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Abstract Seeking to develop efficient and accurate absorbing layers for the

low-speed weakly compressible Navier-Stokes equations, we exploit the connec-

tion to the BGK-approximation to develop an absorbing layer with qualities

similar to that of the perfectly matched layer (PML) known from linear wave

problems. Representing the solutions to the BGK approximation as variations

from the Maxwellian distribution allows for a direct connection to the com-

pressible Navier-Stokes equation while leading to a linear system of equations

with nonlinearities expressed in low order terms only. This allows for a direct

construction of an absorbing layer with PML-like properties.

We demonstrate the accuracy of the BGK approximation and the effi-

ciency of the absorbing layer for the BGK model before pursuing this as a
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means of truncating the full Navier-Stokes equations with a flux based cou-

pling between the different regions. Examples including sound propagation

and vortex shedding confirms the accuracy of the approach. Although we fo-

cus on two-dimensional isentropic examples, the development generalizes to

the three-dimensional non-isentropic case.

Keywords Navier-Stokes equations, BGK model, perfectly matched layer,

absorbing layer

1 Introduction

In this paper, we take a path different from most previous work and first

consider the BGK approximation as a model for weakly compressible flows.

Discretizing this in a special way results in a linear hyperbolic problem with all

nonlinearities in low order terms only. After having qualitatively validated the

accuracy of this model, we develop a PML for the homogeneous part of this

approximation and show that this is both accurate and efficient as an absorbing

layer for both acoustic and vortical flows. The close connection to the full

compressible Navier-Stokes equations then suggests that an efficient absorbing

layer is possible by terminating the Navier-Stokes equations with a layer in

which the absorbing layer BGK model is solved. It is this hybrid, involving a

combination of both model approximations and results from absorbing layers

for linear problems, that is the main contribution in this work and, as we shall

demonstrate through a variety of test cases, offers interesting perspectives for

the development of efficient and accurate absorbing layers of the fully nonlinear

compressible Navier-Stokes equations.

What remains of the paper is organized as follows. In Sec. 2 we recall

the two-dimensional isentropic Navier-Stokes equations while Sec. 3 discusses

the BGK model, its approximation and reduction to a linear system, and the

connection to Navier-Stokes equations. We also demonstrate the surprising

accuracy of the model for bounded problems. Sec. 4 develops the perfectly

matched layer for the BGK approximation, offers some insight into the prop-

erties of the model and discusses the accuracy and general behavior for a few
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test cases. That sets the stage for Sec. 5 in which we propose to combine an

internal full Navier-Stokes equation model with the BGK-related absorbing

layer as a way to effectively truncate unsteady problems of weakly compress-

ible gas dynamics. After having demonstrated the accuracy of this approach,

we conclude in Sec. 6 with a few remarks and an outlook.

2 The compressible Navier-Stokes equations

We discuss the development and evaluation of efficient absorbing layers for

the two-dimensional Navier-Stokes equations for a compressible isentropic gas

described by

∂ρ

∂t
+
∂ρu

∂x1
+
∂ρv

∂x2
= 0, (1)

∂ρu

∂t
+
∂(ρu2 + p)

∂x1
+
∂ρuv

∂x2
=
∂σ11
∂x1

+
∂σ12
∂x2

,

∂ρv

∂t
+
∂ρuv

∂x1
+
∂(ρv2 + p)

∂x2
=
∂σ21
∂x1

+
∂σ22
∂x2

,

where x = (x1, x2) ∈ D represent the spatial domain, ρ is the density, ρu

and ρv are the x1- and x2-components of the momentum, p is the internal

pressure, related to the density through the ideal gas law, p = RTρ. Here R

is the gas constant and T the thermodynamic temperature. The stress tensor,

σ, is assumed to be of the form

σ11 = ν
(

2 ∂u
∂x1
− 2

3

(
∂u
∂x1

+ ∂v
∂x2

))
,

σ12 = σ21 = ν
(
∂u
∂x2

+ ∂v
∂x1

)
,

σ22 = ν
(

2 ∂v
∂x2
− 2

3

(
∂u
∂x1

+ ∂v
∂x2

))
.

where ν is the kinematic viscosity. We assume throughout that the kinematic

viscosity is independent of density and is homogeneous in space.

At solid boundaries, the no-slip boundary condition is imposed by ρu =

ρv = 0 while the density is determined by the internal state. This choice is

consistent with classic analysis of well posed boundary conditions [1].
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3 The BGK model and its approximation

The BGK approximation [2] of the Boltzmann equation is given as

∂f

∂t
+ ζ · ∇xf = − 1

γ
(f − fB(ρ,u)). (2)

Here f(t, ζ,x) is the particle distribution function, ζ = (ζ1, ζ2, ζ3) is the mi-

croscopic velocity and γ represents the relaxation time, i.e., the right hand

side models the collisions while the left hand side of the equation accounts for

transport and mixing.

