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Abstract We propose a modified parallel-in-time - parareal - multi-level time integration method
which, in contrast to previously proposed methods, employs a coarse solver based on a reduced
model, built from the information obtained from the fine solver at each iteration. This approach
is demonstrated to offer two substantial advantages: it accelerates convergence of the original
parareal method for similar problems and the reduced basis stabilizes the parareal method for
purely advective problems where instabilities are known to arise. When combined with empirical
interpolation methods (EIM), we develop this approach to solve both linear and nonlinear problems
and highlight the minimal changes required to utilize this algorithm to accelerate existing imple-
mentations. We illustrate the advantages through algorithmic design, through analysis of stability,
convergence, and computational complexity, and through several numerical examples.

1 Introduction

With the number of computational cores on large scale computing platforms increasing, the
demands on scalability of computational methods likewise increase, due partly to an increasing
imbalance between the cost of memory access, communication and arithmetic capabilities. Among
other things, traditional domain decomposition methods tend to stagnate in scaling as the number
of cores increases since the computational cost is overwhelmed by other tasks. This suggests a need
to consider the development of computational techniques that better balance these constraints and
allow for the acceleration of large scale computational challenges.
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A recent development in this direction is the parareal method, introduced in [16], providing
a strategy for ’parallel-in-time’ computations that offers the potential for an increased level of
parallelism. Relying on combining a computational inexpensive but inaccurate solver with an
accurate and expensive but parallel solver, the parareal method utilizes an iterative, predictor-
corrector procedure that allows the expensive solver to run across many processors in parallel.
Under suitable conditions, the parareal iteration converges after a small number of iterations to the
serial solution [3]. During the last decade, the parareal method has been applied successfully to a
number of applications (cf. [18, 19]), demonstrating its potential, accuracy, and robustness.

As a central and serial component, the properties of the coarse solver can impact the efficiency and
stability of the parareal algorithm, e.g., if an explicit scheme is used in both the coarse and the fine
stage of the algorithm, the efficiency of the parareal algorithm is limited by the upper bound of
the time step size [19]. One can naturally also consider a different temporal integration approach
such as an implicit approach, although the cost of this can be considerable and often requires the
development of a new solver. An attractive alternative is to use a simplified physics model as the
coarse solver [2, 18, 17], thereby ignoring small scale phenomenon but potentially impacting the
accuracy. The success of such an approach is problem specific.

While the choice of the coarse solver clearly impacts accuracy and overall efficiency, the stability of
the parareal method is considerably more subtle. For parabolic and diffusion dominated problems,
stability is well understood and observed in many applications [12]. However, for hyperbolic
and convection dominated problems, the question of stability is considerably more complex and
generally remains open [23, 8, 3]. In [8], the authors propose to regularly project the solution
onto an energy manifold approximated by the fine solution. The performance of this projection
method was demonstrated for the linear wave equation and the nonlinear Burgers’ equation.
Another attempt, the Krylov subspace parareal method, builds a new coarse solver by reusing
all information from the corresponding fine solver at previous iterations. The stability of this
approach was demonstrated for linear problems on linear structural dynamics [10] and a linear
2-D acoustic-advection system [21]. However, the Krylov subspace parareal method appears to be
limited to linear problems.

The approach of combining the reduced basis method [20] with the parareal method for parabolic
equations was initiated in [13] in which it is demonstrated that a coarse solver based on an
existing reduced model offers better accuracy and reduces the number of iterations in the examples
considered. However, in this work, there was no discussion on the construction of the reduced
model, nor was there any attempt to analyze the stability and convergence of the method.

Inspired by [13, 21], we propose a modified parareal method, referred to as the reduced basis
parareal method in which the Krylov subspace is replaced by a subspace spanned by a set of
reduced bases, constructed on-the-fly from the fine solver. This method inherits most advantages
of the Krylov subspace parareal method and is observed to retain stability and convergence for
linear wave problems. We demonstrate that this approach accelerates the convergence in situations
where the original parareal already converges. However, it also overcomes several known issues: (i)
it deals with nonlinear problems by incorporating methodologies from the reduced basis methods;
and (ii) the traditional coarse propagator is needed only once at the very beginning of the algorithm
to generate an initial reduced basis. This allows for the time step restrictions to be relaxed as
compared to the coarse solver of the original parareal method. The main difference between our
method and [13] lies in the reduced approximation space and the construction of reduced bases.
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The reduced model, playing the role of the coarse solver, is updated for each iteration while the
reduced model in [13] is built only once during an initial offline process. Among other advantages,
this allows the proposed method to adapt the dimension of the reduced approximation space
based on the regularity of the solution, while in [13] the reduced model remains fixed and must be
developed using some other approach.

What remains of this paper is organized as follows. We first review the original parareal method
in Section 2.1 and the Krylov subspace parareal method in Section 2.2. This sets the stage for
Section 2.3 where we introduce the reduced basis parareal method and discuss different strategies
to develop reduced models for problems with nonlinear terms. Section 3 offers some analysis of
the stability, convergence, and complexity of the reduced basis parareal method and Section 4
demonstrates the feasibility and performance of the reduced basis parareal method through various
linear and nonlinear numerical examples. We conclude the paper in Section 5.

2 Parareal algorithms

To set the stage for the general discussion, let us first discuss the original and the Krylov subspace
parareal methods in Section 2.1 and Section 2.2, respectively. We shall highlight issues related to
stability and computational complexity to motivate the reduced basis parareal method, introduced
in Section 2.3.

2.1 The original parareal method

Consider the following initial value problem:

ut = L(u) := Au(t) + N(u(t)), t ∈ (0,T ],

u(0) = u0,
(1)

where u ∈RN is the unknown solution, L is an operator, possibly arising from the spatial discretiza-
tion of a PDE, with A being the linear part of L, and N the nonlinear part.

In the following, we denote Fδt as the accurate but expensive fine time integrator, using a constant
time step size, δt. Furthermore, G∆t is the inaccurate but fast coarse time integrator using a larger
time step size, ∆t. Generally, it is assumed that ∆t� δt.

