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Abstract: The steady advance of computational methods makes model-based optimization an
increasingly attractive method for process improvement. Unfortunately, the available models
are often inaccurate. An iterative optimization method called “modifier adaptation” overcomes
this obstacle by incorporating process information into the optimization framework. This paper
extends this technique to constrained optimization problems, where the plant consists of a closed-
loop system but only a model of the open-loop system is available. The degrees of freedom of
the closed-loop system are the setpoints provided to the controller, whereas the model degrees
of freedom are the inputs of the open-loop plant. Using this open-loop model and process
measurements, the proposed algorithm guarantees both optimality and constraint satisfaction
for the closed-loop system upon convergence. A simulated CSTR example with constraints
illustrates the method.
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1. INTRODUCTION

The degrees of freedom of industrial processes are gener-
ally chosen by operators, on the one hand to meet safety
requirements and operating constraints, on the other hand
to optimize a performance measure such as product quality
or profit. Alternatively, experimental process optimization
(Box and Draper, 1969) or model-based process optimiza-
tion may be used. The first is guided purely by experi-
mental plant data, while the latter is based solely on a
(often inaccurate) model. Modifier adaptation (MA) is one
of a family of techniques (see e.g. Jang et al. (1987); Tat-
jewski (2002); Gao and Engell (2005); Skogestad (2000);
Srinivasan and Bonvin (2007)) that combines these two
radically different approaches by using experimental data
to make up for inconsistencies between the model and the
plant. For a more comprehensive introduction to this topic,
the reader is invited to refer to a previous paper by the
same authors (Costello et al., 2013).

MA uses measurements to implement input-affine correc-
tions to the cost and constraint functions in the model-
based optimization problem, while the process model pa-
rameters are kept fixed. MA has been designed to resolve
plant-model mismatch, yet the model must still satisfy two
conditions:

(1) have the same set of inputs as the plant,
(2) predict a locally convex (concave) cost function at the

plant minimum (maximum).

Condition (2) is likely to be satisfied by any reasonable
model and its enforcement is discussed by François and
Bonvin (2013). Costello et al. (2013) proposed a more gen-
eral MA formulation that can be applied when Condition
(1) does not hold, that is, when the plant and the model
have different sets of inputs. However, the “generalized
modifier adaptation” algorithm presented in that paper
was only applicable to unconstrained problems. In this
paper we extend generalized MA to constrained problems,
retaining the attractive property of optimality upon con-
vergence. Furthermore, we analyze two alternative versions
of the algorithm. Although the algorithm is more widely
applicable, we focus here on setpoint optimization for a
closed-loop system for which only an open-loop model is
available.

The paper is organized as follows. After a short review of
MA in Section 2, a controlled plant is given as a motivating
example in Section 3. Section 4 describes the generalized
MA scheme for constrained systems, which is tested in
simulation on a continuous stirred-tank reactor in Section
5. Finally, Section 6 concludes the paper.

2. REAL-TIME OPTIMIZATION VIA MODIFIER
ADAPTATION

2.1 Problem Formulation

The problem of finding optimal operating conditions for a
process is typically expressed mathematically as:



u∗

p := argmin
u

φp (u)

s.t. gp (u) ≤ 0 , (2.1)

where u is the nu-dimensional vector of inputs, φp the
cost function and gp the ng-dimensional vector of process
constraints. Here, the subscript (·)p indicates a quantity
related to the plant.

The functions φp and gp are usually not known accurately,
as only the models φ and g are available. Consequently,
an approximate solution for the original problem (2.1) is
obtained by solving the following model-based problem:

u∗ := argmin
u

φ (u)

s.t. g (u) ≤ 0 , (2.2)

We will assume in this paper that φ and g are differen-
tiable.