The Maxwell-Boltzmann equilibrium distribution function fB(ρ,u) is given

as

fB(ρ,u) =
ρ

(2πRT)d/2
exp

(
−|ζ − u|

2

2RT

)
, (3)

where d is the dimension of space.

The relation between f(t, ζ,x) and the macroscopic flow properties, density

ρ, the momentum ρu, and the pressure tensor Pαβ , are given as [3]

ρ =

+∞∫
−∞

f dζ, ρuα =

+∞∫
−∞

ζαf dζ, Pαβ =

+∞∫
−∞

(ζα − uα)(ζβ − uβ)f dζ. (4)

The stresses σαβ is defined by

σαβ = Ip− Pαβ , (5)

where p = 1
3 tr{Pαβ} = RTρ is the scalar pressure.

3.1 Approximating the approximation

Solving the BGK-model directly is clearly a challenge, given its 6+1 dimen-

sional nature and attempting to do so will overwhelm all cost of solving the

compressible Navier-Stokes equations. We shall therefore seek an approxima-

tion and given the essentially unbounded velocity space, it is perhaps natural

to seek an expansion in Hermite polynomials as
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f(t, ζ,x) =

∞∑
k=0

ak(x, t)ξk(ζ),

where ξk is a properly enumerated basis expressed by Hermite polynomials.

We recall that Hermite polynomials, see e.g. [4], are orthogonal polynomials

defined on [−∞,+∞] satisfying

+∞∫
−∞

exp(−x
2

2
)Hi(x)Hj(x)dx = δij

√
2π, (6)

with

H0(x) = 1, H1(x) = x, H2(x) =
x2 − 1√

2
, H3(x) = · · · .

However, since we are primarily interested in considering perturbations around

the equilibrium distribution, it is natural to consider a slightly modified ap-

proximation, first proposed in [5]

f(t,x, ζ) =
ρ

(2πRT)d/2
exp

(
−ζ · ζ

2RT

) ∞∑
k=0

ak(x, t)ξk(ζ). (7)

An immediate consequence of this is that one recovers the Maxwellian distri-

bution for k = 0.

We shall use this ansatz up to second order Hermite polynomials as the

basis - a basis that has the following elements

ξ0 = H0( ζ1√
RT )H0( ζ2√

RT ) = 1,

ξ1 = H1( ζ1√
RT )H0( ζ2√

RT ) = ζ1√
RT ,

ξ2 = H0( ζ1√
RT )H1( ζ2√

RT ) = ζ2√
RT ,

ξ3 = H1( ζ1√
RT )H1( ζ2√

RT ) = ζ1ζ2
RT ,

ξ4 = H2( ζ1√
RT )H0( ζ2√

RT ) = 1√
2
(
ζ21
RT − 1),

ξ5 = H0( ζ1√
RT )H2( ζ2√

RT ) = 1√
2
(
ζ22
RT − 1),

(8)

where we, for simplicity only, have restricted it to the two-dimensional case

with ζ = (ζ1, ζ2).

Substituting (7) into (2), one obtains

R(a0, · · · , a5, ζ) =
∂f

∂t
+ ζ · ∇xf +

f − fB(a0, a1, a2)

γ
. (9)
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Employing a Galerkin procedure, we recover

∂a0
∂t +

√
RT( ∂a1∂x1

+ ∂a2
∂x2

) = 0,

∂a1
∂t +

√
RT( ∂a0∂x1

+
√

2 ∂a4∂x1
+ ∂a3

∂x2
) = 0,

∂a2
∂t +

√
RT( ∂a3∂x1

+ ∂a0
∂x2

+
√

2 ∂a5∂x2
) = 0,

∂a3
∂t +

√
RT( ∂a2∂x1

+ ∂a1
∂x2

) = − 1
γ (a3 − a1a2

a0
),

∂a4
∂t +

√
2RT ∂a1

∂x1
= − 1

γ (a4 − a21√
2a0

),

∂a5
∂t +

√
2RT ∂a2

∂x2
= − 1

γ (a5 − a22√
2a0

).

(10)

For clarity, let us write this system as

∂a

∂t
+
∑
i

A1
∂a

∂xi
= S(a), (11)

where a = (a0, · · · , a5)T and

A1 =
√
RT



0 1 0 0 0 0

1 0 0 0
√

2 0

0 0 0 1 0 0

0 0 1 0 0 0

0
√

2 0 0 0 0

0 0 0 0 0 0


, A2 =

√
RT



0 0 1 0 0 0

0 0 0 1 0 0

1 0 0 0 0
√

2

0 1 0 0 0 0

0 0 0 0 0 0

0 0
√

2 0 0 0


, (12)

and S(a) is a nonlinear source with the elements

S(ā) = − 1

γ

(
0, 0, 0, a3 −

a1a2
a0

, a4 −
a21√
2a0

, a5 −
a22√
2a0

)T
.

It is straightforward to see that the above system is symmetric hyperbolic

following standard definitions, see e.g. [5].