The original parareal method is designed to solve (1) in a parallel-in-time fashion to accelerate the
computation. First, [0,T ] is decomposed into Nc coarse time intervals or elements:

0 = t0 < · · · < ti < · · · < tNc = T , ti = i∆T , ∆T =
T
Nc
. (2)

Assume that
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∆T =Nf δt, Nf ∈N, (3)

which implies that T =NcNf δt. Denote Fδt(u, ti+1, ti) as the accurate numerical solution integrated
from ti to ti+1 by using Fδt with the initial condition u and the constant time step size δt. Similarly
for G∆t(u, ti+1, ti). Denote also un = Fδt(u0,T ,0) as the numerical solution generated using only the
fine integrator.

Now assume that the k-th iterated approximation ukn is known. The parareal approach proceeds to
the k + 1-th iteration as

uk+1
n+1 = G∆t(u

k+1
n , tn+1, tn) +Fδt(u

k
n, tn+1, tn)−G∆t(ukn, tn+1, tn), 0 ≤ k ≤Nc − 1. (4)

It is easy to see that Fδt(uk+1
n , tn+1, tn) can be done in parallel across all temporal elements. If we

take the limit of k→∞ and assume that the limit of {ukn} exists, we obtain [16]:

uk+1
n+1→ un+1 = Fδt(un, tn+1, tn). (5)

In order to achieve a reasonable efficiency, the number of iterations, Nit , should be much smaller
than Nc.

With the above notation, the original parareal method is

1 Initialization:
2 u0

0 = u0;
3 for i← 0 to Nc do
4 u0

i+1 = G∆t(u0
i , ti+1, ti)

5 end
6 Iterations:
7 k = 0;
8 for k← 0 to Nit do
9 Parallel predictor step:

10 for i← 0 to Nc do
11 uf ki+1 = Fδt(uki , ti+1, ti)
12 end
13 Sequential correction step:
14 for i← 0 to Nc do
15 uk+1

i+1 = G∆t(uk+1
i , ti+1, ti)−uf ki+1 +G∆t(uki , ti+1, ti)

16 end
17 end

Algorithm 1: The original parareal method

To demonstrate the performance of the original parareal method, let us consider a few numerical
examples. Consider first the viscous Burgers’ equation:
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ut + (
u2

2
)x = νuxx, (x, t) ∈ (0,2π)× (0,T ],

u(x,0) = sin(x),
(6)

where T = 2 and ν = 10−1. 2π-periodic boundary condition is used. The spatial discretization is a
P1 discontinuous Galerkin method (DG) with 100 elements [15]. The time integrator is a first-order
forward Euler method and we use the following parameters in the parareal integration

Nc = 100, Nit = 5, ∆t = 10−3, δt = 10−4. (7)

Figure 1 illustrates the L∞-error of the parareal solution at T = 2 against the number of iterations.
Notice that for this nonlinear problem the algorithm converges after only four iterations, resulting
in an expected acceleration in a parallel environment.
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Fig. 1: The L∞-error at T = 2 against the number of iterations of the 1-D Burgers’ equation using
the original parareal method

As a second example, we consider the Kuramoto-Sivashinsky equation [25]:

∂u
∂t

= (
u2

2
)x −uxx −uxxxx, (x, t) ∈ (−8,8)× (0,T ],

u(x,0) = exp(−x2)
(8)

with final time T = 40 and periodic boundary conditions.

As a spatial discretization we use a Fourier collocation method with 128 points [14] and an IMEX
scheme [1] as a time integrator, treating the linear terms implicitly and the nonlinear term explicitly.
The parameters in the parareal method are taken as

Nc = 100, Nit = 5, ∆t = 10−2, δt = 10−4. (9)

Figure 2 (left) shows the time evolution of the chaotic solution to the Kuramoto-Sivashinsky
equation with a Gaussian initial condition. In Figure 2 (right), we show the L∞-error at T = 40
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against the number of iterations. In this case, we take the solution computed by the fine solver as
the exact solution. It is clear that the parareal solution converges, albeit slower. However, it should
also be noted that ∆t/δt = 100, indicating the potential for a substantial acceleration.
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Fig. 2: The time evolution of the solution (left) and the L∞-error at T = 40 against the number of
iterations (right) of the 1-D Kuramoto-Sivashinsky equation using the original parareal method.

As a last and less encouraging example, we consider the 1-D advection equation

ut + aux = 0, (x, t) ∈ (0,2π)× (0,T ],

u(x,0) = exp(sin(x − at)),
(10)

with a final time T = 10, a = 2π and a 2π-periodic boundary condition. We use a DG method of
order 32 and 2 elements in space [15], a singly diagonal implicit fourth-order Runge-Kutta scheme
in time (a five-stage fourth-order scheme, cf. S54b in [22]), and the parareal parameters:

Nc = 100, Nit = 27, ∆t = 5× 10−2, δt = 10−4. (11)

Figure 3 shows the L∞-error at T = 10 against the number of iterations. The instability of the
original parareal method is apparent, as has also been observed by others [3, 23, 8].

2.2 The Krylov subspace parareal method

We notice in Algorithm 1 that only {uf
k
i+1}

Nc−1
i=0 is used in the advancement of the solution to

k + 1. To fix the stability issue, [10] proposed to improve the coarse solver by reusing information
computed at all previous iterations. They applied this idea to the linear hyperbolic problems in
structural dynamics. Recently, a similar idea was successfully applied to linear hyperbolic problems
[21].
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Fig. 3: The L∞-error at T = 10 against the number of iterations of the 1-D linear advection equation
using the original parareal method

The basic idea of the Krylov subspace parareal method is to project uk+1
i onto a subspace spanned

by all numerical solutions integrated by the fine solver at previous iterations. Denote the subspace
as

Sk := span{uf
j
i , 1 ≤ i ≤Nc, 1 ≤ j ≤ k}. (12)

The corresponding orthogonal basis set {s1, ...,sr } is constructed through a QR decomposition.

Denote Pk as the L2-orthogonal projection onto Sk . The previous coarse solver G∆t is replaced by
K∆t as:

K∆t(u, ti+1, ti) = G∆t((I−Pk)u, ti+1, ti) +Fδt(P
ku, ti+1, ti). (13)

For a linear problem, Fδt(Pku, ti+1, ti) can be computed efficiently as

Fδt(P
ku, ti+1, ti) = Fδt(

Nck∑
j=1

Cjsj , ti+1, ti) =
Nck∑
j=1

CjFδt(sj , ti+1, ti), (14)

where Fδt(sj , ti+1, ti) are computed and stored once the sj ’s are available. Since this approach
essentially produces an approximation to the fine solver, the new coarse solver is expected to
be more accurate than the old coarse solver. It was shown in [11] that as the dimension of Sk

increases, Pk → I and K∆t→ Fδt , thus achieving convergence. The algorithm outline is presented
in Algorithm 2.

