

The I -V characteristics of the solar cells are obtained with a class AAA dual lamp Wacom solar

simulator (WXS-220S-L2) in standard test conditions (25 ◦C, AM1.5 global reference spectrum,

100 mW cm−2). The open-circuit voltage (Voc) and fill factor (FF) are derived from a four probe

voltage sweep measurement using a Keithley sourcemeter. The short-circuit current density

(Jsc) of the cells are based on EQE measurement. A typical I -V is shown in Figure 2.7.

EQE measures the probability an incident photon of a given energy can generate an electron-

pair that will eventually contribute to the external current density of the solar cell. Jscis then

obtained by the convolution of the EQE with the incoming photon flux of the AM1.5 global

reference spectrum. For single-junction, the application of a reverse dc bias voltage (typically

−1 or −2 V) during the EQE measurement, super-imposes an electric field, easing the collec-

tion of the generated carriers. This helps identifying any issues regarding to the electric field

in the absorber layer. For multi-junction solar cells we use additional bias lights to saturate
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2.3. Solar cell measurement and material characterization

Figure 2.7: Typical I -V curve of aµc-Si:H solar cell under illumination. The open-circuit voltage
(Voc) and the short-circuit current density (Jsc) are indicated, as well as the maximum power
point corresponding to the maximum current density JMPP and maximum voltage VMPP .

the subcells not to be measured, so that—all the subcells being interconnected in series—the

measured current always corresponds to the most limiting subcell [Burdick 86]. An appropri-

ate choice of the bias-lights spectra and intensities is thus very important. Voltage biasing

can also be applied during multi-junction solar cell EQE measurement to put the subcell

closer to the short-circuit conditions (i.e. to compensate for the voltage generated by the other

biased subcells) [Meusel 03]. A white dielectric back-reflector is simply pressed against the

back-contact of cell during the measurement. Also the beam size of the monochromatic light

is small (1 × 2 mm2) compared to the solar cell.

Raman spectroscopy

Raman spectroscopy is a very fast and non-destructive spectroscopic technique used to probe

the µc-Si:H crystallinity. It relies on the inelastic scattering of a monochromatic light with the

silicon medium, inducing a shift in the photon energy which is characteristic of the phase

probed. A Renishaw, System 2000 Raman spectrometer was used to measure the Raman

crystallinity factor (φc ) of the µc-Si:H layers, assuming the Raman scattering cross-section of

c-Si over a-Si was unity [Droz 04]. The evaluation of φc was then simply obtained through the

formula

φc = I510 + I520

I480 + I510 + I520
, (2.2)

where Ix is the integrated intensity obtained with a Gaussian fit centered at x cm−1. All the

spectra were measured in the backscattering geometry using the 514.5 nm emission line of

an argon ion laser. The characteristic Raman collection depths in a-Si:H and µc-Si:H at this

wavelength are around 50 nm and 150 nm respectively. Measurements were done directly
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on the solar cells through the glass/front ZnO stack for p-side values and through the back

contact for n-side values.

FTIR and FTPS

Fourier transform infrared spectroscopy (FTIR) is a non-destructive technique to provide

chemical bonding information via absorption spectra. The method is typically used for a-Si:H

to evaluate the microstructure factor that relates the the density of micro-voids in the material.

For µc-Si:H, the method is interesting to observe the crystalline grain boundaries, which

can be well passivated by a-Si:H tissue, or poorly passivated by hydrogen, or even observe

post-deposition oxidation issues [Smets 08, Bronneberg 11].

Fourier-transform photocurrent spectroscopy (FTPS) is a method to measure the Urbach

slope (which is a measure of bandtails disorder) and the defect-related absorption of silicon

materials. The technique was first demonstrated directly onµc-Si:H solar cells by [Vanecek 02].

A simple schematic of the FTPS setup is shown in Figure 2.8.

Figure 2.8: FTPS experimental setup (taken from [Vanecek 02]).

The absorption coefficient of low-energy (sub-bandgap) photons gives important information

on the electronic quality of the material. The value of the optical absorption coefficient at

photon energy of 0.8 eV is assumed to scale with the density of the µc-Si:H i -layers. FTPS

was performed directly on our single-junction µc-Si:H p-i -n solar cells. The measurement

being very sensitive to the type of ZnO used (variations of light diffusion and level of doping)

a careful attention was given to make sure every cell was prepared using the same type of

back- and front-contacts. The method being relative, calibration of the absorption curves

was performed at 1.35 eV at the corresponding absorption coefficient of crystalline silicon of

235 cm−1. Both FTIR and FTPS were done using a Nicolet 8700 spectrometer.
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3 Influence of the deposition pressure
and silane depletion on µc-Si:H
quality and solar cell performance
The growth of µc-Si:H by PECVD is investigated in an industrial-type parallel plate R&D KAI

reactor to study the influence of pressure and silane depletion on material quality using

VHF (40.68 MHz) and an interelectrode distance of 22 mm. Single-junction solar cells with

intrinsic layers prepared at high pressures and in high silane depletion conditions exhibit

improvemed performances, reaching 8.2% efficiency. Further analyzes show that better cell

performance are linked to a significant reduction of the bulk defect density in intrinsic layers.

These results can be partly attributed to lower ion bombardment energies due to higher

pressures and silane depletion conditions, improving the microcrystalline material quality.

Layer amorphization with increasing power density is observed at low pressure and in low

silane depletion conditions. A simple model for the average ion energy shows that ion energy

estimates are consistent with the amorphization process observed experimentally. Finally, the

material quality produced in a novel regime for higher rate deposition is reviewed on the basis

of these findings.

3.1 Introduction

A wide range of parameters influences the deposition conditions and hence the material

quality of µc-Si:H. This includes hardware parameters such as electrode geometry [Niikura 04,

Kunii 08, Noda 03], interelectrode distance [Amanatides 02, Nakano 06, Rech 06] and oper-

ating frequency [Howling 92, Schwarzenbach 96, Sansonnens 98]; it also includes process

parameters, which are easily adjustable for a given reactor, such as power density, pressure,

substrate temperature and input gas flows [Strahm 07b, Niikura 07, Hamers 00, Kondo 00,

Kalache 03].

Substrate morphology and chemistry has been shown to be important as well [Nasuno 01,

Bailat 02, Vallat-Sauvain 05, Python 08]. Thus, much of the research effort is directed towards

the understanding of how these externally adjustable parameters affect the internal physical

plasma characteristics upon which the material quality of µc-Si:H ultimately depends.
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Chapter 3. Influence of the deposition pressure and silane depletion onµc-Si:H quality
and solar cell performance

In Section 3.2 we present different pressure and silane depletion conditions for the deposition

of the µc-Si:H i -layer of single-junction solar cells. We show that by increasing the pressure

and modifying the hydrogen flow rate (ΦH2 ), the µc-Si:H solar cell performance can be greatly

improved. Section 3.3 presents structural material characterization of depositedµc-Si:H layers,

showing that these improvements in cell performance are related to a reduction of the bulk

material defect density, as evaluated by Fourier-transform photocurrent spectroscopy (FTPS).

Furthermore, amorphization of the µc-Si:H is also revealed under low-pressure deposition

conditions. In Section 3.4 an interpretation in terms of ion bombardment energy is proposed

and supported by a simple model. Based on these findings, the material quality deposited in a

novel regime for high-rate µc-Si:H deposition proposed in a recent publication [Strahm 07b]

is reviewed.

3.2 Study ofµc-Si:H deposition conditions in a CCP-VHF discharge

In this chapter, very high frequency (40.68 MHz) PECVD (VHF-PECVD) is used in a R&D

industrial-type KAI-S reactor. Details the reactor can be found in Section 2.1. The shower-

head electrode is suspended at 24.5 mm from the grounded electrode and the 0.5 mm-thick

substrates are loaded on top of a 2 mm-thick aluminum plate on the bottom of the reactor.

VHF power is supplied via a 40.68 MHz generator, feeding the power through an automatic

matching-box connected directly to the center of the cathode. The dc self-bias voltage Vdc is

measured along with the peak-to-peak voltage Vpp with a calibrated high-impedance capaci-

tive gauge on the cathode. Isothermal heating is obtained in the deposition chamber and the

temperature T is fixed at 180 ◦C for all depositions in this study.

Standard p-i -n solar cells were prepared to evaluate the different µc-Si:H layers. Standard

µc-Si:H p- and n- layers were used. The front contact was a Z5 textured ZnO thin film, grown

on a Schott AF 45 glass substrate, obtained through a modified LPCVD process further treated

by a 60’ argon-based plasma in IPL (more details in Section 2.1). Solar cells were deposited

in a single-chamber process KAI-S reactor, with an i -layer layer approximately 1.2 µm thick.

The patterned cells were 0.25 cm2 each, and the back contact was a ZnO thin film grown using

LPCVD as well, covered with a white dielectric reflector.

A Raman spectrometer was used to measure the Raman crystallinity factor (φc ) of the µc-Si:H

layers using the 514.5 nm emission line of an argon ion laser (cf. Section 2.3 for more details).

3.2.1 Influence of the deposition pressure

The first parameter we studied in the deposition of µc-Si:H material was the pressure p: layers

were deposited at 1.2, 2.5 and 3.5 mbar. The rf source power was kept approximately constant

across the three deposition regimes and the silane concentration c was below 5% in the three

cases. c is defined here in terms of the input flow rates as c =ΦSiH4 /(ΦSiH4 +ΦH2 ), whereΦX is

the input flow rate of gas X in sccm. In each deposition regime c was adjusted in order to have
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3.2. Study of µc-Si:H deposition conditions in a CCP-VHF discharge

a Raman crystallinity factor φc of 50%–60% for the i -layer.

In order to clearly separate the effect of pressure and silane depletion, the three deposition

regimes had similar depletion conditions. It has been argued that the relevant parameter for

the growth of µc-Si:H is the actual silane concentration in the plasma cp, which is directly

related to the ratio of atomic hydrogen over silicon radicals fluxes to the growing film surface,

and not only the silane input concentration [Strahm 07b]. The parameter cp can be estimated

with knowledge of the input silane concentration c and silane depletion D :

cp = c(1−D). (3.1)

While c is readily available, D—which is a function of the plasma dissociation rate and gas

residence time—has to be estimated experimentally. As detailed in [Strahm 07b], assuming

uniform deposition and no loss of silicon atoms through polysilanes or powder formation, one

can simply evaluate D by comparing the actual deposition rate R to the maximum possible

deposition rate Rmax (corresponding to D = 1) obtained for a given silane input flow and

reactor size through the formula [Strahm 07b]:

R

Rmax
= D

1+ c(1−D)
, (3.2)

with Rmax defined as

Rmax = 0.0962× ΦSiH4

A
[Å.s−1], (3.3)

where A is the total deposition area in the PECVD reactor in m2. Inserting the values for the

three deposition regimes in Equation 3.3, silane depletion fractions of around 45±10% are

obtained. This is an indication that the silane depletion is low and approximately the same in

the three µc-Si:H deposition regimes. We stress that for the three deposition regimes at low

silane depletion, the plasma potential measured with the voltage probe is the same within a

10% error margin. Consequently, our experiment investigates only the the effect of ion energy

reduction, or a plasma chemistry change, due to pressure.

This model is valid provided the plasma conditions are homogeneous and radical gas-phase

reactions can be neglected [Strahm 07b]. We verified in all deposition conditions the spatial

homogeneity of φc and R of the the µc-Si:H layers. A homogeneity better than ±10% was

found in all process regimes. The only exception was the high depletion deposition regime

at 2.0 mbar (discussed in Section 3.2.2), where deviations were observed at the borders of

the deposition surface. For this reason high depletion regimes at pressures higher than

2.0 mbar were not included in this study. Polysilane and powder formation cannot be ruled

out, especially in the highest pressure and silane depletion conditions. However, because

of the good spatial homogeneity, they should be limited. In addition, as can be verified by

a simple one-dimensional plasma model [Sansonnens 00], uniform deposition using this

gas flow configuration can be achieved provided the pressure drop ∆p/p across the reactor
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remains small, which is verified for areas smaller than 0.5 m2, even with pumping done along

a single side. The reactor size in this study was 0.26 m2.

Table 3.1 details the deposition conditions of the intrinsic layer of solar cells that were de-

posited with the three regimes described in the previous paragraph.

Table 3.1: Summary of the deposition conditions for the i -layers in this section using a relatively
high ΦH2 . Both the rf voltage Vrf, deduced from Vpp measurement, and the self-bias Vdc are
indicated.

p
(mbar)

ΦSiH4

(sccm)
ΦH2

(sccm)
c (%)

R
(Å s−1)

R/Rmax D
Pd

(W cm−2)
Vrf

(V)
Vdc

(V)

1.2 49 1250 3.8 2.9 0.34 0.35 0.13 280 8

2.5 64 1140 5.3 5.2 0.50 0.51 0.15 260 5

3.5 41 1566 2.6 3.2 0.47 0.47 0.17 290 6

The I-V curves from the best cells obtained in the three regimes are shown in Figure 3.1.

Major improvements are observed for the cells prepared at higher pressure: Voc, FF and
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Figure 3.1: I -V curves (left) and external quantum efficiencies (right) of µc-Si:H p-i -n cells
prepared at 1.2, 2.5 and 3.5 mbar.

Jsc all increase significantly with pressure, ranging from 0.34 to 0.52 V, 52 to 72% and from

18.8 to 22.2 mA cm−2, respectively. It is worth noting here that only the i -layer deposition

conditions were changed in order to minimize the differences in the cells not strictly linked

to the absorber layer. For this reason an identical intrinsic µc-Si:H buffer layer at the p-i

interface about 100 nm thick was used systematically in all deposition regimes to avoid the

influence of the deposition pressure on the underlying p-layer and subsequent p-i interface

modification.

Another interesting feature of higher i -layer deposition pressure is the significant improve-
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ment of the spectral response in the red and infrared spectral region as shown in Figure 3.1.

Considering that the crystalline volume fractions of the intrinsic layers are very similar, the

changes could be attributed to modifications in the microstructure. Indeed, a dependence of

solar cell performance on pressure was already observed in the case of layers deposited at a

high rate, and the observed differences were attributed to a denser microstructure with larger

grains along with a reduction in post-deposition oxidation [Matsui 03b, Matsui 04, Kondo 05].

However, all the cells prepared in our study were remeasured and did not show any signifi-

cant post-deposition oxidation, even several months after deposition, with the highest loss

observed being less than 3% of the total Jsc. This may also indicate that the intrinsic layers

have similar film densities.

3.2.2 Influence of the hydrogen flow rate and silane depletion

Recently it was shown that it is possible to increase the silane depletion, and therefore the

deposition rate of µc-Si:H, by increasing the gas residence time [Strahm 07c]. This approach

allows us to keep the rf power density relatively low compared to other deposition pro-

cesses [Smets 08], as summarized in Figure 3.2.

Figure 3.2: Identification of high- and low- silane depletion regimes in the plot of the a-Si:H/µc-
Si:H transition zone as a function of the silane depletion fraction D and the silane input flow
rate concentration c.

However, the question of whether these process conditions allow for the deposition of device-

grade µc-Si:H material was not addressed. Here, two additional regimes were developed in

order to study the effects of silane depletion on µc-Si:H deposition and material quality, and

are presented in Table 3.2.

The first deposition regime with high silane depletion was developed at a pressure of 1.2 mbar

29
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Table 3.2: Summary of the deposition conditions for the i -layers in this section using a lowered
ΦH2 . Both the rf voltage Vrf, deduced from Vpp measurement, and the self-bias Vdc are indicated.

p
(mbar)

ΦSiH4

(sccm)
ΦH2

(sccm)
c (%)

R
(Å s−1)

R/Rmax D
Pd

(W cm−2)
Vrf

(V)
Vdc

(V)

1.2 49 190 20.6 6.5 0.77 0.80 0.15 225 2

2.0 75 75 50.0 8.9 0.61 0.70 0.20 380 5

in order to establish a comparison with the low silane depletion regime at the same pres-

sure (discussed previously). The parameters of the deposition regime at low silane depletion

were kept constant but the input hydrogen flow, and thus the total flow, were lowered follow-

ing [Strahm 07c]. This causes on one side an increase in c, but more importantly it increases

the gas residence time in the plasma reactor, allowing for a larger fraction of silane to be

dissociated, and hence increasing D . In fact, only minor adjustments are necessary to the rf

input power in order to keep φc unchanged. This can be explained following Equation (3.1):

the increase in c—which usually leads to more amorphous material—is offset by an increase

in D so that the relevant parameter for µc-Si:H growth, cp, remains unchanged. By reducing

ΦH2 by a factor of 7 (raising the silane concentration to 21%), and slightly increasing the power

density, the silane depletion goes up to 80±5% which explains the enhanced growth rate

observed in these regimes, going from R = 2.9 Å s−1 to R = 6.5 Å s−1 in this case.

A second deposition regime with a high silane depletion was developed at a pressure of

2.0 mbar and a silane concentration of 50%, further increasing the deposition rate up to

R = 8.9 Å s−1. The silane depletion fraction is estimated in this second case to 70±5%. Tests at

higher pressures have been made; however, powder formation increased significantly and no

stable process was found.

Solar cells were deposited with intrinsic layers prepared in the two regimes described above,

near the transition region with a φc of about 50%–60%. The I-V curves from the best cells

obtained in those two regimes are shown in Figure 3.3. For comparison the cell deposited

at 1.2 mbar under low silane depletion conditions is reproduced as well. Improvements

are observed for cells prepared in higher silane depletion conditions. Voc, FF and Jsc are all

increased significantly, going from 0.34 to 0.48 V, from 52 to 66% and from 18.8 to 21.1 mA cm−2,

respectively, and this despite the increase in deposition rate, which is typically associated with

a decreases of the µc-Si:H material quality and solar cell efficiency [Gordijn 06b]. The spectral

responses of these cells show a behavior similar to that observed for the cells deposited at

different pressures. The increase in silane depletion mainly affects the infrared part of the

spectrum, increasing the EQE at longer wavelengths for comparable cell thicknesses.
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Figure 3.3: I -V curves (left) and external quantum efficiencies (right) of µc-Si:H p-i -n cells
prepared at 1.2 (low and high silane depletion) and 2.0 mbar.

3.3 Material characterization

3.3.1 Defect density of theµc-Si:H intrinsic layer

In order to understand the origin of the improvement of the solar cells with higher deposition

pressure and higher silane depletion, the bulk material quality of the absorbing µc-Si:H layer

was further investigated through FTPS measurements [Vanecek 02].

The absorption coefficient of low-energy (sub-bandgap) photons gives important information

about the electronic quality of the material: the concentration of dangling bonds, i.e. density

of defects or recombination centers have a significant impact on the absorption at 0.8 eV,

which gives an estimation of the midgap defect density. More details are given in Section 2.3.

The measurement being very sensitive to the type of ZnO used (variations of light scattering

and doping level), careful attention was given to ensure that every cell was prepared using the

same type of back- and front contacts.

Figure 3.4 presents the FTPS absorption curves of all the µc-Si:H p-i -n solar cells prepared at

1.2, 2.5 and 3.5 mbar low silane depletion regimes and 1.2 and 2.0 mbar high silane depletion

regimes presented in the previous section. The value of the FTPS absorption coefficient

at 0.8 eV correlates consistently with solar cell efficiencies [Gordijn 06b]. For instance, the

solar cell whose intrinsic layer was prepared at 3.5 mbar shows a sub-bandgap absorption

coefficient significantly below that of the cells whose intrinsic layer were deposited at 1.2 and

2.5 mbar. At 0.8 eV a difference of more than one order of magnitude is observed, indicating

that the defect density of the material is indeed significantly lowered when deposited at higher

pressure. The correlation with the overall electrical cell performance is clear: low mid-gap

defect density material leads to higher Voc, FF and Jsc. Solar cells were deposited on other

textured ZnO (Z1) as well and the same trend was observed, i.e. the defect density decreased

as the pressure increased, indicating that this result is independent of the substrate used.
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Figure 3.4: Sub-bandgap absorption coefficient obtained by FTPS measurements on µc-Si:H
p-i -n solar cells prepared at 1.2, 2.5 and 3.5 mbar low silane depletion regimes and 1.2 and
2.0 mbar high silane depletion regimes. All cells had the same ZnO as back and front contacts.
The inset shows the efficiency as a function of the absorption coefficient at 0.8 eV. The dotted
line is a guide to the eye.

The solar cell improvement observed upon increasing the silane depletion can be correlated

with FTPS measurements as well, showing that the cell deposited at high silane depletion at

1.2 mbar has a lower defect absorption value than that deposited at low silane depletion.

The authors are led to believe that most of the defects are located within the crystalline grains

themselves rather than at the grain boundaries. This hypothesis is supported by the fact that

post-deposition oxidation, which is not observed in any of our cells, has shown to be related

to poor grain surface passivation [Smets 08].

We interpret the difference in material quality observed with varying pressure and silane

depletion as an indication that ion bombardment energy, among other plasma mechanisms,

plays an important role in the deposition process. As the deposition pressure is lowered, the

capacitive sheaths become less collisional, allowing more ions to impinge on the substrate’s

surface with higher energy, which in turn is detrimental to the material quality. In the case

of increasing silane depletion, achieved by reducing the hydrogen and total gas flow rate, it

will be shown that a reduction of ion bombardment is the result of decreasing time-averaged

plasma potential (cf. Figure 3.6), although it is unlikely to entirely explain the material and cell

improvement, as will be discussed in Section 3.4.
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3.3. Material characterization

3.3.2 Amorphous to microcrystalline transitions

To support our ion bombardment interpretation, we investigated the influence of power on

the amorphous to microcrystalline transition in three regimes. Starting with the deposition

parameters used for the solar cells with a Raman crystallinity in the “transition zone” (i.e. φc

of around 50%), the power was increased and decreased in order to completely cover the

transition zone. The results are given in Figure 3.5 for the three deposition regimes: at 1.2 mbar

in high and low silane depletion conditions, and at 3.5 mbar in low silane depletion conditions.
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Figure 3.5: Raman crystallinity factor as a function of input power for three regimes: at 1.2 mbar
(low and high silane depletion) and 3.5 mbar. The dashed and dotted lines are guides to the eye.

When the power density is varied,the three regimes exhibit quite different behaviors. At

3.5 mbar an increase in power density results in a monotonic increase in crystallinity, go-

ing, as expected, from a completely amorphous phase at a low power of 0.14 W cm−2, to

highly crystalline material at high power, i.e. φc =79% at 0.25 W cm−2. On the other hand, at

1.2 mbar and in low silane depletion conditions the crystallinity first increases between 0.04

and 0.14 W cm−2, going from 29 to 41%, and then steadily decreases to 27% at 0.21 W cm−2. At

the same pressure of 1.2 mbar, but in high silane depletion conditions, the transition curve is

again recovered and high values of φc of around 80% are reached.

The significant differences observed here between these regimes may be due to multiple

factors, among which powder formation or ion bombardment energy seem to be the most

reasonable in this context [Strahm 07a]. In the 1.2 mbar regime, the silane partial pressure

is lower and powder formation should be less likely. For this particular reason, we suspect

that the decrease in crystallinity at higher Pd observed at lower pressure is due to stronger ion

bombardment which can induce amorphization. At 3.5 mbar the capacitive sheaths being
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more collisional, it is expected that the ions impinging upon the substrate’s surface will to lose

a larger portion of their average kinetic energy.

It should also be mentioned here that because of the reactor’s geometry, which is close to sym-

metric, ion bombardment is intrinsically higher compared to a typical asymmetric laboratory

reactor due to the area law [Lieberman 89]. This may partly explain why amorphization can

be observed even at moderate power densities, as in our case.

The fact that, in Figure 3.5, the transition measured for the deposition regime at 1.2 mbar in

high silane depletion conditions does not show a decrease in crystallinity is an indication that

ion bombardment is reduced as well. However, in contrast to the measurements performed

at different pressures, the origin of the reduced ion energy as silane depletion is increased is

not straightforward. To understand this effect we performed a supplementary set of plasma

potential measurements as a function of hydrogen flow rate in order to get independent

confirmation that an actual voltage drop occurs upon decreasing the hydrogen flow. This can

be seen clearly in Figure 3.6, where the time-averaged plasma potential (measurement detailed

in Section 3.4) and self-bias voltage generated on the cathode decrease with decreasing

hydrogen flow.
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Figure 3.6: Time-averaged plasma potential (black diamonds) and DC bias voltage (red stars)
as a function of the hydrogen flow rate in the 1.2 mbar regime.

3.4 Simple model for ion bombardment energy

In this section, we review the experimental evidence of the benefits of using increased pressure

and depletion conditions for the deposition of high-quality µc-Si:H, within the range of our

study. Evaluation of important plasma parameters, such as ion bombardment energy and

electron temperature, is shown to provide some clues to the improvements observed.
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In order to assess the reproducibility of the processes developed in different pressure and

silane depletion conditions, several solar cells (a minimum of four to a maximum of sixteen)

were deposited under each deposition regime. The average efficiencies obtained in these

regimes are given in Figure 3.7. Again, there is a clear trend indicating that deposition of

1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 3 . 5 4 . 0
3

4

5

6

7

8

9
 

P r e s s u r e  ( m b a r )

-  E
ffic

ien
cy 

(%
)

6

8

1 0

1 2

1 4

1 6

1 8

2 0

2 2

2 4

0 . 9  n m / s

0 . 3  n m / s

0 . 5 5  n m / s
0 . 6 5  n m / s

�
 - 

Av
er

ag
e 

io
n 

en
er

gy
 (e

V)H i g h  s i l a n e  d e p l e t i o n

0 . 2 9  n m / s

Figure 3.7: Average solar cell efficiency as a function of deposition pressure and silane depletion
for the intrinsic layer (black spheres). The average ion energy was evaluated for each deposition
regime (red triangles) based on a simple model detailed in Section 3.4. The lines are a guide to
the eye for the low silane depletion regimes.

µc-Si:H intrinsic layers at higher pressure is beneficial for the overall performance of p-i -n

solar cells. In the same figure, average efficiencies of solar cells deposited in the two regimes

in high silane depletion conditions appear. The estimated average energy Ei of ions impinging

upton the surface is indicated as well. Ei is calculated in the case of collisional sheaths as

Ei ≈ 0.62
λi

sm
Vp , (3.4)

where λi is the mean free path, sm the sheath length and Vp the time-averaged plasma poten-

tial [Liebermann 05]. In our case Vdc is small compared to Vpp (< 3%); hence, the capacitive-

sheath approximation [Chapman 80, Köhler 85] predicts the time-averaged potential Vp as

Vp = 1

2
(Vrf +Vdc) ≈ Vrf

2
≡ Vpp

4
. (3.5)

The ratio sm/λi is important as it gives the average number of collisions an ion undergoes while

crossing the sheath. The mean free path has been evaluated as λi = (ngσ)−1, with ng the gas

density in the reactor, andσ the collision cross section. As discussed by Perrin et al. [Perrin 96],

the Langevin model becomes inadequate to describe ion-molecule collision rates when the

relative kinetic energy of the colliding species exceeds a few eV. For these high ion energies,
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typically found in the high-voltage sheaths of capacitively coupled plasmas, charge-transfer

collisions are dominant and the cross section of this interaction is best represented by the

hard-sphere limit, i.e. :

σHS =πRHS
2, (3.6)

with RHS the hard-sphere collision radius. Estimations of σHS for rare ions colliding with

silane molecules, namely σHS (Ar+-SiH4) = 24 Å2 and σHS (He+-SiH4) = 16 Å2, should give a fair

approximation of the expected cross section values for silane and hydrogen ions colliding with

silane molecules. In order to have a rough estimate in our model, we simply used an averaged

value for the charge-transfer collision cross section of σHS = 20 Å2.

The sheath thickness sm did not appear to be significantly affected by the changes in pressure

in the range of our study, and thus was taken to be constant at 1 mm in the ion energy calcu-

lation. We did, however, check that our observations were consistent with sheath thickness

calculations made using a simple matrix sheath model [Schwarzenbach 96, Liebermann 05].

Considering a high-voltage sheath (Vrf ÀTe), the potentialΦ in the sheath is highly negative

with respect to the plasma–sheath edge. Hence, the time averaged electron density becomes

negligible in this zone (ne(x) = neseΦ/Te → 0) and only ions are assumed to be present in the

sheath. Assuming a uniform ion density in this region, integration of Poisson’s equation over

the time-averaged sheath yields

sm =
√

2ε0Vp

ens
≈

√
ε0Vrf

ens
. (3.7)

However, since we could not measure electron density (ne), we made use of the formulas from

the simple model of Strahm et al. [Strahm 07b] to evaluate it, based on the silane dissociation

efficiency η as deduced from the R/Rmax ratio, the electron impact dissociation of SiH4 rate

constant k and the pumping speed a. Calculations led to thicknesses of 1.1 mm for both the

1.2 and 2.5 mbar deposition regimes, and 1.3 mm for the 3.5 mbar regime.

It can be seen that the ion bombardment energy ranges between 20 eV and 5 eV, for which

previous publications [Kondo 03a, Smets 06] already showed that these ion bombardment

energies significantly affect crystallinity, thus further supporting our interpretations. The

average ion energy has been estimated as well for the deposition regimes in high silane

depletion conditions. It appears that in both cases ion energy is reduced as a result of a

decrease in electron density, as measured and reported in the previous paragraph. The

average value of ion energy computed using Equation (3.4) correlates well with the observed

improvement in efficiency. For instance, they are in qualitative agreement with ion values

measured in similar conditions [Nunomura 08].

In general, the improvement of the electrical properties of the cells may be due to the presence

of a denser microstructure and larger grains as a result of lower ion bombardment energy, as

previously observed [Kalache 03, Lebib 05, Matsui 03b, Gordijn 06a]. Local amorphization of
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the grains through ion bombardment is likely caused by heavy ions through an ion-induced Si

bulk displacement mechanism [Smets 06]. Also, regarding capacitively coupled VHF SiH4/H2

discharges in this range of pressure, previous studies [Nunomura 07, Nunomura 08] would

tend to suggest that the ions that are most likely responsible for this amorphization process

are the monosilicon hydride ion group SiH+
m and polysilicon hydride ion groups Sin≥2H+

m .

However, for the process regime at 1.2 mbar in high silane depletion conditions, the reduction

of ion bombardment energy seems small compared to the improvement in cell efficiency. This

observation points towards the presence of other plasma mechanisms that could improve µc-

Si:H material quality. According to a recent publication, a reduction in electron temperature

Te can improve the material quality of µc-Si:H, by changing the relative contributions of silane

radicals contributing to the growth: this leads to a reduction of impinging flux of short lifetime

radicals (ΓSiHx≤2 ) upon the growing film compared to the more favorable SiH3 radicals (ΓSiH3 )

hence reducing the dangling bond density [Niikura 07]. We qualitatively evaluated the Te

by comparing two molecular hydrogen emission lines H2 G0B0 and H2 Fulcher by optical

emission spectroscopy [Strahm 07a, Fantz 98, Fantz 06]. The changes observed in the ratio of

the two emission lines when increasing silane depletion at 1.2 mbar indicate a slight decrease

in Te. However, the changes being small and sometimes within the error of the measurement,

at this point it is not clear whether some of the results can be attributed to changes in plasma

chemistry.

3.5 Conclusion

Growth of µc-Si:H thin films was studied in an industrial-type medium-area KAI-S PlasmaBox

system to evaluate the importance of pressure and silane depletion on material quality using

VHF with dgap = 22 mm.

Single-junction µc-Si:H p-i -n solar cells were prepared with an intrinsic layer deposited be-

tween 1.2 and 3.5 mbar near the transition region, in low and high silane depletion regimes.

For roughly the same crystallinity, it is observed that solar cells made at higher pressures and

silane depletion conditions exhibit significantly higher performances within the range of our

study. FTPS measurements of µc-Si:H intrinsic layers embedded within solar cells concur

with this observation: with increasing pressure and silane depletion the defect density, is

significantly lowered, which is an indication that the electronic material quality is improved.

Amorphous to microcrystalline transitions as a function of input power density and calcula-

tions of the average ion energy impinging on the substrate, both support the hypothesis that

ion bombardment is responsible for the observed differences.
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4 Highlighting the contributions of two
different phases of µc-Si:H material
to overall solar cell performances
In this chapter, a qualitative model that explains how plasma processes act on the properties

of µc-Si:H and on the related solar cell performance is presented. Evidence for the growth

of two different material phases is presented. The first phase, which gives signature for

bulk defect density, can be obtained at high quality over a wide range of plasma process

parameters and dominates cell performance on flat substrates. The second phase, which

consists of nanoporous two-dimensional regions, typically appears when the material is

grown on substrates with inappropriate roughness, and alters or even dominates the electrical

performance of the device. The formation of this second material phase is shown to be highly

sensitive to both deposition conditions and substrate geometry, especially at high deposition

rates. This porous material phase is likely more prone to the incorporation of contaminants

present in the plasma during film deposition, and leads to solar cells that are unstable with

respect to exposure to humidity and post-deposition oxidation. We further demonstrate how

the influence of defective zones can be mitigated by suitable plasma processes and silicon

oxide doped layers to reach high-efficiency, stable, thin film silicon solar cells.

4.1 Introduction

Improving light management is one of the key steps to increasing the efficiency of thin-film

silicon solar cell devices. Light management requires minimum parasitic absorption and

optimized light scattering by the substrate texture to allow for maximum light trapping in the

thin absorber layers [Müller 04, Boccard 10, Berginski 07, Nicolay 09, Sai 10]. However one of

the limitations of the conventional thin-film silicon solar cell design comes from the inherent

low resilience of µc-Si:H deposited on substrates with sharp textures. Indeed, during the

growth, shadowing effects can lead to the creation of low-quality porous regions resulting in

undesired localized current drains in the device. This degrades the overall performance and

reliability of the cells [Knoesen 95, Nasuno 01, Finger 03, Python 08, Li 09, Boccard 11] and

hence discards potentially better morphologies at the expense of light trapping.

In this chapter, we address the specific issue of obtaining high-quality and resilient µc-Si:H
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through plasma-enhanced chemical vapor deposition (PECVD) on challenging morphologies

at high deposition rates. In Section 4.2 the role of the plasma conditions on the formation of

the localized nanoporous phase is first determined based on single-junction µc-Si:H solar cell

results and advanced material characterization. In Section 4.3 we discuss the interplay of the

substrate morphology with the formation of nanoporous regions. It is observed that the use of

silicon-rich silicon oxide (SiOx ) doped layers results in improved cell performance on rougher

substrates. In Section 4.4 additional experiments regarding material stability versus humidity

exposure also provide insight into the importance of both deposition rate and substrate mor-

phology for obtaining dense µc-Si:H material. This brings a key new understanding of the role

of the plasma conditions in influencing the growth of two distinct µc-Si:H material phases,

both of which can drive solar cell performance. In more general terms, any functional elec-

tronic device using µc-Si:H material or layers deposited using similar deposition techniques

could be affected by the phenomenon.