Utilizing the thermodynamic connection to the macroscopic quantities in

(4-5) and the properties of the Hermite polynomials, one immediately recovers

the connection between the expansion coefficients, ak, and the macroscopic

quantities as
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ρ =
+∞∫
−∞

fB dζ = a0,

u =
+∞∫
−∞

ζ1fB dζ = a1
√
RT

a0
, v =

+∞∫
−∞

ζ2fB dζ = a2
√
RT

a0
,

σ11 = −
+∞∫
−∞

(ζ1 − u)2fB dζ + RTρ = −RT(
√

2a4 − a21
a0

),

σ22 = −
+∞∫
−∞

(ζ2 − v)2fB dζ + RTρ = −RT(
√

2a5 − a22
a0

),

σ12 = −
+∞∫
−∞

(ζ1 − u)(ζ2 − v)fB dζ + RTρ = −RT(a3 − a1a2
a0

),

(13)

and the reverse

a0 = ρ, a1 = uρ√
RT , a2 = vρ√

RT ,
(14)

a3 = uvρ−σ12√
RT , a4 =

√
2
2
u2ρ−σ11√

RT , a5 =
√
2
2
v2ρ−σ22√

RT . (15)

3.2 Recovering the Navier-Stokes equations

Following [3], we can recover the Navier-Stokes equations from (10) under

the condition that the relaxation time (or the mean free path) and the Mach

number goes to zero, i.e., the model is valid only in the weakly compressible

case. Let us denote γ, Γ0, Γ1 as three time scales with the relation γ � Γ0 �

Γ1. Here γ is of the order of the collision time, Γ0 is an intermediate time

scale, small enough to consider the values of the macroscopic quantities to be

independent of time, and Γ1 is the macroscopic time scale on which changes

in the density and momentum appears. The coefficients (a0, a1, a2), can be

considered to be independent of time on the scale Γ0 under the condition that

γ is very small, i.e., in the highly collisional regime. Meanwhile, we obtain the

relation between the stresses and the flow field through a kinematic viscosity

ν = RTγ and the equation of state p = RTρ. The coefficients (a3, a4, a5) are

related to the macroscopic variables as

a3 = −γ(∂ρv∂x1
+ ∂ρu

∂x2
) + uvρ

RT ,

a4 = −γ
√

2∂ρu∂x1
+ u2ρ√

2RT ,

a5 = −γ
√

2∂ρv∂x2
+ v2ρ√

2RT .

(16)
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Substituting (14) and (16) into the first three equations in (10), one recovers

∂ρ
∂t + ∂ρu

∂x1
+ ∂ρv

∂x2
= 0,

∂ρu
∂t + ∂ρu2

∂x1
+ ∂ρuv

∂x2
+ ∂p

∂x1
= ∂σ11

∂x1
+ ∂σ12

∂x2
,

∂ρv
∂t + ∂ρuv

∂x1
+ ∂ρv2

∂x2
+ ∂p

∂x2
= ∂σ12

∂x1
+ ∂σ22

∂x2
,

σαβ = RTγ(∂ρuα∂xβ
+

∂ρuβ
∂xα

),

(17)

which we recognize as the isentropic compressible Navier-Stokes equation, (1),

in the limit of ∇ · u ' 0, i.e., the weakly compressible limit. We refer to [3,5]

for further aspects of this approximation.

3.3 Numerical examples

To validate the performance of the BGK approximation derived above as an

approximation to the full Navier-Stokes equations, let us in the following con-

sider a few examples of a more classic nature. Throughout we assume RT = 1.

The equations themselves are solved using a discontinuous Galerkin meth-

ods in space with a 4th order Runge-Kutta method in time. While the details

of such a scheme can be derived from [6], we shall not discuss them further

here since they are less important. Any reasonable and accurate computational

techniques can be used to numerically solve (11).

3.3.1 Combined Couette-Poiseuille flow between plates

In [5] a simple Poiseuille flow was consider as a benchmark with good suc-

cess. Let us consider a slightly more complicated case, the combined Coutte-

Poiseuille flow between parallel plates, which is a Couette flow being driven by

a constant pressure gradient in addition to the moving upper wall. The exact

steady laminar solution with no-slip boundary conditions u(±h) = 0 is

u

U
=

1

2
(1 +

y

h
) + P (1− y2

h2
), P = (−dp

dx
)
h2

2νU
, (18)

where U is the velocity of the moving top wall. P is determined by the constant

pressure gradient once other parameters are fixed. Fig. 1 illustrates the com-

putational mesh and parameters employed in the combined Couette-Poiseuille

flow.
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L=1.0m

L=1.0m

u=0m/s

u=0.01m/s

Fig. 1 Mesh and boundary conditions for the combined Couette-Poiseuille flow.
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Fig. 2 ν = 0.01m2/s, symbols and lines are the normalized numerical solutions and the

exact solutions respectively, Left: P < 0, Right: P ≥ 0.