2.2 Standard Modifier-Adaptation Scheme

With MA, process measurements are used to iteratively
modify the model-based Problem (2.2) in such a way that,
upon convergence, the necessary conditions of optimality
(NCO) of the modified problem match those of the plant.
This is made possible by using modifiers that, at each
iteration, are computed as the differences between the
measured and predicted values of the constraints, and
the measured and predicted cost and constraint gradients.
This forces the cost and constraints in the model-based
optimization problem to locally match those of the plant.
In its simplest form the algorithm proceeds as follows:

Standard MA

(1) Solve the modified model-based optimization problem
(P0):

u∗

k := argmin
u

φm,k(u) (2.3)

subject to gm,k(u) ≤ 0, (2.4)

with the modified cost and constraints

φm,k(u) := φ(u) + (λφ
k)

T (u− uk−1), (2.5)

gm,k(u) := g(u) + ǫk + (λg
k)

T (u− uk−1). (2.6)

(2) Apply the plant input u∗

k to obtain φp(u
∗

k) and
gp(u

∗

k).

(3) Evaluate (or estimate) the plant gradients
∂φp

∂u (u∗

k)

and
∂gp

∂u (u∗

k). These gradient terms must be estimated
using measurements collected at successive operating
points close to u∗

k, for example using finite differences,
or with more elaborate methods (Marchetti et al.,
2010; Bunin et al., 2013).

(4) Calculate the modifiers for the next iteration:

(λφ
k+1)

T :=
∂φp

∂u
(u∗

k)−
∂φ

∂u
(u∗

k), (2.7)

(λg
k+1)

T :=
∂gp

∂u
(u∗

k)−
∂g

∂u
(u∗

k), (2.8)

ǫk+1 := gp(u
∗

k)− g(u∗

k), (2.9)

where the ng-dimensional vector ǫ encompasses the
zeroth-order modifiers, and the nu-dimensional vector
λφ and the (nu × ng) matrix λg are the first-order
modifiers.

(5) k := k + 1, return to Step (1).

The main advantage of this approach is that, if the
MA scheme converges, then it will do so to the (local)
plant optimum, provided the process model is adequate
(Marchetti et al., 2009).

3. MOTIVATING EXAMPLE: CLOSED-LOOP
SYSTEM

Open-Loop

 PlantController

Open-Loop

Model

φ(u), g(u)

c(u)
u

cs

Φp(cs), Gp(cs)
u

c

Fig. 1. Controlled plant to be optimized and, for compar-
ison, the plant model that is available.

As discussed in the previous section, standard MA is
based on the model having the same inputs as the plant.
Depending on the available model, we argue that many
systems will not satisfy this criterion (see Costello et al.
(2013) for an industrial example of an 80 MW urban waste-
incineration plant that does not). In particular closed-loop
systems, where only the open-loop process has been mod-
eled, will not satisfy this criterion. For example, consider
the controlled plant shown in Figure 1. A plant model will
allow the computation of the optimal inputs u∗. However,
since the plant is operated in closed loop, there is no direct
way of manipulating u to enforce optimality. Although the
model can be used to predict the optimal values of the
controlled variables c(u∗), the resulting plant inputs will
typically differ from u∗ due to imperfect control and plant-
model mismatch. It follows that the predicted optimal
performance will not be achieved.

In standard modifier adaptation, the open-loop plant in-
puts are perturbed to estimate the gradient of the plant
cost and constraints. This eventually leads to obtaining
the optimal open-loop plant input u∗

p. Yet, for closed-
loop systems, we are interested in determining the optimal
setpoints c∗s since optimality of the closed-loop system is
sought. Furthermore, the plant gradients can be measured
with respect to these setpoints (and not u). Fortunately,
the fact that the model can predict the controlled vari-
ables, and thus also the setpoints required to achieve
a certain performance, provides the link to the closed-
loop plant. Two approaches exist for applying modifier
adaptation in this case:

(1) Invert the model such that its degrees of freedom
become the setpoints, as shown in Figure 2. This may
be achieved by modeling the steady state behavior of
the controller with a law of the form:

u = Fc (c(u), cs) . (3.1)

For a given cs, these nu equations can be solved for
u, allowing φ(u) and G(u) to be calculated. For this
approach the steady-state behavior of the controller



Closed-Loop

Model

cs

u(cs)

Φ(cs) := φ(u(cs)),

G(cs) := g(u(cs))

Fig. 2. The closed-loop model that can be obtained by
solving model equations for the controller.

must be known, which is not always the case. Alter-
natively, an ideal controller can be assumed, which
ensures:

c(u)− cs = 0. (3.2)

These nc equations can be solved for u if nu = nc.
Even if one of the above approaches can be applied
(which is not always the case), it is likely to result
in a closed-loop model that is slower to evaluate,
as it will involve solving a system of nu equations.
Slower computation times can be problematic for
online optimization.