4.2 Role of plasma process conditions on material porosity

Optimized cell-design techniques were recently introduced to increase the resilience of thin-

film silicon solar cells to substrate morphology; through the use of SiOx doped layers, high

performance was retained even on rough substrates [Despeisse 10, Cuony 10, Cuony 12]. Here

we investigate the role of plasma conditions on the formation of two distinct µc-Si:H material

phases—and more particularly on the porous regions—at a high deposition rate. We also show

that the use of SiOx doped layers can buffer the detrimental effect of this material phase and

restore device electrical performance.

4.2.1 SiOx doped layers inµc-Si:H solar cells deposited at a high-deposition rate

Both the front and back contacts are made of LPCVD ZnO. Under our specific LPCVD condi-

tions, as-grown ZnO naturally develops randomly distributed pyramidal-shaped structures,

allowing for strong light scattering and efficient light trapping in the silicon absorber lay-

ers [Nicolay 09]. However, V-shaped valleys with narrow opening angles can become a critical

obstacle with current silicon-deposition technologies, as porous defective material easily

forms above these regions [Python 09], as can be seen in Figure 4.1. For this reason we have

developed a smoothening procedure for our as-grown LPCVD ZnO through the use of a plasma

treatment [Bailat 06, Boccard 12a]. This is done to ease the growth of the µc-Si:H by going

from V-shaped to U-shaped structures with lower average ZnO facet inclination. This leads

to improved cell electrical parameters such as Voc and FF at the expense of reduced light

trapping and Jsc. In this study the root-mean-square roughness of the 4.5-µm-thick front

LPCVD ZnO (Z5) front electrode decreases with increasing plasma treatment time in the IPL

system (more details in Section 2.1), going from 170 nm (Z5 20’) to 120 nm (Z5 40’) to 100 nm

(Z5 60’). This plasma treatment thus provides us with varying substrate morphologies, and

allows us to study more systematically the development of porous material and the specific
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4.2. Role of plasma process conditions on material porosity

Figure 4.1: TEM micrograph cross section of a µc-Si:H p-i -n solar cell deposited on a pyramidal
wafer (left) and a treated wafer (right). The picture was taken from [Python 09].

role of the SiOx doped layers.

Single-junction µc-Si:H p-i -n solar cells were prepared in our in-house VHF PECVD reactor

with a KAI-M PlasmaBox (49 × 60 cm2 powered electrode area) at a deposition temperature of

180 ◦C and an interelectrode distance of 12.5 mm. The 100 nm thick p-i interface was kept

identical and deposited using VHF at 5.5 mbar and a low rate of around 3 Å s−1 for all of the

cells. Intrinsic µc-Si:H layers 1.7 µm were then deposited at a constant high rate of 10 Å s−1on

top of the buffer layer. The hydrogen input flow rate (ΦH2 ) was varied from 2000 to 300 sccm

and the feed-in power density was adjusted accordingly to get similar Raman crystalline

fractions across the series while all other parameters were held constant. A reduction of only

20% in power density was required when reducingΦH2 from 2000 to 300 sccm, to compensate

for increased residence time, thanks to a quite high level of silane depletion [Strahm 07b].

Silane depletion (D) was evaluated by tunable IR laser spectrometry, allowing the analysis of

the rotovibrational absorption lines of silane directly through the exhaust line of the deposi-

tion system [Bartlome 09]. This allows for the estimation of the silane concentration in the

plasma (cp ) and the expected film growth rate. Powder formation was diagnosed using visible

laser light scattering in the exhaust line of the reactor and optical emission spectroscopy.

Trimethylboron and phosphine gases were used for p-type and n-type doping, respectively,

and SiOx doped layers were obtained by adding CO2 to the deposition gas mixtures. Table 4.1

summarizes the deposition conditions used.

With reduced ΦH2 , the gas residence time lengthens and D increases from 80 to 85%, as

measured from our IR laser-based silane sensor. Secondary gas-phase reactions and powder

formation are also favored with reducedΦH2 . More details of this such plasma processes can

be found in Section 6.3 and in [Parascandolo 10a]. The lowestΦH2 plasma conditions could

not be further investigated as the new process pumps installed did not allow us anymore to

reach such high pressure with this limited amount of gas flow rate.
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Table 4.1: Deposition parameters of the i -layer for theΦH2 series for a constant growth rate of
10 Å s−1. The silane input flow rate (ΦSiH4 ), depletion (D), concentration in the plasma (cp )—as
measured with IR laser in the exhaust line—and the gas residence time without the plasma are
also indicated.

Freq.
R

(Å s−1)

p
(mbar)

ΦSiH4

(sccm)
ΦH2

(sccm)
Pd

(W cm−2)
R/Rmax

(%)
D (%) cp (%)

τres.

(s)

VHF 10 5.5 120

300 0.34 54 - - 1.74

600 0.35 54 85 2.3 1.01

800 0.37 54 84 1.9 0.79

1200 0.39 54 83 1.5 0.55

2000 0.40 54 80 1.1 0.34

Figure 4.2 shows the resulting conversion efficiencies of solar cells with standard µc-Si:H or

SiOx p-type and n-type doped layers on the smoothest substrate of the study, the Z5 60’.
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Figure 4.2: Conversion efficiency of solar cells deposited on Z5 60’ with standard µc-Si:H (empty
symbols) and SiOx (filled symbols) doped layers for increasingΦH2 during i -layer deposition.

A clear trend can be observed for the solar cells prepared with µc-Si:H doped layers, with an

efficiency drop from 7.8 to 6.6% asΦH2 is increased due to a steady drop of Voc from 0.48 V to

0.44 V and FF from 66.3 to 61.5%. The efficiency remains above 8.0% when SiOx doped layers

are used, with Voc and FF up to 0.51 V and 70.2%, respectively. A striking difference appears

when using SiOx doped layers, as the device electrical performance is independent of ΦH2

during intrinsic layer deposition.
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4.2. Role of plasma process conditions on material porosity

4.2.2 In depthµc-Si:H material characterization

To clarify the origin of the efficiency trend observed with µc-Si:H doped layers and the effect

of SiOx layers, advanced materials characterization was carried out.

Raman spectrometry

A Raman spectrometer was used to measure the Raman crystallinity factor (φc ) of all the

µc-Si:H solar cells using the emission lines of both Ar+ (514 nm) and He-Ne (633 nm) lasers

for penetration depths of around 150 nm and 1 µm, respectively, into the µc-Si:H material

(see Section 2.3 for more details). Measurements were made directly on the solar cells through

the glass/front ZnO stack for p-side values and through the back contact for n-side values.

The measurements are reported in Figure 4.3. We see with the green laser measurements that
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Figure 4.3: Raman crystallinity factor of all the solar cells prepared in this study, using the SiOx

µc-Si:H doped layers (left) and standard doped layers (right). Measurement were made with
both a green laser (top) and a red one (bottom) for penetration depths of around 150 nm and
1 µm, respectively, into the µc-Si:H material.

cells with the SiOx doped layers present slightly lower φc values from the p-side of the cell

compared to cells incorporating the standard µc-Si:H doped layers. This difference is in fact

related to the lower crystalline fraction of the doped layers themselves. Indeed, while our

standard µc-Si:H doped layers have typical φc values of around 75% or above, SiOx doped

layers have lower values of around 30–40% and the green laser is more sensitive to interface

variations because of its shorter penetration depth. The i -layer itself is not really affected

as confirmed from the red laser measurements done on both sides of the cells: the mean φc

value from the n-side goes from 65% with the standard doped layers to 66% with the SiOx

ones, and from the p-side it is 62% in both cases. Furthermore, very high and similar EQE

values are observed in the blue region of the spectrum for all the cells presented, indicating
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the presence of a p-i interface of relatively high crystallinity (more details in Section 8.2.1).

We conclude that the differences in the solar cell performances cannot be related to a change

in the crystalline fraction of the material.

µc-Si:H bulk phase quality

Some reports claim there is a direct relationship between the crystallographic orientation

of µc-Si:H and the associated solar cell performance when going from random to (220)

preferential orientation [Matsui 02, Saito 11]. However, this interpretation is still under de-

bate [Schicho 12], as the preferentially oriented µc-Si:H was observed when deposited on flat

structures, while actual µc-Si:H solar cells are deposited on rough substrates. X-ray diffraction

analysis on the µc-Si:H p-i -n cells co-deposited on AF 45 glass is presented in Figure 4.4.

Although we observe a preferential (220) orientation for all films, there is no trend with respect
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Figure 4.4: X-ray diffraction patterns of µc-Si:H deposited on glass with increasing ΦH2 . The
ratio of the (220) to (111) peak heights is indicated for each deposition condition.

toΦH2 , and cell performance increases.

Fourier-transform infrared (FTIR) vibrational spectra were compared for layers deposited at

10 Å s−1 on polished wafers using both the highest and lowestΦH2 . The spectra are compared

to high-quality µc-Si:H material deposited at a lower rate of 3 Å s−1using RF at 9.0 mbar (see

details in Section 5.4.1). Relevant parts of the spectra are shown in Figure 4.5.

In particular we did not detect the presence of narrow high stretching modes, which are a signa-

ture of poorly passivated grain boundaries susceptible to post-deposition oxidation [Smets 08,

Bronneberg 11], even for the material with the worst solar cell performance in the series. All
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Figure 4.5: FTIR absorption spectra of µc-Si:H deposited on polished c-Si substrates at 10 Å s−1

with 2000 sccm H2 (blue line) and 300 sccm H2 (black line), and at a low rate of 3 Å s−1 (green
line).

three materials had very similar structural features and a hydrogen content of around 5%. As a

result the method could not discriminate between layers of high- and low-quality material.

The mid-gap density of states was quantified through Fourier-transform photocurrent spec-

troscopy (FTPS) performed directly on the cells [Vanecek 02] FTPS sub-bandgap absorption

curves for three solar cells with standard doped layers are plotted in Figure 4.6.

The same absorption coefficient at 0.8 eV is observed for allΦH2 conditions, indicating that

all intrinsic layers have the same bulk defect density. Similar defect densities were measured

on devices with SiOx doped layers as well. All the characterization tools used here probe bulk

material properties and show thatΦH2 has no significant influence on the bulk quality of the

deposited µc-Si:H material, despite the observed cell efficiency trend.

Intrinsic stress measurements were also performed via the wafer-bending method on wafer

strips for all layers deposited with variedΦH2 but no trend was observed either, as all samples

exhibited similar compressive stress values of around −110 MPa (see details in Section 7.5).

Cross-section SEM imaging of theµc-Si:H solar cells

Scanning electron microscope (SEM) cross section images of solar cells were taken for both

the highest and lowestΦH2 conditions with standard and SiOx doped layers. A Philips XL-30

field-emission gun environmental scanning electron microscope (FEG-ESEM) with an accel-
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Figure 4.6: Sub-bandgap absorption coefficient obtained by FTPS on µc-Si:H p-i -n solar cells
with their intrinsic layers deposited at 10 Å s−1 with 300 sccm H2 (black line), 800 sccm H2 (red
line) and 2000 sccm H2 (blue line), and at a low rate of 3 Å s−1 (green line) on Z5 60’ substrates.

erating voltage ranging between 5 to 30 kV was used to qualitatively evaluate the formation

of nanoporous regions in the material. The SEM images in Figure 4.7 show that deposition

with highΦH2 gives rise to nanoporous regions (visible as vertical black lines) which are less

prevalent in the dense material obtained with lowΦH2 .

2000 sccm H2 (5.7% silane concentration)

300 sccm H2 (28.6% silane concentration)

Figure 4.7: SEM images of µc-Si:H p-i -n solar cells with their i -layers deposited at 10 Å s−1

usingΦH2 =2000 sccm (top)ΦH2 =300 sccm (bottom) with SiOx doped layers on the smoothest
substrate Z5 60’.

The performance variation versusΦH2 is most likely due to the formation of this nanoporous
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material phase, which develops from the bottom of the V-shaped valleys where the silicon

growth fronts encounter each other during film deposition, and can locally increases the

recombination current.

µc-Si:H material analysis conclusion

Even though the plasma deposition conditions described earlier may provide very similar bulk

material properties, the best conditions (low ΦH2 ) hinder the development of nanoporous

zones and result in the deposition of denser µc-Si:H material. The contribution of these

defects to the bulk material properties (i.e. the FTPS absorption value at 0.8 eV) was shown not

to be significant, and the porous areas can be considered as two-dimensional surfaces within

the device. These results demonstrate that cell performance with regular µc-Si:H doped layers

is strongly dominated by this nanoporous material phase in the intrinsic layer, which is shown

to be much more sensitive to the plasma deposition conditions than the bulk µc-Si:H material

quality itself.

4.3 Interplay between substrate roughness and PECVD process

We discuss in this section the impact of substrate roughness and morphology on the formation

of the nanoporous material phase. The previous device on Z5 60’ was co-deposited on two

rougher substrates, Z5 40’ and Z5 20’. Figure 4.8a summarizes the cell conversion efficiencies

obtained on all substrates for both types of doped layers.

Figure 4.8: (a) Conversion efficiencies of solar cells with standard (empty symbols) and SiOx

(filled symbols) doped layers on ZnO front electrodes of increasing roughness through reduced
plasma treatment time: 60 minutes (black), 40 minutes (red), 20 minutes (blue). (b) Relative
increase in conversion efficiency of µc-Si:H solar cells is evaluated when standard doped layers
are substituted with SiOx layers for the three different front ZnO.
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Significant gains are again observed when using SiOx doped layers thanks to increased Voc

× FF values. With these SiOx layers the losses are small, indicating that the detrimental

nanoporous-phase contribution is buffered, and suggesting a mechanism in which local

current drains (shunts) are quenched [Despeisse 10].

The relative performance increase when going from the standard to the SiOx doped layers on

all three substrates of this series is presented in Figure 4.8b. For the two rougher substrates,

the trend with respect to ΦH2 is similar, but stronger, than that observed for the smoothest

substrate Z5 60’. Cell performance is again less sensitive to the intrinsic layer plasma deposition

conditions. For lowΦH2 , relative efficiency gains of 4 to 23% are observed, while for the highest

flows they range from 29 to 34%. In the case of the roughest ZnO front electrode, the relative

increase is more constant over the whole range ofΦH2 : as the nanoporous phase is promoted

by sharp front-electrode features, the performance recovery thanks to the SiOx doped layers is

emphasized.

These observations show that the extent of this porous material is affected by the roughness

and sharpness of the underlying substrate on which the film grows. The discriminant role

of the textured substrate is essential to properly evaluate µc-Si:H deposition regimes. It is

suspected that cells deposited on a substrate even smoother than the Z5 60’ studied here,

such as flat or optimized sputter-etched ZnO, should not be affected by ΦH2 conditions as

the secondary phase will not be promoted by the morphology. As a result, cell performance

should be limited and driven only by the bulk material quality: under these conditions clear

trends of cell performance with regard to bulk defect density were observed [Gordijn 06a].

4.4 Material stability and evidence of the nanoporous phase

µc-Si:H films are known to be more sensitive to oxidation and in-diffusion of atmospheric

gases than their amorphous counterparts [Veprek 83, Finger 03]. The performance stability

of films embedded in solar cell devices that have been stored simply in air has been studied

as well [Finger 03, Matsui 03b, Frammelsberger 10, Boccard 11] and is referred to hereafter as

dark degradation.

All the previous cells were remeasured after 11 months of being stored in the dark in the air

without being encapsulated. No loss of current was observed in any of the cells, as all of the

Jsc variations were within 2.5%. The most striking differences appear in the Voc, as it strongly

decreases with dark degradation for standard µc-Si:H doped layers. The average relative

Voc reduction increases from 4.5% on Z5 60’, to 5.5% on Z5 40’, and to 15.9% on Z5 20’. A

maximum loss of 27.4% is observed for µc-Si:H material deposited using highΦH2 conditions

on Z5 20’, i.e. the conditions resulting in the highest density of the nanoporous phase. Using

SiOx doped layers, the Voc is stable for all of the cells, degrading 2.8% at most. It could be

that the mixed-phase nature of SiOx helps the doped layers act as a barrier to in-diffusion

of atmospheric contaminants compared to standard µc-Si:H(higher φc ), as an a-Si:H buffer

layer at the p-i interface of an n-i -p device was proven to be effective in this regard [Taira 03].
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We present in this section an additional set of experiments demonstrating the presence of

porous material in the solar cells. As-deposited non-encapsulated µc-Si:H cells with SiOx

doped layers, were subject to a (non-standard) damp-heat cycle (100% humidity, 50 ◦C) for

five days to simulate accelerated dark degradation. The cells were then annealed at 180 ◦C

to induce water vapor desorption, which restored their performances to close to their initial

values. Relative variations of both Voc and FF are an indication of the susceptibility of µc-Si:H

to water vapor incorporation, as it is favored through the nanoporous zones, while Jsc is mostly

unaffected by the damp-heat/annealing cycle. Figure 4.9 shows the average value of Voc × FF

over 10 to 16 cells deposited with increasing growth rates of 3, 9 and 12 Å s−1 using VHF on top

of two different substrates: a Z5 60’ and a thinner (1 µm) untreated layer ZnO (Z1) with more

dopant. Major morphological differences between these two substrates are the size of the

pyramids (700 nm and 180 nm) and the average facet inclinations (18nm and 30nm; see inset

in Figure 4.9). Z1 exhibits a higher density of sharper valleys, hence promoting the presence of

porous material.

Figure 4.9: Voc × FF, normalized to their initial values, of single-junction p-i -n µc-Si:H solar
cells after the damp-heat experiment (DH) and annealing step (A) for three growth rates. Cells
were co-deposited on two different ZnO front electrode morphologies: a smoothened substrate,
Z5 60’ (black squares), and a substrate with a high density of sharp pyramidal features, Z1 (red
stars). Plotted values are averaged over 10 to 16 cells (see text).

While good stability with regard to damp-heat testing is observed for the cells deposited on

the smoothest substrate, Z5 60’, major differences appear on Z1. At a low growth rate of 3 Å s−1

damp-heat experiments do not lead to a decrease of the electrical performance of cells grown

on any substrate. Above this growth rate, cell performance on Z1 is strongly affected by the

damp-heat test, with a Voc × FF reduction of 35% at 9 Å s−1 and above 55% at 12 Å s−1. We

observe as well that annealing recovers almost all of the losses induced by the damp-heat test.

In contrast, Z5 60’ allows for the growth of highly stable material, thanks to a much smoother

morphology that reduces nanoporous phase formation. In all cases,ZnO instability accounts
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for some of the variaion observed in FF values. However, comparing different devices with the

same front and back ZnO gives a direct comparison of the actual impact of µc-Si:H intrinsic

layer instability. It is worth mentioning here that as Z1 is more doped than Z5, it is also less

sensitive to degradation with respect to humidity exposure [Steinhauser 11].

This original method for simulating accelerated dark degradation demonstrates the impor-

tance of both deposition rate and surface morphology on the formation of the µc-Si:H sec-

ondary, nanoporous phase. Increased porosity is observed at high growth rates and is clearly

related to the substrate sharpness and the density of potential sites for void formation.

4.5 On the role of the SiOx doped layers

From this study, we conclude that SiOx doped layers reduce the negative impact of substrate-

induced nanoporous regions on cell electrical performance. Figure 4.10 summarizes simply

the observations made in this study.

Porous µc-Si:H

Dense µc-Si:H

Figure 4.10: SEM images of µc-Si:H p-i -n solar cells with their i -layers deposited at 10 Å s−1

usingΦH2 =2000 sccm (top)ΦH2 =300 sccm (bottom) with SiOx doped layers on the smoothest
substrate Z5 60’. Performance recovery in cells with porous intrinsic layers, made with highΦH2 ,
is obtained through the use of doped SiOx layers in place of doped µc-Si:H layers.
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4.6. Conclusion

The use of SiOx doped layers allows the electrical performance of solar cells with porous

intrinsic layers to match that of cells with denser intrinsic material with similar bulk defect

densities. This is further supported by the observation of almost constant solar cell efficiencies

on Z5 60’ and Z5 40’ in Section 4.2, independent of the ΦH2 used, which is consistent with

the identical bulk properties exhibited by the different intrinsic layers. We demonstrated

that the electrical gain obtained when using SiOx doped layers is related, at least partly, to

the presence of the substrate-induced nanoporous phase which can be aggravated by the

deposition conditions. This performance enhancement may come from a shunt-quenching

effect as already proposed [Despeisse 10].

Another possibility is that there is a reduction of boron cross-contamination from the underly-

ing p-layer. This hypothesis is corroborated by electric-field profile measurements in µc-Si:H

p-i -n solar cells done by cross-sectional scanning kelvin probe microscopy, in which negative

charges at the cluster boundaries are speculated to be related to the presence of activated

boron [Dominé 07]. We showed here as well that the use of SiOx doped layers alone is not

sufficient to completely negate the influence of this porous defective material phase. In order

to reach high-efficiency thin-film silicon solar cells, further optimized substrate morphologies,

SiOx layers and intrinsic µc-Si:H deposition processes—especially at high growth rates—are

all required.

Regarding the formation of the nanoporous phase, clear identification of the critical plasma

parameters promoting its appearance is mandatory to gain further insights into plasma-

surface interactions (control of incident radical flux, ion bombardment energy, densification

processes, shadowing and re-emission processes for coverage and filling considerations etc.),

as bulk material quality alone was proven here not to be sufficient for reaching high-efficiency

solar cells.

4.6 Conclusion

This chapter highlights a fundamental aspect of µc-Si:H deposition on highly textured sub-

strates: two different phases of µc-Si:H material contribute to overall solar cell efficiency, both

of which can drive cell performance. Defective localized nanoporous regions were found to be

significantly more sensitive to plasma process conditions and to substrate morphology than

the bulk phase. Although FTPS and FTIR are the preferred opto-electrical characterization

tools to determine µc-Si:H quality and identify optimum intrinsic layer process conditions, we

clearly demonstrated that they are not sufficient to fully relate device performance to material

quality. This becomes especially relevant when depositing on substrates with sharp features,

which are essential for achieving optimum light trapping and optical performance. On such

substrates, and depending on plasma conditions, it is a challenge to deposit dense material at

a high deposition rate, which is a prerequisite for achieving high electrical performance and,

ultimately, high conversion efficiency. Optimized SiOx doped layers were demonstrated to

improve the resilience of µc-Si:H solar cell performance against these nanoporous regions.
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5 Comparison of plasma excitation
frequencies for the growth of high-
quality µc-Si:H i -layers
This chapter details a comparative study of 13.56 MHz (RF) versus 40.68 MHz (VHF) excitation

frequencies for the growth of very high-quality µc-Si:H for use as an absorber layer in thin-film

silicon solar cells. We demonstrate improved transport properties of theµc-Si:H absorber layer

when grown using RF instead of VHF. For both of the interelectrode distances evaluated in

this study, RF leads to better-performing single-junction and multi-junction solar cell devices.

FTPS absorption measurements reveal that very low bulk defect density µc-Si:H can be grown

using either RF or VHF. However, we show that µc-Si:H grown on rough substrates using RF is

more dense than µc-Si:H grown using VHF. As a result, while RF cell performance is driven

mainly by the bulk material quality, VHF cell performance is limited by secondary defective

nanoporous regions

5.1 On the use of very-high frequency in capacitively coupled plas-

mas

Ever since intrinsic µc-Si:H was recognized as a potential active layer in thin-film silicon solar

cells [Meier 94b] (see details in Section 1.4), major efforts have been made to find ways to

increase both its quality and its deposition rate. While a broad range of plasma approaches

was undertaken to study silane-based plasmas and the deposited layers, capacitively coupled

reactors remain the best tools to deposit high-quality a-Si:H and µc-Si:H to date. They have

the advantage of providing good deposition homogeneity over large surface areas. Within this

technology, major developments were undertaken to improve the deposition conditions and

the analysis of silicon-based deposited materials.

In particular, it has been observed that the excitation frequency of capacitively coupled

plasmas (CCPs) has considerable effects on the plasma parameters, within the HF and VHF

bands (3—300 MHz). While the radio frequency of 13.56 MHz became very common and

standard in CCP applications, the use of higher frequencies for silane-based plasmas started

to appear in the group of Prof. W. E. Spear in the 1980s with the deposition of µc-Si:H at

40.68 MHz [Willeke 83]. However, it was only later that higher frequencies were demonstrated
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to provide significant advantages over the regular 13.56 MHz frequency: the group of Prof. A.

Shah in Neuchâtel first reported that an increase in the plasma frequency allows for higher

deposition rates of a-Si:H, going from 3 to 20 Å s−1 at constant source power, with only minor

degradation of the material quality [Curtins 87]. Howling et al. [Howling 92] also reported a

significant increase in the a-Si:H growth rate in the 13.56–70 MHz range, but carefully kept the

actual power coupled into the plasma constant (so that the matching network losses were not

taken into account). Both in hydrogen [Heintze 93] and silane-based [Heintze 96] plasmas,

higher excitation frequencies were shown to provide a higher ion density and ion flux towards

the substrates, along with a reduction the ions’ maximum energy, keeping the effective power

in the plasma constant. The resulting larger population of ions with moderate energy was

thought to be responsible for this improvement. Figure 5.1 summarizes these observations.

Figure 5.1: Left: Increased a-Si:H deposition rate observed with the use of higher plasma excita-
tion frequencies [Meillaud 09]. Right: Energy distribution of ions impinging on the substrate in
low-pressure SiH4/H2 plasmas measured with a retarding grid analyzer [Heintze 96].

Those gains are attributed to a more efficient radio frequency power coupling as the plasma

excitation frequency approaches the electron-neutral collision frequency for momentum

transfer. Higher excitation frequencies significantly alter the plasma electron energy dis-

tribution function (EEDF) so that the high-energy tail of the distribution is more popu-

lated. With more high-energy electrons available, the ionization rate of silane molecules

improves and the plasma density increases. This translates directly into an increase in

the silane dissociation efficiency by electron impact, providing more radicals to the grow-

ing film [Curtins 87, Keppner 95]. The sheath also becomes thinner with increasing fre-

quency [Kroll 94], which implies that fewer reactive radical are lost before they can reach

the growing film.

Power dissipation in the plasma changes significantly with increasing frequency: more power is

dissipated in the bulk of the plasma and less in the sheaths, leading to a lower electrode voltage

(Vpp) and sheath voltage [Howling 92, Kroll 94, Keppner 95, Perrin 00]. As a consequence, the

use of higher excitation frequencies also results in a reduction of ion acceleration in the sheath,
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leading to a lower ion bombardment energy on the growth surface. This may explain why lower

stress was observed in a-Si:H films deposited with higher excitation frequencies [Dutta 92].

Figure 5.2: Influence of a higher plasma excitation frequency in CCP RF discharges on the power
dissipation (higher Pbulk/Psheath ratio) and the EEDF. Higher frequencies favor more high-energy
electrons and fewer low-energy collisions (image taken from [Perrin 00]).

A study also demonstrated that a higher excitation frequency raises the power threshold

above which powder formation occurs in silane-based plasmas [Dorier 92]. However it should

be noted here that the study was done at a very low pressure of 0.3 mbar. At much higher

pressures (1–30 mbar), secondary reactions are promoted over the diffusion of radicals to the

substrate. As a result, it is possible that a higher silane dissociation, thanks to the use of a

higher excitation frequency, could in fact favor powder formation in the plasma.

Regarding µc-Si:H specifically, the application of higher frequencies was also shown to provide

favorable growth conditions [Oda 88, Prasad 89, Finger 94] and better nucleation [Tzolov 97].

The conditions for growing crystallites are favored thanks to a higher plasma density, higher

silane dissociation efficiency and reduced ion energy. The selective etching of the disor-

dered material is improved, allowing the crystallites to develop more rapidly. A reduction

of ion bombardment energy is important as well to limit strong ion-bulk interactions, that

can eventually lead to amorphization [Smets 06], and to reduce the defect density of the

material [Gordijn 06b].

High-Pressure Depletion (HPD) regimes (>1–2 mbar) were developed [Guo 98] to increase the

deposition rate while keeping good material quality. This improvement is due to an increase in

plasma density associated with a further reduction of the ion bombardment energy—as ions

undergo charge transfer and elastic collisions in the sheath—and a decrease in the electron

temperature [Kondo 03b, Matsui 03b, Niikura 07]. Indeed, while SiH3 radicals can be created

by the electron-impact dissociation of SiH4 at a relatively low energy of 8.75 eV, shorter-
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lifetime radicals (SiHx≤2), which are detrimental for the growth of good-quality material, can

be created directly from the same mechanism with higher energy electrons of around 9.5 eV

or more. To better understand those deposition regimes, a lot of attention was also given

to the characterization of capacitively coupled hydrogen plasmas and their dependence on

frequency, pressure and power [Amanatides 01, Jolly 05, Marques 07, Nunomura 07].

However, with HPD regimes now being considered, the question still remains whether the

excitation frequency can have a significant role in µc-Si:H material quality for thin-film silicon

solar cells. For this reason, we present in this chapter a comparative study of 13.56 MHz (RF)

and 40.68 MHz (VHF) for the realization of single-junction µc-Si:H solar cells in an industrial-

like KAI-M system. Section 5.2 presents results obtained using a large interelectrode distance

of 22.5 mm. Three i -layer growth rates are evaluated with thicknesses from roughly 1 to 2.5 µm

to evaluate the quality of the µc-Si:H. We show that the use of RF leads to better-performing

solar cell devices overall, with improved Voc and FF even for thicker cells, indicating reduced

recombination in the i -layer. Section 5.3 reports a similar comparative study using a smaller

interelectrode distance of 12.5 mm instead. We first review the RF deposition, showing that

the hydrogen flow rate (ΦH2 ) does not have a significant impact on the deposited material

quality. A clear benefit of using higher pressures for increased growth rate is shown: similar

performances and defect densities are obtained forµc-Si:H deposited at 5 Å s−1 and for the best

material deposited at 3 Å s−1. Using VHF we see that the cell performance is less dependent

on the deposition pressure. Eventually, combining the µc-Si:H bulk defect density study with

a damp-heat analysis in Section 5.4.2, we show that while i -layers prepared using RF have

similarly low bulk defect density as VHF-prepared layers, they are also denser. The reduction

of nanoporous regions is clearly evidenced by the Voc stability of solar cell devices deposited

on both smooth and rough surfaces. While these defective nanoporous regions tend to limit

the VHF cells’ efficiencies, RF cells are limited mainly by the bulk quality of the i -layer. Some

hypotheses are given to explain these differences.

5.2 22-mm-gap reactor configuration

The first part of this section presents a comparison of RF and VHF for the growth of high-

quality µc-Si:H for use as an absorber layer in single-junction solar cells. This first standard-

interelectrode gap study was led at the time by Dr. Andrea Feltrin.

All the results presented here were obtained using an in-house plasma-enhanced chemical

vapor deposition (PECVD) reactor with dual KAI-M PlasmaBox chambers, namely Chamber A

and Chamber B. Standard µc-Si:H p- and n-doped layers were deposited in Chamber A using

VHF and an interelectrode gap of 12.5 mm, and were kept strictly the same throughout the

entire study, so that only the i -layer itself was modified. The latter was grown in Chamber B.

This configuration brings multiple advantages such as:

i More freedom with the Chamber B hardware parameters such as frequency and interelec-
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trode gap.

ii Not having to expose the samples to air between the p-layer and the i -layer deposition.

iii A possible reduction of p-i interface problems due to boron cross-contamination during

the evaluation of different plasma regimes that can interact differently with the plasma

chamber.

iv Limitation of residual-cleaning-gas contamination of the i -layer as compared to the case

where the growth happens in Chamber A after it is dry cleaned after the p-layer [Hrunski 08].

The i -layer was grown in Chamber B using the standard interelectrode distance of 24.5 mm.

Taking into account the standard aluminum loading plate thickness of 2 mm, this leads to

an effective interelectrode gap of 22.5 mm. The chamber temperature was kept at 180 ◦C for

all silicon layer depositions. Since the plasma deposition chamber seasoning can also affect

the starting conditions for the growth of the deposited material, both chambers of the reactor

were entirely cleaned after each deposition with SF6+O2—and later on NF3+Ar mixtures—to

ensure good reproducibility of these tests. 0.5-mm-thick AF45 glass substrates from Schott

AG were coated with LPCVD ZnO treated for 60’ (Z5 60’) in the IPL system. This substrate was

chosen as a reference substrate as its morphology provides optimal performance for µc-Si:H

single-junction solar cells.

5.2.1 Standard-gap deposition regimes

Based on previous experience with the KAI-S system (see Section 3.2), a relatively high deposi-

tion pressure of 3.0 mbar was chosen in the KAI-M when using VHF for this study. Regarding

RF regimes, a reduced deposition pressure of 2.0 mbar was first evaluated. This was, however,

discarded because of the relatively low solar cell performances (around 7% efficiency) ob-

served despite a low growth rate (R) of 1.7 Å s−1. Based on the literature [Roschek 03, Kilper 05,

Rech 06] and some first tests, a higher deposition pressure of 5.0 mbar was chosen for the RF

regimes with the 22.5 mm gap.

Three growth rates of the i -layer were evaluated for both frequencies, ranging from relatively

low to moderate values, i.e. 1.6 to 3.8 Å s−1. All the plasma regimes presented were tailored

to give a Raman crystallinity factor of around 60% in the cell, which is known to be optimal

for solar cell performance [Vetterl 00, Johnson 08b, Ellert 12]. In this study the hydrogen flow

(ΦH2 ) was kept constant at 2000 and 2500 sccm for VHF and RF, respectively. A p-i buffer

layer of 100 nm was always deposited using the lowest growth rate out of the three evaluated

for each excitation frequency. This was done in order to limit the influence of the various

deposition regimes on the underlying p-layer and subsequent p-i interface modification. The

inherent crystallinity gradient along the growth direction was simply controlled through silane

compensation, withΦSiH4 flow increase adjustment over the thickness. The regimes that were

developed and used in this study are detailed in Table 5.1.

57



Chapter 5. Comparison of plasma excitation frequencies for the growth of high-quality
µc-Si:H i -layers

Table 5.1: Deposition parameters of the i -layer for both RF and VHF using the standard in-
terelectrode gap of 22.5 mm. Silane dissociation efficiency as evaluated from R/Rmax is also
indicated.

Freq.
p

(mbar)
ΦH2

(sccm)
R

(Å s−1)
Pd

(W cm−2)
ΦSiH4

(sccm)
R/Rmax cp (%) τres. (s)

VHF 3.0 2000

1.6 0.08 32 0.33 1.04 0.35

2.7 0.10 37 0.49 0.92 0.35

3.8 0.13 52 0.49 1.28 0.35

RF 5.0 2500

1.7 0.10 26 0.44 0.58 0.47

2.6 0.15 37 0.47 0.77 0.47

3.5 0.20 47 0.50 0.92 0.47

We can observe that, using this specific configuration, an increase in power density of 25 to 35%

is required when using RF compared to VHF to reach a similar deposition rate for a material

grown at the transition regime. Note that power densities indicated here do not refer to the real

power coupled to the plasma, but only the input power as indicated from the generator; they

do not take into account losses in the matching network circuit. In terms of silane dissociation

efficiency, comparable values were obtained for both frequencies for all growth rates evaluated

here except for the 1.6 Å s−1 regime using VHF. The electrical performance of the solar cells

was then studied as a function of the absorber layer thickness, and the results are presented in

the next section.