To demonstrate the performance of the Krylov subspace parareal method, we use it to solve the
linear advection equation, (10). In Figure 4 (left) we show the L∞-error at T = 10 against the number
of iterations. It is clear that the Krylov subspace parareal method stabilizes the parareal solver for
this problem.

Two observations are worth making. First, the Krylov subspace parareal method needs to store all
the values of Sk and F(Sk). As k increases, this induces a memory requirement scaling O(kNcN )
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Fig. 4: The L∞-error at T = 10 against the number of iterations (left), and the number of bases
(right) for solving the 1-D linear advection equation using the Krylov subspace parareal method

and may be become a bottleneck demanding, as illustrated in Figure 4 (right). Furthermore, the
efficiency of the coarse solver depends critically on the assumption of linearity of the operator and
it is not clear how to extend this framework to nonlinear problems. These constraints appear to
limit the practicality of the method.

2.3 The reduced basis parareal method

Let us first recall a few properties of reduced basis methods that will subsequently serve as key
elements of the proposed reduced basis parareal method.

2.3.1 Reduced basis methods

We are generally interested in solving the nonlinear ODE (1). As a system, the dimensionality of the
problem can be very large, e.g., if the problem originates from a method-of-lines discretization of a
nonlinear PDE, so to achieve a high accuracy, requiring a high number of degrees of freedom, N ,
and it is tempting to seek to identify an approximate model to enhance the computational efficiency
without significantly impacting the accuracy.

A general representation of a reduced model in matrix-form can be expressed as

u(t) ≈Vr ũ(t), (15)
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1 Initialization:
2 u0

0 = u0;
3 for i← 0 to Nc do
4 u0

i+1 = G∆t(u0
i , ti+1, ti)

5 end
6 Iterations:
7 k = 0;
8 for k← 0 to Nit do
9 Parallel predictor step:

10 for i← 0 to Nc do
11 uf ki+1 = Fδt(uki , ti+1, ti)
12 end
13 Constructing reduced basis:
14 Update Sk−1 to Sk based on uki−1,uf

k
i

15 Marching the basis:
16 for i← 1 to Nr do
17 Sf i = Fδt(si ,0,∆t);
18 end
19 Sequential correction step:
20 for i← 0 to Nc do
21 uk+1

i+1 = K∆t(uk+1
i , ti+1, ti)−uf ki+1 +K∆t(uki , ti+1, ti)

22 end
23 end

Algorithm 2: The Krylov subspace parareal method

where the r columns of the matrix Vr represent a linear space - the reduced basis - and ũ(t) ∈Rr
are the coefficients of the reduced model. Projecting the ODE system (1) onto Vr , we recover the
reduced system:

VT
r Vr

dũ(t)
dt

= VT
r AVr ũ(t) + VT

r N(Vr ũ(t)). (16)

Assuming that Vr is orthonormal, we recover

dũ(t)
dt

= VT
r AVr ũ(t) + VT

r N(Vr ũ(t)). (17)

One is now left with specifying how to choose a good subspace, Vr , to adequately represent the
dynamic behavior of the solution and developing a strategy for how to recover the coefficients for
the reduced model in an efficient manner. There are several ways to address this question, most
often based on the construction of Vr through snapshots of the solution.

Proper orthogonal decomposition The proper orthogonal decomposition (POD) [6, 5] is perhaps
the most widely used approach to generate a reduced basis from a collection of snapshots. In this
case, we assume we have a collection of Ns snapshots
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U = [u1, ...,uNs ], (18)

where each ui is a vector of length N ; this N can be large as it reflects the number of degrees of
freedom in system. The POD basis, denoted by {φi}r1 ∈ RN , is chosen as the orthonormal vectors
that solve the minimization problem:

min
φi∈RN

Ns∑
j

||uj −
r∑
i=1

(uTj φi)φi ||
2
2,

subject to φTi φj = δij =
{

1, i = j,
0, otherwise.

(19)

The solution to this minimization problem is found through the singular value decomposition
(SVD) of U:

U = VΣWT , (20)

where V ∈ RN×r and W ∈ RNs×r are the left and right singular vectors, respectively, and V is the
sought after basis. The entries of the diagonal matrix Σ provides a measure of the relative energy of
each of the orthogonal vectors in the basis.

Once the basis is available, we can increase the computational efficiency for solving (17) by pre-
computing VT

r AVr , which is of size r × r. However, the computational complexity of the nonlinear
term remains dependent on N and, hence, potentially costly.

Discrete Empirical Interpolation. To address this, [7] proposed an approach, originating in previ-
ous work on empirical interpolation methods [4] but limited the case of an existing discrete basis
set, in which N(Vrũ(t)) is represented by Ñ(t) ∈RN which is subsequently approximated as

N(Vrũ(t)) ≈ Ñ(t) ≈Vpc(t). (21)

Here Vp = [v1, ...,vm] is an orthogonal POD basis set based on snapshots of N(t). To recover c(t), we
seek a solution to an overdetermined system. However, rather than employing an expensive least
square method, we extract m equations from the original set of snapshots. Denote

P = [ep1
, ....,epm ] ∈RN×m, (22)

where ep1
= [0, ...,0,1,0, ...,0]T ∈RN (1 only appears on the p1-th position of the vector). If PTVp is

nonsingular, c(t) can be uniquely determined by

PT Ñ(t) = PTVpc(t),

resulting in a final approximation of Ñ(t) as

Ñ(t) ≈Vp(PTVp)−1PT Ñ(t).

The interpolation index pi is selected iteratively by minimizing the largest magnitude of the residual
r = uk −Vp,kc. The procedure, sometimes referred to as discrete empirical interpolation, is outlined
in Algorithm 3. Notice that in contrast to the original parareal algorithm, in this approach, the
coarse time integrator is used only once to initiate the scheme.
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input : {vk}mk=1 ⊂R
N linearly independent POD bases of the nonlinear term

output : the interpolation operator Pm = [p1, ...,pm].