(2) The second approach is to use the ’modifier adap-
tation when the plant and model have different in-
puts’ scenario, discussed in Costello et al. (2013), and
termed ’generalized modifier adaptation’. This allows
modifier adaptation to be applied without any model-
inversion or remodeling effort. Furthermore, it can be
proved that generalized modifier adaptation achieves
the optimal setpoints for the plant upon convergence.

We will explore the latter option in this paper. In fact, we
will argue that it is far simpler and has no disadvantages
compared to the first option. While Costello et al. (2013)
only developed the generalized modifier-adaptation theory
for the unconstrained case, we will now extend it to
constrained optimization problems.

4. GENERALIZED MODIFIER ADAPTATION

We show next how the standard MA scheme can be
altered to optimize a controlled plant on the basis of the
plant model. Clearly, the controlled plant and the model
have different sets of inputs, the setpoints cs and the
manipulated inputs u, respectively. The aim is to avoid
having to model the closed-loop system, with a controller
that may not be fully known. As will be shown, this is
completely unnecessary! Generalized modifier-adaptation
can be applied in the following context (see Figure 1):

(1) The plant cost function Φp(cs) := φp(u) and con-
straint functions Gp(cs) := gp(u) are expressed in
terms of the nc setpoints cs.

(2) The model cost function φ(u) and constraint func-
tions g(u) have nu inputs u, with nu ≥ nc.

(3) A model c(u) expressing the mapping from u to c is
available.

We will introduce two algorithms, each one with a dif-
ferent way of computing the gradient modifiers from the

measured/estimated gradients of the controlled plant ,
∂Φp

∂cs
,

and the gradients computed from the open-loop plant
model, ∂φ

∂u . Since these gradients are computed with re-
spect to different variables, they cannot be compared di-
rectly. The first algorithm computes the modifiers in the

space of the setpoints cs. For this, the model gradients are
computed by inverting the relationship ∂c

∂u . The second
algorithm computes the modifiers in the space of the
inputs u, by expressing the experimental gradients with
respect to cs in terms of the inputs u. We present each
algorithm and prove optimality and constraint satisfaction
upon convergence. Then, the similarity between the two
methods is explored, and the effect of filtering on conver-
gence is briefly discussed.

4.1 Method A

Generalized MA: Method A

(1) Solve the modified model-based optimization problem
(P1):

u∗

k := argmin
u

φ̃m,k(u), (4.1)

subject to g̃m,k(u) ≤ 0, (4.2)

with

φ̃m,k(u) := φ(u) + (λ̃
Φ

k )
T (c(u) − cs,k−1), (4.3)

g̃m,k(u) := g(u) + ǫ̃k + (λ̃
G

k )
T (c(u) − cs,k−1). (4.4)

(2) Apply the setpoints cs,k := c(u∗

k) to the plant to
obtain Φp(cs,k) and Gp(cs,k).

(3) Evaluate (or estimate) the plant gradients:
∂Φp

∂cs
(cs,k)

and
∂Gp

∂cs
(cs,k).

(4) Calculate the modifiers for the next iteration:

(λ̃
Φ

k+1)
T :=

∂Φp

∂cs
(cs,k)−

∂φ

∂u
(u∗

k)

(

∂c

∂u
(u∗

k)

)+

, (4.5)

(λ̃
G

k+1)
T :=

∂Gp

∂cs
(cs,k)−

∂g

∂u
(u∗

k)

(

∂c

∂u
(u∗

k)

)+

, (4.6)

ǫ̃k+1 := Gp(cs,k)− g(u∗

k), (4.7)

with (·)+ indicating the Moore-Penrose pseudo-
inverse.