Fig. 2 shows that the normalized numerical solutions agree well with the

exact solutions for various values of the back pressure. In agreement with

previous related work in [5], convergence studies confirms the accuracy of the

computational scheme, exhibiting spectral convergence for the simple problems

considered here.
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3.3.2 Lid-driven cavity flow

As a more challenging problem, let us consider the classic lid-driven cavity

flow. It has been studied extensively by many researchers for more than three

decades.

One difficulty associated with the driven cavity flow is the presence of pres-

sure singularities at the two corners, impacting the smoothness and accuracy

of the solution in the neighborhood of these. Using a standard approach, often

refereed to as the regularized driven cavity [1], we assume that the velocity of

the upper wall of the cavity is defined as

u(x) =


c1x

4 + c2x
3 + c3x

2 + c4x
1, 0 ≤ x < 0.2,

1, 0.2 ≤ x ≤ 0.8,

d1x
4 + d2x

3 + d3x
2 + d4x

1 + d5, 0.8 < x ≤ 1.

(19)

where [c1, c2, c3, c4] = 103∗[4.9333,−1.4267, 0.1297,−0.0033] and [d1, d2, d3, d4, d5] =

104 ∗ [0.4933,−1.8307, 2.5450,−1.5709, 0.3633]. In Fig. 3 we illustrate the de-

scription of the boundary conditions and the shape of regularized velocity of

the lid. We use the results published in [7,8,9] to validate the computational

u=1m/s

u=v=0m/s

L=1m

L=1m

u=v=0m/s

u=v=0m/s

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

u

Fig. 3 Left: mesh and boundary conditions for the lid-driven cavity flow, Right: Shape of

smooth driving velocity along the moving lid.

results and the physical validity of the BGK approximation considered here.

Fig. 4 shows that the BGK approximation does a surprising good job at re-
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Fig. 4 Figures show the computed u-velocity along vertical line through center of cavity,

compared with the existing numerical results [7,8,9] and the computed velocity fields. Left:

Re=100, Middle: Re=400, Right: Re=1000.

producing high-quality numerical results, obtained with the full Navier-Stokes

equations, this yields confidence in the validity of the model even for complex

flows.

4 An absorbing layer for the BGK model

With the surprisingly good accuracy of the very simple BGK model introduced

above, it is worth developing this model further, certainly as a qualitatively

correct model for fluid flows with applications in e.g. computer generated im-

agery based on physically realistic models. One of the first questions that

naturally arise when attempting to model external flows is how to best trun-

cate the computational domain in such a way that no artificial reflections are

introduced. This question is of generic and substantial importance and there is

a rich literature on methods that attempts to do this, see e.g. [10,11,12,13,14,

15,16,17,18,19,20]. While some of these methods have matured, they are still

approximate and often require that only simple flows, e.g., an almost steady

stream, enters into them. For more complex flows, e.g., bluff body flows with

strong vortical regions, it is often required that the absorbing layers are at a

substantial distance to avoid disturbances to be reflected back into the flow,

disturbing the overall dynamics.

The difficulty associated with the development of efficient and robust means

by which to truncate the computational domain for the compressible Navier-
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Stokes equations is caused by the inherent nonlinearity of the equations. For

linear hyperbolic problems such as Maxwell’s equations or the equations of lin-

ear acoustics, the situation is very different. Among several alternatives, the

perfectly matched layer (PML) methods, first proposed by Berenger in [21]

for Maxwell’s equations, offers a systematic and accurate approach of deriving

absorbing layers with the attractive feature that such layers can be shown to

absorb all incoming waves without any reflections, regardless of their angle of

incidence or their frequency.

Observing that (11) is indeed symmetric hyperbolic it is tempting to pursue

the development of a PML layer for this set of equations, hoping that such a

layer could serve as an efficient and accurate way of truncating the BGK model.

To derive this layer model, we shall follow the developments in [13], based on

the modal analysis in Laplace-Fourier space such that solutions inside the layer

decay exponentially as they propagate. However, this approach is possible only

for linear low-order terms and we recall that (11) has a nonlinear low order

term. Among several alternative ways of dealing with this, we pursue in this

work the simplest approach in which we construct a PML for the homogeneous

part of (11) only and then append the nonlinear source terms.

Without loss of generality, let us consider the construction of a PML par-

allel with the x2-axis starting with x1 = 0 first. Performing the Laplace trans-

formation in time and the Fourier transformation in the x2, the modal solution

is

v̂ = eλx1Φ̂(s, ik2), (−sI + λA1 + ik2A2)Φ̂(x1, ik2) = 0. (20)

Inside the layer, the governing equations are constructed based on the ansatz

for the modal solution

vL = e
λx1+

[
(λ−λ1ik2+λ0α0)
s+α1ik2+α0

−λ0

] ∫ x1
0 σ1(z)dzΦ̂(s, ik2), (21)

where λ0, λ1, α0, α1 are parameters that must be chosen to control behavior of

the absorbing layer and (λ, Φ) are the eigensolutions of (20). Here σ1 ≥ 0 is the

damping functions, assumed to be smooth and equal to zero at the interface

x1 = 0. In general we assume it is on the form
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σ(x) = C

(
x− x0
L

)p
, (22)

where x0 represents the beginning of the layer of thickness L, and p is used

to control the smoothness of the absorption profile. The constant C is used

to control the overall strength of the absorption and generally C ' (∆t)−1 to

avoid restrictions on the explicit time step caused by the PML layer. We use

the same model in all layers.