5.2.2 Analysis of solar cell performance

We present here single-junction µc-Si:H solar cell performance as a function of the i -layer

growth rate for both excitation frequencies. The electrical performance will be analyzed for

three thicknesses, so that we can more precisely evaluate charge carrier transport efficiency

and the relative amount of bulk recombination losses [Vetterl 01].

For clarity, only the best cell results are reported in this section. However, tables in Appendix A

summarize for each optimized deposition regime the best solar cell performance obtained

along with the mean value of the 10 best cells for both Voc and FF. An average value for short-

circuit current density (Jsc) and the efficiency η cannot be calculated since Jsc is not measured

for all cells but only for the best one, as a single measurement takes a long time.

Looking first at the cells grown using VHF, we observe in Figure 5.3 that the Voc of these cells

gradually decreases with i -layer thickness for the low and intermediate growth rates. The Voc

never exceeds 515 mV, and the highest value of 513 mV is obtained for the intermediate growth

rate for the thinnest i -layer evaluated here. For the VHF cells prepared at 3.8 Å s−1, the Voc
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Figure 5.3: Voc and FF values of the best solar cells with i -layers grown using RF (red circles) or
VHF (black circles) for three thicknesses and three growth rates.

surprisingly increases with i -layer thickness. Although we do not have a clear explanation for

this, we hypothesize that it could be related to the formation of nanoporous regions: while

they typically lead to very detrimental electrical effects for very thin i -layers, the increased

thickness may allow the regions to close, reducing Voc losses induced by connecting such

defective regions directly with the ZnO back contact. On the other hand, with RF, a significant

Vocimprovement overall is evident for all three growth rates. For thin devices, values are always

above 515 mV, which could never be attained using VHF. When grown at the lowest deposition

rate, the Voc only barely decreases with i -layer thickness, with 2.6-µm-thick device still reach-

ing 515 mV. A steeper decrease in Voc is observed for the highest growth rate, which can be

attributed to a deterioration of the i -layer bulk material quality and increased recombination.

Figure 5.3 shows significantly lower FF for VHF compared to RF for all devices, especially

thicker ones. Indeed, with VHF, increased thickness decreases FF rapidly to values that are

below 66% for thicknesses above 2.4 µm, whatever the growth rate. At 3.8 Å s−1 the FF values

are all very low, ranging from only 68% for the thinnest cell, to 63% for the thickest. When

RF is used to grow the i -layers, the FF reduction with increasing thickness is not as large:
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FF is always above 69% even for the thickest i -layers with the highest growth rate. This

observation supports the idea that the µc-Si:H grown under those conditions exhibits much

better carrier transport properties. This FF improvement can come from either a reduction of

carrier recombination losses in the i -layer or near the interfaces, or a decrease of shunting

issues originating from nanoporous regions appearing in the material.

Looking now at the Jsc in Figure 5.4, we see different behaviors as a function of the growth

rate for the VHF cells. While a quasi-linear increase in Jsc can be observed for the low and

intermediate rates, for the largest growth rate Jsc decreases slightly. On the other hand, for the

RF cells, Jsc steadily increases with thickness for all three growth rates.

Figure 5.4: Jsc (as measured from EQE measurement) and efficiency of the best cells with i -layers
grown using RF (red circles) or VHF (black circles) for three thicknesses and three growth rates.

By taking a closer look at the EQE measurements shown in Figure 5.5, interesting information

can be retrieved about the Jsc behavior. For all µc-Si:H solar cells with their i -layers grown

using VHF, the EQE is reduced in the blue region of the spectrum with either both increased

deposition rate and thickness. Although the effect is small, it appears systematically. This

observation indicates that, despite having an optimal Raman crystalline fraction and a similar

p-i interface, µc-Si:H i -layers grown with VHF cannot handle charge transport properly.
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Figure 5.5: External quantum efficiencies of all of the cells presented in this section. Cells were
prepared using VHF (left) or RF (right) with increasing i -layer thicknesses and growth rates.

Looking only at the fastest growth rate, we observe furthermore a strong reduction of the

EQE in the IR for cells prepared using VHF. In this case, growing a thicker absorber layer does

not lead to the expected Jsc enhancement through improved IR response, as observed in all

other regimes: Instead, cells with all three thicknesses exhibit a Jsc below 21 mA cm−2 with

nearly overlapping EQE curves, and with the thickest cell even leading to the worst effective

Jsc (20.4 mA cm−2). Charge extraction may be limited by a higher recombination rate or by
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a reduced electric field in the i -layer. Furthermore with increasing absorber thickness, the

transport length needed to extract charge also increases, worsening the charge extraction

efficiency.

On the other hand, the µc-Si:H cells prepared using RF exhibit better EQEs overall. The blue

region shows little or no decrease for very thick i -layers and higher growth rates. A steady

improvement of the EQE in the IR is also observed for thicker i -layers, even for the highest

growth rate. These observations indicate that carrier transport is improved in µc-Si:H i -layers

by reducing the frequency from 40.68 to 13.56 MHz.

It is interesting to put these results into perspective with solar cells co-deposited on stan-

dard Asahi U-type front TCOs. These coated glass substrates were evaluated only for the RF

regimes with the lowest and intermediate growth rates. Before proceeding with the p-i -n cell

deposition, these substrates were pre-coated with a thin ZnO cap layer of around 10 nm in

thickness to protect them from the p-(µc-Si:H)-layer hydrogen-rich plasma conditions that

would otherwise lead to a chemical reduction of the SnO2:F surface [Schade 84, Sato 93]. We

can see in Figure 5.6 that, similar to the VHF regimes on Z5 60’, an increase of the i -layer

thickness leads to a systematic decrease in the blue region of the spectral response and to little

or no gain in the IR.
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Figure 5.6: External quantum efficiencies of µc-Si:H solar cells on Asahi U-type substrates
(protected by a thin cap of sputtered ZnO) prepared using RF, three increasing thicknesses and
low and moderate growth rates of 1.7 Å s−1 and 2.6 Å s−1, respectively.

This is a very distinctive behavior from what is observed on Z5 60’ for those specific growth

regimes. We suspect that the transport properties of the i -layer are negatively impacted when

grown on this front TCO due to its morphology (i.e. the presence of relatively sharp small

features with narrow opening angles), which may favor the formation of nanoporous zones

in the material when the growing fronts encounter during the growth. A SEM micrograph of

such SnO2 substrate shown in Figure 5.7 indeed demonstrates the presence of small, sharp

features.
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Figure 5.7: Plan-view SEM micrographs of an Asahi U-type substrate at a magnification of
10 000× (left) and 25 000× (right).

The Z5 60’ on the other hand provides a smoother surface (see details in Section 2.1), ranging

from small V-shaped to very large U-shaped valleys, hence limiting the density of porous

zones in the material. It should be noted that the reduced light-trapping efficiency of the

Asahi U-type substrate may only partly explain the saturation behavior observed for long

wavelength: although the benefit from an increased i -layer thickness should be smaller than

on a Z5 60’, for which the large features allow for better long-wavelength light scattering, it

should nevertheless be present. Overall, Asahi U-type substrates lead to a saturation of the Jsc

with i -layer thickness so that the efficiency is much more limited on these substrates, reaching

a plateau above 2.0 µm, with a maximum value of 7.6%.

5.2.3 Conclusion

We have shown that µc-Si:H solar cells perform better with their i -layers deposited using RF

compared to VHF for relatively low growth rates between 1.6 and 3.8 Å s−1. Voc and FF values do

not decrease as quickly as with VHF with increasing i -layer thickness, so that a steady increase

in efficiency is observed: The relative amount of bulk recombination losses is lower for the RF

material. Furthermore VHF cells exhibit charge carrier extraction problems as shown from the

EQE analysis, with a decrease in the blue part of the spectrum and little to no gain in the IR.

Similar reduced transport properties are also observed for cells grown using RF but on rougher

Asahi U-type substrates. We suggest that this behavior come from nanoporous regions that

form during the growth of theµc-Si:H due to differences in the deposition process parameters—

here, different frequencies—or to inadequate substrate morphology characteristics.
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5.3 12-mm-gap reactor configuration

For this study, we reduced the reactor gap to 12.5 mm thanks to an aluminum spacer inserted

at the bottom of chamber B, in which the i -layer growth is analyzed. A simple representation

of this configuration is depicted in Figure 5.8.

Figure 5.8: Cross-sectional view of the aluminum spacer installed at the bottom of the reactor to
reduce the interelectrode gap from 22.5 mm (left) to 12.5 mm (right). The drawing is not to scale.

Since Chamber A was not modified, we could easily keep our regular µc-Si:H doped layers, so

that only the i -layer was varied. Multiple series were prepared for both excitation frequencies:

ΦH2 , pressure and growth rate were varied. The two frequencies were not evaluated in parallel

since changing between them required both hardware (RF generator and matching network

circuit) and software modification. As a result we ran all of the experiments at 13.56 MHz

before those at 40.68 MHz. For all of the studies presented hereafter, for which the i layer was

deposited in Chamber B, the differential pumping, which is a core aspect of the PlasmaBox

concept [Bubenzer 90], was turned off. This decision was motivated by some advantages that

are described in Appendix B.

5.3.1 13.56 MHz excitation frequency

In this subsection we present three of the main deposition regime series that were developed

and optimized for the µc-Si:Hi -layers. We first show that the hydrogen flow rate does not

impact solar cell performance in the range used for this particular low-gap study. Then a

growth rate series, going from 3 to 8 Å s−1 at a constant pressure, is presented along with a

defect density analysis. Finally, a pressure series at a growth rate of 5 Å s−1 is presented. All

cells were had a similar i -layer thickness of around 1.2 µm.

H2 flow rate series at a constant growth rate of 3 Å s−1

When we lowered the gap from 22.5 to 12.5 mm we also increased the deposition pressure

which was previously set at 5 mbar for this frequency. A few trials were done at 8.0, 9.0 and

10.0 mbar with a target growth rate of 3 Å s−1. We found that 9.0 mbar was optimal in terms of

cell performance, with an efficiency of around 8.5% for a 1-µm-thick one micron thick µc-Si:H

solar cell. Based on our previous observations in the KAI-S (see Section 3.2.2), we decided to
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first evaluate the influence of the total flow rate and silane depletion on cell performance for

this low-gap configuration under high-pressure conditions. Process homogeneity over the

whole area was also studied.

Using a deposition pressure of 9.0 mbar, we varied ΦH2 from 3000 to 1200 sccm, i.e. from

the maximum value of the mass flow controller to the minimum value, ensuring that we

could maintain the desired pressure (we even switched off the roots pump). Before depositing

the solar cells, we first optimized the Raman crystallinity of the µc-Si:H i -layer along with

the growth rate by simply depositing single layers on glass with a p-(µc-Si:H) seed layer. We

observed that, in this high-pressure regime, ΦH2 does not have a strong influence on the

Raman crystallinity (φc ) nor on the growth rate, so we increased the silane flow rate (ΦSiH4 )

just slightly for crystallinity compensation in the cell. The goal was to have similar φc for each

regime, so that the variation in cell performance reflects the differences in material quality

rather than in the crystallinity. The cells were prepared on Z5 60’ substrates with an i -layer

thickness of 1.2 µm. The i -layer deposition regimes are detailed in Table 5.2 along with the

measured φc from both sides of the cells.

Table 5.2: Deposition parameters of the i -layer as a function of the hydrogen input flow rate,
using RF, a growth rate of 3 Å s−1, a gap distance of 12.5 mm. The silane dissociation efficiency
(as evaluated from R/Rmax), gas residence time without plasma and Raman crystallinity factors
as measured from both the p- and n- sides of the cell are also indicated.

Freq.
R

(Å s−1)

p
(mbar)

Pd

(W cm−2)
ΦH2

(sccm)
ΦSiH4

(sccm)
R/Rmax cp (%)

τres.

(s)
p-/n-
φc (%)

RF 3 9.0 0.15

1200 31 0.63 0.93 0.97 52 / 55

1650 32 0.61 0.74 0.71 55 / 57

2100 33 0.59 0.63 0.56 69 / 61

2500 34 0.57 0.57 0.47 69 / 64

3000 35 0.55 0.51 0.39 73 / 70

We can see that under these conditions the crystalline fraction of the i -layers increases with

increasingΦH2 ; despite the slightΦSiH4 compensation, the desired constant φc over the series

was not obtained. Nevertheless the comparison remains relevant as all φc are within 11%

(absolute) of the mean value of 62%. Based on our experience, overall cell performance should

not be dramatically influenced by the limited φc variation here, with the Voc losses being

roughly compensated by the Jsc increases. In terms of homogeneity over the deposition area,

ΦH2 itself did not have a significant impact: the thicknesses and Raman crystalline fractions

were observed to be very close for the very low- and high- flow conditions tested. We also

observe that the gas residence time gradually decreases with increasing total gas flow as

expected, leading to an effective reduction of the silane dissociation efficiency as evaluated

from R/Rmax. Figure 5.9 summarizes the cells performances obtained for this series.
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Figure 5.9: Performance of µc-Si:H solar cells as a function of the hydrogen input flow rate,
using RF, a growth rate of 3 Å s−1, a gap distance of 12.5 mm and a deposition temperature of
180 ◦C. Left: Voc and FF values, with both the best (symbols) and the mean values (bars) out of
the 10 best cells. Right: Jsc and conversion efficiency of the corresponding best cells.

With increasingΦH2 both the maximum and mean values of the Voc are decreased by 12 mV,

going from 526 to 514 mV and from 522 to 510 mV, respectively. While significant, this small

loss can be ascribed to the associated crystallinity increase of the µc-Si:H i -layer, as a direct

correlation between the two was already observed [Vetterl 00, Droz 04, Johnson 08b]. Regard-

ing the FF, the values are quite stable and high: the mean value out of the 10 best cells on each

substrate varies by only 0.5% around an average value of 73.2%. The influence of the i -layer

crystalline fraction is evident in the Jsc, as it steadily increases with ΦH2 going from 21.0 to

22.3 mA cm−2. Overall, the efficiency is stable, as the losses in Voc are counter-balanced by the

associated Jsc gains: the mean value is 8.4%, with the best value of 8.7% obtained at 2100 sccm

and the lowest value of 8.2% obtained at 1200 sccm.

As a result we conclude that under high-pressure conditions using RF, ΦH2 does not have a

significant impact on the µc-Si:H quality, the solar cell performance or the homogeneity.

Growth rate series at constant pressure

Thanks to the reduced interelectrode distance, higher-deposition-rate regimes should be

reachable while limiting powder formation [Takai 01, Parascandolo 10b, Strahm 10]. We here

present the performance of solar cells with 1.2-µm-thick i -layers prepared at a constant

pressure of 9.0 mbar with RF, for increasing growth rates of 3, 5 and 8 Å s−1. The highestΦH2

value of 3000 sccm was retained in order to limit powder formation for increasedΦSiH4 . The

p-i interface was kept the same with a buffer layer of around 100 nm in thickness deposited at

a growth rate of 3 Å s−1. This was done to focus on the quality of the bulk material and to be

less sensitive to possible interface issues arising from higher power plasma regimes on top of

the p-layer.
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5.3. 12-mm-gap reactor configuration

The deposition regimes are detailed in Table 5.3.

Table 5.3: Deposition parameters of the i -layer as a function of the growth rate, using RF, a
constant deposition pressure of 9.0 mbar and a gap distance of 12.5 mm. The silane dissociation
efficiency (as evaluated from R/Rmax) and gas residence time without plasma are also indicated.

Freq.
p

(mbar)
ΦH2

(sccm)
R

(Å s−1)
ΦSiH4

(sccm)
Pd

(W cm−2)
R/Rmax cp (%) τres. (s)

RF 9.0 3000
3 35 0.15 0.56 0.51 0.39

5 54 0.34 0.60 0.70 0.39

8 82 0.56 0.63 0.96 0.39

The required power density becomes very large for increased growth rate when using RF, going

from 0.15 to 0.56 W cm−2, which is nearly the highest value we allowed our system. R/Rmax

increases slightly, going from 56 to 63% in absolute values, with increased silane and power

density.

Figure 5.10 summarizes the cell performances obtained for this series.
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Figure 5.10: Performance of µc-Si:H solar cells as a function of their i -layer growth rate using
RF, a constant deposition pressure of 9.0 mbar and a gap distance of 12.5 mm. Left: Voc and FF
values, with both the best (symbols) and the mean values (bars) out of the ten best cells. Right:
Jsc and conversion efficiency of the corresponding best cells.

Both the Voc and the FF mean values are significantly reduced with increasing i -layer growth

rate, going from 510 to less than 435 mV and from 72.9 to 64.4%, respectively. As a result, the

efficiency steadily decreases from 8.5% at 3 Å s−1 to 8.0% at 5 Å s−1 and to a very low 6.6% at

8 Å s−1.

To complement these results, the defect density of the bulk material was analyzed by Fourier-

transform photocurrent spectroscopy (FTPS) and is presented in Figure 5.11.
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Figure 5.11: FTPS defect-related absorption value at 0.8 eV of µc-Si:H solar cells prepared using
RF at a constant pressure of 9.0 mbar for increasing growth rates of 3, 5 and 8 Å s−1.

At a constant pressure of 9.0 mbar, increasing the growth rate of the i -layer leads to an almost

linear increase of defect absorption. This can be interpreted as a direct consequence of the

increased ion bombardment associated with the elevated power density required [Gordijn 06a].

However the exact origin of the defects cannot be elucidated with this measurement as µc-Si:H

is a heterogeneous material: these defects could be within the grains, at the grain boundaries

or at the conglomerate boundaries as well [Bailat 04, Meillaud 08]. Looking at the Urbach

energy value (deduced from the slope of the absorption coefficient), we see a similar increase

from 35 to 41 meV, indicating more structural disorder in the material, i.e. strained bonds.

To conclude, when using RF, increasing the deposition rate from 3 to 8 Å s−1 by simply adjusting

ΦSiH4 and the power density leads to strong losses in µc-Si:H solar cell performance, which

are attributed to an increase of the defect density and structural disorder of the bulk material.

Pressure series at a growth rate of 5 Å s−1

We will now review the influence of the deposition pressure on µc-Si:H solar cell performance

while keeping the growth rate constant at 5 Å s−1 and still using RF. This deposition rate was

chosen based on the results of the previous section, which showed a significant degradation

of the material quality with deposition rate. As in the previous section, the p-i interface was

always the same and was deposited a lower growth rate of 3 Å s−1 to limit possible interface

issues and to concentrate on the bulk material. The highestΦH2 value of 3000 sccm was again

retained in order to limit powder formation.

Table 5.4 lists the deposition parameters of the optimized regimes.

With increasing pressure, the required power density becomes much more important to get a
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5.3. 12-mm-gap reactor configuration

Table 5.4: Deposition parameters of the i -layer as a function of deposition pressure, using RF, a
constant growth rate of 5 Å s−1 and a gap distance of 12.5 mm. The silane dissociation efficiency
(as evaluated from R/Rmax), gas residence time without plasma and Raman crystallinity factors
as measured from both p- and n- sides of the cell are also indicated.

Freq.
R

(Å s−1)
ΦH2

p
(mbar)

ΦSiH4

(sccm)
Pd

(W cm−2)
R/Rmax cp (%)

τres.

(s)
p-/n-
φc (%)

RF 5 3000

6 56 0.29 0.58 0.77 0.26 68 / 78

9 54 0.34 0.60 0.70 0.39 59 / 67

12 55 0.40 0.59 0.73 0.52 71 / 68

15 60 0.49 0.54 0.89 0.65 76 / 70

similar growth rate while staying in the a-Si:H/µc-Si:H transition region. R/Rmax is quite con-

stant over the series but decreases slightly for the highest pressure. With increasing pressure,

gas-phase reactions are favored so that silane radicals contribute more to the formation of

polysilanes and powder in the plasma than to the growing silicon film [Takai 01, Strahm 10].

As can be seen in Figure 5.12, both the Voc and the FF increase substantially with increasing

pressure. Unexpectedly, the cell prepared at 9.0 mbar has a slightly more amorphous-rich
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Figure 5.12: Voc and FF (left) and Voc×FF (right) for µc-Si:H solar cells whose i -layer was
deposited using RF at 5 Å s−1 with increasing pressures. Both the best (symbols) and the mean
values (bars) of the 10 best cells are shown.

p-i interface, which explains why the Voc is higher, associated with a small FF loss. This

overall enhancement is seen more clearly in Voc×FF, which steadily increases with pressure.

In Figure 5.13 we observe that all Jsc values are very similar (around 22.7 mA cm−2), except for

the more a-Si:H-rich solar cell deposited at 9.0 mbar, which exhibits some losses especially in

the blue region due to the lower crystalline fraction (see Section 8.2.1). As a direct result of the

gains in both Voc and FF , the cell performance significantly increases from 7.7% at 6.0 mbar to

8.7% at 15.0 mbar.
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Figure 5.13: External quantum efficiencies of the best µc-Si:H solar cells whose i -layer was
deposited using RF at 5 Å s−1 and at increasing pressures (left), and the corresponding values of
Jsc and conversion efficiency (right).

A defect density analysis was done on this series as well and is presented in Figure 5.14. A clear
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Figure 5.14: FTPS defect absorption value at 0.8 eV for the solar cells prepared using RF at 5 Å s−1

with increasing deposition pressure (left) and a compared to the previous growth rate series at a
constant pressure of 9.0 mbar (right).

decrease in defect absorption can be observed with increasing pressure, as the absorption

value at 0.8 eV goes from 5.3 × 10−3 cm−1 at 6.0 mbar to 2.0 × 10−3 cm−1 at 15.0 mbar.

The Urbach slope also decreases from 40.9 to 34.9 meV. As discussed in Section 3.4, such

an improvement in bulk material quality can result from a reduction in the average ion-

bombardment energy thanks to the increased pressure [Kalache 03, Lebib 05, Matsui 03b,

Gordijn 06a]: as the ions are accelerated within the collisional sheath they undergo more and

more charge transfer reactions and elastic collisions.

This section has shown that increasing the deposition pressure can be beneficial for µc-Si:H

material quality as demonstrated by the superior electrical performance and the decreased
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bulk defect density as measured with FTPS.

5.3.2 40.68 MHz excitation frequency

Using the same interelectrode distance of 12.5 mm, we now present the results obtained using

40.68 MHz instead of 13.56 MHz. The focus was on using put on a moderate growth rate of

3 Å s−1 comparable to what was obtained using RF. Again all the cells presented here have a

similar i -layer thickness of around 1.2 µm.

To achieve a proper comparison between the frequencies, two deposition pressure series were

prepared, each going from 3.0 to 9.0 mbar with 1.5 mbar increments: in the first, aΦH2 was set

at a high value of 2500 sccm, and in the second, the lowest amount ofΦH2 that would sustain

the desired pressure was used. Then, deposition regimes with higher growth rates of 5 and

8 Å s−1 were also developed.

In order to get the optimum Raman crystallinity and growth rate, all deposition regimes were

again first tuned on top of AF45 glass substrates with a p-layer acting as a seed layer. The cells

were then prepared on Z5 60’.

Pressure series at a constant growth rate of 3 Å s−1

Based on our observations using VHF and a standard 22.5 mm gap, we decided to re-evaluate

the influence ofΦH2 on the associated silane depletion conditions and solar cell performance.

Table 5.5 summarizes the relevant deposition parameters.

At highΦH2 , the silane dissociation efficiency ηD , as evaluated from R/Rmax, increases with

pressure: starting from a low value of 28% at the lowest pressure of 3.0 mbar, it steadily

improves with increasing pressure and gas residence time, reaching 59% at 9.0 mbar. As a

consequence, the silane gas utilization efficiency is increased, reducing the required ΦSiH4

from 70 to only 33 sccm. It is interesting to note that a higher power was also required at the

lower pressures to reach the target growth rate; this compensated for the lower residence time

and plasma density. On the other hand, all deposition regimes developed with the lowest

possibleΦH2 show increased gas residence time and high silane utilization efficiencies ranging

from 65 to 69%.

All of the detailed processes in Table 5.5 were subsequently used for µc-Si:H solar cell fabri-

cation, with the exception of the 3.0 mbar regime using low ΦH2 . The performances of the

associated solar cells are shown in Figure 5.15. The same scales were used for comparison

between the twoΦH2 series.

The solar cells prepared using high ΦH2 conditions exhibit poor performance for relatively

low pressures of 3.0 and 4.5 mbar. This is due to reduced Voc and FF values of around 470 mV

and below 69%, respectively. At 6.0 mbar and higher, Voc lies between 490 and 500 mV, and FF
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Table 5.5: Deposition parameters of the i -layer as a function of the deposition pressure, using
VHF, a constant growth rate of 3 Å s−1 and a gap distance of 12.5 mm. The silane dissociation
efficiency (as evaluated from R/Rmax), gas residence time without plasma and Raman crys-
tallinity factors as measured from both p- and n- sides of the cell are also indicated. Recipes
were optimized for a constant ΦH2 of 2500 sccm (top), and the lowest possible ΦH2 needed to
reach the target pressure (bottom).

Freq.
R

(Å s−1)
ΦH2

(sccm)

p
(mbar)

ΦSiH4

(sccm)
Pd

(W cm−2)
R/Rmax cp (%)

τres.

(s)
p-/n-
φc (%)

VHF 3 2500

3.0 70 0.14 0.28 1.95 0.15 58 / 64

4.5 59 0.18 0.33 1.53 0.23 59 / 66

6.0 44 0.11 0.44 0.96 0.31 59 / 63

7.5 38.5 0.14 0.50 0.74 0.39 68 / 72

9.0 33 0.15 0.59 0.53 0.47 66 / 69

VHF 3

350 3.0 29 0.14 0.67 2.40 1.05 NA

500 4.5 28 0.11 0.69 1.57 1.13 64 / 68

1100 6.0 30 0.12 0.65 0.92 0.70 74 / 83

1500 7.5 30 0.13 0.65 0.68 0.66 68 / 78

1700 9.0 30 0.19 0.65 0.60 0.69 52 / 67

between 71 and 73%. At 9.0 mbar a decrease in Voc and Jsc is observed despite i -layer thickness

and crystalline fraction similar to that at 6.0 mbar. This could be related to an increase in the

nanoporous phase, but this hypothesis is unconfirmed. This pressure-dependent performance

behavior is not seen when we use the lowestΦH2 . Indeed, looking at Figure 5.15, we see that all

parameters are quite stable whatever the pressure: FF is quite high—around 71%—and the Voc

is always around 495 mV except for at 6.0 mbar. However this last result can be explained by

the fact that the crystalline fraction of this cell is much higher (74% and 83% when measured

from p− and n− sides respectively) than those of the three others .

The reason why the cells prepared under high ΦH2 conditions show reduced performance

at the lower 3.0 and 4.5 mbar pressures may come from the high power required to grow a

material with the required crystallinity at such a growth rate. These conditions have higher ion-

bombardment energy, which can favor the creation of additional defects. This deterioration in

material quality is corroborated by FTPS defect density measurements that were performed on

both series and are presented in Figure 5.16. The two cells prepared at low pressures with high

ΦH2 , leading to the worst performances, have the most defective i -layers. The difference is

quite clear between these two regimes, which led to solar cells with defect-related absorption

coefficients above 3.3 × 10−3 cm−1, and the rest of the cells with α(0.8 eV ) values ranging

between 2.3 and 1.4 × 10−3 cm−1.

From this experiment we see thatΦH2 does not influence the i -layer material quality above

6.0 mbar. All of these regimes provide µc-Si:H solar cell conversion efficiencies between 7.9
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Figure 5.15: Top: Best Voc and FF values as a function of deposition pressure for solar cells whose
optimized i -layer was deposited using VHF withΦH2 at a relatively high value of 2500 sccm (left)
and with the lowestΦH2 possible (right). Bottom: Corresponding Jsc and conversion efficiencies
of the best solar cells.

and 8.3%, and relatively low defect densities, whereas the use of highΦH2 at pressures below

4.5 mbar leads to low Voc×FF and efficiencies of 7.4%, and is clearly associated to an increase

in the bulk material defect density as assessed by FTPS.

Growth rate series at constant pressure

Based on the results presented in the previous section, a growth rate series was also performed

using the most promising regime, i.e. the regime at 7.5 mbar with highΦH2 conditions, which

limits powder formation even at high deposition rates. The i -layer deposition parameters of

the newly developed regimes at 5 and 8 Å s−1 are presented in Table 5.6.

At this constant pressure and similar gas residence time, the silane dissociation efficiency is

always in the range of 50–60% for the three growth rates. We note that the power required to go

from 3 to 8 Å s−1 is, as expected, much lower using VHF instead of RF. While the 7.5 mbar VHF
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Figure 5.16: FTPS defect absorption value at 0.8 eV as a function of the deposition pressure of
of µc-Si:H solar cells whose optimized i -layer was optimized using VHF withΦH2 at relatively
high value of 2500 sccm (filled circles) and with the lowestΦH2 possible (empty circles).

Table 5.6: Deposition parameters of the i -layer as a function of growth rate using VHF, a
constant pressure of 7.5 mbar and a gap distance of 12.5 mm. The silane dissociation efficiency
(as evaluated from R/Rmax), gas residence time without plasma and Raman crystallinity factors
as measured from both p- and n- sides of the cell are also indicated.

Freq.
p

(mbar)
ΦH2

(sccm)
R

(Å s−1)
ΦSiH4

(sccm)
Pd

(W cm−2)
R/Rmax cp (%)

τres.

(s)
p-/n
φc (%)

VHF 7.5 2500
3 39 0.14 0.50 0.77 0.39 68 / 72

5 49 0.20 0.61 0.80 0.39 65 / 74

8 86 0.34 0.60 1.30 0.39 70 / 69

regime uses only 5% lower power density than the 9.0 mbar one using RF regime at 3 Å s−1,

65% less power is required for both the 5 and 8 Å s−1 regimes.

Looking at the conversion efficiency summary in Figure 5.17, we see that the use of RF over

VHF for lower growth rates (R ≤5 Å s−1) leads to better-performing µc-Si:H solar cell devices.

Although not represented on the graph, we stress that we could never reach comparable

efficiencies when using VHF compared to RF for low rates of around 3 Å s−1, whatever the VHF

regime.

For a growth rate of around 5 Å s−1, comparable conversion efficiencies of 8.0 and 8.1% are

obtained for cells prepared with RF and VHF, respectively. As seen in the Section 5.3.2, an

increase in pressure when using RF is favorable, and led to an increased efficiency of 8.5%.

At a rate of 8 Å s−1 the VHF cell performs much better than the RF cell, with a 7.4% conversion

efficiency compared to a 6.6%efficiency. We observe an increase in both Voc and FF , which
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Figure 5.17: Left: Best conversion efficiencies of µc-Si:H solar cells prepared using either VHF at
7.5 mbar (blue stars) or RF at 9.0 mbar (black triangles), as a function of deposition rate. Right:
Corresponding FTPS defect-related absorption. The beneficial effect of a higher deposition
pressure of 15 mbar using RF has on the µc-Si:H quality is also shown.

go from 440 to 473 mV and 67 to 70%, respectively. This gain is associated with a decrease in

defect absorption as measured by FTPS—it is reduced from 5.7 × 10−3 cm−1 to 4.0 × 10−3 cm−1.

The significantly higher power density required to reach higher deposition rates when using

RF is thought to be responsible for this result, hence favoring VHF for rates of 5–8 Å s−1and

above.

5.3.3 Conclusion

A comparative study of 13.56 MHz and 40.68 MHz for the growth of high-quality µc-Si:H in a

chamber with an electrode gap of 12.5 mm again shows that the use of 13.56 MHz leads to

better-performing cells. While i -layers prepared using VHF have a similarly low bulk defect

density, the associated cell performances are always subpar. However, for increased growth

rates, VHF starts to become attractive as less input power is required, favoring the growth of

µc-Si:H material with a low bulk defect density.

5.4 Material analysis and stability study

In this section we review the performance of the solar cells prepared using 13.56 or 40.68 MHz

and analyze their material properties. First, we compare the bulk defect density of the cells.

We also present an additional damp-heat analysis, demonstrating the ability to differentiate

between dense and porous µc-Si:H.
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5.4.1 FTPS comparison of cells prepared using RF and VHF

The defect-related absorption coefficients, as obtained from FTPS measurements, of all of

the cells prepared in the previous sections using an interelectrode distance of 12.5 mm are

summarized in Figure 5.18.
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Figure 5.18: FTPS defect-related absorption coefficient at 0.8 eV as a function of the correspond-
ing µc-Si:H solar cell conversion efficiency. The blue circles, spheres and stars correspond to
those prepared using VHF, while the rest are prepared using RF. The dotted lines are simply
guides to the eye.

The LPCVD ZnO contacts and the doped layers were kept strictly identical throughout the

series so that the differences observed in the 0.8 eV absorption coefficient relate only to the

material quality of the 1.2-µm-thick i -layer. We observe that all of the cells prepared using

RF exhibit a clear trend between their conversion efficiency versus the measured i -layer bulk

defect absorption. Indeed, with decreasing growth rate and increasing pressure, a quasi-

linear relationship between the bulk defect density and the solar cell efficiency is established.

Furthermore, two RF regimes—one with cells prepared at 3 Å s−1 using 9.0 mbar and one

with cells prepared at 5 Å s−1 using 15.0 mbar—lead to a similar low defect-related absorption

coefficient of around 2 × 10−3 cm−1, which, in turn, leads to a similar solar cell efficiency of

8.5% (circled in Figure 5.18).

In contrast, the cells prepared using VHF do not have such a clear relationship with respect

to FTPS defect density. Despite the growth of a high-quality µc-Si:H bulk material with a

comparable or even lower bulk defect density than that of materials grown using RF, the
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associated solar cell conversion efficiency remains always lower for R < 8 Å s−1. The i -layer

with the lowest defect-related absorption coefficient of 1.4 × 10−3 cm−1, obtained at 3 Å s−1

using the highest ΦH2 conditions with VHF, leads to only average solar cell performance

with a conversion efficiency of 7.8% despite an adequate Raman crystalline fraction. This

demonstrates that bulk defect density alone does not drive solar cell performance.

In other words, although bulk defect density plays a determining role on the conversion effi-

ciency of cells prepared using RF, low defect density is insufficient for high-performance cells

prepared using VHF. These cells typically perform worse than their RF-prepared equivalents

because of nanoporous-phase development. This hypothesis will be confirmed in the next

section.