1 begin
2 ε = max |u1| ,p1 = argmax |u1|;
3 P← {p1 }; Vp,1← {v1 };
4 for k← 2 to M do
5 Solve PT vk = PTVp,kc(t) to obtain c(t);
6 Compute the residual; r = vk −Vp,kc;
7 ε = max |r| ,pk = argmax |r|;
8 Vp,k ←Vp,k−1 ∪ {vk };
9 Pk ← Pk−1 ∪ {pk };

10 end
11 end

Algorithm 3: Empirical interpolation with a given discrete basis set

With the above approximation, we can now express the reduced system as

dũ(t)
dt

= VT
r AVr ũ(t) + VT

r Vp(PTVp)−1N(PTVr ũ(t)). (23)

Full Empirical Interpolation Pursuing the above approach further, one is left wondering if we
can use a basis other than the computational expensive POD basis, and whether we can choose the
interpolation position based on other guidelines. Addressing these questions leads us to propose a
full empirical interpolation method.

It is well-known that the original empirical interpolation method is commonly used to separate
the dependence of parameters and spatial variables [4], and that the method choosing ‘optimal’
interpolation points in a certain sense. Wee propose to consider time as a parameter, and use the
empirical interpolation to construct the reduced bases VE,k of u and the reduced bases VpE,k of the
nonlinear term, i.e.,

u(t) ≈VE,kc(t), Ñ(t) ≈VpE,kc(t). (24)

The resulting reduced model can be written as

dũ(t)
dt

= VE,k
TAVE,kũ(t) + VE,k

TVpE,k(PTVpE,k)−1N(PTVE,kũ(t)). (25)

The essential difference between the models based on discrete empirical interpolation and the
full empirical interpolation approach is found in the way in which one constructs the reduced
basis set. In the former case, the importance of the basis elements is guided by the SVD and the
relative size of the singular values, resulting in a potentially substantial cost. The latter case is
based on the interpolation error and the basis in constructed in a full greedy fashion. A detailed
comparative study of the performance between the two approaches is ongoing and will be presented
in a forthcoming paper.

11



2.3.2 The reduced basis parareal method

Let us now introduce the new reduced basis parareal method. Our first observation is that the first
term in (13) can be dropped under the assumption that the projection error vanishes asymptotically.
Hence, for linear problems, we can replace K∆t by K̂∆t as

K̂∆t(u, ti+1, ti) = Fδt(P
ku, ti+1, ti) =

Nck∑
j=1

CjFδt(sj , ti+1, ti). (26)

This is essentially an approximation to the fine time integrator with an admissible truncation error.
Keeping in mind that Fδt is an expensive operation, we seek to reduce the dimension of Sk to
achieve a better efficiency. If the solution to the ODE is sufficiently regular, it is reasonable to seek
an r-dimensional subspace, Skr (the reduced basis space), of the original space Sk . Now redefine
P
k
r to be the orthogonal projection from u onto Skr . Then (26) becomes (27), which is essentially an

approximation to the fine time integrator using the reduced model, i.e.,

K̂∆t(u, ti+1, ti) = Fδt(P
k
ru, ti+1, ti) =

r∑
j=1

CjFδt(sj , ti+1, ti). (27)

Consequently, our reduced basis parareal method for linear problems is as follows:

uk+1
n+1 = Fδt(P

k
ruk+1

n , tn+1, tn) +Fδt(u
k
n, tn+1, tn)−Fδt(Pkrukn, tn+1, tn), 0 ≤ k ≤Nc − 1. (28)

Depending on the construction of the reduced model, we refer to it as the POD parareal method or
the EIM parareal method.

Algorithm 4 describes the basic steps of the reduced basis parareal method for linear problems. It
follows a procedure similar to Algorithm 2, but requires less memory for storing the bases. Notice
that for linear problems, the coarse solver is needed only for initializing the algorithm. After this
first step, the fine solver produces all the information needed for the reduced model, and the
algorithm no longer depends on the coarse solver.

For nonlinear problems, the relationship

Fδt(P
k
ru, ti+1, ti) =

r∑
j=1

CjFδt(sj , ti+1, ti) (29)

does not generally hold, even if Pku→ u. Therefore, the Krylov subspace parareal method is not
applicable. Fortunately, the knowledge of the development of reduced models using empirical
interpolation offers insight into dealing with nonlinear problems, as mentioned in Section 2.3.1.
We construct the coarse time integrator as follows:

K̂∆t(u, ti+1, ti) = Frδt(P
k
ru, ti+1, ti), (30)

where Frδt is the reduced model constructed by POD or EIM as we described in the previous section.
Consequently, our reduced basis parareal method for nonlinear problems becomes
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uk+1
n+1 = Frδt(P

k
ruk+1

n , tn+1, tn) +Fδt(u
k
n, tn+1, tn)−Frδt(P

k
rukn, tn+1, tn), 0 ≤ k ≤Nc − 1. (31)

As long as there exists a suitable reduced model for the problem, we can evaluate K̂∆t efficiently
while maintaining an accuracy commensurate with the fine solver. The reduced basis parareal
method for nonlinear problems is outlined in Algorithm 5.

1 Initialization:
2 u0

0 = u0;
3 for i← 0 to Nc do
4 u0

i+1 = G∆t(u0
i , ti+1, ti)

5 end
6 Iterations:
7 k = 0;
8 for k← 0 to Nit do
9 Parallel predictor step:

10 for i← 0 to Nc do
11 uf ki+1 = Fδt(uki , ti+1, ti)
12 end
13 Constructing reduced basis by POD or EIM:
14 U k = {uf ki+1, i = 0, ...,Nc, j = 0, ..., k}
15 S = POD(U k) or S = EIM(U k) where S = {si , i = 1, ..., r}
16 Marching the basis:
17 for i← 1 to r do
18 Sf i = Fδt(si ,0,∆t);
19 end
20 Sequential correction step:
21 for i← 0 to Nc do
22 P

kuki =
∑r
j=1Cjsj ← Cj

23 K̂∆t(uk+1
i , ti+1, ti) =

∑Nr
j=1CjSf j

24 uk+1
i+1 = K̂∆t(uk+1

i , ti+1, ti)−uf ki+1 + K̂∆t(uki , ti+1, ti)
25 end
26 end

Algorithm 4: The reduced parareal method for a linear problem
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1 Initialization:
2 u0