Following the approach in [17] it is straightforward to show that the PML

model for the homogeneous part of Eq. (11) can be derived as

∂a
∂t +A1

(
∂a
∂x1

+ σ1(λ0a+ ω)
)

+A2

(
∂a
∂x2

+ σ2(λ0a+ θ)
)

= 0

∂ω
∂t + α1

∂ω
∂x2

+ (α0 + σ1)ω + ∂a
∂x1

+ λ0(α0 + σ1)a− λ1 ∂a∂x2
= 0,

∂θ
∂t + α̃1

∂θ
∂x1

+ (α̃0 + σ2)θ + ∂a
∂x2

+ λ̃0(α̃0 + σ2)a− λ̃1 ∂a∂x1
= 0.

(23)

where ω = (ω0, ω1, ω2, ω3, ω4, 0), θ = (θ0, θ1, θ2, θ3, 0, θ5). We recall that σi =

σi(xi) which suppressed for clarity.

Combing this with the nonlinear source term yields the full absorbing layer

formulation for (11) as

∂a0
∂t +

√
RT( ∂a1∂x1

+ ∂a2
∂x2

) +
√
RTσ1(λ0a1 + ω1)

+
√
RTσ2(λ̃0a2 + θ3) = 0

∂a1
∂t +

√
RT( ∂a0∂x1

+
√

2 ∂a4∂x1
+ ∂a3

∂x2
) +
√
RTσ1[λ0(a0 +

√
2a4)

+ (ω0 +
√

2ω4)] +
√
RTσ2(λ̃0a3 + θ3) = 0

∂a2
∂t +

√
RT( ∂a3∂x1

+ ∂a0
∂x2

+
√

2 ∂a5∂x2
) +
√
RTσ1(λ0a3 + ω3)

+
√
RTσ2[λ̃0(a0 +

√
2a5) + (θ0 +

√
2θ5)] = 0

∂a3
∂t +

√
RT( ∂a2∂x1

+ ∂a1
∂x2

) +
√
RTσ1(λ0a2 + ω2)

+
√
RTσ2(λ̃0a1 + θ1) = − 1

γ (a3 − a1a2
a0

)

∂a4
∂t +

√
2RT ∂a1

∂x1
+
√

2RTσ1(λ0a1 + ω1) = − 1
γ (a4 − a21√

2a0
)

∂a5
∂t +

√
2RT ∂a2

∂x2
+
√

2RTσ2(λ̃0a2 + θ2) = − 1
γ (a5 − a22√

2a0
),

(24)

which should be coupled with (23) for evolution of the auxiliary variables ω

and θ. The last step left is to choose parameters making solutions in the layer
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damping. This leaves substantial room for optimization which we have not

pursued in this work. In what follows, the parameters are assumed as follows

λ1 = 0, λ0 = 0, α1 = 0, α0 6= 0,

λ̃1 = 0, λ̃0 = 0, α̃1 = 0, α̃0 6= 0.
(25)

4.1 Long time stability of absorbing layer

As was discussed at length in [10], many standard PML formulations suffer

from a weak instability that will manifest itself late in certain types of appli-

cations. Let us in the following consider this question for the absorbing layer

proposed in the above.

We begin by substituting (25) into (24), to obtain

∂a
∂t +A1

(
∂a
∂x1

+ σ1ω
)

+A2

(
∂a
∂x2

+ θ
)

= S(a)

∂ω
∂t + (α0 + σ1)ω + ∂a

∂x1
= 0,

∂θ
∂t + (α̃0 + σ2)θ + ∂a

∂x2
= 0.

(26)

To continue, we follow [10] and assume that the absorbing layer is almost

quiescent, i.e., we assume all spatial derivates are very small. This allows us

to divide (26) into three parts, in which the first part is

∂ω
∂t + (α0 + σ1)ω = 0,

∂θ
∂t + (α̃0 + σ2)θ = 0,

(27)

for which, in the simplest case of assuming σi ≥ 0 but constant, one easily

recovers the analytic solutions as

ω = e−(α0+σ1)tω(0), θ = e−(α̃0+σ2)tθ(0), (28)

where ω(0) and θ(0) are the initial conditions which are typically assumed to

be very small or zero.

The second part is

∂a0
∂t +

√
RTσ1ω1 +

√
RTσ2θ2 = 0,

∂a1
∂t +

√
RTσ1(ω0 +

√
2ω4) +

√
RTσ2θ3 = 0,

∂a2
∂t +

√
RTσ1ω3 +

√
RTσ2(θ0 +

√
2θ5) = 0,

(29)
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With the three equations being decoupled and the strictly decaying nature of

ω and θ it is clear that also (a0, a1, a2) will approximate to a constant.