5.4.2 Stability study ofµc-Si:H-based solar cells

We present in this section an additional set of experiments demonstrating the presence of

nanoporous material in the solar cells prepared using VHF. Similarly as in Section 4.4, as-

deposited, non-encapsulated µc-Si:H cells prepared using either RF or VHF were subjected

to annealing for 1h30’ at 180 ◦C under nitrogen flow, followed by exposure to (non-standard)

damp heat (100% humidity, 50 ◦C) for two days to simulate accelerated dark degradation,

i.e. degradation of solar cell performance under ambient atmosphere. This was done for single-

junction µc-Si:H single-junction solar cells deposited on smooth Z5 60’ and for micromorph

tandem cells where the µc-Si:H bottom cell was grown on a more textured surface, a Z2 2’, in

order to trap sufficient light in the tandem cell structure. All of the top cells were co-deposited

in one run in the large-area KAI-S system.

For this experiment the standard interelectrode distance of 22.5 mm was used. Three deposi-

tion regimes were optimized at 3.3 mbar using VHF with varying growth rates: 3.0, 4.5 and

7.0 Å s−1. A higher pressure of 5.0 mbar was also tried for the growth rate of 4.5 Å s−1 but did

not give better results than 3.3 mbar. For comparison, similar regimes with RF were evaluated

as well. However, only the growth rates of 3.0 and 4.5 Å s−1 could be evaluated at 5.0 mbar, as

7.0 Å s−1 was not achievable with this interelectrode gap (too much power would have been

required). At 4.5 Å s−1, using RF, a higher pressure of 7.5 mbar was evaluated as well and led

to a better-performing cell with a significantly reduced defect density (4.7 × 10−3 cm−1 for

5.0 mbar compared to 2.7 × 10−3 cm−1 for 7.5 mbar).

The cells were successively measured after their preparation, after annealing, and after the

damp-heat test. The Voc evolution of the micromorph cells is shown in Figure 5.19.

Increasing the growth rate of the bottom cell using VHF significantly aggravates the sensitivity

of the tandem-cell Voc to damp heat: after damp-heat exposure, respective losses of 30, 100

and 380 mV are observed for the best cells grown at 3.0, 4.5 and 7.0 Å s−1, respectively. Looking

at the Voc median value, the losses are even worse, reaching 24, 166 and 495 mV, respectively.

On the other hand, when bottom cells are grown using RF, stable behavior is observed for
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Figure 5.19: Voc of micromorph cells in the initial state, after the annealing and after damp-heat
exposure.The cells were deposited on Z2 2’ and the bottom cell was deposited with varying
pressures and growth rates.

micromorph cells at 4.5 Å s−1: the median value after the damp-heat test even increases by

43 mV at 5.0 mbar and 22 mV at 7.5 mbar. Since the single-junction a-Si:H subcell in these

micromorph devices was also stable with regard to damp-heat exposure, we conclude that the

material grown using VHF at 3.3 mbar is much more porous than that grown using RF.

The Voc evolution of the single-junction solar cells on a smoother substrate (Z5 60’) is shown

in Figure 5.20. We observe that, in this case, the damp-heat experiments induce negligible

Voc losses. This can be explained by the fact that the smoother substrate morphology leads

to a reduced density of nanoporous zones as compared to the sharper morphology that is

present in the micromorph cells after the a-Si:H top-cell growth on Z2 2’. Nevertheless, small

variations of Voc within the range of 15–25 mV are still observed with VHF on such substrates.

For the µc-Si:H material grown using RF, on the other hand, the Voc is not perturbed at all

throughout the whole experiment and remains within the measurement error.

Jscremains stable throughout the experiment for all micromorphs subcells and single-junctions

cells except for the 7.0 Å s−1 VHF cell, which could not be properly measured after the damp-

heat test. In particular there was no EQE loss observed in the IR similar to previous re-

ports [Matsui 03b, Matsui 04]. We ascribe this difference to the oxidation of nanoporous-

phase zones rather than the grain boundaries themselves within the large conglomerates

which impedes charge extraction and collection.
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Figure 5.20: Mean Voc of the 10 best single-junction µc-Si:H solar cells on Z5 60’ deposited
with varying pressures and growth rates in the initial state (I), after annealing (A) and after
damp-heat exposure (DH).

Although we cannot yet explain why the use of RF leads to the growth of more dense and

compact µc-Si:H material, some hypotheses can be proposed. One possible explanations is

an increase in ion bombardment. Since the use of a lower excitation frequency leads to an

increase of higher-energy ion flux towards the film, it could help densify the growing surface.

However, we have seen that deposition pressure can also greatly influence the ions’ energy as

they are accelerated through the collisional sheath. Unfortunately, under those high-pressure

conditions, we are not able to measure the energy distribution function of bombarding ions

arriving on the substrate (retarding field analyzers work only for plasmas with relatively low

pressure ≤ 1 mbar).

Another possible role of a reduced frequency in the growth of denser material may be related

to the sheath thickness. Indeed, as discussed in Section 5.1, an increase in the excitation

frequency was shown to reduce the sheath thickness [Kroll 94]. As a result, the relative con-

tribution of more highly reactive radicals, such as SiH2, to the growth surface would be

enhanced—since their losses would be reduced in the sheath region—which would in return

favor the growth of a more porous material. Lastly, studies on the SiH3 and SiH2 genera-

tion profiles in the plasma may point toward a higher generation of highly reactive radicals

near the sheaths rather than in the bulk when using higher excitation frequencies inducing a

larger contribution of these sylylenes to the growing film [Keppner 95, ur Rehman 11], which

is detrimental for the material density.

We have shown in this section that the µc -Si:H material grown using VHF is very porous and

susceptible to water vapor ingress as compared to the material grown using RF. This tendency

towards porous material is particularly detrimental in micromorph solar cells because rough

substrates—like LPCVD ZnO with an a-Si:H top cell grown on it—promote the formation of

the nanoporous regions. On smoother substrates, smaller but still significant differences are

observed.
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5.4.3 Conclusion and current view

In summary, both RF- and VHF-prepared cells can have a very low bulk defect density of

around 2 × 10−3 cm−1. However despite similar or even better bulk material quality, the

conversion efficiency of VHF-prepared cells is always lower than RF-prepared cells. A damp-

heat study indicated that the µc-Si:H i -layer material obtained using RF better withstands

water-vapor exposure on rough substrate morphologies. This indicates that the material

grown using RF is more dense when deposited on rough surfaces, with significantly less severe

nanoporous regions (they are smaller either in size or gravity). As a result, the performance of

RF-prepared cells is dominated mainly by the bulk material quality and less by the nanoporous

phase, as in VHF-prepared cells.

Based on our observations in this chapter, we summarize our current view of the growth of

high-quality µc-Si:H deposited using either RF or VHF and the role of the SiOx doped layers

(seen in Section 4.5) in actual solar cells in Figure 5.21.

Figure 5.21: Simplified view of µc-Si:H growth on U-shape vs V-shape substrate morphologies.
While on U-shape substrates (such as sputtered etch ZnO) the cells performances are mainly de-
termined by the bulk phase, on V-shape substrates they also rely on the density of the nanoporous
regions formation. In this case the use of RF over VHF has the advantage to provide a denser
material, hence leading to better material. However, for higher growth rates, the bulk phase
becomes defective quicker, hence favoring VHF in this case. SiOx doped layers can help alleviate
the electrical performances of the nanoporous regions but cannot eliminate them. Graph in the
bottom left is adapted from a graph given by the group of Jülich during the FP6 EU ATHLET
project.
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5.5 Conclusions

In this chapter, we examined the role of the excitation frequency on µc-Si:H material quality

for application in thin-film silicon solar cells. We demonstrated that the lower 13.56 MHz

frequency provides better solar cells for interelectrode distances of 22.5 and 12.5 mm—and for

moderate growth rates of around 5 Å s−1 or less. Better carrier transport was observed with

increasing i -layer thickness using RF, permitting higher Voc and FF together with larger Jsc.

Furthermore, increasing the pressure with RF improved bulk material quality, allowing for the

growth of µc-Si:H material with a similar defect density at 5 Å s−1 at 15.0 mbar and at 3 Å s−1

at 9.0 mbar.

While both frequencies allow for the growth of very good bulk material quality, as assessed by

FTPS measurements, the corresponding efficiencies of the cells prepared using 40.68 MHz

were always low compared to those of the cells prepared using 13.56 MHz, within the range of

our study. This observation suggests that a parameter besides bulk defect density impedes

carrier transport in solar cells prepared using VHF. A higher density of nanoporous regions was

deduced from damp-heat experiments in the cells grown using VHF, which showed strong Voc

instabilities; this was not observed with RF. These porous zones contribute significantly to re-

duced µc-Si:H solar cell performance, especially when the morphology favors the appearance

of such zones.

Although no clear physical explanation was offered for the exact role of the plasma excitation

frequency on the µc-Si:H material density, some hypotheses were provided to explain why

the use of RF leads to more dense and compact material. A larger population of high-energy

ions could help to densify the growth surface, or a reduction in proportion of highly reactive

radicals (e.g. SiH, SiH2) contributing to the growth of the film. In the latter case, it could

be related to (i) a change in the generation of radicals favoring monoradicals (e.g. SiH3,

Si2H5), (ii) gas-phase reactions involving short-lived radicals or (iii) an increase of the sheath

thickness, reducing the proportion of highly reactive radicals (e.g. SiH, SiH2), (iv) a change

in the generation profile of short-lived highly reactive radicals, favoring their creation near

the sheaths with increasing excitation frequency, which in return enhances their detrimental

contribution for the growth of a dense µc-Si:H film.

It is important, however, to put these results into perspective with current thin-film silicon

technology requirements both in terms of substrate texturing and material deposition rate:

while denser material deposited at a lower rate may be favorable in micromorph cells—as

a highly textured substrate is necessary for generating high currents—the use of deposition

regimes more prone to the growth of nanoporous regions but that still yield high-quality

bulk material at very high growth rates may be desirable in certain cases. For instance, in

triple-junction a-Si:H/µc-Si:H/µc-Si:H solar cells, much thicker µc-Si:H i -layers are required

and the constraints on the a-Si:H top-cell current are also relaxed, allowing for the use of

front TCOs with smoother morphologies. This, in turn, allows for the growth of high-quality

material without significant nanoporous zones, hence favoring the use of VHF.
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In this chapter we review our efforts to improve the material quality ofµc-Si:H layers deposited

at high deposition rates in an industrial-type KAI-M reactor for application in thin-film solar

cells. A significant part of the results presented in this chapter were obtained within a large

European collaborative project supported by the EU’s Seventh Framework Programme for

Research (FP7) in the area of energy. Hence, this FP7 EU PEPPER 3-year project will first be

briefly summarized in Section 6.2 before the key points and main achievements are given in

the next sections. Section 6.3 reviews how both hydrogen flow rate and pressure influence

secondary gas-phase reactions in the plasma and solar cell performance. We show that

plasma conditions at the onset of significant powder formation lead to better-performing

µc-Si:H solar cells. Section 6.4 discusses the crucial interplay between the µc-Si:H growth

rate and the substrate morphology with regard to the formation of nanoporous regions. In

Section 6.5, we highlight the important role of a reduced interelectrode gap, which leads

to lower defect-related absorption and improved µc-Si:H solar cell performance with the

absorber layer deposited at higher rates. Section 6.7 presents the growth kinetics controlling

the film properties and some simulations performed in collaboration with University of Patras.

6.1 Introduction

As discussed earlier in Section 1.3, to lower production costs and increase the conversion effi-

ciency of TF Si solar modules, the deposition of high-quality µc-Si:H at an increased rate and

on textured substrates that guarantee efficient light trapping is critical. While higher deposition

pressure regimes have been identified as an interesting approach to deposit improved-quality

µc-Si:H material at higher growth rates [Guo 98, Kondo 00, Matsui 03b, Mai 05, Sobajima 08],

they also tend to favor secondary gas-phase reactions in the plasma and powder formation.

Above a certain threshold, such reactions thus lead to a reduction in the silane gas utilization

efficiency, strong inhomogeneity, instabilities over time, possible pump failure and down

times. Another way to get high-quality i -layers at an increased deposition rate is to further in-

crease the plasma excitation frequency, as already discussed in Section 5.1, since this improves

the silane dissociation efficiency and reduces the ion bombardment on the growing film.
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However, this approach leads to significant complications for up-scaling, as electromagnetic

non-uniformities, such as the standing-wave effect [Lieberman 02, Sansonnens 06], start to

play a major role on the actual plasma conditions.

For these reasons, a lot of research has recently been done to combine increased pressure and

moderately high plasma excitation frequency in conventional capacitive discharges, while

minimizing powder formation. For instance, a reduction of the interelectrode gap (dgap) was

shown to bring significant advantages since it allows for a high-density plasma while limiting

secondary gas-phase reactions in the plasma, hence favoring the growth of device-grade

a-Si:H [Isomura 02] and µc-Si:H [Nakano 06, Strahm 10] at high rates.

However, at these high rates, the formation of nanoporous regions on rough surfaces remains

a problem as will be seen in this chapter. The substrate morphology is very important to grow

µc-Si:H without any structural defects but becomes even more critical at very high deposition

rate. Hence we will see that a morphology which is good for a process at 3 Å s−1 will be very

detrimental for higher rates. For instance, sputter-etched ZnO from Jülich is known to provide

an excellent surface morphology for the growth of µc-Si:H allowing for very high Voc and FF.

As a direct consequence very high deposition rates regimes could be developed more “easily”

on this smooth electrode, as compared to LPCVD ZnO (that would favor the formation of

nanoporous regions), so that very good single-junction µc-Si:H solar cells could be obtained.

However, LPCVD ZnO provides more potential in terms of light-trapping, in particular for

micromorphs where a high top cell current is desirable, hence forcing us to develop more the

plasma regimes to limit the secondary defective phase formation.

The present work is part of this effort and seeks a deeper understanding of the main require-

ments for the deposition of high-quality µc-Si:H at very high growth rates above 10 Å s−1. Most

of the results presented in this chapter were obtained together with Dr. G. Parascandolo and

Dr. K. Söderström.

6.2 PEPPER project

Entitled “Demonstration of high performance Processes and Equipments for thin film sili-

con Photovoltaic modules Produced with lower Environmental impact and Reduced cost and

material use”, the FP7 EU PEPPER project [PEPPER 10] is a joint effort involving European

laboratories and companies. The goals of the project are to develop a new generation of pro-

duction lines and demonstrate and partially implement a new technology that will (i) reduce

the cost of ownership associated with the fabrication of tandem modules to 0.5 e/Wp, (ii)

increase module output power to 157 Wp stabilized (corresponding to a conversion efficiency

of 11%) and (iii) reduce the environmental impact of the fabrication process with the target of

20% lower energy-payback time.

The breakdown of the different task forces necessary to achieve these goals is shown in

Figure 6.1, indicating all the work packages (WPs) and their interactions.
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Figure 6.1: PEPPER project work packages.

EPFL was involved, among others, in WP3 “Investigation, modeling and understanding of

the different plasma regimes in narrow-gap electrode configurations”. This WP investigates in

depth plasma regimes for the growth of high-quality µc-Si:H i -layers as a function of dgap with

a focus towards high deposition rates of 1.2–1.5 nm s −1. Many results were shared with the

University of Patras (Greece) in order to assist them with the development of a comprehensive

model for parallel-plate PECVD and numerical simulations. This was done to develop a better

understanding of the complex interactions between the deposition parameters, the plasma

characteristics and, ultimately, the material and solar cell device properties. Cooperation

with WP2, which involves the development and understanding of the LPCVD ZnO electrodes

(EPFL), was also required, as there is a strong interplay between the front ZnO morphology

and the deposited material quality. Finally, a combined effort with WP6, which developed a

next-generation industrial reactor (TEL Solar), was also necessary to transfer the knowledge

acquired to industry. The main results of WP3 are presented in this chapter.

6.3 Influence of pressure and hydrogen flow

In this section we review the influence of both the deposition pressure and hydrogen flow

rate (ΦH2 ) on the performance of µc-Si:H solar cells when deposited at a high rate of 1 nm s −1.

Some of the conditions described here were already shown in Chapter 4. However, the present

investigation goes further in the analysis of the plasma regimes. We show that depositing

closer to conditions that favor secondary gas-phase reactions is not detrimental to mate-

rial quality and eventually leads to better-performing µc-Si:H solar cells. This study was

done with Dr. Gaetano Parascandolo and Dr. Richard Bartlome and can be found in detail

in [Parascandolo 10a].
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For this study we used the KAI-M reactor operating at VHF with dgap = 12 mm. For each of the

processes developed, a similar i -layer growth rate of 1 nm s −1 was targeted. The silane flow

rate (ΦSiH4 )was kept constant at 120 sccm whileΦH2 was decreased, so that gas residence time

increased. The source power density was slightly adjusted to get the same Raman crystallinity

factor (φc ) and growth rate (R). Silane depletion (D) was monitored by an IR laser spectrometer

in the exhaust line, and powder formation was evaluated by visible laser light scattering (LLS)

directly behind the pumping grid of the PlasmaBox (cf. details in Section 2.2). The deposition

conditions for theΦH2 series done at a constant pressure of 4.5 mbar are detailed in Table 6.1.

Table 6.1: Process details using VHF at 4.5 mbar with input silane concentration c, silane
depletion, silane concentration in the plasma cp , estimated growth rate Rest., actual growth rate
R, LLS measurement of powder in the exhaust and residence time (τ).

Process
ΦH2

(sccm)
c (%) D (%) cp (%) Rest.

(Å s−1)
R

(Å s−1)
LLS

(mV)
τres. (s)

A 2500 4.6 75.1 1.1 13.6 9.7 43.6 0.23

B 2000 5.7 77.6 1.3 14.0 10.0 73.0 0.28

C 1600 7.0 80.2 1.4 14.5 10.0 114.3 0.35

D 1200 9.1 81.8 1.7 14.8 10.0 136.4 0.45

E 800 13.0 86.6 1.8 15.7 10.0 267.6 0.65

Only minor adjustments of the source power density were required (going from 0.36 to

0.35 W cm−2) with decreasingΦH2 , while the decrease in residence time led to an enhancement

of silane dissociation efficiency, going from 75 to 87%. The estimated deposition rate (Rest.)

is based on the silane depletion fraction and the assumption that all the dissociated silane

contributes to the film growth [Strahm 07b, Bartlome 09]. While a relative increase of 15%is

observed for Rest., R which was obtained from layer thickness measurements, stayed constant

at 1 nm s −1. This increased discrepancy, shown in Figure 6.2a, is due to an increase of silane

radicals lost to the formation polysilane or powder, which do not contribute to film growth.

The significant increase in powder formation is also confirmed by the LLS measurements,

which are summarized in Figure 6.2a as well.

Time-resolved optical emission spectroscopy was used to observe the integrated intensity of

the H2 Fulcher lines (600–630 nm), which is proportional to the electron density [Strahm 09],

and the results for processes A to E are shown in Figure 6.2b. A clear difference can be seen

going from a powder-free regime (process A, high ΦH2 ) to a dusty regime (process E, low

ΦH2 ): a clear signature of powder formation is observed with a periodic oscillation of the

electron density. Clusters form in the plasma and accumulate negative charges while they

grow, reducing the electron density. As soon as such clusters are large enough, that they can

no longer be confined in the plasma, neutral drag forces expel them from the reactor, allowing

the electron density to rise again [Bouchoule 91, Stoffels 95, Johnson 08a].

Although we used deposition conditions close to the onset of large powder particles, we could
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Figure 6.2: (a) Evolution of the LLS signal and difference between the estimated growth rate,
obtained from the silane depletion measurement, and the actual growth rate for processes A to
E. (b) Time evolution of the H2 Fulcher emission intensities for processes A to E.

not actually find any powder after the deposition on the large-area aluminum plate for all

deposition conditions detailed in this section. Powder is rather typically observed near the

exhaust at the pumping grid or near leaks that can be present in the reactor (cf. Appendix B).

A similar plasma study was performed for increased pressures of 5.5 mbar and 7.0 mbar. ΦSiH4

was kept constant at 120 sccm, so that only the power density was varied to keep the same

growth rate of 1 nm s −1and the same φc . Similar observations were made with regard to

secondary gas-phase reactions with decreasing ΦH2 , and increased pressure also led to an

increase of powder formation as expected from a silane partial pressure increase.

These deposition regimes were used to evaluate the µc-Si:H material quality directly in single-

junction µc-Si:H solar cells on Z5 45’. The i -layer thickness was kept at 1.8 µm and standard

µc-Si:H doped layers were used. Figure 6.3 summarizes the conversion efficiencies of these

cells.

We see that plasma conditions at the onset of powder formation, with increased silane input

concentration, lead to better-performing solar cells. Indeed, regime E, the dustiest one, led

to the highest solar cell efficiency (7.1%) of the 4.5 mbar series. As already seen in Chapter 4

for the 5.5 mbar series, we explain that these performance gains are due to a denser µc-Si:H

material. At this point, however, it remains difficult to relate the improvement of the material

density only to plasma conditions favoring powder formation. We also observe that increased

pressure is indeed favorable for solar cell performance, although in this case, the gains could

also be ascribed to a reduction of the ion bombardment energy.

Powder is known to greatly influence the plasma parameters and power transfer because of

the additional electron energy loss mechanism [Dorier 92, Hollenstein 00]. Although the exact

mechanisms involved in the particle charging processes in dusty plasmas remain under inves-

tigation, particle formation and charging typically lead to a more resistive rf discharge and the
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Figure 6.3: Single-junction µc-Si:H solar cell conversion efficiency as a function of the i -layer
deposition pressure and input silane concentration (varyingΦH2 ) for a constant high deposition
rate of 1 nm s −1.

electron temperature is thought to rise to compensate for the additional electron losses at the

clusters [Fridman 96, Takai 00, Takai 01]. It is worth mentioning here that some simulation

studies [McCaughey 89, McCaughey 91, Wang 97] showed an opposite effect resulting from

the presence of charged particles in the plasma: particles lead to a depletion of the high-energy

tail of the electron energy distribution (due to Coulomb scattering from the Debye shield

surrounding the particles), effectively reducing the electron temperature (Te). Furthermore,

exactly how Te affects the growth remains unclear: while it is typically assumed that a lower

Te is favorable to increase the ΓSiH3 /ΓSiHx≤2 radical generation ratio [Niikura 07] (as typically

observed for the growth of high-quality a-Si:H), experimental studies have suggested the

opposite—a higher Te would be favorable for µc-Si:H [Nakano 06].

Sylene radical (SiH2) is known to react very rapidly with SiH4 to give disilane—especially

under high-pressure conditions. In this case, the µc-Si:H material is denser for an increased

silane concentration in the plasma, meaning SiH2 radicals are indeed less likely to reach the

surface since they have more chance to find a SiH4 molecule to react with before that (such

reaction will be further corroborated by first plasma simulations presented in Section 6.7.2).

Another way to explain a possible reduction of short-lived silane radicals such as SiH2, SiH or

Si, reaching the growing film is that under high-pressure conditions they can react very quickly

either with higher-order polysilane SinH2n+2 molecules (with n ≥ 3) to form polymerized

species [Kawasaki 97], or with already-formed larger clusters, hence effectively reducing their

chance to stick on the growing silicon surface.

Other possible explanations for the formation of nanoporous zones, such as a change in the

sheath thickness or the silane radical generation profiles, cannot be ruled out at this point.

Proper Vpp measurements could unfortunately not be done during our study, so that we

cannot link a time-averaged plasma potential reduction with decreasingΦH2 as in Section 3.4.
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More in-depth plasma analysis is thus required: impedance measurement in post-match

conditions and the use of deposition-tolerant rf biased Langmuir probes would greatly help in

investigating the most critical plasma parameters (e.g. impedance modifications, harmonics

analysis, ion and electron densities, electron temperature), and thus in understanding the

main plasma requirements for the deposition of high-quality µc-Si:H at high rates.

6.4 Impact of the substrate morphology

In this section we review the influence of the substrate morphology on the performance of µc-

Si:H solar cells. More specifically, we demonstrate the fact that although some morphologies

are suitable for low-deposition-rate processes, they can become strongly unfavorable for

higher growth rates. Indeed, the sharpness of the substrate strongly influences the growth

dynamics, favoring the rise of nanoporous-phase material.

6.4.1 On the sharpness of the LPCVD ZnO front contacts

For the present study,µc-Si:H solar cells were deposited on different LPCVD ZnO front contacts

with varying morphologies. As already discussed in Section 2.1, the morphology can be

smoothened through the application of an argon-based plasma treatment [Bailat 06], reducing

the overall sharpness of the features while keeping their size similar. Figure 6.4 presents the

atomic force microscopy (AFM) topographic images of such substrates.

Figure 6.4: AFM topographic images of some of the LPCVD ZnO front contacts used in this study.

Table 6.2 summarizes the parameters which describe the texture of each substrate used in

this study. The root mean square of the surface roughness (σRMS), measured via AFM,

together with the average facet inclination are given to describe the sharpness of the substrate

features [Cuony 11]. The size of these ZnO pyramidal features is also directly related to their

spatial density on the substrate surface as can be seen in the corresponding AFM topographic

images.
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Table 6.2: Details of the ZnO substrates used for the present study and main parameters describ-
ing their surface morphologies. As-deposited Z5 is presented simply for reference, as it was not
used for solar cells in this section. For more details, please refer to Section 2.1

Substrate Z1 Z2 Z5 Z5 20’ Z5 45’

Thickness (µm) 1.3 2 5.0 <5.0 <5.0

σRMS (nm) 49 79 184 168 106

Pyramid size (nm) 160 250 600 600 600

Average facet inclination (°) 30 40 45 – 18

Ironed surface (%) 142 155 167 137 115

6.4.2 Single-junctionµc-Si:H solar cells

Single-junction µc-Si:H solar cells were deposited on four substrates (Z1, Z2 2’, Z5 20’ and

Z5 45’) with threeµc-Si:H i -layer VHF PECVD processes at 5.5 mbar with increasing deposition

rates R of 3, 9 and 12 Å s−1. The Voc × FF values of these devices—which account for the

overall electrical performance of the devices—is plotted versus R in Figure 6.5a. As expected, a

reduction of this product is observed i) for each substrate with increasing R, due to increased

bulk defect density as measured via FTPS (going from roughly 2 ×10−3 to 7 ×10−3 cm−1,

cf. Figure 6.6b) and ii) for each given R when using a sharper substrate. In Figure 6.5b, the

Voc × FF value is normalized for each substrate with respect to the value obtained for the

lowest R of 3 Å s−1. We see that the relative losses versus R are more severe on sharp substrates,

indicating that the substrate morphology becomes more critical when increasing R.
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Figure 6.5: (a) Voc × FF values for devices deposited on the four substrates of Table 6.2 versus R
of the i -layers. (b) Same data in (a), but normalized with respect to device performance at the
lowest R for each substrate.
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In order to get more insight into the relationship between R and substrate morphology, we

studied the electrical stability of devices versus dark degradation, i.e. degradation of non-

encapsulated devices stored in air that is related to water vapor absorption in porous material.

Devices were subject to five days of (non-standard) damp-heat tests performed at 50 ◦C and

100% humidity to simulate accelerated dark degradation (see Section 4.4). Contributions of

ZnO to device instability are not excluded but do not influence our results, as we compare

device stability versus R for each substrate. After damp-heat tests, the devices were annealed

to restore performance upon water vapor desorption.

In Figure 6.6a the Voc×FF values after a damp-heat test of devices deposited on Z5 45’, Z2 2’

and Z1 are plotted versus R and are normalized with respect to initial performance.
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Figure 6.6: (a) Stability with respect to damp heat of the electrical performance of µc-Si:H solar
cells deposited on Z5 45’, Z5 20’, Z2 2’ and Z1 plotted versus i -layer R. The Voc × FF values are
normalized to the initial value, for each substrate and R. (b) FTPS defect absorption value at
0.8 eV of the corresponding solar cells.

We observe that the performance of all devices deposited at R = 3 Å s−1 is quite insensitive

to damp heat, independent of the substrate. Only the cell prepared on Z5 20’ shows an

unexpected 10% degradation. At higher R, the devices deposited on Z1 and Z2 2’ substrates

are highly unstable and lose up to 40% of their initial performance, which is not the case for

those deposited on smoothed Z5 45’ and Z5 20’. Performances were mostly restored upon

annealing on all substrates and for all R (not shown). Voc and FF separately display the same

behavior as their product (not shown), but it is the instability of FF that mainly drives electrical

performance losses, Voc variations being smaller that 10% for all substrates and R . We can also

confirm from Figure 6.6b that the bulk quality, as measured with FTPS, is not correlated with

stability. Indeed, a much higher defect-related absorption does not lead to a larger damp-heat

instability on smooth substrates (cf. R = 12 and 3 Å s−1). Jsc was not affected by the experiment.

Further insight is given by cross-sectional SEM images of µc-Si:H films deposited on smooth
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Z5 45’ and sharp Z1 substrates at 3 and 12 Å s−1, shown in Figure 6.7.

Figure 6.7: Cross-sectional SEM micrographs of µc-Si:H cells deposited at a high rate of 12 Å s−1

on (a) a smooth Z5 45’ and (b) a Z1 with a higher density of sharp pyramids (b).

Films deposited on Z5 45’ appear very homogeneous, without any porous regions, and are

indistinguishable for the two deposition regimes. On the other hand, although films deposited

at 3 Å s−1 on Z1 display a large density of linear nanoporous regions (dark zones in the SEM

images) as expected, much larger regions of porous material develop during high-rate growth

at 12 Å s−1. This means that the effect of the substrate is not only geometrical: V-shaped

valleys favor the formation of cracks, but also influence the film growth dynamics. Instability

to damp heat together with the above SEM images, suggests that sharp substrate features act

as a morphological barrier to the high-rate growth of compact µc-Si:H films, thus resulting in

porous layers whose electrical properties are strongly affected by water vapor ingress.
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6.4. Impact of the substrate morphology

6.4.3 Filteredµc-Si:H solar cells

In the previous section, we have showed that the influence of the substrate morphology on the

performance of µc-Si:H solar cells depends on the PECVD process itself. Here we will focus on

studying the effect of “pinching” that typically appears after the a-Si:H top cell in micromorph

devices. To investigate this specific pinched morphology on the bottom-cell performance, two

pairs of substrates were added in the three deposition runs made at different R presented in

the last section. These substrates were i) a Z1 and a Z2 covered with a p-i -n a-Si:H top cell

with a 220-nm-thick i -layer suitable for micromorph cells, and ii) a Z1 and a Z2 covered with

a similarly thick but conductive n-(a-Si:H) layer [Kluth 09] whose light absorption is similar

to that of an a-Si:H top cell and whose surface faithfully reproduces the morphology of the

substrates. With substrates ii) we obtained “filtered” single-junction µc-Si:H devices which are

expected to simulate the electrical and optical behavior of the bottom cell in a tandem device.

As shown in Figure 6.8, a severe relative loss of electrical performance with increasing R

is observed on filtered cells; Voc × FF decreases 2–3 times more than on non-filtered cells.

Moreover, filtered solar cells are observed to be more unstable in damp heat tests than the
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Figure 6.8: (a) Initial Voc × FF values for devices deposited on Z1 and Z2 substrates (filled
symbols, same as in Figure 6.5a) and filtered Z1 and Z2 (empty symbols) versus R of he i -layers.
(b) The data in (a) are normalized with respect to device performance at the lowest R, for each
substrate.

corresponding non-filtered devices, with Voc variations of up to 20% with respect to the initial

value for R = 12 Å s−1. On the basis of these observations, we expect the top-cell morphology

to similarly negatively impact the initial Voc and its stability in micromorph devices.

This expectation is confirmed from the results in Figure 6.9a: micromorph devices deposited

on Z2 2’ and Z1 have initial (I) Voc values between 1.30 and 1.35 V, depending on R, which

increase by 40 to 60 mV upon annealing (A) under vacuum at 200 °C for 20’.

In Figure 6.9b we plot the Voc, before and after annealing, of single-junction µc-Si:H cells
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Figure 6.9: (a) Initial Voc (I) and Voc after annealing (A) of micromorph solar cells deposited at
different R on Z2 and Z1 substrates. (b) Initial Voc and Voc after annealing of single-junction
µc-Si:H solar cells deposited on Z5 45’, Z2 2’, Z2 2’filtered, Z1 and Z1 filtered.

deposited on Z5 45’, Z2 2’, Z2 2’ filtered, Z1 and Z1 filtered. The initial Vocs of the micro-

morph devices in Figure 6.9a are 100 mV lower than expected from the sum of the Vocs of

single-junction deposited on optimum Z5 45’ substrates and that of a standard top a-Si:H

cell (Voc ≈ 900 mV); considering the Vocs of single-junction cells deposited on Z2 2’ and Z1

(Figure 6.9b), the micromorph Vocs are still 50 to 70 mV lower than expected. Such a loss

does not come, as is often suggested, from the recombination junction: looking at the Vocs of

filtered cells, we see that the top-cell morphology almost totally accounts for the Voc loss in

micromorph devices, the effect of the recombination junction being on the order of 10 mV,

if present. Moreover, the Voc increase upon annealing is comparable for filtered and micro-

morph devices. Note that approsimately 20 mV of Voc is lost in all cases (compared to sum of

the individual sub-cells’ Vocs) because of the lower current in the bottom cell as compared to

a single-junction cell.

SEM images can help us understand these observations about tandem devices: indeed, the

plan-view SEM images in Figure 6.10 demonstrate that our top-cell deposition process does

not smooth out the V-shaped valleys of the LPCVD ZnO substrate, but rather gives rise to pinch

points with narrowed opening angles. These narrowed openings further increase the potential

of large cracks to propagate, mainly due to shadowing, as further confirmed by the cross-

sectional view SEM micrographs on cells deposited on Z1 filtered presented in Figure 6.11.

Interestingly, we observe that micromorph devices display improved stability of electrical

properties over damp heat/annealing cycles compared to single-junction µc-Si:H and filtered

single-junction µc-Si:H solar cells deposited on the same TCO, as shown in Figure 6.12. In

this figure, the post-deposition treatment T refers to a H2 plasma on the completed cells.

This treatment serves two purposes: i) it provides an annealing step under vacuum for the
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Figure 6.10: Plan-view SEM micrographs at a magnification of 20 000× of a Z2 substrate (left)
and a Z2 on top of which an a-Si:H top-cell was deposited (right).

Figure 6.11: Cross-sectional SEM micrographs of µc-Si:H cells deposited on Z1 filtered at a high
rate of 12 Å s−1 (top) and at a lower rate of 3 Å s−1 (bottom).

µc-Si:H cell, and ii) it leads to a significant increase in the LPCVD ZnO conductivity as detailed

in [Ding 13].