0 = u0;
3 for i← 0 to Nc do
4 u0

i+1 = G∆t(u0
i , ti+1, ti)

5 end
6 Iterations:
7 k = 0;
8 for k← 0 to Nit do
9 Parallel predictor step:

10 for i← 0 to Nc do
11 uf ki+1 = Fδt(uki , ti+1, ti)
12 end
13 Constructing reduced basis:
14 U k = {uf ki+1, i = 0, ...,Nc, j = 0, ..., k}
15 S = POD-DEIM(U k) or S = EIM(U k) where S = {si , i = 1, ..., r}
16 Sequential correction step:
17 for i← 0 to Nc do
18 K̂∆t(uki , ti+1, ti) = Frδt(P

k
ruki , ti+1, ti)

19 K̂∆t(uk+1
i , ti+1, ti) = Frδt(P

k
ruk+1

i , ti+1, ti)
20 uk+1

i+1 = K̂∆t(uk+1
i , ti+1, ti)−uf ki+1 + K̂∆t(uki , ti+1, ti)

21 end
22 end

Algorithm 5: The reduced parareal method for a nonlinear problem

3 Analysis of the reduced basis parareal method

In the following we provide some analysis of the reduced basis parareal method to understand its
stability, convergence and overall computational complexity. Throughout, we assume that there
exists a reduced space for the continuous problem.

3.1 Stability analysis

We first consider the linear case. Define the projection error:

gkj = ||(I−Pkr )ukj ||L2(0,T ), (32)

where r is the dimension of the reduced space. We assume a projection error

gkj ≤ ε, ∀j,k, (33)
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and define:
Cp,r =

ε
∆T

, ∀j,k. (34)

It is reasonable to assume that the fine propagator is L2 stable, i.e., there exists a nonnegative
constant CF independent of the discretization parameters, such that,

||Fδt(v, ti+1, ti)||L2(0,T ) ≤ (1 +CF∆T )||v||L2(0,T ), ∀v ∈ L2(0,T ). (35)

Theorem 1 (Stability for the linear case) Under the assumption of (33) and (35), the reduced basis
parareal method is stable for (1) with N ≡ 0, i.e., for each i and k,

||uk+1
i+1 ||L2(0,T ) ≤ CLeCF (i+1)∆T , (36)

where CL is a constant depending only on Cp,r , CF , and u0.

Proof. Using the triangle inequality, linearity of the operator, and assumption (35), we obtain

||uk+1
i+1 ||L2(0,T ) ≤ ||Fδt(Pkruk+1

i , ti+1, ti)||L2(0,T ) + ||Fδt(uki , ti+1, ti)−Fδt(Pkruki , ti+1, ti)||L2(0,T ) (37)

≤ (1 +CF∆T )||uk+1
i ||L2(0,T ) + (1 +CF∆T )||(I−Pkr )uki ||L2(0,T ). (38)

Then, by the discrete Gronwall’s lemma [9] and (33), we recover

||uk+1
i+1 ||L2(0,T ) ≤ (1 +CF∆T )i+1(||uk+1

0 ||L2(0,T ) +∆T
i∑
j=0

(1 +CF∆T )−jCp,r ) (39)

= (1 +CF∆T )i+1||uk+1
0 ||L2(0,T ) +

1
CF

((1 +CF∆T )i+1 − 1)Cp,r (40)

≤ eCF (i+1)∆T ||u0||L2(0,T ) +
1
CF

(eCF (i+1)∆T − 1)Cp,r . (41)

This completes the proof.

Note that if there exists an small integer M (indicating a good reduced approximation space) such
that,

lim
r→M

Cp,r = 0, (42)

then we recover the same stability property as that of the fine solver:

||uk+1
i+1 ||L2(0,T ) ≤ eCF (i+1)∆T ||u0||L2(0,T ).

For the nonlinear case, we further assume that there exists a nonnegative constant Cr , independent
of the discretization parameters, such that,

||Fδt(v, ti+1, ti)−Frδt(P
k
r v, ti+1, ti)||L2(0,T ) ≤ (1 +Cr∆T )qki , ∀v ∈ L2(0,T ), (43)

where qki is the L2-difference between the fine propagator and the reduced model using the same
initial condition v at ti . We assume that
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qkj ≤ ε, ∀j,k. (44)

Theorem 2 (Stability for the nonlinear case) Under assumptions (35), (43) and (44), the reduced
basis parareal method is stable for (1) in the sense that for each i and k

||uk+1
i+1 ||L2(0,T ) ≤ CN eC? (i+1)∆T , (45)

where C? = max{CF ,Cr } and CN is a constant depending only on Cp,r , CF , Cr , and u0.

Proof. Using the triangle inequality and assumptions (35) and (43), we have

||uk+1
i+1 ||L2(0,T ) ≤ ||Frδt(P

k
ruk+1

i , ti+1, ti)||L2(0,T ) + ||Fδt(uki , ti+1, ti)−Frδt(P
k
ruki , ti+1, ti)||L2(0,T ) (46)

≤ (1 +CF∆T )||uk+1
i ||L2(0,T ) + (1 +Cr∆T )qki . (47)

Next, by the discrete Gronwall’s lemma and (44), we derive

||uk+1
i+1 ||L2(0,T ) ≤ (1 +CF∆T )i+1(||uk+1

0 ||L2(0,T ) +∆T
i∑
j=0

(1 +Cr∆T )−jCp,r ) (48)

= (1 +CF∆T )i+1||uk+1
0 ||L2(0,T ) +

1
Cr

((1 +Cr∆T )i+1 − 1)Cp,r (49)

≤ eCF (i+1)∆T ||u0||L2(0,T ) +
1
Cr

(eCr (i+1)∆T − 1)Cp,r . (50)

This completes the proof.

3.2 Convergence analysis

To show the convergence for the linear case, we first assume that there exists a nonnegative constant
CF , such that,

||Fδt(x, ti+1, ti)−Fδt(y, ti+1, ti)||L2(0,T ) ≤ (1 +CF∆T )||x− y||L2(0,T ), ∀ti > 0. (51)

We define
wkj = ||(I−Pkr )uj ||L2(0,T ), (52)

and assume that
wkj ≤ ε, ∀j,k. (53)

Theorem 3 (Convergence for the linear case) Under assumption (33), (42), (51), (53) and N ≡ 0 in
(1), the reduced basis parareal solution converges to ui+1 for each i.