The final part is given as

∂a3
∂t +

√
RTσ1ω2 +

√
RTσ2θ1 = − 1

γ (a3 − a1a2
a0

),

∂a4
∂t +

√
2RTσ1ω1 = − 1

γ (a4 − a21√
2a0

),

∂a5
∂t +

√
2RTσ2θ2 = − 1

γ (a5 − a22√
2a0

),

(30)

Considering the long time limit in which the auxiliary variables vanishes and

(a0, a1, a2) approaches a constant, the equations for each of the three variables

take the form

∂ai
∂t

= − 1

γ
ai + b,

where b represents the asymptotic limit of the three nonlinear terms. It is

clear that if γ > 0, ai(t) will decay to zero. Since γ is a measure of collision

time, positivity is guaranteed and, hence, long time stability of the layer is

established.

4.2 Numerical evaluation of absorbing layer

With the derivation of the absorbing layer model above, it is natural to consider

in a more careful manner the performance of this layer for various test cases.

Hence, we will continue to solve the BGK-related model but now add the

absorbing layer to enable the modeling of open problems.

4.2.1 Acoustic wave

In this section, we consider a case where a simple acoustic wave is generated

in the center of computational domain, composed by the square (x1, x2) ∈

[−2, 2]2, surrounded by a layer of thickness L with the outer layer terminated

by characteristic boundary conditions. As an exact solution we consider the

numerical solution obtained in the domain [−10, 10]2 and terminate the so-

lution before reflections can reach the computation domain. This is done to
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isolate errors caused by the absorbing layers only and eliminate other sources

of numerical errors in the comparison.

The initial conditions are given as

ρ(x, 0) = 1 + exp

(
−|x− c|

2

b

)
, u = v = 0,

with c = (0.1, 0.1) and b = 0.1. In the absorbing layer we use C = 120 in

(22) and α0 = 10, α̃0 = 10. These parameters remain unchanged unless stated

otherwise.

In Fig. 5 we illustrate the behavior of the absorbing layers for increasing

value of width of the layer and smoothness of the absorption profile. The re-

sults indicate an initial phase where the characteristic boundary conditions

appear to be superior. This is, however, an artifact of the computational setup

in which the characteristic boundary is placed at a distance equivalent to that

including the width of the absorbing layer. Hence, when compared with the

absorbing layer results, there is a longer period of time where no refections can

reach the point of measurement, resulting in errors that reflect approximation

error rather than reflections due to the termination of the computational do-

main. For longer periods of time, however, the absorbing layer is superior to

the characteristic boundary conditions and shows the expected improvement

in accuracy as the width of the layer increases while a decay in accuracy for

increasing smoothness. The results are obtained in a specify point, (1, 1), but

similar results and qualitative behavior is observed in other points. As dis-

cussed previously, it is conceivable that different choices of the parameters in

the absorbing layer can be adjusted to improve the performance.

4.3 Uniform flow past a circular cylinder

As a more complex case, we consider the classic von Karman problem of a

viscous compressible uniform flow past a circular cylinder of diameter d, in

this case takes to be 0.2, and the computational domain in (x1, x2) ∈ [−1, 2]×

[−1, 1].
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Fig. 5 Left column shows the computed density at point (1,1) for increasing width of the

layer, L = 1, 2, 3 for the three rows. The actual pointwise error is shown in the second

column.

The initial conditions in all test cases are given as

ρ0 = 1, u0 = 0.5, v0 = 0. (31)

It is standard to define Reynolds number as

Re =
ρu0d

ν
(32)
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where ρ0, ν are considered as constants. The dimensionless time is defined by

T =
u0t

d
. (33)

Above a critical Reynolds number it is well known that the flow becomes

unstable and enters into a periodic shedding cycle, creating the celebrated

von Karman streak. The shedding frequency is measured through the non-

dimensional Strouhal number defined as

St =
fd

u0
. (34)

where f is the dimensionless frequency of the shedding of the vortices rear of

the cylinder.

To validate the performance of the absorbing layer, we consider two differ-

ent cases, sketched in Fig. 6. In the first test, the layer is just downstream of

the cylinder and characteristic boundary conditions are used elsewhere while

in the second set of tests the computational domain is entirely surrounded by

the absorbing layers.

u=u
0
, v=0, ρ=ρ

0

u=u
0
, v=0, ρ=ρ

0

PML

u=u
0
, v=0, ρ=ρ

0

u=u
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0

u=0, v=0

PML

PML

PML

PMLu=u
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0

u=u
0
,v=0,ρ=ρ

0

u=u
0
,v=0.ρ=ρ

0

u=u
0
,v=0.ρ=ρ

0

Fig. 6 Examples of meshes and boundary conditions of the computational model with one

sided and four sided absorbing layers.

In the absorbing layer, we again use C = 120 in (22) and this time take

α0 = α̃0 = 10. As a reference solution to directly measure reflections, we solve

the problem in a larger domain, extended with 2 units in all direction.