The electrical behavior of the tandem devices is dominated by the a-Si:H top cell which are

responsible for roughly two-thirds of the power generated in the devices. This partly explains

the better stability of the tandem cells compared to the filtered cells. Still, while the Voc

of a tandem cell is roughly the sum of the Vocs of the component sub-cells as previously

discussed, the FF depends in a non-trivial way on the contributions of the sub-cells, the

current-matching condition and, more generally, the overall device design. Significant efforts

are thus currently underway to correctly separate the contributions of the top and bottom cells

to the performance of a tandem device. Several methods are being tested in our laboratory,

such as the use of filtered µc-Si:H cells, as in the present study, or the development of a

current-matching machine [Bonnet-Eymard 13].
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Figure 6.12: Voc × FF stability of filtered µc-Si:H (stars) and micromorph tandem (marbles)
devices with respect to post-deposition treatment (T), damp heat (DH) and annealing (A) versus
µc-Si:H i -layer R. The Voc × FF values are normalized to the initial value for each substrate and
R. Devices deposited on Z1 (left) and Z2 (right) are compared.

6.4.4 Conclusion

In this section we examined the interplay between substrate morphology and the PECVD

process, showing that a morphology that is compatible with low-deposition-rate processes

can be highly detrimental to devices deposited at higher rates. Sharp substrate features

enhance the development of nanoporous regions along the film thickness that can then act as

bad recombination diodes and reduce device stability. When depositing at a higher rate, the

probability of growth precursors finding a favorable site before being incorporated into the film

is reduced, and shadowing can further limit the deposition of dense material at the bottom of

the valleys. We have shown as well that,for micromorph devices, even on smoother substrates,

the a-Si:H top cell typically presents a surface for the µc-Si:H bottom-cell deposition that

is highly unfavorable due to pinching points, inducing a significant Voc loss. More in-depth

understanding is thus required to grow a dense µc-Si:H material at high deposition rates on

rough surfaces.

6.5 Influence of the interelectrode gap

In this section we review the role of the dgap in determining the deposition rate of device-grade

µc-Si:H material. During the PEPPER project, we were able to optimize µc-Si:H layers using

three different interelectrode distances in our KAI-M reactor, namely 22, 12 and 9 mm. To

reach 9 mm we had to modify our aluminum loading plate so that it properly enters the reactor

without any risk of the substrate touching the top electrode, even when lifted up by the pins.

Grooves were defined in the bottom of the aluminum plate for that purpose as can be seen in

Figure 6.13.
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Figure 6.13: Section view of the aluminum spacer installed at the bottom of the reactor to reduce
the interelectrode gap from 22 (left) to 9 mm (right). The drawing is not to scale.

For a given dgap, we optimized the µc-Si:H i -layer recipe for the highest deposition rate

achievable. Practically, we tried to find the best combination of deposition pressure and power

density for the highest target growth rate. However, some limitations were observed for a

given dgap, as too high pressures or ΦSiH4 led instead to a decrease of the film growth rate.

Indeed, above a certain point, as the pressure orΦSiH4 is further increased, more polysilane

and powder formation is observed, increasing the number of silane radicals that are lost

and do not contribute to the growth of the film. A reduction of the interelectrode distance

can overcome this issue mainly by promoting surface reactions on the electrodes instead of

volume reactions in the plasma that lead to powder formation [Strahm 10].

In Figure 6.14a, we summarize the best Voc × FF values ofµc-Si:H solar cells prepared on Z5 45’

that were obtained for each dgap, with an emphasis on the highest growth rate achievable. The

cells were similar in terms of thickness (1.2–1.3 µm) and design, with SiOx doped layers, so

that only the i -layer was varied. The cells were annealed before being measured.
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Figure 6.14: (a) Best Voc × FF values obtained for each dgap using the best deposition pressure
found for the highest target growth rate. (b) Associated defect-related absorption value at 0.8 eV
as measured by FTPS.

For the largest gap of dgap = 22 mm, we observe that the Voc × FF values, which are relatively

low, drop significantly with increasing R from 3 to 7 Å s−1. Higher growth rates could not be
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obtained as a significant fraction of silane radicals are lost to polysilane and dust formation.

Narrowing dgap down to 12 mm shifts the formation of powder to a higher pressure threshold,

so that an increased deposition pressure of 5.5 mbar could be used without any powder issues.

We observe that significantly better-performing devices are obtained for similar R and above,

with an increase of roughly 30% in the Voc ×FF values over the same R range. A much higher

deposition rate of 12 Å s−1 could also be reached, thanks to reduced secondary gas-phase

reactions, allowing for more silane radicals to actually contribute to the growing film. Still,

we again observe this trend of decreasing Voc ×FF values for increasing growth rates. Further

reduction of dgap to 9 mm allowed us to use even higher pressures such as 8–12 mbar, resulting

in improved solar cell performance at larger deposition rates of up to R= 12 Å s−1. A conversion

efficiency of 9.3% was obtained for a single-junction µc-Si:H solar cell on Z5 45’. Since we had

insufficient time to optimize a new p-SiOx layer and p-i interface using the narrow gap of

9 mm, we believe Voc × FF could be even higher.

The defect-related absorption of these µc-Si:H solar cells was measured by FTPS and is shown

in Figure 6.14b. This analysis demonstrated that working at higher pressures, with a narrow

gap, allows for the deposition of very high quality µc-Si:H material at higher R. By reducing

dgap from 22 to 12 mm, we can keep a comparable defect-related absorption value at almost

twice the maximum R value. Then, going from dgap = 12 to 9 mm and using higher deposition

pressures, the defect absorption value is further reduced and an even lower value is finally

measured for R= 15 Å s−1 than for 3 Å s−1 in the larger dgap = 22 mm configuration. Such

improvements can either be attributed to a reduction of ion bombardment, which results

from the increased deposition pressure, or to the plasma chemistry favoring SiH3 radicals, as

further discussed in the next section.

6.6 RF vs. VHF with reduced interelectrode distance

As a follow up to the comparative study of excitation frequencies presented in Chapter 5, both

RF and VHF were again evaluated but with dgap = 9 mm and at a higher growth rate of 7 Å s−1.

A pressure series for the deposition of a 1.3 µm thick i -layer was thus performed for both

frequencies and single-junction solar cells results on Z5 45’ are presented in Figure 6.15a.

It is shown that the deposition pressure does not have a strong impact on the solar cell

performances prepared using VHF, with efficiencies remaining quite stable over the range

of pressure studied. The bulk defect-related absorption slightly decreases with increasing

pressure though, going from 3.3 × 10−3 cm−1 at 6 mbar to 2.2 × 10−3 cm−1 at 12 mbar. On the

other hand, the performances of solar cells prepared using RF strongly rely on the deposition

pressure, going from only 6% at 6 mbar up to 9.1% at 15 mbar. The quality of the bulk phase,

as assessed by the FTPS measurement, is largely improved as well with increasing pressure.

We attribute the different behavior to the associated decreasing ion bombardment energy

when using VHF and the reduced power density required (≈ 0.25 W cm−2) as compared to RF

(≈ 0.5 W cm−2).
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Figure 6.15: (a) Conversion efficiency (filled symbols) and defect-related absorption (empty
symbols) of single-junction µc-Si:H solar cells as a function of deposition pressure using either
RF (red) or VHF (blue). (b) Conversion efficiency of co-deposited micromorphs at initial state
(filled symbols) and degraded state after 800 h LID (empty symbols). The baseline process using
the process at dgap = 12 mm, 9 mbar using RF is indicated as a reference (black).

Micromorphs were prepared on as-grown Z5/2 front-contact (cf. details in Section 2.1) with

a 220 nm thick a-Si:H top cell deposited in a KAI-M reactor, and had their bottom cell co-

deposited with the single-junctions. We observe in Figure 6.15b that tandem cells prepared

using VHF at pressures equal or above 9 mbar have relatively stable and comparable values

both in intial and after 800 hours of LID states. When using RF, a very high pressure of 15 mbar

is required in order to get similar conversion efficiency values, demonstrating that the use

of VHF using the narrow-gap configuration of dgap = 9 mm is not as detrimental as for dgap

= 12 mm and 22 mm (cf. Chapter 5). Indeed, the Voc in this case stays very stable for both

excitation frequencies. However, we still notice that the relative degradation is lower with RF

thanks to higher FF, which may be an indication that although the bulk material of RF is worse

(cf. Figure 6.15a), it is still slightly more dense. The best micromorph stabilized efficiency

attained was 12.3% using VHF at 10 mbar and is presented in detail in Section 9.2.

We also evaluated the influence of a reducedΦH2 when using VHF at 8 mbar and in this case,

going from 2500 sccm to 800 sccm, no improvement in single-junction µc-Si:H solar cell

performance was observed, contrary to dgap = 12 mm (cf. Section 6.3). We even observed a

slight decrease of the conversion efficiencies, with a reducedΦH2 , going from 9.3% to 8.7%. It

could also be related the shift of the onset of powder formation when using such a narrow gap

reactor that prevented us from observing a similar effect.

6.7 Modeling of gas-phase andµc-Si:H film growth mechanisms

To further understand the underlying physics of the growth process and explain some of our

experimental observations, simulations were performed by the University of Patras, using a
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fluid model for silane-based rf discharges. Different sets of plasma deposition conditions

were shared with the University of Patras, within the PEPPER project, and some of the first

results are presented here.

6.7.1 On the role of radicals contributing to the growth

The growth of high-quality a-Si:H and µc-Si:H obtained by PECVD relies, to a significant

extent, on the surface reaction kinetics of the different silane radicals. It has been observed

that the contribution of monoradicals such as SiH3 and Si2H5 is beneficial to obtain a dense

film with good conformal step coverage and a smooth surface. Such radicals have only

one dangling bond and can diffuse over large distances on the growing surface—almost

fully passivated by hydrogen—before finding a suitable silicon dangling-bond to form a Si-

Si bond [Tsai 86, Abelson 93]. Such growth is typically referred to as a surface-rate-limited

chemical vapor deposition (CVD) process, as opposed to what can happen in a physical vapor

deposition (PVD) process in which highly reactive radicals (e.g. SiH2, SiH, Si) lead to poor

step coverage, a rough surface and columnar structures. A grid system was used to measure

the sticking coefficients of SiH3 and Si2H5 [Perrin 98]. These observations are summarized in

Figure 6.16.

Figure 6.16: General view of surface-reaction processes. In (a) silane radicals have a high
surface reaction probability β, leading to poor step coverage, a rough surface and columnar
structures. In (b) silane radicals have a low β value leading to CVD-like growth conditions
with good conformal step coverage, and a dense and smooth film. The top two figures show the
probabilities of re-emission (1−β) and recombination at the surface (γ) that produces volatile
products (e.g. SiH4 and Si2H6). The middle two figures illustrate the deposition thickness
distribution on the grid device used for sticking probability measurement, and the bottom two
figures describe the corresponding step coverage. Figure taken from [Schmitt 89].

100



6.7. Modeling of gas-phase and µc-Si:H film growth mechanisms

Another crucial parameter for a-Si:H and µc-Si:H growth, frequently mentioned in this the-

sis, is the ion bombardment energy, which also affects growth kinetics. It is now commonly

accepted that moderate ion energies can favor the growth of a denser microstructure and

smoother surfaces for a-Si:H [Drevillon 83, Abramov 98, Dalakos 04, Smets 07], a-SiGe:H al-

loys [Perrin 89] or µc-Si:H [Bronneberg 12a]. This is especially true when highly reactive

radicals are involved in the deterioration of the material, in which case a higher ion bom-

bardment energy can enhance the surface mobility and diffusion of adsorbed radicals on the

surface, leading to densification of the material.

6.7.2 Simulations of PECVD ofµc-Si:H

To get a more in-depth understanding of the plasma conditions that effectively lead to a good

µc-Si:H material quality, we present in this section a first glimpse of the simulation results

based on some of the plasma conditions presented in this thesis. Dr. Lefteris Amanatides,

from the University of Patras, is in charge of the plasma simulation code development and

performed all the analysis. Dr. Spyros Sfikas is also acknowledged for all the simulations and

analysis done within the collaboration.

The simulations are based on a two-dimensional code that includes all the main physical and

chemical processes that take place during SiH4/H2 plasma deposition. Namely, the simulation

accounts for gas mixture flow, heat transfer in the reactor, ion and electron masses, momentum

and energy balance, gas phase and surface chemistry, and electromagnetic propagation in the

rf electrode and plasma. A set of 25 species together with a total number of 112 reactions (85

in the gas phase and 27 surface gas interactions) is included in this version of the model. The

chemistry of polysilane formation was also added to the model during the project: all possible

polymerization processes were taken into account, including small polysilane formation (up to

12 Si atoms) through negative ions, cations and free radicals. The simulations were performed

for the geometry of our PlasmaBox KAI-M reactor. A detailed description of the model can be

found in [Lyka 06], and an updated description is given in [Amanatides 11].

VHF hydrogen flow rate series

The ΦH2 series performed using VHF at a constant pressure of 5.5 mbar and growth rate of

10 Å s−1 with dgap = 12 mm was chosen for further investigation through simulation. Indeed,

we could evidence with this series that reduced ΦH2 leads to a denser µc-Si:H material on

textured substrates (cf. Sections 4.2.1 and 6.3).

The rf voltage on the electrode was scaled in the simulation to match the experimentally

observed deposition rate. The ion bombardment energy flux φion was calculated as well. We

also report the ratio of the monoradicals SiH3 and Si2H5 over the highly reactive radicals SiH

and SiH2, i.e. Υ= (SiH3 +Si2H5)/(SiH+SiH2). The results of the simulations are presented in

a condensed form in Table 6.3.
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Table 6.3: Plasma parameters calculated by the simulation code for theΦH2 series done using
VHF at a constant pressure of 5.5 mbar and growth rate of 10 Å s−1 with dgap = 12 mm.

ΦH2 (sccm) Voltage (V) Power (W)
ne

(1010 cm−3)
φion

(mW cm−2)
Υ (103)

300 80 487 2.25 2.52 39.1

600 95 576 2.15 3.15 6.9

800 90 524 1.80 3.47 4.1

1200 105 646 1.80 3.58 2.9

2000 110 690 1.55 3.52 2.4

We see that Υ significantly increases with low ΦH2 values. The loss of highly reactive silane

radicals happens mainly through the following reactions:

SiH+SiH4
k1−−→ Si2H5, with k1 = 6.9×10−10 × [

1− (1+0.44×p[mbar])−1
]

(cm−3 s−1), and

SiH2 +SiH4
k2−−→ Si2H**

6 , with k2 = 2×10−10 × [
1− (1+0.44×p[mbar])−1

]
(cm−3 s−1).

Si2H**
6 can then react with atomic hydrogen to form Si2H5. The rate constants k1 and k2, taken

from [Perrin 96], are a function of pressure as the products require third-body stabilization.

The increased rate at which SiH and SiH2 are lost is linked to the higher silane density in

the reactor. Indeed, the silane concentration in the plasma cp , as measured by an IR laser

spectrometer in the exhaust line, increases going from 1.1% at ΦH2 =2000 sccm to 2.3% at

ΦH2 =600 sccm, while Υ increases by a factor > 2 (recall that c and D increase as well, going

from 6 to 17%, and 80 to 85%, respectively over the sameΦH2 range). cp could unfortunately

not be measured in the lowestΦH2 =300 sccm conditions due to experimental limitations (cf.

details in Section 4.2.1 and Table 4.1).

RF pressure series

The pressure series performed using RF at a constant growth rate of 5 Å s−1 with dgap = 12 mm

was also selected as an interesting set of conditions to perform plasma simulations. In this case,

we observe a steady decrease in the µc-Si:H bulk defect-related absorption as the pressure is

increased (cf. Section 5.3.1). The results of the simulations are presented in a condensed form

in Table 6.4.

As expected, φion decreases with increasing pressure, going from 0.7 mW cm−2 at 6 mbar to

0.3 mW cm−2 at 15 mbar. A significant increase inΥwith increasing pressure is also observed.

Here, the important losses of highly reactive species, such as SiH and SiH2, are related mostly

to an increase in secondary gas-phase reactions with hydrogen which are favored under

high-pressure conditions, such as
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Table 6.4: Plasma parameters calculated by the simulation code for the pressure series using RF
at a constant growth rate of 5 Å s−1 with dgap = 12 mm.

Pressure
(mbar)

Voltage (V) Power (W)
ne

(109 cm−3)
φion

(mW cm−2)
Υ (103)

6 220 422 3.35 0.67 26.8

9 160 351 3.20 0.39 40.1

15 110 234 2.25 0.30 148.2

SiH+H2
k3−−→ SiH3, with k3 = 2×10−12 × [

1− (1+0.04×p[mbar])−1
]

(cm−3 s−1), and

SiH2 +H2
k4−−→ SiH4, with k4 = 3×10−12 × [

1− (1+0.04×p[mbar])−1
]

(cm−3 s−1).

The rate constants k3 and k4 also depend on pressure and are again taken from [Perrin 96]. In

Figure 6.17 we compare generation rate profiles of SiH3 and SiH radicals and their steady-state

densities in the plasma. We see that the steady-state profile of SiH radicals is very close to the

generation profile. This is due to the highly reactive nature of this radical especially under

high-pressure conditions that favor secondary gas-phase reactions and limit its diffusion. On

the other hand, the steady-state density profile of SiH3 radicals has a bell shape. This is an

indication that diffusion dominates mass transport and SiH3 losses are determined mainly by

surface reactions.
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Figure 6.17: Generation profiles and steady-state densities of SiH3 radicals (a) and SiH radicals
(b) using RF at 15 mbar for R=5 Å s−1 and dgap = 12 mm (cf. details in text).

In Figure 6.18a the average electron temperature profile is plotted for increasing plasma

deposition pressure. The profiles tend to smooth out with increasing pressure, with lower

values near the sheaths and higher values in the bulk of the plasma. This is due to the

much higher concentration of negative ions at high pressures. Indeed, the density of the

most dominant Si2H–
5 anion is about three times higher at 15 mbar as compared to 9 mbar.
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Figure 6.18: (a) Average electron temperature and (b) potential profiles as a function of deposi-
tion pressure using RF at 15 mbar for R=5 Å s−1 and dgap = 12 mm (cf. details in text).

These ions are much heavier than electrons and SiH+
3 ions and their transport is much slower.

These anions can induce charge separation and strong short-range fields in the bulk of the

plasma that tend to heat up electrons, raising their temperature to maintain the quasi-neutral

condition. In Figure 6.18b the average plasma potential is seen to decrease with increasing

pressure going from ≈60 V at 6 mbar to ≈25 V at 15 mbar. With the increase in pressure, we

need to decrease the applied rf voltage, which is an input parameter for the simulation, in

order to obtain the same deposition rate.

6.7.3 Conclusions and perspectives on the plasma simulations

These are only the first analyses of the set of conditions shared with the University of Patras.

The encouraging results highlight the important contributions of the different silane radicals to

the growth of the film. In both sets reported improvement in the µc-Si:H quality is associated

with an increased Υ = (SiH3 +Si2H5)/(SiH+SiH2) ratio of radicals contributing to the film

growth. An in-depth analysis of these results is still required and will be pursued. Further

improvements to validate the simulation code should also be continued (e.g. systematic

measurements of Vpp, Te and actual power coupled into the plasma). Furthermore, the

development of a kinetic Monte Carlo code for the simulation of growth kinetics is also

underway at the University of Patras. In this code, the species fluxes towards the surface can be

imported as an input and simulations should provide important microstructure parameters of

the silicon thin films (e.g. φc , microstructure factor, hydrogen content, roughness, formation

of cracks, etc.). The development of such simulation tools are of the utmost importance

to TF Si technology in general and for PV in particular, as they elucidate the physics that

would otherwise remain hidden from the experimentalist so that a better understanding may

hopefully lead to an improved control of the material.
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6.8 Conclusion

In this chapter, we demonstrated that an increase in secondary gas-phase reactions, as ob-

tained here with reducedΦH2 , as well as increase in pressure, both favor the growth of dense

µc-Si:H material, leading to better-performing solar cells. The strong interplay between the

µc-Si:H growth rate and substrate morphology with regard to the formation of nanoporous

regions was also clearly shown. The beneficial effect of reduced interelectrode distances

is validated: with a reduction in powder formation, the use of higher pressures becomes

accessible, improving gas utilization efficiency and reducing ion bombardment energy at

high growth rates. This results in improved material quality, as assessed by FTPS, and very

high-performance µc-Si:H solar cells. While the use of RF instead of VHF with the narrow

gap configuration led to a more defective bulk phase (requiring very high power densities),

which limited the solar cell efficiencies, the cells were also more stable, which suggests that

the formation of nanoporous regions formation was less favorable.

In the second half of this chapter, the important role of the contributions of the different

silicon radicals to silicon growth were discussed in the framework of simulations performed in

collaboration with the University of Patras. In light of the first simulation results discussed, it

seems like secondary gas-phase reactions, which are favored at higher pressures, are possibly

the main reason for a decrease in the detrimental participation of highly reactive species, such

as SiH and SiH2. High-pressure plasmas are thus desirable to promote the relative contribution

of SiH3 and Si2H5, provided significant powder formation is not an issue, which can be solved

by further reducing the interelectrode distance.

Overall, this chapter evidences the need for better control of the growth kinetics of thin-film

silicon, in particular for PV applications, where high growth rates must be combined with

highly textured substrates.

105





7 Intrinsic stress in µc-Si:H

In this chapter, intrinsic compressive stress within µc-Si:H i -layers is evaluated and tentatively

correlated to structural characterization of the material or the associated solar cell perfor-

mance. In Section 7.3, we demonstrate a trend in which low-stress µc-Si:H favors improved

cell performance. We observe that increased pressure and depletion tend to reduce intrinsic

stress in the material. In Section 7.4, we show that intrinsic stress is closely related to the

bulk defect density of µc-Si:H i -layers deposited at the same growth rate, assuming the same

Raman crystalline fraction. However, similarly as with FTPS or FTIR spectra, we demonstrate

in Section 7.5 that intrinsic stress tests are unable to discriminate between materials with

identical bulk quality signature but leading to a porous or a dense material once integrated in

an actual solar cell.

7.1 Introduction

Intrinsic stress analysis of thin films gives important clues about their actual growth con-

ditions [Hu 91, Windischmann 91]. Ions with moderate energies significantly improve the

quality of deposited a-Si:H—by promoting surface diffusion, decreasing the material porosity

(density of nanosized voids), and reducing defect density [Hamers 98, Smets 06]. Increasing

ion bombardment energy is typically associated with a stress reversal, going from tensile to

compressive. However, higher-energy ions can lead to detrimental effects by creating further

vacancies within the material (e.g. through Si atom bulk displacement) and reducing the

growth rate because of ion-sputtering processes.

In particular, hydrogen was shown to play a determining role in the compressive stress build-

up towards µc-Si:H nucleation [Kroll 96, Fujiwara 02]: H insertion within the a-Si:H film leads

to high Si–Si strained bond density and the creation of more SiHn (n=1–2) complexes. In

view of this, we also understand how high-energy ion bombardment, which can involve H+

implantation, may favor the formation of porous layers and be beneficial for the nucleation

of crystallites [Kalache 03]. Interestingly, there is a link between compressive stress in a-Si:H

and photodegradation [Stutzmann 85, Powell 02]. Compressive stress can lead to further
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weakening of short strained Si-Si bond affecting the kinetics of dangling bonds creation upon

light soaking.

Since µc-Si:H quality was shown to be driven by the quality of both bulk and porous zone

phases (see Chapter 4), we want to examine whether intrinsic stress on its own can give

relevant information about those phases. Different methods exist to evaluate intrinsic stress

in µc-Si:H films, namely: (i) the shift of the c-Si mode with Raman spectroscopy (although

limited by the penetration depth of the wavelength used), (ii) the broadening of XRD peaks

and (iii) the wafer bending method. The latter was chosen as it gives a macroscopic estimation

of the stress in our material close to the transition region (Raman crystallinity factor φc of

60%–70%), as opposed to the other two methods which rely on the stressed crystalline phase

only.

7.2 Experimental details

A medium-sized KAI system was used to deposit all the µc-Si:H layers and solar cells in this

study (see details in Section 2.1). The KAI-M interelectrode distance was set at 12 mm, the

deposition temperature was set at 180 ◦C, and the excitation frequency was set at 40.68 MHz.

Layers were co-deposited on both Schott AF45 glass substrates and silicon wafer to ana-

lyze their properties. Micro-Raman spectroscopy was used to estimate φc of the µc-Si:H

layers [Vallat-Sauvain 06], using the emission line of an Ar+ laser at 514 nm. Special care

was taken to always have comparable φc . Spectroscopic ellipsometry measurements were

conducted over a wide energy range (0.6–6.0 eV) with a phase-modulated spectroscopic ellip-

someter (UVISEL 2 Horiba Jobin Yvon) to precisely assess film thickness and composition on

both types of substrate.

Stress measurements were done with µc-Si:H layers deposited on Si(100) wafer strips with an

Ambios XP-2 surface profiler. Wafer strip were 50 × 8 × 0.3 mm3 for the low-deposition-rate

regimes (Section 7.3) and 50 × 10 × 0.3 mm3 for the high-rate regimes (Section 7.5) and the

pressure series (Section 7.4). Intrinsic stress in the film (σ) was calculated using Stoney’s

formula

σ= 1

6r

E

(1−ν)

d 2
s

df
, (7.1)

with r the radius curvature, approximated here as r = L2/8B with the wafer strip length L

and bow height B (as L À B), E Young’s modulus of silicon, ν Poisson’s ratio, ds the substrate

thickness and df the deposited film thickness [Brenner 49]. The ratio E/(1−ν) value was

taken as 180.5 GPa as reported in [Brantley 73] for Si(100). Based on the uncertainties in the

determination of L, B and df, we estimated the error for total stress to be within 20 MPa.

Standard p-i -n solar cells were prepared to evaluate the material quality of approximately

1-µm-thick µc-Si:H absorber layers. The front contacts were Z5 45’ textured zinc oxide treated
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7.3. First observations at low deposition rates

by an argon-based plasma, and the back contacts a Z2 (see details in Section 2.1). The back

contacts were also covered with a white dielectric reflector. Open-circuit voltage (Voc) and

fill factor (FF) were derived from current-voltage curves, obtained using a Wacom AM1.5G

solar simulator, and short-circuit current density (Jsc) was derived from external quantum

efficiency (EQE) measurements.

7.3 First observations at low deposition rates

In this section, plasma diagnostic techniques and thin-film material characterization were

used to identify the deposition parameters necessary to obtain low-stress µc-Si:H, and to

investigate its performance when used as an absorber layer. A relationship between low

intrinsic stress in the deposited i -layer and better-performing solar cells is identified.

7.3.1 Plasma deposition conditions

A power series for the deposition of the µc-Si:H i -layer was done at a pressure of 3.5 mbar

using VHF. The silane flow (ΦSiH4 ) was adjusted to keep comparable φc of between 50 and

60% within the i -layer for all regimes. Silane dissociation efficiency (D) was evaluated by

tunable IR laser spectrometry, allowing the analysis of rotovibrational absorption lines of

silane directly through the exhaust line of the deposition system [Bartlome 09]. This allowed

for the estimation of both the silane concentration in the plasma (cp ) and the expected growth

rate of the film. Powder formation was diagnosed using visible laser light scattering in the

exhaust line of the reactor. Table 7.1 summarizes the deposition conditions of the µc-Si:H

i -layers that were used in the solar cells and characterized in this section.

Table 7.1: Summary of µc-Si:H i -layer deposition conditions.

Freq. p Pd R ΦSiH4 ΦH2 D cp τres.

(mbar) (W cm−2) (Å s−1) (sccm) (sccm) (%) (%) (s)

VHF 3.5

0.05 1.4 50 2000 22.9 1.9 0.23

0.10 1.8 53 2000 32.5 1.7 0.23

0.15 2.5 60 2000 34.3 1.9 0.23

VHF
3.5 0.10 2.0 32 800 54.6 1.7 0.55

7.0 0.15 3.7 43 2500 41.5 1.0 0.45

RF
5.0,

22 mm gap 0.10 1.7 26 2500 - - 0.47

A high silane dilution in hydrogen (ΦH2 /ΦSiH4 ) of between 33 and 40 was used to minimize

powder formation. The absence of powder was further confirmed by a laser-light scattering

experiment and silane depletion measurements, which indicated that all silane dissociated
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in the plasma contributed to film growth. Based on these deposition regimes, we developed

two new regimes with increased silane depletion—through increased pressure or reduced

ΦH2 —which was already identified as an important factor for material quality in previous

chapters.

Time-resolved optical emission spectroscopy (OES) was also used as a non-intrusive diagnos-

tic technique [Fantz 98, Howling 07] for the power series. Emission intensities from the H2

Fulcher (600–630 nm) and G0B0 (461–464 nm) lines were integrated as both originate from

electron-impact excitation of the H2 ground state but with different emission-rate-coefficient

dependencies on electron temperature Te. Hence the ratio IG0B0 /IFul allows us to check Te

variation over time, and in particular from ignition to steady-state equilibrium. SiH∗ emis-

sion (409–423 nm), originating from electron impact SiH4 excitation, along with proper H∗
2

background subtraction, was used to derive information about silane density in the plasma.

Time-resolved OES measurements, presented in Figure 7.1, show that the ratio of hydrogen

to silane radicals flowing to the growth surface increases upon increasing the power density

from 0.05 to 0.10 and 0.15 W cm−2, while Te remains constant. This might be an indication

Figure 7.1: Evolution of IG0B0 /IFul (left) and Hα/SiH (right) emission intensity ratio of a SiH4/H2

plasma at a pressure of 3.5 mbar with increasing rf power of 150, 300 and 450 W (corresponding
to 0.05, 0.10 and 0.15 W cm−2power densities, respectively).

that a change in the plasma chemical composition is responsible for the deterioration of the

µc-Si:H material properties. However, modifications of surface reactions on the growing film

cannot be excluded.

7.3.2 Material characterization

Intrinsic stress was measured after depositing the µc-Si:H layers using the deposition regimes

detailed in Table 7.1. A µc-Si:H p-layer identical to that used within the solar cell devices was

systematically deposited before the i -layer to be analyzed, and is included within the total
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7.3. First observations at low deposition rates

thickness of 300 nm common to all of these samples. This was done in order to get a good

nucleation layer on top of the c-Si native oxide, and to limit differences coming from possible

incubation layers that could develop, depending on the deposition regimes.

Figure 7.2 shows µc-Si:H compressive intrinsic stress, as a function of the plasma deposition

conditions, withφc around 60%. We see that intrinsic stress increases for samples deposited at

1 5 0 3 0 0 4 5 0
- 4 0 0

- 4 5 0

- 5 0 0

- 5 5 0

- 6 0 0

- 6 5 0

- 7 0 0

- 7 5 0
0 . 0 5 0 . 1 0 0 . 1 5

0 1 0 2 0 3 0 4 0 5 0
0

5

1 0

1 5

2 0

2 5

3 0

0 1 0 2 0 3 0 4 0 5 0

0

5

1 0

1 5

2 0

2 5

3 0

 P o w e r  s e r i e s  a t  3 . 5  m b a r
         2 0 0 0  s c c m  H

2
 w i t h  s i l a n e  f l o w  a d j u s t e d

P o w e r  d e n s i t y  ( W  c m - 2 )

2 . 5  Å . s - 1

3 . 7  Å . s - 1

2 . 0  Å . s - 1

1 . 8  Å . s - 1

 

 

7 . 0  m b a r

Co
m

pr
es

si
ve

 st
re

ss
 (M

Pa
)

P o w e r  ( W )

8 0 0  s c c m  H
2

1 . 4  Å . s - 1

C u r v a t u r e  o f  
w a f e r  s t r i p s  d u e  
t o  i n t r i n s i c  s t r e s s  
i n  µc - S i : H  f i l m s

8 0 0  s c c m  H
2

7 . 0  m b a r

 

4 5 0 W

P o s i t i o n  ( m m ) 
 

Bo
w

 h
ei

gh
t (

µm
)

1 5 0 W

Figure 7.2: Intrinsic stress in µc-Si:H films deposited on Si(100) wafer strips with various
deposition parameters. Inset: Surface profiles of bent wafer strips as measured with profilometer.

higher power densities, for constantΦH2 and pressure. Interestingly, for the deposition done

at 0.10 W cm−2, reducingΦH2 from 2000 to 800 sccm, and adaptingΦSiH4 to obtain the same

φc , decreased the stress in the film from −649 to −600 MPa. The most remarkable decrease

is observed at 0.15 W cm−2: by increasing the pressure to 7.0 mbar stress drops from −678 to

−481 MPa.

The power series was repeated with thicker films deposited on single-side-polished c-Si wafers

for Fourier transform infrared spectroscopy (FTIR) to get chemical bonding information. This

analysis difficult as only thin µc-Si:H films of around 600 nm could be deposited for com-

parison, as thicker films would immediately peel off when prepared at high power density.

The IR spectra show no significant differences between the low- and high-power deposition

regimes in terms of hydride stretching modes. In particular we do not see the signature of nar-

row high-hydride stretching modes (NHSMs) characteristic of hydrogenated crystalline grain

boundaries and poor electronic properties [Smets 08]. However, strong Si–O–Si stretching

modes (around 1100 cm−1) are observed for the layer deposited at 0.15 W cm−2 and are com-

pletely absent at 0.05 W cm−2 (Figure 7.3). This indicates that the material deposited at higher

power is more porous and susceptible to post-deposition oxidation (all the measurements

were done immediately following deposition for all samples).
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Chapter 7. Intrinsic stress inµc-Si:H

Figure 7.3: IR spectra of 600 nm-thick µc-Si:H films deposited on single-side-polished c-Si at
0.05 and 0.15 W cm−2.

A relative increase in bonded hydrogen content of 19% is observed by integrating the wagging

mode at 640 cm−1, going from 4.0 to 4.8% in absolute value. The differences observed here may

be ascribed to varying hydrogen inclusion within the µc-Si:H layers, either in clustered (Si–Hx )

or molecular (H2) form [Kroll 96]. Since enhanced hydrogen incorporation and increased

instability with increased power density is supported by this FTIR analysis, we suggest that

the crystalline grain boundaries are indeed more poorly passivated by hydrogen at higher

power density. The fact that we could not see NHSMs in the IR spectra may come simply from

insufficient signal from the thin layers analyzed, resulting in insufficient signal-to-noise ratios

for this type of characterization.