Proof. Using the reduced basis parareal formula and the linearity of the operator, we obtain
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uk+1
i+1 −ui+1 = Fδt(P

k
ruk+1

i , ti+1, ti) +Fδt(u
k
i , ti+1, ti)−Fδt(Pkruki , ti+1, ti)−Fδt(ui , ti+1, ti) (54)

= Fδt(P
k
ruk+1

i , ti+1, ti)−Fδt(Pkrui , ti+1, ti) (55)

+Fδt(u
k
i , ti+1, ti)−Fδt(Pkruki , ti+1, ti) (56)

+Fδt(P
k
rui , ti+1, ti)−Fδt(ui , ti+1, ti). (57)

By the triangular inequality and assumption (51), we recover

||uk+1
i+1 −ui+1||L2(0,T ) ≤ (1 +CF∆T )||uk+1

i −ui ||L2(0,T ) (58)

+ (1 +CF∆T )||(I−Pkr )uki ||L2(0,T ) (59)

+ (1 +CF∆T )||(I−Pkr )ui ||L2(0,T ). (60)

Finally by the discrete Gronwall’s lemma, (33) and (53), we obtain

||uk+1
i+1 −ui+1||L2(0,T ) ≤ (1 +CF∆T )i+1(||uk+1

0 −u0||L2(0,T ) (61)

+∆T
i∑
j=0

(1 +CF∆T )−jCp,r +∆T
i∑
j=0

(1 +CF∆T )−jCp,r ) (62)

≤ 2∆T
i∑
j=0

(1 +CF∆T )−jCp,r (63)

≤ 2
CF

((1 +CF∆T )i+1 − 1)Cp,r (64)

≤ 2
CF

(eCF (i+1)∆T − 1)Cp,r , (65)

which approaches zero as r increases. This completes the proof.

For the nonlinear case, we must also assume that there exists a nonnegative constant Cr , such
that,

||Fδt(uki , ti+1, ti)−Frδt(P
k
ruki , ti+1, ti)||L2(0,T ) ≤ (1 +Cr∆T )qki ,

||Fδt(ui , ti+1, ti)−Frδt(P
k
rui , ti+1, ti)||L2(0,T ) ≤ (1 +Cr∆T )pki ,

(66)

where qki and pki are the L2-difference between the fine operator and the reduced solver using the
same initial condition uki and ui . We assume that

pkj ≤ ε, ∀j,k. (67)

Theorem 4 (Convergence of the nonlinear case) Under assumptions (42), (43), (44), (66) and (67),
the reduced basis parareal solution of (1) converges to ui+1 for each i.

Proof. Using the reduced basis parareal formula, we obtain
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uk+1
i+1 −ui+1 = Frδt(P

k
ruk+1

i , ti+1, ti) +Fδt(u
k
i , ti+1, ti)−Frδt(P

k
ruki , ti+1, ti)−Fδt(ui , ti+1, ti) (68)

= Frδt(P
k
ruk+1

i , ti+1, ti)−Frδt(P
k
rui , ti+1, ti) (69)

+Fδt(u
k
i , ti+1, ti)−Frδt(P

k
ruki , ti+1, ti) (70)

+Frδt(P
k
rui , ti+1, ti)−Fδt(ui , ti+1, ti). (71)

By the triangular inequality and assumptions (66) and (43), we have

||uk+1
i+1 −ui+1||L2(0,T ) ≤ (1 +CF∆T )||uk+1

i −ui ||L2(0,T ) + (1 +Cr∆T )qki + (1 +Cr∆T )pki . (72)

Then, by the discrete Gronwall’s lemma, (44) and (67) we recover

||uk+1
i+1 −ui+1||L2(0,T ) ≤

2
Cr

((1 +Cr∆T )i+1 − 1)Cp,r (73)

≤ 2
Cr

(eCr (i+1)∆T − 1)Cp,r , (74)

which approaches zero as r increases under assumption (42).

Remark 3.1 For the above analysis it is worth emphasizing two points:

• The accuracy of the new parareal algorithm is O(ε), since Cp,r depends on ε as a measure of the quality
of the reduced model. We shall confirm this point by the numerical tests in Section 4.

• Theorem 3 and 4 indicate that if there exists a good reduced approximation space for the problem, the
new parareal algorithm converges in one iteration.

3.3 Complexity analysis

Let us finally discuss the computational complexity of the reduced basis parareal method. Recall
that the dimension of the reduced space is r and that of the fine solution is N . This is assumed
to be the same for the coarse and fine solvers although this may not be a requirement in general.
The compression ratio is R = r/N . Following the notation of [21]: τQR(k), τRB(k) (representing
τSVD(k), τEIM(k), and τDEIM(k) in different scenarios) reflect computing times required by the
corresponding operations at the k-th iteration. τc and τf is the time required by the coarse and fine
solvers, respectively. Nt = NcNf is the total number of time steps in one iteration with Nc being
the number of the coarse time intervals and Nf the number of fine time steps on each coarse time
interval. Np is the number of processors.

In [21], the speedup is estimated as
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S(Np) ≈
Ntτf

Ncτc +Nit(Ncτc +Nt/Npτf ) +NitτQR(it)
(75)

=
1

(1 +Nit)(
Nc
Nt

τc
τf

) +
NitτQR(Nit)

Ntτf
+ Nit
Np

. (76)

In the reduced basis parareal method, τc = R2τf , since the complexity of the computation of the
right hand side of system is O(r2). In addition, τQR becomes τSVD or τEIM . With this in mind, the
speedup can be estimated as

S(Np) =
1

(1 +Nit)(
Nc
Nt
R2) + NitτRB(Nit)

Ntτf
+ Nit
Np

. (77)

Next, we examine the first two terms in the denominators of (76) and (77).

• In the first term, τc/τf takes the role of R2. Hence, we can achieve a comparable performance,
if R ≈

√
τc/τf , i.e, if the underlying PDE solution can be represented by a reduced basis set of

size O(
√
τc/τfN ). Suppose that

√
τc/τf =

√
1/20 ≈ 0.23. This requires that R < 1/4, which is a

reasonable compression ratio for many problems. In addition, it is possible to use a reduced
basis approximation to achieve a better performance for cases where CFL conditions lead to
restrictions for the coarse solver.