In Fig. 7 we show a direct comparison between the results obtained by

the one sided absorbing layer and reference solutions obtained in a larger
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computational domain. The error is measured in the fixed point (0.5, 0.5).

The agreement remains excellent and confirms the accuracy of this proposed

absorbing layer for uniform flow past a cylinder. For a more qualitative measure
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Fig. 7 Flow past a cylinder problem with a one-sided (p = 2) absorbing layer at Re =

100. On the left, we show the computed velocity u, computed with different widths of the

absorbing layer and compared with the solution obtained in a larger domain. The right

shows the associated relative error.

of performance, we show in Fig. 8 the development of the vortex shedding in

the density and u-velocity at different times. Even a careful inspection does

not reveal any adverse effect of the absorbing layer and an effective absorption

of vortices down stream of the cylinder.

To further verify the accuracy and efficiency of the proposed approach, in

Fig. 9 we show the direct comparison between four sides PML model with and

the reference solutions. The shifts in oscillation is caused by the differences in

the initial conditions and we observe that after this initial phase, frequency of

the oscillations remain the same.

To validate the long time behavior, we show in Fig. 10 contour plots of

both density and velocity at a late stage (T=30) where the vortex dynamics

is fully developed and the layer has absorbed numerous vortices. We do not

see any effects of reflections from either the single layer or the fully enclosing

four sided absorbing layer, further giving confidence in the proper behavior of

the proposed approach.
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As a final measure of accuracy of the simulations, we shall use the Strouhal

number. While there is no known exact expression for the scaling of the

Stroudal number with Reynolds number, extensive experimentation has pro-

vided an empirical relation between the Strouhal number and the Reynolds

number (60-180) as

St =
−3.3265

Re
+ 0.1816 + 0.00016Re. (35)

The numerical frequency in (34) are measured by taking a time series, i.e. 30

seconds of the pressure at the fixed point (0, 1).

The numerical Strouhal numbers corresponding to various Reynolds num-

bers are shown in Fig. 11 and compared with the experimental scaling. We

note that the BGK model displays the correct qualitative scaling with the

Reynolds number but it is quantitative value is incorrect. Extensive experi-

mentation suggests that this is caused by the simplicity of the model which

proves inadequate when attempting to model the complex boundary layer dy-

namics giving rise to the vortex shedding. However, the quality and accuracy

of the proposed absorbing layer remains unchallenged after these tests.

5 Terminating the Navier-Stokes equations with the BGK-based

absorbing layer

Having realized the limitations of the BGK model to provide quantitatively

correct results, albeit the results are clearly of qualitative value, it is worth

considering ways to take advantage of the developed absorbing layer model

as an approach to truncate the computational domain when solving the more

accurate compressible Navier-Stokes equations.

We pursue this by considering an approach where we solve the fully com-

pressible Navier-Stokes equations (1) using a discontinuous Galerkin method,

discussed at length in [6]. While this is not an essential choice, the locality of

this particular flux-based method makes it possible to couple the physically

correct Navier-Stokes equations, solved in the computational domain, with

the qualitatively correct BGK approximation in adjacent domains. Hence, one
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can simply use the direct relation between the BGK variables and the physi-

cal variables (13)-(15) to relate the solutions in the two neighboring parts of

the domain and connect them through the numerical flux. This is a simple

and straightforward approach that lends itself to a direct implementation in a

discontinuous Galerkin or finite volume formulation.

With this approach is mind, it is natural to consider truncating the com-

pressible Navier-Stokes equations with absorbing layers base on a BGK-based

approach discussed above, i.e., one solves the compressible Navier-Stokes equa-

tions in the computation domain of interest but truncates the computational

domain with the BGK-model modified to allow only decaying solutions, hence

having achieved the formulation on an absorbing layer for the compressible

Navier-Stokes equations.

Let us in the following revisit the two test cases we considered for the

pure BGK-approximation to evaluate this multi-model approach to the de-

velopment of an efficient and stable absorbing layer for the full Navier-Stokes

equations.

5.1 Acoustic wave

We consider a case where a simple acoustic wave is generated in the center of

computational domain, composed by the square (x1, x2) ∈ [−2, 2]2 in which

(1) is solved, surrounded by a BGK-layer of thickness L with the outer layer

terminated by characteristic boundary conditions. As an exact solution we

consider the numerical solution of the full Navier-Stokes equations obtained in

the domain [−10, 10]2 and terminate the solution before reflections can reach

the computation domain.

The initial conditions are given as

ρ(x, 0) = 1 + exp

(
−|x− c|

2

b

)
, u = v = 0,

with c = (0.1, 0.1) and b = 0.1. In the absorbing layer we use C = 120 in

(22) and α0 = 10, α̃0 = 10. These parameters remain unchanged unless stated

otherwise.
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In Fig. 12 we illustrate the behavior of the absorbing layers for increasing

value of width of the layer and smoothness of the absorption profile. Even

though the model is now considerably more complex, the overall behavior is

as one would expect based on the previous tests and the results show the

expected improvement in accuracy as the width of the layer increases while

a decay in accuracy for increasing smoothness. The results are obtained in a

specific point, (1, 1), but similar results and qualitative behavior is observed

in other points. In Fig. 12 we also show the results obtained with a L = 4

thick layer in which case the accuracy is clearly superior to what is possible

with the characteristic boundary condition.