Total hydrogen content was also evaluated by hydrogen forward scattering (HFS) spectrometry,

also known as elastic recoil detection analysis (ERDA). The method relies on the scattering

of He2+ ions at grazing incidence to the sample; the ions knock off H atoms which are then

analyzed to quantitatively profile the hydrogen concentration in the thin film. Since quantifi-

cation of hydrogen concentration by SIMS can be very difficult, this method is usually favored

to evaluate the concentration of both 1H and 2H elements. It has the advantage over FTIR

spectroscopy that not only bonded hydrogen is measured, but non-bonded hydrogen is as

well. This means that molecular hydrogen trapped in microvoids can also be measured with

this technique. With HFS, a relative increase in hydrogen content of 26% is observed between

the low- and the high-power regimes, going from 8.7 to 11% in absolute value. However, the

regime at 0.10 W cm−2 with lowerΦH2 , also exhibits a “high” value close to 11% although the

stress is lower. Thus, although hydrogen content may influence the intrinsic stress of µc-Si:H

layers, we cannot define a clear correlation at this point.
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7.3. First observations at low deposition rates

7.3.3 Solar cell performance

Single-junction p-i -n µc-Si:H solar cells with their absorber layer deposited using the regimes

described in Section 7.3.1 and detailed in Table 7.1 were prepared. i -layers of 1.0 and 2.5 µm

were evaluated for the newly developed regimes. Solar cell efficiency as a function of absorber

layer intrinsic stress is plotted in Figure 7.4.
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Figure 7.4: Best efficiencies of 1.0-µm-thick (open symbols) and 2.5-µm-thick (filled symbols)
p-i -n µc-Si:H solar cells as a function of absorber layer intrinsic stress (detailed in Table 7.1).
Both dashed lines are guides to the eye for the thickness series.

Overall, a clear increase in cell performance is observed with reduced intrinsic stress. Looking

specifically at the RF power series, we see deterioration of all p-i -n solar cell parameters with

increased power density and the associated compressive stress. Going from only 0.05 to 0.10

and 0.15 W cm−2, the efficiencies drop from 7.5, to 6.3 and 5.0%, respectively. Voc drops from

510 to 410 mV, FF from 72 to 63% and Jsc from 20.4 to 19.4 mA cm−2. The silane dissociation

increases and the deposition rate increases slightly from 1.4 to 2.5 Å s−1, corresponding to

low silane depletion fractions between 23 and 34%. Since the pressure already has a relatively

quite high value of 3.5 mbar, this deterioration can hardly be explained by increased mean ion

energy at such power densities.

On the other hand, the newly developed deposition regimes with increased depletion—i.e. with

reduced ΦH2 or increased pressure, which are both associated with a lower stress in the

material—lead to higher-efficiency devices. This occurs mainly through improved Voc and FF :

for the 0.10 W cm−2 regime, reducedΦH2 lead to an efficiency similar to that obtained using

the lowest power density, despite an enhanced growth rate from 1.4 to 2.0 Å s−1. At a higher

pressure of 7.0 mbar, higher-quality µc-Si:H is achieved as demonstrated by the high Voc of

535 mV, FF of 74.6%, Jsc of 19.7 mA cm−2 and efficiency of 7.9%for a 1.0-µm-thick solar cell.

Solar cells were also prepared using the low-deposition-rate RF regime detailed in Section 5.2.1
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with a 22 mm gap, as it led to the best cell performance at the time of the study. The results

shown in Figure 7.4 confirm the observed trend, showing further improvement in the solar

cell efficiency with decreased stress in the material. Using the same cell structure, we even

pushed the solar cell efficiency to 8.6% by increasing the i -layer thickness to 2.5 µm.

7.3.4 Conclusion

In this section, we presented various low-deposition-rate conditions for µc-Si:H films used as

absorber layers in single-junction solar cells and quantified the films’ intrinsic stress. Within

the range of our study, increased pressure and reduced hydrogen flow rate during deposition

reduced stress, whereas higher power densities tended to increase it. The origin of the stress

and the role of hydrogen were discussed, although we could not find a clear relationship

between them. Low-stress intrinsic µc-Si:H allowed for the fabrication of better-performing

solar cells.

The next sections present stress measurements of µc-Si:H layers deposited at constant and

higher growth rates. Such layers were discussed in the previous chapters, and were chosen

specifically for this stress study as they were known to lead to increased bulk defect density, or

to the formation of significant nanoporous zones once deposited on textured surfaces.

7.4 Relationship toµc-Si:H bulk defect density

In this section, we review the influence of the deposition pressure on the intrinsic stress of

the µc-Si:H i -layer, while keeping the growth rate constant at 5 Å s−1 using RF. This pressure
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Figure 7.5: Voc × FF (left) with both the best (symbol) and the mean (bar) value out of the 10
best cells, and the associated FTPS defect absorption value at 0.8 eV (right), for µc-Si:H solar
cells with their i -layers prepared using RF at 5 Å s−1 with increasing pressures or at 3 Å s−1 at a
pressure of 9.0 mbar.

series was chosen for the intrinsic stress study as a clear improvement of the bulk material
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7.4. Relationship to µc-Si:H bulk defect density

quality and solar cell performance was observed with increased pressure in Section 5.3.1.

Only one new regime at an even lower pressure of 3.0 mbar was developed for this specific

study. Figure 7.5 summarizes the defect analysis and cell performance that were presented in

Section 5.3.1.

Intrinsic µc-Si:H layers 600 nm in thickness were deposited on top of a thin nucleation layer

on 50 × 10 × 0.3 mm3 wafer strips. φc was adjusted to be constant at 70% throughout the

series. Wafer bending and the associated i -layer compressive stress as a function of deposition

pressure are plotted in Figure 7.6. A significant drop of the i -layer compressive stress is first
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Figure 7.6: Left: Bending of (110) c-Si wafer strips induced by the compressive stress of 600-
nm-thick µc-Si:H i -layers deposited using increasing pressures from 3.0 to 15.0 mbar. Right:
Compressive intrinsic stress values derived from the radius of curvature of the samples and the
deposited film thicknesses.

observed when the pressure is increased from 3.0 to 9.0 mbar going from −640 to −302 MPa.

Above 9.0 mbar, although the stress is still reduced, the slope is less steep and the lowest value

of −253 MPa is attained at 15 mbar. Using similar conditions we also evaluated the intrinsic

stress of the best µc-Si:H intrinsic material developed during this thesis, deposited at 9.0 mbar

using RF (see details in Section 5.4.1). We see that its intrinsic stress is even lower, reaching

−204 MPa.

This pressure series at a constant growth rate of 5 Å s−1 demonstrates a clear relationship

between the compressive intrinsic stress, the bulk defect density of the µc-Si:H i -layer and the

associated solar cell performance.

Changes in the ion bombardment energy and the ion/neutral radical flux ratio are likely

responsible for these observations. However it was impossible to measure these quantities

in our system during this study. Further work should be done to better understand the

relationship between the ion energy flux and the intrinsic stress of the deposited material.

Plasma characterization tools such as an impedance sensor probe, Vpp probe and rf biased

Langmuir probe (e.g. such as the recently released Impedans Ltd. Plato Probe) could help in
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this regard. Increased ion bombardment can indeed lead to sputtering or create structural

defects with energetic ions that can implant within the deposited material, inducing Si bulk

displacement mechanism and increasing the formation of voids [Smets 06].

7.5 Intrinsic stress andµc-Si:H porosity in complete solar cells

Finally, we evaluate the intrinsic stress of µc-Si:H i -layers that are deposited using conditions

leading to the growth of dense or porous µc-Si:H once incorporated in solar cells. The hydro-

gen flow rate series, presented in Chapter 4, was achieved through increased ΦH2 at a high

growth rate of 1.0 nm s −1. Very high depletion regimes were used as D was always above 80%

here. The power density was adjusted for each regime to get similar φc . Table 7.2 summarizes

the deposition conditions.

Table 7.2: Deposition parameters of the i -layer for theΦH2 series using VHF, a constant growth
rate of 10 Å s−1, using dgap = 12 mm. D and cp are obtained from IR laser spectrometer.The
associated single-junction µc-Si:H solar cell efficiencies and i -layer intrinsic stress values are
also indicated.

ΦH2

(sccm)
Pd

(W cm−2)
D

(%)

cp

(%)
τres.

(s)

Best cell
efficiency

(%)

Intrinsic
Stress
(MPa)

300 0.34 - - 1.74 7.9 -

600 0.35 85 2.3 1.01 7.4 −102

800 0.37 84 1.9 0.79 7.2 −112

1200 0.39 83 1.5 0.55 6.8 −108

2000 0.40 80 1.1 0.34 6.4 −117

We recall that for this series no differences in the µc-Si:H material quality were found unless

the µc-Si:H was incorporated in the cell on a rough substrate. Indeed, neither FTPS, FTIR, nor

XRD can discriminate between the layers, as such characterization techniques are assumed

to be sensitive only to the bulk quality of the material. However, once deposited on top of

a rough surface such as LPCVD ZnO, high-ΦH2 deposition regimes lead to the formation of

nanoporous regions when the growing fronts encounter each other.

For this study, 600-nm-thick i -layers were deposited on top of a thin and highly crystalline

nucleation layer on 50 × 10 × 0.3 mm3 wafer strips. φc was held constant thorough the series

at a high value of around 75–80%. The higher φc values, obtained in this series of layers, are

attributed to the nucleation layer which differs from the previous films (and the actual solar

cells) by the absence of trimethylboron—which is known to hinder the crystalline growth—

during its deposition. The stress was evaluated again through the wafer bending method

and the measurements are presented in Table 7.2. The lowest ΦH2 conditions could not be

evaluated as our new process pumps did not allow us to reach such a high pressure with such
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a low gas flow rate.

We observe that the intrinsic stress values of all of these layers lie within −100 to −120 MPa.

Considering the margin of error of ± 20 MPa, no significant trend can be correlated to the

formation of the nanoporous regions which reduce the conversion efficiency of µc-Si:H solar

cells once in the cell, as depicted again in Figure 7.7.

2000 sccm H2 (5.7% silane concentration)

300 sccm H2 (28.6% silane concentration)

Figure 7.7: SEM images of µc-Si:H p-i -n solar cells with their i -layers deposited at 10 Å s−1

using a highΦH2 of 2000 sccm (top) and a lowΦH2 of 300 sccm (bottom) with SiOx doped layers
on the smoothest substrate Z5 60’. The cells have SiOx doped layers and are on Z5 60’.

The compressive stress values are also much lower than those reported earlier in this chapter,

which can be attributed to the enhanced growth rate, but more importantly to the higher

crystalline fraction. Residual stress coming from the a-Si:H phase is reduced and stress can be

released at grain boundaries. This was also observed in other studies [Fu 05, Christova 10].

The results of thisΦH2 series indicate that intrinsic stress on its own cannot determine µc-Si:H

quality once it is embedded in a cell with highly textured interfaces. As with the previous

techniques, such as FTIR and FTPS detailed in Section 4.2.2, no difference can be seen in

terms of stress unless the bulk material is significantly affected by the deposition regime. This

suggests that in this case, the disappearance of nanoporous zones on top of highly textured

surfaces with decreased ΦH2 is not related to a densification process (for which a stress

signature would have been expected), but more likely to a reduction of highly reactive radicals

(e.g. SiH2, SiH, Si) contributing to the Si film growth, as discussed in Section 6.3. However, this

observation applies only to the limited range of our investigation—relatively high φc s—and

further tests should be conducted to ensure the absence of a correlation between intrinsic

stress and µc-Si:H material densification on highly textured morphologies.
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7.6 Conclusion

Intrinsic stress of µc-Si:H layers was measured to evaluate its relevance with regard to the

performance of single-junction solar cells with µc-Si:H absorber layers. We showed that under

moderate silane depletion conditions, decreasedΦH2 and increased pressure resulted in lower

stress in the material and better performing solar cells. Further experiments done at constant

growth rate demonstrated that intrinsic stress of the µc-Si:H is strongly correlated to the bulk

defect density as measured from FTPS, both of them being symptomatic of increased ion

bombardment energy.

Additionally, µc-Si:H i -layers having the same bulk quality signature, but leading to either

porous or dense material once deposited onto rough surfaces could not be distinguished by

their intrinsic stress values. This suggests that a densification process is not responsible for

the improvements observed in the cells, but rather a change in the growing film precursors.

This study highlights the difficulties in assessing the µc-Si:H material quality outside of an

actual solar cell device. In devices, the necessary underlying roughness tends to discrimi-

nate between the plasma deposition conditions that may or may not favor the formation of

nanoporous zones, even if the µc-Si:H bulk electrical properties are similar.
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8 Silicon oxide buffer layer at the p-i
interface in µc-Si:H and a-Si:H solar
cells
In this chapter we present the use of a novel intrinsic silicon oxide buffer layer at the p-i

interface of thin-film silicon solar cells and show that its implementation provides significant

advantages. For microcrystalline silicon solar cells, with highly crystalline i -layers deposited

at high rates, all electrical parameters are improved. Larger efficiency gains are achieved with

substrates of increased roughness. For cells with improved i -layer material quality, there is a

gain mainly in short-circuit current density. An improvement in carrier collection in the blue

region of the spectrum is systematically observed for all the cells. The presence of a silicon

oxide buffer layer also promotes the nucleation of the subsequent intrinsic microcrystalline

silicon layer. In amorphous silicon solar cells, the silicon oxide buffer layer is proven to act as an

efficient barrier to boron cross-contamination, eliminating the need for additional processing

steps (e.g. a water vapor flush), while providing a wide-bandgap material at the interface.

The implementation of silicon oxide buffer layers thus provides a decisive improvement for

both types of cells, as it allows extremely fast deposition of the full p-i -n stack of layers of the

cell in a single-chamber configuration while providing a high-quality substrate-resilient p-i

interface.

8.1 Introduction

Excellent control of interfaces in thin-film silicon solar cells has been assumed to be of prime

importance to achieve high-efficiency devices. For both hydrogenated amorphous (a-Si:H)

and microcrystalline (µc-Si:H) silicon solar cells, the open-circuit voltage (Voc) is typically

determined by the doped layers, the mobility gap of the intrinsic material and its bulk proper-

ties, but also by the relative amount of recombination occurring at the p-i interface region.

Moreover, in the p-i -n configuration, this interface may fulfill the additional role of barrier

for boron cross-contamination. For an a-Si:H cell, implementation of a wide-bandgap buffer

layer at the p-i interface can accommodate for the band offset and reduce the back-diffusion

of electrons into the p-layer [Platz 96, Rech 96, Vet 08, Shah 10]. Such a buffer layer also plays

a crucial role in the overall light-induced degradation (LID) of an a-Si:H cell. While silicon

alloys are often used at this interface, leading to improved initial performance, they tend to
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degrade more than regular hydrogen-diluted a-Si:H buffers, emphasizing the importance of

optimizing this interface for the stabilized state.

In the case of µc-Si:H solar cells, the crystalline fraction of the i -layer is shown to influence

the Voc and the overall performance of single-junction cells deposited by plasma-enhanced

chemical vapor deposition (PECVD) [Vetterl 00, Johnson 08b, Ellert 12]. More specifically, the

p-i interface alone plays a major role with respect to the Voc of the cell [Meier 98, Droz 04,

Ito 03, Yue 08]. The use of a thin µc-Si:H buffer layer deposited by hot-wire (HW)-CVD for

the first tens of nanometers was shown to significantly improve the Voc in single-junction

µc-Si:H solar cells [Klein 04, van den Donker 07, Finger 08]. Although the exact reasons for

this improvement have not yet been clearly elucidated, the defect density at the p-i interface

was shown not to be the determining factor with regard to Voc [Brammer 03, Finger 08]. More

recently, improved electrical performance was achieved through the use of mixed-phase

silicon sub-oxide (SiOx ) doped layers in µc-Si:H solar cells [Pingate 06]. Such SiOx layers were

proposed as an effective way to mitigate the negative effects of localized defective regions in

a-Si:H or µc-Si:H cells [Despeisse 10, Cuony 10, Cuony 12, Bugnon 12]. Hence, the concept of

controlling interfaces of silicon layers deposited on top of textured surfaces is multifaceted: it

has to be revised to take into account film growth dynamics and localized electrical effects

arising along the growth plane, as they can drive solar cell performance.

In this chapter we first study the influence of the µc-Si:H i -layer crystalline fraction on solar

cell performance. Then, in Section 8.2.1 we present the integration of a thin undoped SiOx

buffer layer at the p-i interface into both µc-Si:H and a-Si:H p-i -n cells. We demonstrate the

beneficial effects of such a layer, especially when deposited in a single-chamber configuration,

for extremely fast processing of the whole p-i -n stack for both types of solar cells. The relative

improvements as a function of intrinsic µc-Si:H material quality and substrate morphology are

presented for single- and double-chamber processes. In the case of a-Si:H, we show promising

results on how such a SiOx buffer layer deposited in a single-chamber process can effectively

replace time-consuming deposition steps to prevent boron cross-contamination and can

provide state-of-the-art solar cells with low relative degradation.

8.2 SiOx buffer layer in single-junctionµc-Si:H solar cells

Single-junction µc-Si:H p-i -n solar cells were prepared in our in-house PECVD reactor with

a KAI-M PlasmaBox (49 × 60 cm2 powered electrode area) at a deposition temperature of

180 ◦C. Mixtures of silane and hydrogen were used to prepare intrinsic silicon layers and

carbon dioxide was added to obtain SiOx layers. Trimethylboron and phosphine gases were

used for p-type and n-type doping, respectively. The front contact consisted of textured

zinc oxide (ZnO) grown by low-pressure chemical vapor deposition (LPCVD) on standard

AF45 Schott glass substrates. Under our deposition conditions, ZnO layers naturally develop

randomly distributed pyramidal-shaped structures [Faÿ 06, Nicolay 09]. Lowly doped 4.5-µm-

thick (Z5) ZnO layers were subsequently either smoothened through the use of an argon-based

120



8.2. SiOx buffer layer in single-junction µc-Si:H solar cells

plasma treatment [Bailat 06, Boccard 12a] of 45/60 minutes (Z5 45’/60’) in the Oxford system

or IPL system, or completely flattened through a mechanical polishing step (Z5 P) [Cuony 11].

Thinner ZnO layers of 1.5 µm (Z1) with a higher doping concentration, and Asahi U subtrates,

were used as front electrodes as well. The µc-Si:H i -layer thickness was 1.2 µm unless stated

otherwise.

Solar cells were patterned to 0.25 cm2, and the back contact was LPCVD ZnO covered with

a white dielectric reflector. Voc and fill factor (FF) were derived from current-voltage (I -V )

measurements of the cells obtained with a dual-lamp solar simulator (Wacom, WXS-220S-L2)

in standard test conditions (25 ◦C, AM1.5 global reference spectrum, 100 mW cm−2). The

short-circuit current densities (Jsc) reported here, and used to calculate the efficiencies of

the best cells, were determined by integrating the product of the external quantum efficiency

(EQE) and the incoming photon flux of the AM1.5 global reference spectrum. Total absorption

(1−reflection) of the cells was measured using a dual-beam spectrophotometer equipped with

an integrating sphere (Perkin Elmer, Lambda 900).

A Raman spectrometer (Renishaw, System 2000) was used to measure the Raman crystallinity

factor (φc ) of the µc-Si:H layers using the 514.5 nm emission line of an argon ion laser (see

section 2.3 for more details). Measurements were done directly on the solar cells through the

glass/front ZnO stack for p-side values and through the back contact for n-side values.

8.2.1 Role of the i -layer crystalline fraction

Before proceeding with the novel p-i interface, we investigate in this section µc-Si:H solar

cell performance as a function of the i -layer Raman crystalline fraction. This will prove to be

useful when analyzing the impact of the SiOx buffer.

For this preliminary study, solar cells were prepared based on the RF regime developed at

5 mbar with a deposition rate of around 1.7 Å s−1, using the standard interelectrode distance

of 22 mm (see details in section 5.2.1). Only the 1.2 µm-thick i -layer was changed by adjusting

the silane input flow rate (ΦSiH4 ), which was increased from 24 to 29 sccm leading to a more

amorphous-rich material. The focus of this experiment was not to dissociate the effects of the

p-i and i -n interfaces from the bulk, as the Raman crystalline fraction of all of these regions

varies concurrently withΦSiH4 . Additional tests were done to compensate for the crystallinity

gradient that occurs along the growth direction in the cell by increasing ΦSiH4 deposition.

Figure 8.1 presents solar cell performances on LPCVD ZnO:B treated 60’ by plasma (using IPL)

and on Asahi U substrates. Voc increases almost linearly increases with increasingΦSiH4 . This

results from the more amorphous-rich material at the p-i interface [Meier 98] (although at the

expense of the FF above a certain threshold), at the i -n interface [Droz 04] and in central part

of the i -layer as well [Vetterl 00]. The FF reaches a plateau at around 26–27 sccm and drops

abruptly above, while Jsc steadily decreases, so that the efficiency has an optimum atΦSiH4 =

26 sccm.
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Figure 8.1: Best p-i -n µc-Si:H solar cells prepared on Z5 60’ (IPL) with a 1.2 µm-thick i -layer
grown with increasing silane input flow rate. The bars represent the mean value of the ten best
cells on each substrate and the symbols represent the best cell for which Jsc and efficiency were
calculated.

Looking at the EQEs in Figure 8.2, we observe a significant drop in the blue region of the spec-

trum with increasing silane input flow rate. This indicates that the amorphous-rich material

at the p-i interface does not contribute effectively to the current, which was shown to be due

to a reduced electron transport and band offset at the p-i interface [Stiebig 00, Reynolds 09].

While this carrier collection reduction at the p-i interface may not be so important once the

µc-Si:H is embedded in a micromorph—since most of the blue region is already absorbed

by the top cell—, the associated FF drop would have a significant performance impact on a

tandem cell performances when used as a bottom cell. The decrease in crystalline fraction of

the overall i -layer also impacts the material bandgap so that a decrease in the infrared EQE is

clearly observed as well. This could also limit the performance of a tandem a-Si:H/µc-Si:H

solar cell. However, the use of aµc-Si:H i -layer with a lowered crystalline fraction in the middle

cell of an a-Si:H/µc-Si:H/µc-Si:H triple-junction solar cell would be beneficial, favoring higher

Voc at the expense of infrared absorption, which will occurr anyway in the µc-Si:H bottom cell.

By looking at the differences between EQEs measured at −2 V and 0 V as shown in Figure 8.3a,

we observe that the carrier collection efficiency is significantly worse for wavelengths below

600 nm, as well with increasing ΦSiH4 . This behavior was observed on both substrates but
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is shown here only on Asahi U for clarity. The boron diffusion coefficient being at least ten
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Figure 8.3: (a) Difference between EQE measurements done at −2 V and 0 V for cells with i -layers
prepared with increasing silane input flow rate. (b) Raman crystallinity factors measured at
various depths within p-i -n cells deposited on Z5 60’.

orders of magnitude higher in a-Si:H than in c-Si [Matsumura 83, Nasuno 02], this additional

collection issue may come from enhanced boron-tailing in the device through the increased

a-Si:H phase at the p-i interface.

The Raman crystalline fraction profile within the p-i -n cell was also measured by using incre-

mental dry etching of the cell to probe the material at different thicknesses (the penetration

depth of our Raman Ar+ laser being around 150 nm in µc-Si:H). The value at 0 nm was mea-

sured from the glass side. The profiles for three ΦSiH4 conditions are shown in Figure 8.3b

for cells deposited on Z5 60’. With the highestΦSiH4 of 29 sccm, the crystalline fraction starts

123



Chapter 8. Silicon oxide buffer layer at the p-i interface inµc-Si:H and a-Si:H solar cells

at really low values of around 20% and increases with film thickness. The higher φc value

measured at the bottom of the cell is due to the contribution in the Raman signal of the

underlying µc-Si:H p-layer, which has a higher φc itself. The variations are much smaller for

the other twoΦSiH4 values; the crystallinity increase was easily controlled by varying the silane

flow rate during the growth to get a constant crystalline fraction along the growth direction.

This section has thus shown that, for a given set of deposition conditions, the i -layer crystalline

fraction plays a decisive role in the performance of the solar cells. Although regular µc-Si:H

doped layers were used for this study, similar observations were made when SiOx doped layers

were used instead.

8.2.2 Extremely fast and efficient single-chamber deposition process

In this section, we present the electrical performance gains obtained when using a SiOx buffer

layer at the p-i interface of single-junction µc-Si:H solar cells prepared using a single-chamber

PECVD process. The newly developed SiOx buffer layer used in the study was around 6 nm

thick and was deposited after the p-layer at a growth rate of about 1 Å s−1 using a high-pressure,

high-power regime. The Raman crystallinity factor of this SiOx buffer layer was evaluated at

64%, by having it thickened to 700 nm within the cell and measured it directly from the p-side.

For comparison, the µc-Si:H p-i -n cells were kept strictly similar except for the presence of

the buffer layer. Both have SiOx doped layers, and their 1.2-µm-thick i -layer was deposited at

1 nm s −1. A schematic of such a cell is presented in Figure 8.4.

Glass

Front ZnO

Back ZnO

Figure 8.4: Simple schematic of a p-i -n cell with a SiOx buffer at the p-i interface.

First we present the case with no chamber cleaning between deposition of the p-layer and

the i -layer, so that the whole stack of layers was deposited in a row. Table 8.1 summarizes the
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solar cell performances on a Z5 45’ reference substrate.

Table 8.1: Best p-i -n µc-Si:H solar cells deposited at 1 nm s −1 in a single-chamber process, with
and without a SiOx buffer layer at the p-i interface. The numbers in parentheses are the mean
values of the ten best cells on each substrate.

Cleaning
between p-
and i -layer

SiOx buffer
layer

Voc (mV) FF (%) Jsc (mA cm−2) Efficiency (%)

Without 510 (508) 68.7 (68.6) 21.3 7.5

With 519 (519) 70.9 (70.4) 23.1 8.5

With 508 (504) 70.0 (69.4) 22.0 8.0

With 534 (533) 73.2 (72.1) 22.5 8.8

φc is very similar in both configurations, although a minor increase is observed for cells

incorporating the SiOx buffer layer, going from 58/60 to 62/64% for the p/n sides, respectively.

When the buffer layer is used in this configuration, Voc increases by around 10 mV and FF by

2% absolute. Jsc also significantly increases, especially in the blue region of the spectrum as

can be seen in Figure 8.5.
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Figure 8.5: EQE of the best p-i -n µc-Si:H solar cells deposited at 1 nm s −1 using a single-
chamber process and no cleaning, with (red) and without (black) a SiOx buffer layer at the p-i
interface. Measurements were done at 0 V (solid) and −1 V (dashed). The total absorption of the
cells (1−reflection) with and without the SiOx buffer layer is also shown here.

Carrier collection also improves as can be evaluated from EQE measurements at 0 V and a
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reverse bias voltage of −1 V. Increasing the voltage bias beyond −1 V did not lead to any further

increase in current density. Implementation of a SiOx buffer layer thus results in a 14% relative

increase in the solar cell efficiency, going from 7.5 to 8.5%.

Improved collection in the blue region can be related to a reduction in boron cross-contamination

from the p- to the i -layer, similar to the a-Si:H case discussed later in Section 8.3. More specif-

ically, in the case of µc-Si:H solar cells, a higher response in the blue region can be directly

linked to an improvement of the i -layer nucleation: carriers generated in the a-Si:H-rich phase

may not contribute to current because of the reduced electron transport and band offset at the

p-i interface [Stiebig 00, Reynolds 09]. Total absorption measurements show that this SiOx

buffer layer on top of the existing p-SiOx layer provides an additional anti-reflection effect,

with a gain exceeding 1% over the full spectrum. Note that just making the p-SiOx layer thicker

resulted in reduced EQE (not shown here). Part of the gain observed in the infrared may be

due to the slight crystallinity increase as well. These results also reveal that this SiOx buffer

layer does not induce significant n-type contamination further in the i -layer even though it

represents an additional source of oxygen in this single-chamber process.

An additional experiment was done by incorporating a reactor cleaning and pumping step after

the p-layer deposition to reduce part of the boron cross-contamination so as to emphasize

and isolate the effect of this buffer layer. The loading plate holding the substrates was kept

under vacuum at the same temperature during this step. The cells’ electrical parameters are

presented in Table 8.1. While the cells are better overall, a similar improvement is still observed

with the presence of the SiOx buffer layer: the mean Voc and FF values of the ten best cells

increased from 504 to 533 mV and from 69.4 to 72.1% respectively. The Jsc of the best cell

increased from 22.0 to 22.5 mA cm−2 and the efficiency from 8.0 to 8.8%.

Secondary ion mass spectrometry (SIMS) measurements were carried out on polished c-Si

wafers to evaluate boron content, but no improvement associated with the SiOx buffer layer

was observed. However an effective reduction in contamination in the cells cannot be ruled

out completely at this point, since the incorporation of contaminants during deposition is

suspected to be facilitated by the defective porous regions [Python 10], which do not form on

top of polished c-Si wafer substrates. This is corroborated by an electric-field profile study of

µc-Si:H p-i -n solar cells done by cross-sectional scanning Kelvin probe microscopy, in which

negative charges observed at the cluster boundaries have been speculated to be related to the

presence of activated boron [Dominé 07].

These first experiments demonstrate that efficient control of the p-i interface in µc-Si:H solar

cells is achievable in a single-chamber deposition process. These conditions are especially

relevant for industry, as they allow one to rapidly process the full p-i -n silicon layer stack in

a row. Further tests were done to clarify the origin of the observed gains; they are described

hereafter.
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8.2.3 Gains as a function of substrate morphology for cells deposited at a high
rate

To further understand the origins of the efficiency gain achieved when inserting a SiOx buffer

layer, the roughness of the front ZnO layer was varied. For that purpose, single-junction µc-

Si:H p-i -n solar cells with i -layers deposited at 1.5 nm s −1 were prepared with and without the

SiOx buffer layer on Z5 P (polished Z5 substrate), on Z1 (σRMS = 49 nm, high density of sharp

little pyramids with 30◦ average facet inclination, ironed surface increase of 143%), and on

Z5 45’ (σRMS = 106 nm, large and smooth pyramids with 18◦ average facet inclination, ironed

surface increase of 115%). The aim of this experiment was to verify whether the efficiency

gains were indeed larger on substrates favoring the growth of porous regions in the material

as observed in Section 4.4. Here the sharpest substrate was the Z1, the Z5 45’ was smoother,

and the Z5 P was completely flat, which would in principle eliminate porous regions.

The i -layer was always the same for this series and its deposition conditions were tuned so that

φc was kept > 60%. The combination of a very high deposition rate and a rather high crystalline

fraction for the i -layer was chosen so as to grow µc-Si:H material prone to the formation of

nanoporous regions. This was done in order to emphasize the electrical quenching effect, if

any, of the SiOx buffer layer for those more challenging conditions. To ensure that observed

differences in the cells’ performances were related to the presence of the buffer layer inside

the device and not to the chamber history and conditions, we took additional precautions:

the SiOx buffer layer was always deposited in the chamber after the post-p-layer-deposition

cleaning so that the environment was similar for the subsequent i -layer growth in both cases.

For cells without a SiOx buffer layer, the substrate carrier was just kept under vacuum in

another chamber of the system during this step.

Table 8.2 shows φc measured from both the p- and n-sides of the completed solar cells. φc

is always above 65% when measured from the p-side of the cell. We observe very similar

crystalline fractions in both cases, with and without a SiOx buffer layer.

Table 8.2: Raman crystallinity factor from both the p- and n- sides of p-i -n µc-Si:H solar cells
with the i -layer deposited in the same chamber as the p-layer at a growth rate of 1.5 nm s −1

with and without a SiOx buffer layer.

φc (%) - Without SiOx buffer layer φc (%) - With SiOx buffer layer

Substrate type p-side n-side p-side n-side

Z5 P 65 70 68 70

Z1 66 63 65 62

Z5 45’ 70 63 73 65

The electrical performances of the cells prepared at a high deposition rate on the three different

substrates are shown in Figure 8.6.
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Figure 8.6: Best p-i -n µc-Si:H solar cell performances for cells deposited at 1.5 nm s −1 in a
single-chamber process including a cleaning step after the p-layer, with and without a SiOx

buffer layer at the p-i interface. The bars represent the mean value of the ten best cells on each
substrate and the symbols represent the best cell, for which Jsc and efficiency were calculated.

A systematic improvement of Voc and FF is observed with the SiOx buffer layer, except for the

average FF value on the Z5 P substrate, which is lower by only 0.6%. Jsc also improves for all

substrates thanks to an enhancement of the EQE in the blue part of the spectrum. As expected,

the Voc × FF product is highest on the flat Z5 P substrate, and decreases with a sharp substrate

morphology and increased substrate roughness. Overall, the efficiency significantly increases

by 8.9% on Z5 P, 15.9% on Z1 and 16.2% on Z5 45’ when the SiOx buffer layer is inserted. A

highest efficiency of 7.9% is thus achieved on Z5 45’. The diminished benefit of the SiOx buffer

layer with a Z5 P substrate supports the hypothesis of shunt quenching at specific regions,

along the p-i interface, where nanoporous defective regions can grow.

8.2.4 Gains with improved i -layer material quality and lowerφc

In this section, we review the influence of the buffer layer with an i -layer of better quality both

in terms of reduced bulk defect density (as measured with Fourier-transform photocurrent

spectroscopy) and nanoporous defective regions (as evaluated through accelerated damp-heat

experiments (cf. Section 4.4). This material was deposited at a lower growth rate of 3 Å s−1 in

128



8.2. SiOx buffer layer in single-junction µc-Si:H solar cells

a separate chamber of our KAI-M reactor with no vacuum break in-between. The SiOx layer

was still deposited in the same chamber as the p-layer for the cell without the buffer layer, to

ensure similar chamber conditions for the deposition of the n-layer afterwards. Additionally,

the i -layer was purposefully deposited with a much lower crystallinity on the p-side of the cell.

This was done to favor high Voc of the µc-Si:H cells and observe the influence of the buffer

layer in these conditions.

As can be seen in Table 8.3, a large increase in φc measured from the p-side is observed for

cells with a SiOx buffer layer. Considering the 150 nm Raman collection depth of the 514.5 nm

Table 8.3: Raman crystallinity factor from both the p- and n- sides of p-i -n µc-Si:H solar cells
with the i -layer deposited at a lower growth rate of 3 Å s−1 in a separate chamber with and
without a SiOx buffer layer.

φc (%) - Without SiOx buffer layer φc (%) - With SiOx buffer layer

Substrate type p-side n-side p-side n-side

Z5 P 44 60 60 64

Z1 18 61 45 59

Z5 45’ 42 57 59 59

argon emission line in standard µc-Si:H, and the very low thickness of the buffer layer, the

buffer layer’s contribution is considered to be negligible. We conclude that the buffer layer

facilitates the nucleation of the subsequent µc-Si:H i -layer. The absolute value of φc thus

increases by 16% on the Z5 P substrate and up to 27% on the Z1 substrate. The presence of a

SiOx layer, obtained either by plasma deposition, controlled oxidizing plasma treatment or

simply air exposure, was proven in the past to be indeed very effective for promoting µc-Si:H

nucleation and minimizing the a-Si:H incubation layer [Vaucher 97, Pernet 00, Fujiwara 03].