(5) k := k + 1, return to Step (1).

We claim next that all fixed points of this iterative
procedure satisfy the plant NCO.

Theorem 4.1. [Optimality for Method A]
If Method A converges, it will do so to a point satisfying
the plant first-order necessary conditions of optimality.

Proof: Upon convergence after K iterations, uK+1 = uK ,
and cs,K+1 = cs,K , and the modifier terms will also
have converged (function arguments are mostly dropped
in the following derivation, they are all evaluated at
this stationary point). First, we will derive relationships
between φ̃m,k and g̃m,k and the plant cost and constraints
Φp and Gp. Upon convergence, one has:

(λ̃
Φ

K)T =
∂Φp

∂cs
−

∂φ

∂u

(

∂c

∂u

)+

. (4.8)

The gradient of the cost function φ̃m,K in Problem (P1) is

∂φ̃m,K

∂u
=

∂φ

∂u
+ (λ̃

Φ

K)T
∂c

∂u
. (4.9)

Using (4.8) gives

∂φ̃m,K

∂u
=

∂φ

∂u
+

(

∂Φp

∂cs
−

∂φ

∂u

(

∂c

∂u

)+
)

∂c

∂u
. (4.10)



Multiplying both sides of this equation by
(

∂c
∂u

)+ ∂c
∂u and

using the identity
(

∂c
∂u

)+ ∂c
∂u =

(

(

∂c
∂u

)+ ∂c
∂u

)2

yields:

∂φ̃m,K

∂u

(

(

∂c

∂u

)+
∂c

∂u

)

=
∂Φp

∂cs

∂c

∂u

(

∂c

∂u

)+
∂c

∂u
(4.11)

=
∂Φp

∂cs

∂c

∂u
. (4.12)

The same argument can be used to show that

∂g̃m,K

∂u

(

(

∂c

∂u

)+
∂c

∂u

)

=
∂Gp

∂cs

∂c

∂u
. (4.13)

From the definition of ǫ̃ given in (4.7)), we can write

g̃m,K(u∗

K)= g(u∗

K) +Gp(cs,K)− g(u∗

K) (4.14)

= Gp(cs,K). (4.15)

Now, by definition, u∗

K is a KKT point for Problem (P1).
Thus, ∃ µ ≥ 0 such that

∂φ̃m,K

∂u
+ µT ∂g̃m,K

∂u
= 0 . (4.16)

Based on equations (4.12) and (4.13) and assuming
rank

(

∂c
∂u

)

= nc, we can conclude that

∂Φp

∂cs
+ µT ∂Gp

∂cs
= 0 . (4.17)

The KKT conditions state that µT g̃m,K = 0. As we have
shown that g̃m,K = Gp, it follows that

µT Gp = 0 . (4.18)

Hence, cs,K is also a KKT point for the plant. Hence, if
the scheme converges, it converges to a point satisfying the
plant NCO.

4.2 Method B

This is a an alternative, equally intuitive, way of adapting
the standard MA to our problem.

Generalized MA: Method B

(1) Solve the modified model-based optimization Prob-
lem (P2):

u∗

k := argmin
u

φm,k(u), (4.19)

subject to gm,k(u) ≤ 0, (4.20)

with

φm,k(u) := φ(u) + (λφ
k)

T (u− uk−1), (4.21)

gm,k(u) := g(u) + ǫk + (λg
k)

T (u− uk−1). (4.22)

(2) Apply the setpoints cs,k := c(u∗

k) to the plant to
obtain Φp(cs,k) and Gp(cs,k).

(3) Evaluate (or estimate) the plant gradients:
∂Φp

∂cs
(cs,k)

and
∂Gp

∂cs
(cs,k).