5.2 Uniform flow past a circular cylinder

As the second and more complex case, we again consider the classic von Kar-

man problem of a viscous compressible uniform flow past a circular cylinder

of diameter d, in this case takes to be 0.2, and the computational domain in

(x1, x2) ∈ [−1, 2] × [−1, 1]. As in the previous case, we take the initial condi-

tions to be

ρ0 = 1, u0 = 0.5, v0 = 0. (36)

For an initial qualitative measure of performance, we show in Fig. 13 the

development of the vortex shedding in the density and u-velocity at different

points in time. Even a careful inspection does not reveal any adverse effect

of the absorbing layer and an effective absorption of vortices down stream of

the cylinder. Similar results are obtained in the case where the computational

domain is entirely surrounded by the BGK-based absorbing later.

As a more quantitative measure of performance we show in Fig. 14 the

time-averaged pressure at two different values of the Reynolds number and

compared with the results of a much more extensive computation involving

the solution of the full Navier-Stokes equations in a larger domain. Even a

careful inspection reveals that the differences are minimal and there are no
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visible disturbances or reflections caused by the absorbing layer in spite of it

being placed at a downstream distance of less than 7 cylinder diameters.

As a final test, we again compute the scaling of the Stroudal number with

Reynolds number, shown in Fig. 15. As one would expect the scaling is now

correct and in agreement with experimental predictions.

6 Concluding Remarks

This work contains several apparently different directions of inquiry that are

ultimately combined to present a new approach to the development of accu-

rate absorbing layers to the compressible Navier-Stokes equations in the low

Mach number regime. By taking a detour and evaluating the accuracy of a

relatively crude approximation of the Navier-Stokes equations, arrived at by

considering the Boltzman equation with a BGK-collision term, we demon-

strated the potential for deriving an efficient absorbing layer for BGK model.

The crucial issue here is that the approximation to the BGK model has a

linear principal part and we explored this to develop an absorbing layer using

general results for perfectly matched layers for linear hyperbolic systems. The

resulting scheme is relatively simple and straightforward to implement and we

evaluated its efficiency through a number of examples.

These examples also showed, however, that the simple BGK-approximation

has limitations, in this case illustrated by bluff-body flows. To address this,

and close the loop of this work, we demonstrated how the absorbing layer

developed for the BGK-model could be combined with the BGK model itself

to recover an absorbing layer for the compressible Navier-Stokes equations.

Computational results confirms stability and accuracy of the approach and

open the path to the development of a new generation of absorbing layers for

compressible Navier-Stokes equations.

In this work, the emphasis has been on demonstrating this hybrid approach

and many issues and parameters are open to optimization. It is conceivable

that such optimization allows for substantial performance enhancements of the

layers. Furthermore, the focus has been on low Mach number problems but
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choosing alternative Boltzman model may well allow this to be extended to

strongly compressible flows and, potential, even to problems with shocks. We

hope to be able to consider some of these questions in future work.
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Fig. 8 Flow past a cylinder problem with a downstream absorbing layer at Re = 100. We

show the contours of the density (left) and the u-velocity (right) at non-dimensional times

of 3-18 with 3 units separation.
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Fig. 9 Flow past a cylinder problem with four sided absorbing layer at Re = 100. On the

left, we show the computed velocity u compared with that computed in the larger domain.

The right shows the corresponding density.

Fig. 10 Late time fully developed flow past a circular cylinder at Re=100. The figure

contains results for both a single layer (top) and four layers (bottom) and we show results

of both the density (left) and the u-velocity (right).
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Fig. 11 Strouhal number as a funcition of the Reynolds number, computed using the BGK

model and compared with an experimentally determined scaling law.
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Fig. 12 Left column shows the computed density at point (1,1) for increasing width of

the layer with p = 2 in the profile (top) as well as the density computed with L = 4 and

increasing layer smoothness. The actual pointwise error for these two cases are shown in the

second column.
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Fig. 13 Flow past a cylinder problem modeling using a compressible Navier-Stokes equa-

tions with a downstream BGK-based absorbing layer at Re = 100. We show the contours

of the density (left) and the u-velocity (right) at non-dimensional times of 3-18 with 3 units

separation.
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Fig. 14 Time averaged pressure field at Re=120 (top row) and Re=140 (bottom row).

In the left column we show the time averaged pressure computed in a larger domain and

truncated while the right column shows the average pressure computed with the BGK-based

absorbing layer starting at x=3.
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Fig. 15 Strouhal number as a funcition of the Reynolds number, computed using the

full compressible Navier-Stokes model truncated with a BGK-based absorbing layer and

compared with an experimentally determined scaling law.
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