However, while it has been shown that the chemical nature has a preponderant role on the

nucleation of µc-Si:H, the substrate topography can also influenceφc as evaluated by a Raman

scattering experiment [Vallat-Sauvain 05]. That may explain why we observe lower φc on the

Z1, substrate which consists of small sharp pyramids. As a result, a combination of a high

nuclei density together with a favorably oxidized surface is thought to be responsible for the

improved nucleation and growth of the µc-Si:H i -layer.

The electrical performances of the cells are reported in Figure 8.7. In spite of significantly

higher φc on all substrates when a buffer layer is used, we observe that similarly high mean

Voc values are still retained. The same behavior is observed for the mean FF values which are

equal to or above those of the reference cells without SiOx buffer layers.

Jsc also significantly improves for all the cells, mostly thanks to an EQE increase in the blue

region of the spectrum. Figure 8.8 presents the EQEs of the solar cells prepared on the Z5 P

and Z5 45’ substrates with and without a SiOx buffer layer, and the relative variations of EQE

as a function of wavelength for all three substrates. Again a strong increase in the blue part of
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Figure 8.7: Best p-i -n µc-Si:H solar cell performances for cells deposited at 3 Å s−1 in a dual-
chamber process with and without a SiOx buffer layer at the p-i interface. The bars represent
the mean value of the ten best cells on each substrate and the symbols represent the best cell, for
which Jsc and efficiency were calculated.

the spectrum is observed, and an increase in the infrared region is also noted on the Z5 45’

substrate, which may be due to the enhanced nucleation and crystallinity of the intrinsic

material. A relative gain of around 15% is thus observed in the 450 nm region for the three

substrates when a SiOx buffer layer is employed. Poor response in the blue for the reference

cells is expected because of the low φc at the p-i interface, as observed in previous studies.

The fact that the buffer layer induces an improvement of φc can partly explain the gain here.

We do not observe a strong difference in the relative efficiency gain as a function of the

substrate morphology, unlike in the previous test in which the absorber layer was deposited at

a high rate and had a higher φc . The presence of the amorphous-rich p-i interface region for

the reference cell helped to retain higher performances on rougher substrates.

Overall this experiment with a high-quality bulk absorber layer shows that the use of a thin

SiOx buffer layer provides similar beneficial effects as a high-quality amorphous-rich p-i

interface for improved Voc while allowing efficient nucleation of the following i -layer, ensuring

good carrier transport. It was confirmed in the past through dark I -V measurements that an

amorphous-rich p-i interface significantly reduces saturation current density (J0) for cells
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deposited in either the p-i -n [Vetterl 00] or n-i -p sequence [Yue 08, Ito 03]. Here, thanks to the

mixed-phase nature of the SiOx material [Cuony 12], such a buffer layer may allow for a similar

reduction of J0, but with much reduced thickness because of the lower conductivity of the

oxygen-rich phase. It has the added advantage of promoting the nucleation of a high-quality

µc-Si:H i -layer on top of it, thanks to the presence of nucleation centers and a surface-oxidized

film. Near open-circuit conditions, the free-carrier densities are very high at both interfaces

and drift transport weakens as the electric field is reduced, allowing both types of carriers to

diffuse more easily and recombine. We think that even larger gains could be obtained with

slightly thinner devices for which Voc is even more sensitive to interface quality and band

offsets, as recombination in the bulk layer becomes less important.

The electric field at the interface may also be modified because of the slightly n-type material,

due to oxygen incorporation, which may also help to compensate boron contamination.

For instance, Matsui et al.[Matsui 12] recently showed that negatively charged germanium

dangling bonds could be compensated by positively charged oxygen donors in the bulk of
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µc-Si1−x Gex :H solar cells. Similar space-charge compensation phenomena were already

observed in the past, such as an improvement in the infrared region of the EQE for boron-

compensated µc-Si:H [Meier 94a, Meier 94b]. A reduction in the short-wavelength region has

also been associated with the suppression of strong n-type contamination in p-i -n a-Si:H solar

cells [Isomura 94, Platz 97] and with boron contents exceeding the compensation values in

n-i -p µc-Si:H cells [Yue 12]. Strong boron cross-contamination and reduced collection in the

blue region was also observed with increased deposition temperature of the i -layer, resulting

in worse cell performance [Nasuno 02], despite a reduction of the bulk defects [Matsui 03a].

Ion bombardment is inherent to conventional PECVD, as opposed to HW-CVD. Within the first

seconds of the p-i interface growth, the plasma may thus strongly interact with the underlying

p-layer and promote boron release and recycling in the subsequent i -layer deposition. This

may be the main reason behind the Voc gains observed even with very thin HW-CVD buffer

layers at the p-i interface of p-i -n µc-Si:H solar cells [Klein 04, van den Donker 07, Finger 08].

Such a buffer would effectively bury the p-layer and result in a sharper boron profile at the

interface. However, additional experiments should be conducted in the n-i -p configuration

to determine the physical origin of the improvements, since the effect of boron back-diffusion,

with the p-layer deposited after the i -layer, would be much less severe than the current

cross-contamination.

Lastly, similarly to what Klein et al. [Klein 04] proposed to explain the Voc gains observed with

HW-CVD, reduced mobility in the SiOx buffer layer could lead to a reduction of the electron

current flowing to the p-layer, hence limiting recombination near or in the p-layer itself. Again,

further experiments are required to evaluate this hypothesis by varying the effective mobility

in the buffer layer or full i -layer. Although a reduction in boron cross-contamination or in

the effective mobility could not be demonstrated here, it is possible that, together with the

proposed shunt-quenching mechanism, they all contribute to the observed performance

increase.

Implementation of this new SiOx buffer layer eventually led to the realization of a single-

junction p-i -n µc-Si:H record cell efficiency of 10.9% with a 2-µm-thick i -layer, which is

detailed in Chapter 9. The Voc was 535 mV, the FF 74.2% and the Jsc 27.5 mA cm−2 with an

anti-reflection layer at the air/glass interface.

8.3 SiOx buffer layer in single-junction a-Si:H solar cells

Different methods have been proposed to reduce boron cross-contamination in p-i -n a-Si:H

solar cells, including various gas flushes such as NF3 [Catalano 88], SF6 [Martins 00], water

vapor and ammonia [Kroll 04, Ballutaud 04], and argon combined with chamber evacuation

that require significant time [Merdzhanova 12]. High-pressure CO2 plasma treatment was

also shown to be effective [Kubon 94] but could never be implemented in a single-chamber

process directly on top of the actual substrate. We here report on the first use of such thin

SiOx buffer layer in a standard a-Si:H solar cell developed in our single-chamber KAI-S system
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to evaluate how well it performs with regard to boron cross-contamination and stabilized

performances.

8.3.1 Improved a-Si:H stability

Single-junction a-Si:H p-i -n solar cells were prepared in the KAI-S reactor (see details in

Section 2.1) at a higher temperature of 200 ◦C. They were deposited on 2-µm-thick ZnO

layers with a higher doping concentration (Z2), and the i -layer thickness was kept constant at

250 nm.

Our standard process involves a water vapor flush (WF) and chamber evacuation after de-

position of the p-SiOx layer before proceeding with an a-SiC:H buffer layer deposition. In

this experiment we replaced those three time-consuming steps with a single SiOx buffer layer.

In the present study the water flush takes 2 minutes followed by a chamber pumping time

extended to 30 minutes. This was done to ensure that we were in the best conditions possible

for the purpose of comparison with the SiOx buffer layer. However, based on our experience,

total time involving the water flush can be reduced down to approximately 10 minutes without

sacrificing too much efficiency. The SiOx buffer layer only takes 90 seconds to process and

does not require any pumping afterward. Further time reduction is thought to be possible by

optimizing the deposition or the treatment at the interface.

Solar cells with different p-i interfaces were prepared and their performances for the initial

and degraded states are detailed in Table 8.4.

Table 8.4: Comparison of p-i -n a-Si:H solar cell electrical parameters with different treatments
at the p-i interface for the best cell on each substrate in initial and stabilized states. The numbers
in parentheses are the mean values of the ten best cells on each substrate.

Buffer
layer

WF State
Voc

(mV)
FF
(%)

Jsc

(mA cm−2)
Eff.
(%)

LID
(%)

None N
Initial 824 (822) 69.1 (68.7) 14.9 8.5 15.7
Stable 830 (829) 60.0 (59.7) 14.1 7.0

Standard
a-SiC:H

Y
Initial 897 (896) 76.6 (76.4) 15.6 10.7 23.4
Stable 852 (850) 64.4 (64.1) 14.9 8.2

New SiOx
N

Initial 877 (878) 74.1 (73.4) 16.0 10.4 20.2
Stable 870 (868) 64.9 (63.7) 14.7 8.3

New SiOx
Y

Initial 882 (878) 75.2 (74.9) 16.0 10.6 18.9
Stable 877 (872) 66.3 (64.5) 14.7 8.6
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Without any treatment at the p-i interface, both the initial and stable performances of the cell

are very poor with strong collection issues: the Jsc of the best cell is 14.9 and 15.4 mA cm−2

when measured under 0 V and −1 V, respectively. Standard solar cells prepared with an

optimized a-SiC:H buffer layer and a WF at the p-i interface have the highest initial efficiency

of 10.7% but degrade significantly to 8.2%.

Using the newly developed SiOx buffer layer, we studied the influence of the WF: the mean

Voc and FF of the ten best cells in this configuration are compared in Figure 8.9 for the initial

and degraded states.
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Figure 8.9: Mean values of the Voc (filled symbols) and FF (empty symbols) of the ten best cells
using the SiOx buffer layer with (square symbols, solid line) and without (bullet symbols, dashed
line) the WF, before and after light soaking under standard conditions.

Similar Jsc of 16.0 mA cm−2 and collection behavior are observed for cells incorporating a SiOx

buffer layer both with and without the WF. The cells exhibit very high initial performances

close to that of the reference cell, with only slightly reduced Voc and FF values, leading to best

cell efficiencies of 10.6% and 10.4% with and without the WF, respectively. The corresponding

LID decreases compared to the reference cell to 20 and 19%, leading to stabilized efficiencies

of 8.6 and 8.3%, respectively. The stabilized Jsc is 14.7 and 15.2 mA cm−2 at 0 V and −1 V bias

for both cells. As a result, higher stabilized efficiencies are obtained using this SiOx buffer

layer as compared to the regular a-SiC:H one, even without the WF.
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8.3.2 Boron cross-contamination analysis

Boron cross-contamination at the p-i interface was analyzed through SIMS measurements.

This analysis was carried out by depositing the stacks “i -layer/p-SiOx /SiOx buffer layer/i -

layer” and “p-a-SiC:H/a-SiC:H buffer layer/i -layer” on polished wafers, with and without a

WF before the buffer layers. The depth profiles are presented in Figure 8.10.
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Figure 8.10: SIMS depth profiles of the boron atom concentration of “i -layer/p-SiOx /SiOx buffer
layer/i -layer” and “p-a-SiC:H/a-SiC:H buffer layer/i -layer” stacks deposited on polished c-Si
wafers with and without a WF between the p-layers and the buffer layers.

Using the standard “p-a-SiC:H/a-SiC:H buffer layer” configuration the WF brings a significant

advantage, lowering the boron content below 1017 atoms cm−3 in the i -layer. However, when

using the “p-SiOx layer/SiOx buffer layer” configuration, we can see that despite a much

higher boron content in the p-SiOx layer, the boron concentration drops sharply to low and

comparable values of around 1017 atoms cm−3 with or without the WF. This demonstrates

that the SiOx buffer layer alone can act as an efficient barrier to boron cross-contamination in

a-Si:H solar cells.

Very good control of the p-i interface in a single-chamber process is hence possible through

the use of a simple SiOx buffer layer. State of the art a-Si:H solar cells were efficiently

prepared without the need for a time-consuming water vapor flush to reduce boron cross-

contamination, using conditions relevant to industry. Further improvement from these pre-

liminary results can also be expected when using this new buffer layer.
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8.4 Conclusions

In this chapter, the effects of a thin SiOx buffer layer inserted at the p-i interface of thin-film

a-Si:H and µc-Si:H solar cells deposited on LPCVD ZnO were studied. Significant performance

increases were observed for the µc-Si:H solar cells deposited at high deposition rates of 1.0

and 1.5 nm s −1 in a single-chamber process. The SiOx buffer layer seems to limit boron cross-

contamination and promote nucleation of the µc-Si:H i -layer. Performance improvements

were still observed with an improved i -layer material quality with a lower crystalline fraction,

even when processed in a separate chamber. Thanks to this SiOx buffer layer development,

a single-junction p-i -n µc-Si:H record cell efficiency of 10.9% was reached (cf. Chapter 9).

Additional optimization and understanding of this buffer layer may help further improve the

quality of the interface and enable even higher Voc.

In a-Si:H solar cells, the implementation of such SiOx buffer layer showed very promising

results. High performances and lower light-induced degradation were obtained when the SiOx

buffer layer was used instead of a very time-consuming treatment at the p-i interface with the

standard a-SiC:H buffer layer. Based on these a-Si:H and µc-Si:H solar cell results a patent

application with TEL Solar is currently pending.
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9 Notable solar cell results

This chapter briefly summarizes the best thin-film silicon solar cell efficiencies attained in

the laboratory thanks to the µc-Si:H developments presented in this thesis. Results include

single-junction and multi-junction for both p-i -n and n-i -p configurations.

9.1 Single-junctionµc-Si:H

Superstrate p-i -n configuration

A single-junction µc-Si:H solar cell record efficiency of 10.9% was achieved as a result of the

overall work presented in this thesis. This is among the highest efficiencies ever reported in

the literature. Figure 9.1 shows both the current-voltage (I -V ) curve and EQE measurements

of this 0.25 cm2 µc-Si:H cell with a 2-µm-thick intrinsic layer deposited on Z5 45’.
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Figure 9.1: I -V (left) EQE under 0 V and −1 V (right) of the best-performing single-junction
p-i -n µc-Si:H solar cell (0.25 cm2) with an intrinsic layer thickness of 2 µm.

The Voc is 535 mV, the FF 74.2% and the Jsc increases from 26.6 mA cm−2 to 27.5 mA cm−2
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with the use of an anti-reflective (AR) coating developed in our laboratory [Escarré 12] (a Jsc

gain of around 3% over the full spectrum was observed) . The very small difference between

EQE measurements under no bias and with a reverse voltage of −1 V demonstrates low

recombination and good collection of photo-generated carriers in the intrinsic layer. The

µc-Si:H absorber layer exhibits very good bulk material quality as demonstrated by the low

FTPS absorption coefficient at 0.8 eV, which is typically between 1.5 and 2.0 × 10−3 cm−1.

Furthermore, its highly dense structure was confirmed by its high stability during damp-heat

tests done on rough substrates for both single-junction and micromorph configurations.

This excellent result was obtained with an absorber layer deposited at 3 Å s−1 using RF at

9.0 mbar (cf. Sections 4.2.2, 5.3.1 and 7.4) with dedicated optimization of the SiOx doped

layers (cf. Section 4.2.1) and SiOx buffer interface (cf. Chapter 8). With this cell design,

conversion efficiencies of 10%, without annealing nor AR coating, can be obtained either for

thin cells of 1 µm or thicker ones up to 2.5 µm. Efficiencies above 11% are thought to be at

reach. This p-i -n µc-Si:H solar cell serves as a baseline for the subcells of multi-junctions thin

film silicon solar cells which are presented in this chapter.

Using a narrower gap configuration of 9 mm, the development of high deposition rate regimes

using VHF together with further optimized SiOx doped layers buffer layer led to a 9.8% con-

version efficiency devices with the i -layer deposited at 0.7 nm s −1 at a deposition pressure of

12 mbar and 9.3% at 1.5 nm s −1 at 10 mbar, both without AR coating (cf. Section 6.5).

Substrate n-i -p configuration

A n-i -p µc-Si:H cell was also developed based on the superstrate configuration, i.e. using

same i -layer and SiOx doped layers design. It performs similarly well, reaching an efficiency of

10.6% when deposited on hot-silver substrate [Söderström 11], without annealing, as shown

in Figure 9.2. The use of SiOx buffer at the i -p interface is under investigation.
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Figure 9.2: I -V (left) EQE under 0 V and −1 V (right) of the best single-junction n-i -p µc-Si:H
solar cell (0.25 cm2) with a 1.75-µm-thick i -layer deposited on hot silver.
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9.2 Micromorph solar cells

Superstrate p-i -n configuration

Significant work has been done by Dr. M. Boccard to improve the electrical and optical

performances of tandem a-Si:H/µc-Si:H, by working on the ZnO front contact morphology and

the various trade-offs [Boccard 12b]. Using the µc-Si:H developed in the KAI-M, our current

best “thin” micromorph stabilized efficiency is now at 12.2%, with Voc=1.38 V, FF=73.6% and

Jsc=11.9 mA cm−2, using less than 1.6 µm of silicon in total.

Using a thicker configuration (230 nm top cell, 60 nm SiOx intermediate reflector, 2.2 µm

bottom cell), a certified 12.3% efficiency was attained as well, with Voc=1.36 V, FF=71.4%

and Jsc=12.7 mA cm−2. The cell exhibits a very low light-induced degradation of only 7%,

demonstrating as well the good SiOx intermediate reflector stability.

Thanks to the work done within the scope of the PEPPER project improved bottom cell quality

at higher growth rates could be obtained (cf. Section 6.5). Using VHF and a low gap of 9 mm at

10 mbar to grow the µc-Si:Hi -layer at 7 Å s−1, the best stabilized efficiency attained was 11.9%

and is presented in Figure 9.3.

Figure 9.3: I -V (left) and EQE (right) of the best stabilized 1.0 cm2 micromorph cell obtained
with the bottom cell deposited at 7 Å s−1.

More recent work led to further improvements, with initial efficiencies as high as 14.0%

(Voc=1.36 V, FF=77% and Jsc=13.9 mA cm−2) with the same growth rate of 7 Å s−1, but the cells

are still under LID at the time of writing. At 15 Å s−1, an initial micromorph solar cell efficiency

of 13% was also obtained.
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Substrate n-i -p configuration

The n-i -p configuration allows the use of an asymmetric intermediate reflector based on

LPCVD ZnO [Söderström 09], so that it promotes the top cell Jsc significantly. Optimizing this

layer and using the µc-Si:H subcell developed along with a well optimized a-Si:H top cell with

a SiOx p-layer, a high stabilized efficiency of 11.6% could be obtained [Biron 13], as shown in

Figure 9.4.

Figure 9.4: Left: EQE of the best stabilized n-i -p micromorph cell. Right: SEM images of
focused-ion-beam-prepared cross-sectional views of the solar cell [Biron 13].

9.3 Triple-junction solar cells

Superstrate p-i -n configuration

Triple-junction a-Si:H/µc-Si:H/µc-Si:H solar cells were also prepared based on theµc-Si:H cell

developed. While triple-junction are significantly thicker than micromorphs, reaching 3–4 µm

in thickness, they lead to significantly higher stabilized efficiencies, thanks to a reduced top a-

Si:H subcell thickness and corresponding light-induced degradation, with relative conversion

efficiency degradations as low as 4%.

In the superstrate configuration, using a standard Z2.5 ZnO front electrode treated by plasma

and an improved anti-reflective coating, an initial and stabilized cell efficiency of 13.7%

(Voc=1.89 V, FF=74.4% and Jsc=9.76 mA cm−2) and 12.8% (Voc=1.85 V, FF=72.5% and Jsc=9.58

mA cm−2) were respectively achieved. Stabilized results are presented in Figure 9.5. The

subcell thicknesses were 140 nm for the top, 1.5 µm for the middle and 2.6 µm for the bottom.

Combining a highly transparent replicated front structure in UV lacquer and high-mobility

thin In2O3:H TCO (µe > 100 cm2 V−1 s−1), a total current above 30 mA cm−2 was also obtained.

More details can be found in [Schüttauf 13].
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Figure 9.5: I -V (left) EQE (right) of the best-performing triple-junction p-i -n a-Si:H/µc-Si:H/µc-
Si:H solar cell (1 cm2) on Z2.5 treated by plasma.

Substrate n-i -p configuration

Recently, the use of substrates which decouple the growth and scattering interfaces [Sai 11,

Söderström 12] was proposed as an alternative to solve the usual trade-off between Voc × FF

and Jscas encountered with conventional TCOs. Indeed, while efficient light scattering requires

the front contact to be sufficiently rough, this impacts the solar cell electrical performance.

Here the scattering interface is defined by the refractive index contrast between the TCO and a

secondary material (a-Si:H here) so that the growth interface can remain perfectly flat and

prevent the apparition of nanoporous regions.

In our laboratory, the benefits of such substrate was for the first time demonstrated in n-i -p a-

Si:H/µc-Si:H/µc-Si:H solar cells [Söderström 12]. The light-scattering interface was made by

filling the valleys of a Z2.5 with a-Si:H, which was then mechanically polished and is presented

in Figure 9.6, together with the best cell performances. The cell exhibits a very high efficiency

of 13.0% stable, which is very close to the recently released world-record efficiency of 13.4%

obtained by LG solar [Kim 13].

Figure 9.6: Schematic of the innovative flat light-scattering substrate (left) and associated
EQE (right) of the best triple-junction n-i -p a-Si:H/µc-Si:H/µc-Si:H solar cell with a UV nano-
imprinted anti-reflective coating [Söderström 13].
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10 Conclusion and perspectives

This thesis highlighted crucial aspects of µc-Si:H deposition by PECVD for thin-film silicon PV

applications, which will be briefly summarized in Section 10.1. However, further understand-

ing of theµc-Si:H growth mechanisms is still required to go beyond our current limitations and

reach even higher growth rates with improved solar cell conversion efficiencies. We discuss

future research opportunities in Section 10.2.

10.1 General conclusions

We first investigated in Chapter 3 the roles of both deposition pressure and silane depletion

fraction on the growth of µc-Si:H in a large-area VHF PECVD reactor using dgap = 22 mm.

Single-junction µc-Si:H p-i -n solar cells were prepared with i -layers deposited at pressures

between 1.2 and 3.5 mbar. We demonstrated that solar cells prepared using higher deposition

pressure or increased silane depletion performed significantly better. This improvement in

the µc-Si:H quality was further confirmed by the lower defect-related absorption as measured

by FTPS on the corresponding solar cells. Amorphization of the µc-Si:H film was observed

with increasing power density when using the lowest deposition pressure of 1.2 mbar and

was attributed to excessive ion bombardment energy. Indeed, the average ion bombardment

energy is expected to decrease with pressure leading to improved material quality and solar

cell performance. High silane depletion regimes as simply obtained by reducing the hydrogen

flow rate—leading to an increased silane residence time and dissociation efficiency—are

associated with a reduction of the time-averaged plasma potential and ultimately the average

ion energy as well. Other phenomena associated with plasma chemistry could not be ruled

out and may also contribute to the material improvement observed.

Chapter 4 went beyond the simple evaluation of µc-Si:H bulk material quality and highlighted

a fundamental aspect of µc-Si:H deposition for PV applications. Thin-film silicon solar cells

indeed require highly textured substrates for increased light trapping, and growth on these

textures leads to the contribution of two different phases of µc-Si:H material to the overall

solar cell efficiency, both of which can drive cell performance. The formation of substrate-
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Chapter 10. Conclusion and perspectives

induced defective nanoporous regions was demonstrated to be significantly more dependent

on plasma process conditions and to substrate morphology than the bulk phase. More specifi-

cally, reduced hydrogen flow rate, using VHF with dgap = 12 mm, was demonstrated to promote

the growth of denser material even on a textured surface. FTIR, FTPS and XRD were shown to

be insufficient to fully relate device performance to material quality. Damp-heat experiments

were demonstrated to be an effective way to evaluate the importance of this nanoporous

phase in the solar cells Furthermore, optimized silicon oxide doped layers were confirmed to

be effective at reducing the influence of these defective zones on cell performance.

In Chapter 5, we compared the RF and VHF plasma excitation frequencies for the growth of

high-quality µc-Si:H using both dgap = 22 mm and 12 mm. We demonstrated that RF provides

systematically better-performing µc-Si:H solar cells at moderate growth rates below 5–6 Å s−1.

At dgap = 22 mm, better carrier transport properties with increasing i -layer thickness were

observed when using RF instead of VHF, allowing for higher Voc and FF together with larger

Jsc. At dgap = 12 mm, a systematic bulk defect density evaluation showed that comparable

high-quality bulk material can be obtained using both frequencies. However, µc-Si:H grown

on rough substrates using the lower frequency is more dense and leads to better performance

overall. A higher density of nanoporous regions in the cells grown using VHF was evidenced

through the use of damp-heat experiments, leading to strong Voc instabilities, which are not

observed with RF, and contributing to reduced µc-Si:H solar cell performance. However, the

advantage of using RF is reduced for higher growth rates since significantly more power density

is required at lower excitation frequencies, resulting in increased ion bombardment energy

and a poorer µc-Si:H bulk material quality, which dominates solar cell performance.

Chapter 6 investigated in greater depth µc-Si:H material deposited at very high growth rates

of around 1 nm s −1. It was shown that reduced hydrogen flow rate and increased pressure

using VHF with dgap = 12 mm led to better-performing solar cells even though significantly

more secondary gas-phase reactions and powder formation are observed. We concluded from

this experiment that deposition conditions at the onset of powder formation are beneficial

even though excessive powder is of course to be avoided. The strong interplay between µc-

Si:H growth rate and the substrate morphology with regard to the formation of nanoporous

regions was clearly evidenced: cells deposited at increasing growth rates are much more

sensitive to substrate sharpness, showing strong electrical instabilities during the damp-heat

tests. Then, the beneficial effect of a reduced dgap for processing µc-Si:H solar cells at high

deposition rates was further demonstrated. Going from dgap= 22 to 9 mm, powder formation

is reduced so that higher deposition pressures can be used effectively. This results in improved

material quality, as assessed by FTPS, and better-performing µc-Si:H solar cells at high growth

rates. Finally, this chapter discussed the contributions of the different silicon radicals to the

growth of µc-Si:H film. A collaboration with the University of Patras allowed us to perform

simulations with detailed sets of conditions. These simulations associated the improvement

observed in the µc-Si:H quality with a decrease of the relative contribution of short-lived

radicals such as SiH or SiH2 to the film growth in favor of the monoradicals SiH3 or Si2H5.

It appears that high-pressure plasmas are thus interesting because they increase the ratio

144



10.1. General conclusions

Υ= (SiH3 +Si2H5)/(SiH+SiH2) by increasing the chances that short-lived radicals will react

with hydrogen before they can reach the film.

Chapter 7 focused on relating the intrinsic stress of µc-Si:H i -layers to solar cell performance.

Based on a deposition pressure series performed using RF with dgap = 12 mm, we demonstrated

that the intrinsic stress of the µc-Si:H is strongly correlated to the bulk defect density as

measured from FTPS, probably due to a change in the ion bombardment energy during

film growth. However, µc-Si:H i -layers (from the hydrogen flow rate series) with the same

bulk quality signature, but different substrate-induced defective nanoporous regions on

textured surfaces could not be discriminated by their intrinsic stress values. This suggests

that a densification process through increased ion bombardment is not responsible for the

reduction of the nanoporous regions in the cells; rather, a change in the film growth precursors

is responsible.

Finally, in Chapter 8 we presented a novel intrinsic silicon oxide buffer layer at the p-i inter-

face of thin-film silicon solar cells. Significant performance improvements in all electrical

parameters were observed for µc-Si:H solar cells deposited at high deposition rates of 1.0 and

1.5 nm s −1 in a single-chamber process. When combined with a more amorphous-rich µc-

Si:H i -layer of higher quality, only an improvement in the blue region of the EQE was observed.

The origins of the observed improvements are multiple: (i) enhanced i -layer nucleation, (ii) an

additional anti-reflection effect, (iii) reduced boron-cross contamination, and (iv) a possible

shunt-quenching effect. In a-Si:H solar cells, the implementation of the silicon oxide buffer

layer allowed for higher stabilized performances and acted as an efficient barrier to boron

cross-contamination, eliminating the need for additional time-consuming processing steps

such as a water-vapor flush.

In summary, new insights into the growth of µc-Si:H for PV applications and into solar cell

design requirements were highlighted during this thesis. In particular, the clear identification

of two separate µc-Si:H phases contributing to overall cell performance allowed us to better

understand all our previous observations. It is now clear that deposition regimes leading

to a dense material, even on top of highly textured substrates, is of utmost importance for

the thin-film silicon PV technology. Indeed, in addition to improved performance, a dense

µc-Si:H material also leads to improved solar cell reproducibility as it allows more robustness

to front TCO morphology variations and air exposure. Improved cell design, thanks to the

implementation of the silicon oxide doped or buffer layers is shown to be a crucial step for

achieving high-efficiency and more resilient solar cells. At the beginning of this work, single-

junction µc-Si:H solar cells prepared in our large-area KAI systems had conversion efficiencies

of around 7.5% only. Thanks to the significant progress made, we can now produce solar cells

with conversion efficiencies significantly above 10%, reaching 10.9% for the best cells with an

anti-reflection coating. This work also contributed to the development of very high-efficiency

multi-junction thin-film silicon solar cells in the laboratory. A micromorph solar cell with a

stabilized efficiency of 12.3% was obtained with its µc-Si:H bottom cell deposited at 7 Å s−1.

Triple-junction a-Si:H/µc-Si:H/µc-Si:H solar cells with high stabilized efficiencies of 12.8%
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and 13.0% were also obtained in the p-i -n and n-i -p configurations respectively. Furthermore,

a successful collaboration with the University of Patras contributed to the validation of both a

fluid plasma simulation code and a Monte Carlo code to simulate the growth kinetics. Both of

these are now starting to provide interesting insights into the underlying physics of µc-Si:H

growth.

10.2 Perspectives

As discussed already in the introduction, this thin-film silicon PV technology has tremen-

dous potential for future PV electricity generation. It has almost everything to establish itself

as a major actor in the field: large availability and non-toxicity of the raw materials, excel-

lent scale-up capability, good performance under high temperatures, good shade tolerance,

low-temperature processing, homogeneous appearance, tunable color and transparency,

compatibility with cheap flexible solutions, etc. But only almost, because, at the moment,

conversion efficiency and costs matter the most.

For this reason major efforts need made at a more fundamental level to find new solutions for

the technology. Multiple approaches have to be undertaken in order to get a more in-depth

understanding of the current limitations and tackle the issues. The growth of high-quality

µc-Si:H in particular is a complex phenomenon which requires more attention.

The combined analysis of plasma conditions and µc-Si:H film growth is really important.

Dedicated plasma analysis tools are required to observe hidden parameters of rf discharges.

More systematic and fundamental investigations of the plasma parameters (even in standard

CCP discharges) are necessary to better understand the underlying physics. Such tools would

consist for example in Vpp probes, post-match impedance probes, or the use of new deposition-

tolerant rf -biased Langmuir probes (allowing measurement of Te, ne , ion flux). The use of

an energy-filtered quadrupole mass spectrometer (evaluation of the chemical nature of the

neutral, cation and anion radicals and ion energy distribution function) should bring valuable

information as well if combined with relevant deposition conditions and material analysis.

The use of plasma sources with greater flexibility with regard to the deposition conditions,

offering more control of the ions energies in particular (e.g. additional bias, dual-frequency

systems, electrical asymmetry effect), could also provide more knowledge of the plasma

requirements for the growth of good-quality µc-Si:H. The evaluation in parallel of alternative

high-density plasma sources, as discussed in Section 1.4, is stimulating and should be further

promoted. Modified plasma chemistry involving halogenated silane (e.g. fluoride gases for

larger grains) for µc-Si:H growth could be interesting as well.

We should strengthen the link between theoretical approaches involving plasma simulation

and kinetic Monte Carlo growth kinetics codes and experimental observations. To reach

that goal, more rigorous investigations of step coverages of high-quality µc-Si:H should help.

Validation of the code results with experiments and ultimately construction of an overall
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predictive model is a major goal on the horizon. Such an approach has the advantage of being

at the meeting point between all the underlying physics involved (surface physics, plasma

physics, molecular dynamics, etc.) and a lot can be learned from it.

Regarding the development of the thin-film silicon technology itself, a better understanding of

the current Voc limitations for µc-Si:H solar cell devices should be gained. By achieving denser

and better quality µc-Si:H, work on the interfaces and realization of “passivating” contacts

with band offsets can be undertaken [Hänni 13]. This should allow the fabrication of devices

with Voc well beyond 600 mV. In the medium term, such high-current, high-voltage µc-Si:H

devices, could find applications in new state-of-the-art tandem or triple-junction solar cells,

with potential conversion efficiencies of over 16%. More fundamental work on a-Si:H material

(e.g. Staebler-Wronski effect, reaching higher Voc) and silicon-based alloys is also of great

interest to develop better multi-junction devices with more effective utilization of the solar

spectrum in the near future.

Very encouraging results were obtained within this thesis work, and hopefully they will con-

tribute to this ongoing effort and help further develop the technology.
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A Detailed solar cells performances of
the comparative study of RF and VHF

This appendix simply lists all the cells electrical performances values that were presented

through the form of figures in Section 5.2.1 where only the best values were retained. This

decision was taken for the sake of clarity of the Figures 5.3 and 5.4. Here, both the best and

mean values out of the ten best cells are shown for cells prepared either using VHF, in Table A.1,

or RF, in Table A.2.

Table A.1: Detailed electrical performances of single junction µc-Si:H solar cells with their
i -layer prepared using VHF and the standard 22 mm KAI-M interelectrode gap. The numbers in
brackets are the mean values of the ten best cells on each substrate.

Frequency
and

substrate

Growth
Rate

(Å s−1)

Thickness
(µm)

Voc

(mV)
FF
(%)

Jsc

0 / −2 V
(mA cm−2)

Efficiency
(%)

VHF
Z5 60’

1.6

1.0 503 (497) 71.7 (70.3) 20.0 / 20.3 7.2

1.6 510 (507) 69.4 (68.8) 21.0 / 21.3 7.4

2.9 483 (479) 65.0 (63.9) 23.5 / 23.9 7.4

2.7

1.0 513 (512) 73.3 (72.4) 19.7 / 19.8 7.4

1.7 504 (499) 65.3 (64.5) 22.6 / 22.5 7.4

2.5 500 (493) 64.2 (63.0) 23.7 / 23.7 7.6

3.8

1.2 485 (480) 67.8 (66.2) 20.8 / 21.3 6.8

1.9 487 (486) 65.0 (63.4) 20.8 / 21.2 6.6

2.4 497 (495) 63.0 (62.3) 20.4 / 21.2 6.4
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Appendix A. Detailed solar cells performances of the comparative study of RF and VHF

Table A.2: Detailed electrical performances of single junction µc-Si:H solar cells with their
i -layer prepared using RF and the standard 22 mm KAI-M interelectrode gap. The numbers in
brackets are the mean values of the ten best cells on each substrate.