• For the second term, τSVD ≈ τQR ≈O(NN2
itN

2
c ), while τEIM ≈O(r3/2NitNc+rNNitNc). Therefore,

τSVD /τEIM ≈O(2NitNc/Rr2). As Nc increases, τEIM becomes smaller. In addition, EIM has a very
good parallel efficiency and requires less memory during the computation.

Also note that Nit would typically be different for the reduced basis parareal method and the
original parareal method. If a reduced space exists, the modified algorithm usually converges
within a few iterations, hence accelerating the overall convergence significantly.

4 Numerical results

In the following, we demonstrate the feasibility and efficiency of the reduced basis parareal method
for both linear and nonlinear problems. We use the solution obtained from the fine time integrator
as the exact solution.

4.1 The linear advection equation

We begin by considering the performance of the reduced basis parareal method and illustrate that
it is stable for the 1-D linear advection equation (10). The spatial and temporal discretizations are
the same as in Section 2 and the parameters as in (11) are used.
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In Figure 5 (left), we show the L∞-error at T = 10 against the number of iterations for the original
parareal method, the POD parareal method, and the EIM parareal method. The accuracy of the
fine time integrator at T = 10 is 4× 10−13. The original parareal method is clearly unstable, while
the other two remain stable. In Figure 5 (right), we show the number of bases used to satisfy the
tolerance ε in the POD parareal method and the EIM parareal method. Here ε in the POD context
is defined as the relative energy in the truncated mode and in the EIM context it is the interpolation
error. In both cases, the tolerance in the basis selection using POD or EIM is set to 10−13. We note
that the EIM parareal method achieves higher accuracy but requires more memory to store the
bases. This suggests that one can explore a tradeoff between accuracy and efficiency in a particular
application.

Remark 4.1 It should be noted that if only snapshots from the previous iteration is used in the EIM basis
construction, the scheme becomes unstable. However, when including all snapshots collected up to the
previous iteration level, the stability is restored.
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Fig. 5: Results obtained using the original parareal method, the POD parareal method, and the
EIM parareal method for the 1-D advection equation. On the left we show the L∞-error at T = 10
against the number of iterations while the right shows the number of bases used for satisfying the
tolerance of ε(10−13) in the POD and EIM parareal methods across the iterations.

Figure 6 (upper left) shows the convergence behavior of the EIM parareal algorithm with different
tolerances (ε = 10−k , k = 1,3,5,7,9,11). The convergence stagnates at a certain level and instability
may set in after further iterations. There are two reasons for this: 1) as ε becomes small, the reduced
bases may become linear dependent, leading to a bad condition number of the related matrices that
may impact stability; 2) the newly evolved reduced bases Sfi for the fine solution may not be within
S anymore. To resolve this problem, we first perform the reorthogonalization of the reduced bases
to obtain a new space S̃ and then project the newly evolved solution K̂∆t(uk+1

i , ti+1, ti) back to S̃. In
Figure 6 (lower left) we show the convergence results following this approach. Most importantly, it
is clear that stability is restored. Furthermore, the dependence of the final accuracy on ε is clear.
These results are consistent with Theorem 3, stating that the parareal solution converges to the
serial solution integrated by the fine solver as long as the subspace S saturates in terms of accuracy.
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In practice, we can choose an ε such that the accuracy of the parareal solution and the serial fine
solution are comparable.

2 4 6 8 10 12 14 16 18 20
10

−15

10
−10

10
−5

10
0

10
5

10
10

iterations

m
a
x
 e

r
r
o

r

ε decreases

0 2 4 6 8 10 12 14 16 18 20
5

10

15

20

25

30

35

40

45

50

55

iterations
n

u
m

b
e
r
 o

f 
b

a
s
is

ε decreases

2 4 6 8 10 12 14 16 18 20

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

iterations

m
a
x
 e

r
r
o

r

ε decreases

0 2 4 6 8 10 12 14 16 18 20
8

10

12

14

16

18

20

22

24

26

28

iterations

n
u

m
b

e
r
 o

f 
b

a
s
is

ε decreases

Fig. 6: The performance of the EIM parareal method for the 1-D advection equation against the
tolerance used in the design of the reduced basis. On the upper left we show the L∞-error at T = 10
against the number of iterations as the tolerance ε decreases and on the upper right the number
of bases used for satisfying the tolerance as ε decreases, where ε = 10−k , k = 1,3,5,7,9,11; On the
lower left and right, we show the corresponding convergence results and the number bases with
the reorthogonalization procedure of the evolved basis.

4.2 The second order wave equation

To further evaluate the stability of the new parareal algorithm, we consider the second-order wave
equation from [8]:
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utt = c2uxx, (x, t) ∈ (0,2π)× (0,T ],

u(x,0) = f (x), ut(x,0) = g(x),
(78)

where T = 10 and c = 5 and a 2π-periodic boundary condition is used. With

f (x) =
N∑

l=−N
ûle

ilx, g(x) = 0 (79)

and

ûl =
{ 1
|l|p , l , 0,
0 l = 0.

and set p = 4. In the following we use a Fourier spectral discretization with 33 modes in space [14]
and the velocity Verlet algorithm in time [24]. The following parameters are used in the parareal
algorithm:

Nc = 100, Nit = 10, ∆t = 10−3, δt = 10−4. (80)

We set the tolerance for POD to 10−11.

In Figure 7 (left), we show the L∞-error at T = 10 against the number of iterations for the original
parareal method and the POD parareal method. The original parareal method is clearly unstable,
while the POD parareal remains stable and converges in one iteration. This confirms our analysis: if
the reduced model is accurate enough, the reduced basis parareal should converge in one iteration.
In Figure 5 (right), we show the number of bases needed to satisfy the tolerance ε in the POD
parareal method.
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Fig. 7: Results obtained using the original parareal method, the POD parareal method for the 1-D
second order wave equation. On the left we show the L∞-error at T = 10 against the number of
iterations while the right shows the number of bases used for satisfying the tolerance of ε(10−11) in
the POD parareal method across the iterations.
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4.3 Nonlinear equations

Let us also apply the reduced basis parareal method to examples of nonlinear PDEs. We recall that
the Krylov based approach is not applicable in this case.