(4) Calculate the modifiers for the next iteration:

(λφ
k+1)

T :=
∂Φp

∂cs
(cs,k)

∂c

∂u
(u∗

k)

−
∂φ

∂u
(u∗

k)

(

∂c

∂u
(u∗

k)

)+
∂c

∂u
(u∗

k), (4.23)

(λg
k+1)

T :=
∂Gp

∂cs
(cs,k)

∂c

∂u
(u∗

k)

−
∂g

∂u
(u∗

k)

(

∂c

∂u
(u∗

k)

)+
∂c

∂u
(u∗

k), (4.24)

ǫk+1 := Gp(cs,k)− g(u∗

k). (4.25)

(5) k := k + 1, return to Step (1).

The idea is to correct the gradients of the model cost
and constraints only in those directions that locally
influence ∂c

∂u . To this end, the post multiplication by
(

∂c
∂u (u

∗

k)
)+ ∂c

∂u (u
∗

k) removes any components of ∂φ
∂u (u

∗

k) and
∂g
∂u (u

∗

k) in the null space of ∂c
∂u(u

∗

k). The advantage with
respect to Method A is that the modified cost and con-
straint functions in Step (1) do not contain the nonlinear
term c(u), which could make the optimization problem
in Step (1) harder to solve. Just as for Method A, it can
be shown that all fixed points of this iterative procedure
satisfy the plant NCO.

Theorem 4.2. [Optimality for Method B]
If Method B converges, it will do so to a point satisfying
the plant first-order necessary conditions of optimality.

Proof: Based on the definition of (λφ)T , it follows upon
convergence that

∂φm,K

∂u
=

∂φ

∂u
+

(

∂Φp

∂cs
−

∂φ

∂u

(

∂c

∂u

)+
)

∂c

∂u
, (4.26)

which is exactly the same as for Method A in equation
(4.10). From here onwards, the proof is the same as for
Method A.

4.3 Similarity between Methods A and B

With methods A and B, the optimization problems to be
solved numerically at each iteration are certainly different.
The optimization problem in Method A may be harder
to solve, as the cost function contains the nonlinear term
c(u). The similarity of the two methods are stated in the
following proposition.

Proposition 4.1. [Similarity between Methods A and B]
Consider the Methods A and B of Eqns (4.1-4.7) and
Eqns (4.19-4.25), respectively. The first-order modifier
terms of Method B are first-order approximations of those
in Method A

Proof: A Taylor-series expansion of the modifier term for
the cost function in Problem (P1), with cs,k−1 = c(u∗

k−1),
gives :

(λ̃
Φ

k )
T (c(u) − cs,k−1) =(λ̃

Φ

k )
T

(

∂c

∂u
(u∗

k−1)

)

(u− u∗

k−1)

+O
(

(u− u∗

k−1)
2
)

. (4.27)

But from with the definition of λ̃
Φ
in (4.5):

(λ̃
Φ

k )
T

(

∂c

∂u
(u∗

k−1)

)

=
∂Φp

∂cs
(cs,k−1)

∂c

∂u
(u∗

k−1)

−
∂φ

∂u
(u∗

k−1)

(

∂c

∂u
(u∗

k)

)+
∂c

∂u
(u∗

k).(4.28)



Comparing the right-hand side with (4.23) gives:

(λ̃
Φ

k )
T

(

∂c

∂u
(u∗

k−1)

)

= (λφ
k)

T . (4.29)

Hence, the modifiers in Method B are actually first-order
approximations of those in Method A.

4.4 Filtering

One important aspect regards the filtering of the modi-
fier terms. The algorithms given above might not always
converge. One way to improve the convergence character-
istics is to use a first-order, low-pass exponential filter,
as suggested by Marchetti et al. (2009) to obtain the

filtered modifiers λ̄
Φ
k , λ̄

G
k and ǭk (here we describe the

procedure for Method A, but it is identical for Method
B). An additional step must be added after Step (4):

(4a) Filter the modifiers:

λ̄
Φ
k+1 = (Inc

−KΦ)λ̄
Φ
k +KΦ λ̃

Φ

k+1 (4.30)

λ̄
G
k+1 = (Inc

−KG)λ̄
G
k +KG λ̃

G

k+1 (4.31)

ǭk+1 = (Ing
−Kǫ)ǭk +Kǫ ǫ̃k+1 (4.32)