Frequency
and

substrate

Growth
Rate

(Å s−1)

Thickness
(µm)

Voc

(mV)
FF
(%)

Jsc

0 / −2 V
(mA cm−2)

Efficiency
(%)

RF
Z5 60’

1.7

1.1 524 (518) 74.7 (73.9) 20.2 / NA 7.9

2.0 518 (513) 72.6 (71.4) 22.4 / 22.7 8.4

2.6 514 (509) 72.1 (70.7) 23.4 / 23.7 8.7

2.8

0.9 517 (512) 72.7 (71.3) 19.9 / NA 7.5

1.9 508 (501) 71.6 (71.2) 23.0 / 23.4 8.4

2.7 507 (504) 70.5 (70.4) 24.0 / 24.4 8.6

3.5

1.0 520 (518) 74.1 (73.4) 20.0 / 20.4 7.7

2.0 503 (498) 70.1 (69.2) 21.8 / 22.2 7.7

2.6 492 (493) 69.0 (68.7) 23.7 / 24.0 8.0

RF
Asahi U

1.7

1.1 503 (501) 70.3 (70.4) 19.6 / NA 6.9

2.0 508 (505) 69.4 (69.1) 21.1 / 21.6 7.4

2.6 511 (509) 69.7 (69.0) 21.2 / 21.8 7.6

2.8

0.9 513 (507) 71.1 (70.7) 19.3 / 19.7 7.0

1.9 508 (507) 69.9 (69.2) 21.5 / 21.3 7.6

2.7 512 (507) 69.9 (69.6) 21.3 / 21.8 7.6
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B On the use of the differential pump-
ing for high pressure plasmas

Introduction

Device-grade a-Si:H materials grown by low temperature PECVD typically employ low pressure,

low depletion deposition regimes. Large scale homogeneity is ensured by using a proper

isothermal reactor, with efficient showerhead gas distribution system for controlling both gas

pre-heating and gas composition over the whole substrate area before it enters the plasma

region. Contamination issues during deposition can be circumvented through the use of

a small leak gas conductance between the actual deposition chamber, where the plasma

is properly confined, and the outer vacuum chamber: this allows the establishment of a

differential pressure during deposition, with a higher pressure inside the deposition chamber.

These characteristics are typically part of the PlasmaBox concept in the KAI systems [Schmitt 89,

Bubenzer 90, Perrin 00] developed at TEL Solar (formerly Unaxis Displays division), as shown

in Figure B.1.

Figure B.1: Conventional capacitive plasma reactor (left) and pressurized plasma box reac-
tor (right). In the first case the degassing impurity flow (gray arrow) mixes with the process
gases while in the second case most of this flow is pumped out. Figure and caption taken
from [Bubenzer 90].
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Appendix B. On the use of the differential pumping for high pressure plasmas

“The box is slightly leaky but keeps up a pressure gradient of one or two orders of magnitude

between the high process gas pressure inside the box and the outer vessel connected permanently

to a high rate pump. A completely vacuum-tight plasma box is unpractical since e.g. in a

multichamber system substrates have to be transferred in and out”.

Similar equipments are typically used for µc-Si:H deposition at growth rate up to about 5 Å s−1,

with deposition pressure of around 2.5 mbar or below.

Optimumµc-Si:H deposition conditions greatly differ from a-Si:H

Growing µc-Si:H at higher pressure and/or higher depletion working conditions are typical

prerequisites for reaching higher growth rates while keeping device grade quality material.

Due to the presence of gas drag forces and much higher diffusivity of hydrogen compared

to silane local enrichment of the silane concentration near the leaks of the plasma reactor

will take place. This is especially favored at higher pressure differences between the outer

chamber and plasma reaction chamber and, hence, enhanced at higher plasma operating

pressures. This higher silane concentration combined with high pressure conditions favor the

well known undesired powder formation in silane plasmas. The powder itself is then subjected

as well to the drag forces present. As a result even localized powder formation sites at the

peripheral edges of the inner chamber can generate strong instabilities and significantly affect

the entire discharge electrical parameters, which is detrimental for both the overall quality

of the deposited material (e.g. thickness and crystallinity variations, creation of defects) and

reproducibility.

While inherently leaky reactors are fine for low-pressure regimes such as the ones used for

the deposition of a-Si:H or a-SiNx films, they are not suited to handle significant particulate

formation in the plasma. As a result, non-uniformity and instabilities due to powder formation

in these regimes are the limiting parameters to the growth of high quality material at high rate

or very high pressure regimes in those large area reactors, even with narrow gap configurations.

Improved control of the differential pressure

Retaining the differential pressure concept for PECVD, the establishment of well defined

pressure in the zone outside the deposition chamber is advantageous. It allows to precisely

control and adjust the immediate pressure drop ratio near the plasma region to avoid the

local silane enrichment and limit gas drag forces: this limits aforementioned problems due to

powder formation while still keeping a controlled local pressure drop to refrain contamination

from the outside if desired.

Outer gas composition can be the same dilution or may also be controlled independently

from what is injected in the plasma chamber, and pressure could be independently controlled

by different means: for example using butterfly valve on existing system or with properly
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defined gas leak conductance between the chambers, so that the pressure ratio can range

from as low as possible to equilibrium. This solution allows the use of PlasmaBox reactors

at significantly higher working pressures and/or higher depletion regimes, allowing higher

growth rates and better material quality over large surfaces without being so much limited

with powder formation. Defining the differential pressure ∆p = pin-pout, where pin is the

pressure in the volume where the PECVD deposition takes place and pout the pressure in

the vacuum chamber, Figure B.2 presents a simple scheme of such solution, when the same

pump is used for both volumes. To demonstrate this effect, the set of deposition conditions

Figure B.2: Left: Standard process using a high differential pressure ∆p pin. Right: Improved
process with a low differential pressure ∆p ≤ 0.5–1.0 mbar or none, at equilibrium.

presented in Section 5.4.1, used to grow a high-quality material at 3 Å s−1with RF, is used

here: f =13.56 MHz, dgap=12 mm, P=450 W, p=9.0 mbar andΦH2 =2500 sccm. The input silane

concentration has to be compensated for the absence of the usual differential pressure to

get the same φc , going from SiH4=38 sccm to 34 sccm (otherwise the film becomes fully

amorphous). The improvement in homogeneity can be seen in Figure B.3. Using the high

Figure B.3: Deposition of µc-Si:H with a high differential pressure ∆p >8 mbar (left) and with a
low one of ∆p =0.5 mbar (right).

differential pressure, the a-Si:H deposition zone can be clearly identified (φc < 10%) around

the µc-Si:H deposition central region. The presence of the leak near the viewport, is also

evidenced by the formation and sticking of powder near the observation window. However,
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with the low differential pressure (0.5 mbar), the Raman crystallinity factor is kept well within

± 10% over the area in the a-Si:H/µc-Si:H transition zone around 50%. Solar cell performances

is the same in both cases, indicating that the same material quality is obtained: homogeneity

alone is affected.

Small differential pressure values are thus desired for microcrystalline growth and having the

ability to freely adjust pout so that it is becomes a function of internal pressure is beneficial

for homogeneity and can be defined for a given system and deposition regime: for example

pout = 0.5 pin, pout = 0.75 pin or pout = 0.95 pin (ideally controlling from maximum differential

pressure to equilibrium).

Further Advantages

• In our case this also allowed the use of OES more conveniently as the viewport was

always clean even during very dusty regimes.

• Forces applied on the reactor parts from the inside towards the outside can be greatly

reduced in high pressure regimes, when the gas pressure difference between the outer

vacuum chamber and the inner plasma chamber is reduced, leading to reduced me-

chanical stress and/or deformation that may also affect leakage rate. A rough estimate

of the force exerted on end plates of PlasmaBox in a KAI-1200 with a 10 mbar pressure

difference is around 140 kg. Improved lifetime and reduced maintenance times may

also result from the reduced mechanical force acting onto the equipment.

• Leakage rate of one PlasmaBox may vary from one to another of the production stack

reactor tower leading to discrepancy in deposition regimes used for the growth of mi-

crocrystalline silicon, and ultimately increased dispersion in the devices performances

from one reactor to another (e.g. difference in silane adjustment depending on leak rate,

local silane enrichment and powder formation etc.). The solution proposed may as well

alleviate this issue by limiting the influence of leakage rate on the plasma conditions.

• Limited powder formation also facilitates reactor cleaning using existent solutions based

on either SF6, NF3 or F2.
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C LPCVD ZnO-based intermediate
reflector for micromorph tandem
solar cells
This appendix discusses the use of LPCVD ZnO as an intermediate reflector in micromorph so-

lar cells in order to boost the top a-Si:H subcell Jsc, as presented in the reference [Bugnon 11b].

This work was supported by the Bosch Solar Thin Film GmbH. Didier Dominé is thanked for

helpful discussions on the ZnO-based intermediate reflector technology.

The use of zinc oxide (ZnO) based intermediate reflector (ZIR) in micromorph solar cells

using low pressure chemical vapor deposition (LPCVD) was investigated. The influences

of deposition temperature and dopant gas concentration on grain size and lateral electrical

conductivity measurements is presented. Further ZIR deposition conditions were then directly

evaluated in micromorph solar cell devices. Their electrical performances were compared

to reference cells and cells incorporating silicon oxide based intermediate reflector. It is

shown that both reduced ZIR deposition temperature and increased total flow rate allow for

better performing devices with increased shunt resistance, as further supported by lock-in

thermography shunt imaging. Relative micromorph efficiency increase of above 7% are shown

with thin ZnO layers, along with absence of loss or even small increase of total current in the

whole structure compared to cells without intermediate reflector.

Introduction

The micromorph tandem cell configuration [Meier 94a], based on monolithic series intercon-

nection of an amorphous silicon (a-Si:H) top cell with a microcrystalline (µc-Si:H) bottom

cell, yet represents one of the most effective approach. As a result of the series connection,

the tandem short-circuit current density (Jsc) is limited by the lowest of either the top Jsc,Top

or bottom Jsc,Bot cell current. However, because of the Staebler-Wronski light-induced degra-

dation of a-Si:H based materials [Staebler 77], the top cell should be kept reasonably thin

(< 300 nm) in order to mitigate this effect and limit carrier collection losses [Bennett 88].

Thinner cells are also desirable for lower production costs. For these reasons the concept of

an intermediate reflector layer (IRL) was first introduced by IMT Neuchâtel [Fischer 96] to

increase the top cell current without increasing its thickness. Thanks to the implementation of
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such IRL within micromorph solar cells, high stabilized efficiencies laboratory cells could be

obtained [Meier 03, Yamamoto 03, Dominé 09, Bailat 10], and high initial module efficiency

of 13.5%, and 12% stabilized were also reported [Yamamoto 05].

Intermediate reflector layers (IRL) were first made of a ZnO (ZIR), but more recently the use of

doped silicon oxide layer (SOIR) to fulfill this role could also be demonstrated [Buehlmann 07,

Lambertz 07]. One of the SOIR advantage is to be deposited directly through conventional

plasma enhanced chemical vapor deposition (PECVD) in the same type of reactor as the solar

cells. However its main drawback is a low deposition rate in most of the cases below 1 Å/s, while

values above 1 nm/s for LPCVD ZIR are fairly typical. With increasing IRL thickness the amount

of Jsc transferred from the bottom to the top first increases up to around 100 nm then reach a

plateau [Fischer 96, Buehlmann 07, Dominé 08]. The difference between the Jsc,Top gain the

Jsc,Bot loss in the bottom cell is attributed to increased absorption in the IRL and doped layers

but also to increased total reflectance. It has also been demonstrated that the IRL promotes

increased light trapping capability of the front transparent conductive oxide (TCO) layer in

the 550–700 nm spectral range with enhanced top cell Jsc,Top gains [Dominé 08, Dominé 09].

Apart from providing sufficiently low absorption coefficient and low refractive index compared

to silicon, other important characteristics of an IRL for its implementation in a tandem device

are its perpendicular and lateral conductivities. While perpendicular conductivity (σ⊥) should

remain quite high to prevent a significant increase in series resistance of the device, in-plane

conductivity (σ∥) should be maintained sufficiently low to limit the series interconnection

range of shunts present in either the top or bottom cells, which can decrease both the Voc

and the FF [Dominé 09, Vaucher 98]. Another advantage of low σ∥ values is that leakage

current from the ZIR to the back electrode becomes significantly lower, hence allowing to

avoid a fourth scribe to insulate the ZIR from the back contact, as proposed by Meier et

al. [Meier 02], which main drawback is to increase the dead area of the module as shown in

Fig. C.1. The introduction of an IRL also allows the tuning of current balance in the tandem

structure, which is known to affect the FF of the device and its overall performance. However,

to date, favoring top or bottom limited conditions is still under discussion as it has to take into

account the spectral irradiance distribution, the temperature coefficient of the micromorph

cell [Repmann 03, Nakajima 04, Yunaz 07a, Dominé 09] along with the intrinsic qualities of

each subcell.

In this study we report the development of ZIRs deposited at high rate with LPCVD (between

1 and 3 nm/s) with high lateral resistivity and their implementation in tandem solar cells a-

Si:H/µc-Si:H compared to cells with SOIR and without IRL. Characterization of thin ZnO layers

deposited on glass are first presented, then ZIRs are directly evaluated within micromorph

solar cells. Cell electrical performances are analyzed under 100% and 0.4% illumination

conditions to evaluate shunting issues in the devices along with lock-in thermography imaging.

Current repartition in the structure is also examined and absence of total current net loss and

even total current gain could be observed for micromorph embedding thin resistive ZIRs.
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Figure C.1: Top: Conventional tandem cell interconnection with three scribes, in which leakage
current from ZIR to back electrode can be detrimental to the module performance. Bottom: Four
scribes alternative proposed by Meier et al. [Meier 02] to insulate the ZIR from the back contact.
Figure from D.Dominé PhD Thesis [Dominé 09]

Experimental details

ZnO deposition and characterization

The ZnO layers were deposited using a Low Pressure Chemical Vapor Deposition (LPCVD) pro-

cess, detailed elsewhere [Faÿ 03, Steinhauser 08a]. Precursor gases employed were diethylzinc

(DEZ) and water vapors, and doping gas was diborane (B2H6) diluted in argon. Optical trans-

mission of the deposited films were obtained using a Perking-Elmer photo-spectrometer with

an integrating sphere. The resistivity of the films was measured using a Keithley 617 pro-

grammable electrometer in the I/V mode, with 40 nm thick aluminium evaporated coplanar

contacts on top of the ZnO layers. The spacing between the contacts was 0.5 mm and the

length of the contacts 8 mm. Atomic Force Microscopy (AFM) and Focused Ion Beam/Scan-

ning Electron Microscopy (FIB-SEM) were used to characterize both the morphology of the

textured surface and its bulk structure.

Micromorph solar cell devices: fabrication and characterization

Tandem p-i -n a-Si:H/µc-Si:H tandem cells were prepared to evaluate the influence of the ZIR

on their overall performances. SnO2:F front contact coated glasses (1.5 mm total thickness)

from Asahi company in Japan were used as substrates for micromorph solar cells except where

stated differently. A thin 15 nm sputtered ZnO layer was deposited on top of these substrates

to prevent reduction of the SnO2 during the standard p-(µc-Si:H) layer process of the a-Si:H

top cell [III 83]. For single junction reference cells of top and bottom cells, textured LPCVD

ZnO front contact of 2 µm (Z2) and 5 µm (Z5, less doped) grown on Schott AF 45 glass were

used respectively after surface treatment [Bailat 06]. The patterned cells were 0.25 cm2 each

157



Appendix C. LPCVD ZnO-based intermediate reflector for Micromorph tandem solar cells

for a-Si:H and µc-Si:H single junction devices and 1.2 cm2 for micromorph cells. They were

defined through a lift-off operation followed by a dry etching of silicon in SF6+O2 plasma to

access the front contact. For micromorph cells with a ZIR, an additional wet etching step with

HNO3 was employed to complete the patterning. For all the cells the ZnO back contact was

covered with a white dielectric reflector.

A medium-sized version of the large area industrial PECVD KAI™systems [Perrin 00] was used

to deposit solar cell devices and the SOIR presented in this study. The generator frequency

was set to 40.68 MHz and the deposition temperature fixed at 180 ◦C. Some a-Si:H top cells

deposited from Bosch Solar Thin Film GmbH (BSTF) on 4 mm glass with Asahi VU front

contact were also used to evaluate ZIR performances directly in micromorph devices.

Open circuit voltage (Voc) and fill factor (FF) values were derived from current-voltage curves,

obtained using a Wacom solar simulator in standard conditions (25 ◦C, AM1.5g spectrum,

100 mW/cm2). The best cell on every substrate was selected based on its high Voc and FF

values under 100% sun illumination and high FF under 0.4% sun illumination conditions.

The short circuit current densities (Jsc) of the best cells were normalized to external quantum

efficiency (EQE) measurements at 0 V bias.

Infrared lock-in thermography analysis was performed on the cells, to help identifying the

number and nature of the shunts, coming from cell isolation or dust particles.

Results and discussion

ZnO lateral conductivity characterization

ZnO thin film conductivity is known to increase with thickness as the grain size becomes larger

and the grain boundary density consequently smaller [Steinhauser 08b]. In order to achieve

high lateral resistivity only a few tenth of nanometers were grown: these layers were highly

polycrystalline and made of narrow grains with a high boundary density. Also, for a given

thickness, decreased temperature or increased precursor flow rates should result in a decrease

of adatom surface mobility leading to smaller grain size, providing additional solutions for

increasing the layer resistivity [Nicolay 09]. This is shown on AFM images presented in Fig. C.2,

where larger grains result from increased thickness or growth temperature. Fig. C.3 shows

FIB-SEM images of thick layers grown at low and high temperature. It can be seen that at low

temperature, the structure remains granular throughout the growth while at high temperature

the grains size increase during the growth.

To investigate the variations of lateral conductivity of the ZnO layers, samples with different

thicknesses, dopant and temperature were deposited on glass substrates, with the total pres-

sure kept constant at 0.5 mbar. Results of resistance measurements on these samples are

presented in Table C.1.
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Figure C.2: Left: 0.5×0.5 µm2 AFM picture of a 40 nm thick ZnO at 110 ◦C (top) and 150 ◦C
(bottom). Right: 2.0×2.0 µm2 AFM picture of a 1.65 µm thick ZnO at 110 ◦C (top) and 150 ◦C
(bottom) (images source from Ref [Nicolay 09]).

Figure C.3: FIB-SEM picture of a 1.7 µm thick LPCVD ZnO film deposited at 180 ◦C (a) and a
3.5 µm film at 110 ◦C (b).
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Table C.1: Summary of resistance measurements on thin ZnO layers.

Temperature B2H6 Thickness R∥
(◦C) (sccm) (nm) (kΩ)

130 2 20 >×106

130 2 40 -

130 2 60 1.9 × 104

130 2 75 1.0 × 104

130 2 110 3.6 × 102

130 10 25 5.1 × 104

130 10 125 1.1 × 104

130 20 20 6.3 × 105

130 20 120 1.8 × 102

180 2 120 3.8 × 101

As expected, the measured resistance of the ZnO layers decreased as the thickness and the

temperature increase. In plane conductivities were in the order of 10−1 S/cm for the ZIR

deposited at 180 ◦C and between 10−2 and 10−4 S/cm for the deposition at 130 ◦C. Increased

dopant flow rate from 2 to 20 sccm led to a decreased resistance, except for the thicker film with

10 sccm. Also, it is worth mentioning here that the SOIR provides a higher lateral resistivity as

reported in [Buehlmann 07, Dominé 09] with a value of of 10−9 S/cm compared to 10−6 S/cm

for the ZIR deposited at 130 ◦C and 1 S/cm for the ZIR deposited at 180 ◦C. The influence

of deposition pressure was not analyzed in this study but may also be another possibility to

further lower the in-plane conductivity.

This study indicates that thin ZnO layers deposited at low temperature should be the preferred

solution as ZIR in tandem solar cells. In the next part, ZIR tests done directly within such

devices are presented.

ZIR evaluation in micromorph tandem devices

Effect of ZIR thickness and growth temperature

In this section we present micromorph devices with top and bottom cell thicknesses of 270 nm

and 1.8 µm respectively. After the deposition of the top a-Si:H cell, four samples were coated

with a ZIR, one sample with 80 nm SOIR and one sample was kept as a reference. Among the

ZIRs presented here one is 80 nm thick deposited at 180 ◦C and the three others were 20, 80

and 120 nm thick deposited at 130 ◦C. The electrical parameters of the cells are presented in

Table C.2.
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Table C.2: Electrical parameters of micromorph tandem cells deposited with various intermedi-
ate reflectors under 100% and 0.4% sun illumination conditions.

Voc FF
Jsc,Top
(gain)

Jsc,Bot Sum Jsc Rsh
Voc

(0.4%)
Rsh

(0.4%)
η

IR type (V) (%) (mA cm−2) (Ω cm−2) (V) (Ω cm−2) (%)

Without 1.20 68.1 11.4 12.0 23.4 5.4×103 0.79 6.8×105 9.3

ZIR - 130 ◦C, 20 nm 1.21 71.1
12.0

(+0.6)
11.2 23.2 4.2×103 0.74 2.1×105 9.6

ZIR - 130 ◦C, 80 nm 1.22 73.8
13.1

(+1.7)
10.1 23.2 2.7×103 0.64 2.5×104 9.0

ZIR - 130 ◦C,
120 nm 1.22 76.2

13.6
(+2.2)

9.2 22.8 4.8×103 0.78 2.3×105 8.6

ZIR - 180 ◦C, 80 nm 1.20 63.2
12.9

(+1.5)
10.1 23.0 4.8×102 0.37 8.7×103 7.7

The overall Voc of the cells is quite low due to an issue during top a-Si:H cell deposition, but it

should not affect the comparison study. The reference a-Si:H cell had a Voc of 717 mV, a FF of

71.2%, a Jsc of 15.8 mA cm−2 and an initial efficiency of 8.1%. The µc-Si:H bottom cell had a

Voc of 510 mV, a FF of 71.4%, a Jsc of 21.0 mA cm−2 and an efficiency of 7.6%. The reference

micromorph cell has an initial efficiency of 9.6% with a top cell current of 11.4 mA cm−2.

Fig. C.4 shows the EQE measurements of the micromorph tandem cells with increasing ZIR

thickness. With only 20 nm of ZIR a gain of 0.6 mA cm−2 is observed in the 500–800 nm region,

and with increasing ZIR thickness around 0.16 mA cm−2 per 10 nm is further transferred

in the top cell, reaching 2.2 mA cm−2 gain with the 120 nm ZIR. The total current in the

micromorph cells decreased from 23.4 mA cm−2 for the reference cell to 23.2 and 22.9 mA cm−2

for increasing ZIRs thicknesses of 20 to 120 nm.

Transverse conductivity of the deposited ZIRs is sufficiently high so that it does not impact the

series resistance of the micromorphs: only a relative increase of 3% at maximum is observed,

which is in fact within the scattering of the micromorph cells references. The advantage of

the resistive ZIR deposited at 130 ◦C is shown here by the strong increase of FF from 63.2% to

71.1% compared to the one deposited at 180 ◦C, with increased shunt resistance Rsh. At low

illumination it can be seen that the Voc is much lower for the ZIR done at 180 ◦C, most likely

due to increased shunt interconnection range issues. This is the reason why it is advantageous

to use the more resistive ZnO layers deposited at lower temperature. However, it should be

noted here that the yield was systematically lower for the cells with a ZIR compared to the

reference cell, as only the best cells on each substrate are shown here.
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Figure C.4: EQE measurements of micromorph cells with increasing thickness of the ZIR, and
without ZIR for reference. The sum of both top and bottom subcells for each micromorph
measured is also presented.

Effect of total gas flow for ZIR deposition

In this section micromorph devices with top and bottom cell thicknesses of 210 nm and 1.7 µm

respectively are presented. After the deposition of the top a-Si:H cell, two samples were coated

with a ZIR, one sample with 30 nm SOIR and one sample was kept as a reference. The ZIRs

deposited at 130 ◦C only differed by the use of high or low total gas flow (ΦT). Low flow rate

conditions correspond to the conditions of the ZIRs presented in the previous section. The

electrical parameters of the cells are presented in Table C.3.

The overall Voc of the cells is again lower than expected which is due to the bottom cell perfor-

mances. The reference a-Si:H cell had a Voc of 905 mV, a FF of 76.9%, a Jsc of 15.0 mA cm−2 and

an initial efficiency of 10.4%. The µc-Si:H bottom cell had a Voc of 453 mV, a FF of 64.6%, a Jsc

of 22.4 mA cm−2 and an efficiency of 6.6%. The reference cell without intermediate reflector

has a relatively low efficiency of 9.0%, due to a poor performing bottom cell, with a top cell

current of 10.4 mA/cm2. In the case the 40 nm ZIR deposited with standard total gas flow

a significant series resistance increase of 27% is observed (going from 11.3 to 14.3 Ω.cm2),

strongly affecting the fill-factor, although its origin is not clear. All the other cells are very

similar in this aspect.

The 30 nm SOIR allows a significant increase of 1.4% in efficiency of the tandem cell thanks to

both the mismatch change, going from top to bottom limited conditions, and the increase of

the shunt resistance. The best tandem cell with a ZIR was the one deposited with increased

total flow rate, which tends to confirm the beneficial effect of this parameter for reducing
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Table C.3: Electrical parameters of the second run of micromorph tandem cells deposited with
various intermediate reflectors under 100% and 0.4% sun illumination conditions.

Voc FF
Jsc,Top
(gain)

Jsc,Bot Sum Jsc Rsh
Voc

(0.4%)
Rsh

(0.4%)
η

IR type (V) (%) (mA cm−2) (Ω cm−2) (V) (Ω cm−2) (%)

Without 1.28 68.0 10.4 12.3 22.7 1.7×103 0.80 6.8×105 9.0

SOIR - 30 nm 1.29 75.7
11.6

(+1.2)
10.7 22.3 2.4×105 0.70 4.9×107 10.4

ZIR - 130 ◦C, 40 nm 1.27 63.8
11.3

(+0.9)
10.7 22.0 2.3×103 0.10 3.9×103 8.7

ZIR - 130 ◦C, 40 nm,
highΦT 1.29 67.4

11.3
(+0.9)

11.6 22.9 3.9×103 0.36 1.9×104 9.8

lateral conductivity of the ZnO layer. The Jsc gain in the top cell was 0.9 mA cm−2 for each

40 nm thick ZIRs. The total Jsc was seen to increase for the 40 nm ZIR deposited with higher

total flow rate, going from 22.7 mA cm−2 to 22.9 mA cm−2. Raman crystallinity measurements

from the n-side of the cells were also carried out but no change could be observed on any of

the samples. This gain in current will be discussed more in detail in the next section.

As the ZIR was seen to reduce the yield of the micromorph tandem cells compared to the

tandem cell with SOIR or without IR, locking thermography observations were done to check

whether the shunts came from the cell isolation or from dust particles. Pictures are shown in

Fig. C.5. The shunts were located both on the center and on the edge of the cell. Reference

cell and the one with a SOIR exhibited significantly lower shunt density, compared to the

micromorphs incorporating a ZIR. However, it can be noted that the ZIR deposited with

high fluxes at 130 ◦C seems to reduce the number of visible shunts compared to the one

with standard fluxes, which is also correlated with better performing cells under 1 and 0.4%

sun. In addition, the authors think that by working in a cleaner environment, the effect of

shunting with the ZIR should also be less prominent as particles would be reduced during this

intermediate step.

Tests with top cell from BSTF

The last series presented consisted in trial a-Si:H top cells deposited by BSTF on Asahi Gen

5 (1100 × 1300 mm2) substrates in ai KAI 1200 sytem, with the bottom cell completed in

Neuchâtel in regular KAI-M system. The µc-Si:H absorber layer was 2.0 µm thick, and the

reference single junction cell had a Voc of 513 mV, a FF of 71.4%, a Jsc of 21.1 mA cm−2 and an

efficiency of 7.7%. Micromorph cells details are presented in Table C.4.

The micromorph reference cell had an initial efficiency of 11.0% with a Voc of 1.38 V. Two ZIR
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Reference SOIR - 80 nm

ZIR - 130 ◦C, 40 nm ZIR - 130 ◦C, 40 nm,

highΦT

Figure C.5: Lock-in thermography pictures of micromorph cells without intermediate reflector
(top left), with a SOIR (top right) and with 40 nm ZIRs deposited at 130 ◦C using standard total
gas flow (bottom left) and high total gas flow (bottom right). Using a forward bias, the shunts
positions are represented by the bright regions where localized high leakage current paths are
present.
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Table C.4: Electrical parameters of micromorph tandem cells deposited with various inter-
mediate reflectors under 100% and 0.4% sun illumination conditions with the top a-Si:H cell
deposited at BSTF.

Voc FF
Jsc,Top
(gain)

Jsc,Bot Sum Jsc Rsh
Voc

(0.4%)
Rsh

(0.4%)
η

IR type (V) (%) (mA cm−2) (Ω cm−2) (V) (Ω cm−2) (%)

Without 1.38 72.0 11.1 12.0 23.1 8.6×103 0.93 1.3×106 11.0

SOIR - 50 nm 1.38 77.2
12.3

(+1.2)
10.6 23.0 8.3×103 0.92 4.3×105 11.3

ZIR - 130 ◦C, 50 nm 1.37 75.1
12.1

(+1.0)
11.2 23.3 7.7×103 0.90 2.4×105 11.5

ZIR - 130 ◦C, 280 nm 1.37 75.9
13.0

(+1.8)
9.9 22.9 1.8×103 0.84 7.4×104 10.3

ZIR - 110 ◦C, 40 nm 1.37 73.0
11.6

(+0.5)
11.5 23.1 1.6×103 0.46 1.8×104 11.5

ZIR - 110 ◦C, 120 nm 1.37 73.8
12.2

(+1.0)
10.8 23.0 2.1×103 0.86 7.6×104 10.9

ZIR - 110 ◦C, 240 nm 1.38 77.3
12.7

(+1.5)
10.1 22.7 8.7×103 0.48 1.2×105 10.8

ZIR - 110 ◦C, 40 nm
(more doped) 1.37 75.4

11.9
(+0.7)

11.4 23.3 2.3×105 0.82 1.4×105 11.8

temperatures, 110 and 130 ◦C, were tested for different thicknesses. The best cell is obtained

with a thin ZIR deposited at 110 ◦C slightly doped, with an initial efficiency of 11.8% with

similar Voc compared to the reference cell. The intentional low doping was done to inhibit the

growth of larger grains. All the cells in this series have similar series resistances.

Again, when thin ZIRs of around 40–50 nm were employed the total current was observed to

be either unchanged or even improved compared to the reference cell. This can be seen on

external quantum efficiency measurements in Fig. C.6 where the reference cell is compared

to the cell with a 50 nm ZIR deposited at 130 ◦C and the cell with a 40 nm thick one at 110 ◦C

more doped, which both exhibit an increase of 0.2 mA/cm2 in total current. Most of the gain in

total current with these 40–50 nm ZIRs happened in the range of 750–1000 nm. No significant

change in Raman crystallinity of the µc-Si:H bottom cell, which could have explained such a

gain, could be observed on any of these substrates. This kind of increase in total Jsc has already

been reported by Yamamoto et al. [Yamamoto 04], even though neither the exact nature of

the reflector nor the refractive index and layers thicknesses were specified. One hypothesis is

that the gain observed would come from partial reflection of the reflected light from the back

electrode at the ZIR providing enhanced light confinement for the bottom cell. It should be

noted as well that the a-Si:H top cell thickness can also behave as a half-wavelength plate,
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Figure C.6: EQE measurements of micromorph cells without intermediate reflector and with a
ZIR of 50 nm deposited at 130 ◦C. Sum of both top and bottom subcells for each micromorph
measured is also presented. Cell details are presented in Table C.4.

such that its thickness also influences the position of minima and maxima which could explain

such an effect if well positioned [Vaucher 98, Dominé 09]. Total reflectance measurements

were carried out directly on the cells but the use of thick glasses prevented us from having

sufficient precision to confirm reduced reflectance. These interference effects may be more

pronounced when working with Asahi front TCO, compared to more diffusive as-grown LPCVD

ZnO, because of its lower haze parameter (defined as the ratio of diffused over total transmitted

light) which translates into increased coherent light through the device.

Finally, from an electrical point of view, it should be noted that EQE measurements of the

limiting subcell component in the structure (either top or bottom cell depending on the light

bias conditions) were done with the full tandem at short-circuit conditions. This means that

the measured subcells were actually operating under slight reverse bias conditions which could

have affected carriers collection [Burdick 86, Meusel 03], depending on the significance of its

voltage dependency, which can be quite important with shunted cells in particular. For this

reason the reference cell and the ones with increased total current were also measured with an

additional forward DC bias of 0.45 V and 0.85 V for the top cell and bottom cell respectively. All

three cells were exhibiting very similar behavior with a decrease in between 0.20–0.24 mA/cm2

for Jsc,Top, 0.13–0.15 mA/cm2 for Jsc,Bot and 0.35–0.37 mA/cm2 on the overall Jsc,Total. This

confirms that the observed gain in total current with the use of thin ZIRs is mainly an optical

effect and not linked to EQE measurement artifacts.

The yield was again slightly lower for the cells implementing a ZIR in this run. However,
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increased in plane conductivity may not be the only cause in all those cases. It is possible

that because of the additional ex-situ fabrication steps shunting issues may come from dust

particles. Working in a cleaner environment may help in this regard. Also the HNO3 wet

etching step used to complete the patterning of micromorphs embedding a ZIR may also be

an important factor to explain these performances degradation. Even though it is difficult

as of now to assess the exact responsibility of this specific step on the shunting issues and

reduced yield observed. The authors believe the HNO3 could have effectively etched the ZIR

at some places or even accessed the front TCO on the cells borders. A laser-scribing procedure

to perform the cells patterning would definitely allow to compare more accurately the ZIR

performances with the reference cells and the cells including a SOIR which do not have this

additional wet etching step. Further attention is thus required to better evaluate the ZIR

solution in this aspect.

Conclusion

Thin ZnO layers exhibiting an anisotropy in conductivity with low in-plane conductivity and

high transverse conductivity for use as intermediate reflector in micromorph tandem cells

were developed. The use of lower ZnO deposition temperature and lower dopant gas flow

showed increased lateral resistivity. The best micromorph cell was done with thin ZIRs of

40–50 nm deposited at low temperature, for which no net loss or even increase in total current

were observed. Relative increase of micromorph efficiency above 7% is observed compared to

a cell without intermediate reflector. However, shunting issues and lower yield (defined as

cells with Voc values above 0.6 V under 0.4% illumination) were identified with micromorph

cells incorporating a ZIR compared to reference cells and cells with a SOIR. Better control of

the additional steps required for the ZIR fabrication could however limit these problems, and

allow for a better evaluation of the ZIR solution.
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