4.3.1 Viscous Burgers’ equation

We first consider the viscous Burgers’ equation (6), with the same spatial and temporal discretization
and the same parameters as in (7). To build the reduced basis, we set the tolerance for POD and
EIM to be 10−15 and 10−10.

In Figure 8 (left), we show the L∞-error at T = 2 against the number of iterations for the original
parareal method, the POD parareal method, and the EIM parareal method. Note that in this case,
the RB parareal performs worse than the original parareal does. It is a result of the reduced model
not adequately capturing the information of the fine solver. Recall that in the nonlinear case, we
have to deal with two approximations: one for the state variables and one for the nonlinear term.
For the POD parareal algorithm, we choose the number of reduced bases based on the tolerance
for the state variable u; alternatively, we can choose the dimension of the reduced approximation
space based on the tolerance for the nonlinear term. The latter approach shows better convergence
behavior in Figure 8 (left, parareal-pod-modified). It is apparent that the quality of the reduced
model directly impacts the convergence.

We emphasize that although the reduced basis parareal method converges slower than the original
parareal, it is less expensive, as discussed in Section 2.3.1.

4.3.2 Kuramoto-Sivashinsky equation

Next we consider the Kuramoto-Sivashinsky equation (8). The same spatial and temporal discretiza-
tion and the same parameters as in (9) are used. To build the reduced basis, we set the tolerance for
POD and EIM to be 10−13 and 10−8, respectively.

In Figure 9 we show the L∞-error at T = 40 against the number of iterations for the original parareal
method, the POD parareal method, the modified POD parareal, and the EIM parareal method. It is
clear that the reduced basis parareal method converges faster than the original parareal method.
This is likely caused by the solution of the problem being smooth enough to ensure that there exists
a compact reduced model. Moreover, to keep the corresponding tolerance, the number of degrees
of freedom in the reduced basis parareal methods is roughly one-third that of the original parareal
method.
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Fig. 8: We compare the performance of the original parareal method, the POD parareal method, the
modified POD parareal and the EIM parareal method for the 1-D Burgers’ equation. On the left we
show the L∞-error at T = 2 against the number of iterations, while the right illustrates the number
of bases.
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Fig. 9: We compare the performance of the original parareal method, the POD parareal method,
and the EIM parareal method for the 1-D Kuramoto-Sivashinsky equation. On the left we show
the L∞-error at T = 40 against the number of iterations, while the right shows the number of bases
used against the number of iterations.

24



4.3.3 Allan-Cahn equation: nonlinear source

As a third nonlinear example we consider the 1-D Allan-Cahn equation:

∂u
∂t

= νuxx +u −u3, (x, t) ∈ (0,2π)× (0,T ],

u(x,0) = 0.25sin(x),
(81)

where T = 2 and ν = 2,1,10−1,10−2. A periodic boundary condition is assumed. We use a P1
DG method with 100 elements in space [15] and a forward Euler scheme in time. The following
parameters are used in the parareal algorithm

Nc = 200, Nit = 5, ∆t = 1× 10−4, δt = 5× 10−6. (82)

We set the tolerance for POD and EIM to be 10−12 and 10−8.

In Figure 10 (left), we show the L∞-error at T = 2 against the number of iterations for the POD
parareal method with different values of ν’s. It is clear that for larger values of ν, the solution
converges faster and less elements in the reduced basis is needed. This is expected since a larger
ν indicates a smoother and more localized solution which allows an efficient representation in a
lower dimensional space. Similar results are obtained by an EIM based parareal approach and are
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Fig. 10: The POD parareal method for the 1-D Allan-Cahn equation. On the left we show the
L∞-error at T = 2 against the number of iterations for different values of ν and on the right we
show the number of bases.

not reproduced here.
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4.3.4 KdV equation: nonlinear flux

As a last example we consider the KdV equation (taken from [26]):

∂u
∂t

= −(
u2

2
)x − νuxxx, (x, t) ∈ (−1,1)× (0,T ],

u(x,0) = 1.5 + 0.5sin(2πx),
(83)

where T = 2 and ν = 10−3 and we assume a periodic boundary condition. The equation conserves
energy, much like the linear wave equation, but the nonlinearity induces a more complex behavior
with the generation of propagating waves. In the parareal algorithm we use

Nc = 100, Nit = 10, ∆t = 10−4, δt = 10−5. (84)

We use a first order local discontinuous Galerkin method (LDG) with 100 elements in space [26, 15]
and an IMEX scheme in time [1], with the linear terms treated implicitly and the nonlinear term
explicitly. We set the tolerance for POD and EIM to be 10−13 and 10−8 respectively.

In Figure 11 (left) we show the L∞-error at T = 2 against the number of iterations for the original
parareal method, the POD parareal method, and the EIM parareal method. While the POD parareal
method does not work well in this case, the EIM parareal method shows remarkable performance,
i.e., it converges much faster than the original parareal method. Note that even if the tolerance for
the POD is smaller than that of the EIM, it does not guarantee that the reduced model error based on
the POD approach is smaller. There are two reasons: 1) the meaning of the tolerance in the context
of the POD and the EIM are different. 2) in the convergence proof of (73), the constants Cr ,Cp,r
depend on the details of the reduced approximation and the dimension of reduced approximation
space, which impact the final approximation error.

5 Conclusion

In this paper, we propose an approach to produce and use a reduced basis method to replace
the coarse solver in the parareal algorithm. We demonstrate that, as compared with the original
parareal method, this new reduced basis parareal method has improved stability characteristics
and efficiency, provided that the solution can be represented well by a reduced model. The analysis
of the method is confirmed by the computation results, e.g., the accuracy of the parareal method is
determined by the accuracy of the fine solver and the reduced model, used to replace the coarse
solver. Unlike the Krylov subspace parareal method, this approach can be extended to include both
linear problems and nonlinear problems, while requiring less storage and computing resources.
The robustness and versatility of the method has been demonstrated through a number of different
problems and sets the stage for the evaluation on more complex problems.
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Fig. 11: We compare the performance of the original parareal method, the POD parareal method,
and the EIM parareal method for the 1-D KdV equation. On the left we show the L∞-error at
T = 2 against the number of iterations, while the right shows the number of bases used against the
number of iterations.
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