The filtered modifiers are then used to compute the
modified cost and constraint functions in Step (1):

φ̃m,k(u) := φ(u) + (λ̄
Φ
k )

T (c(u) − cs,k−1), (4.33)

g̃m,k(u) := g(u) + ǭk + (λ̄
G
k )

T (c(u) − cs,k−1). (4.34)

For the exponential filters to be stable and have non-
oscillatory responses, the matrices,KΦ,KG andKǫ should
be chosen with positive eigenvalues in the interval [0, 1].
The choice of the filter matrices is discussed in detail in
Marchetti et al. (2009). As can be expected, with more
filtering, the method is more likely to converge, but it will
do so more slowly. Currently, the only practical way to
choose these filter matrices is through tuning. A simple
heuristic that can automate this tuning procedure for
unconstrained problems is given in Appendix A.

5. SIMULATED EXAMPLE

The method is illustrated on the Williams-Otto reactor
(Williams and Otto, 1960). We will use the model from
Roberts (1979), which has become a standard test problem
for real-time optimization techniques (Marchetti et al.,
2010). The plant (here simulated reality) is an ideal con-
tinuous stirred-tank reactor with the following reactions:

A+B
k1

→ C, k1 = k10e
−E1/(RT ), (5.1)

C +B
k2

→ P + E, k2 = k20e
−E2/(RT ), (5.2)

C + P
k3

→ G, k3 = k30e
−E3/(RT ). (5.3)

We choose the (open-loop) plant inputs to be u =
[FA, FB, T ]

T , that is, the feed rates of A and B, and
the reactor temperature. However, the degrees of free-
dom of the controlled plant are the controller setpoints
cs = [XA,s, FB,s]

T for the mass fraction of A in the reactor
and the inlet flow rate of B. The desired products are P
and E and the reactor mass holdup is 2105 kg.

A (rather poor) controller adjusts FA, FB and T in the
following manner:

• FB = FB,s + 2, that is, with an offset in FB .

• FA = FB

2.4 , that is, FA is proportional to FB.
• T is manipulated so as to meet the setpoint XA,s,
however there is a large steady-state, proportional
offset:

XA = 1.5XA,s . (5.4)

The block diagram of the controlled CSTR is shown in
Figure 3.

Open-Loop

 CSTRController

cs = [XA,s, FB,s]
T

XA, FB

u = [FA, FB , TR]
T

Fig. 3. The controlled CSTR reactor.

The plant model is a two-reaction approximation of the
simulated reality:

A+ 2B
k∗

1

→ P + E, k∗1 = k∗10e
−E∗

1
/(RT ), (5.5)

A+B + P
k∗

2

→ G, k∗2 = k∗20e
−E∗

2
/(RT ), (5.6)

with the parameters k∗10, k
∗

20, E
∗

1 and E∗

2 . The parameters
k∗10 and k∗20 are fixed, whereas E∗

1 and E∗

2 are adjusted
to fit the plant data. The material balance equations for
both the plant and its model are given in Costello et al.
(2013). From the implementation point of view, the plant
controller behavior is considered to be completely un-
known. In particular, no knowledge is available regarding
the manner in which FA is regulated.

The profit function to be maximized is

Profit =1143.38XP (FA + FB) + 25.92XE(FA + FB)

−76.23FA − 114.34FB, (5.7)

where XP and XE are the mass fractions of the products
P and E. There are two operational constraints:

XA ≤ 0.09, (5.8)

XG ≤ 0.6 . (5.9)

The cost and constraint functions Φp(cs), Gp(cs), φ(u)
and g(u) are constructed by combining the above profit
and constraint functions with the plant and model equa-
tions, respectively. Table 1 gives the numerical values of
the fixed plant and model parameters. The input-output
representations of the controlled reactor and the reactor
model are shown in Figure 4. The model can be used to
approximately compute (a) the values of the controlled
variables c, and thus the setpoints for the controlled reac-
tor that lead to particular inputs u, and (b) the resulting
cost and constraint values.

Model

Closed-Loop

Plant

φ(u), g(u)

cs = [XA,s, FB,s]
T

Φp(cs), Gp(cs)

c(u) = [XA, FB ]
T

Fig. 4. Controlled reactor and reactor model for the CSTR.



Table 1. Values of the plant parameters and the
two fixed model parameters (the other model
parameters are adjusted as shown in Table 2

to generate the investigation cases A-C).

parameter unit value
k10 s−1 1.660× 106

k20 s−1 7.212× 108

k30 s−1 2.675× 1012

E1 kJmol−1 5.5427 × 104

E2 kJmol−1 6.9280 × 104

E3 kJmol−1 9.2377 × 104

k
∗

10
s−1 6.7157 × 104

k∗
20

s−1 1.0341 × 105

Figures 5-8 show the performance of Methods A and B for
the three different sets of the adjusted model parameters
given in Table 2. The filter matrices are:

KΦ = KG = Kǫ =

[

0.2 0
0 0.2

]

. (5.10)

Both algorithms converge rapidly to the optimal solu-
tion for the plant, where the constraint on XA is active
(XA,s = 0.06, which results in XA = 0.09). Figure 7 shows
that this constraint is not satisfied prior to convergence.
Indeed, while generalized modifier adaptation guarantees
constraint satisfaction upon convergence, it may violate
constraints in the process of converging. The main obser-
vation to be made is that both algorithms behave very
similarly. This is to be expected, as we proved in Section
4.3 that Method B is a linearized version of Method A.
Hence, either algorithm can be used, bearing in mind that
Method B may be computationally less expensive.

Another key issue in the implementation of this scheme
is the evaluation of the plant gradient, which is done via
finite differences. At the kth iteration, three different values
of cs are applied to the plant, cs,k, cs,k + [∆XA,s, 0]

T

and cs,k + [0,∆FB,s]
T , where ∆XA,s and ∆FB,s are small

perturbations. The gradient is then computed as:

(∂Φp

∂cs

)T

(cs,k) =

[

Φp(cs,k+[∆XA,0]T−Φp(cs,k))
∆XA

Φp(cs,k+[0,∆FB]T−Φp(cs,k))
∆FB

]

. (5.11)

As gradient estimation is not the focus of this paper, our
simulations assume no measurement noise. In practice,
the gradient calculation method needs to be robust to
measurement noise. While this is outside the scope of this
paper, the interested reader is referred to Marchetti et al.
(2010), and Marchetti (2013).

Table 2. Values of the adjusted model param-
eters for the three different cases

Case E
∗

1
(kJmol−1) E

∗

2
(kJmol−1)

A 7900 12500
B 8100 12500
C 8100 12300

6. CONCLUSIONS

Like many other process optimization techniques, modifier
adaptation relies on a model of the process. It is typically
assumed that the model and the plant have the same
inputs. The industrial example of an 80 MW incineration
plant has illustrated that this may not be the case. The
current paper shows that this assumption will often not
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Fig. 5. Evolution of the setpoints during the first 20
iterations of the generalized MA scheme for Cases
A-C. The letters A/B/C are the nominal optimal
solutions, which correspond to the initial points. Solid
= Method A, Dashed = Method B. The contour lines
are for the plant cost. The dotted black line indicates
the plant constraint on XA. The black dot indicates
the location of the plant optimum.
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Fig. 6. The profit as a function of the iteration number
k. Blue/Red/Green = Cases A/B/C. Solid = Method
A, Dashed = Method B. Note that, at each iteration,
the plant must be evaluated at 3 slightly different
operating points in order to estimate the gradient
according to (5.11).

hold for closed-loop systems either. Adapting the model
such that its inputs and the closed-loop plant inputs are
the same can be infeasible if the model is complex (and
leads to increased computation times if it is possible).
Generalized MA avoids remodeling the system, and this
at no extra computational cost. It follows that a broader
class of process optimization problems can be tackled,
including problems where the plant has an unmodeled
control structure.

This work has extended generalized modifier adaptation
to constrained optimization problems, proving optimality
and constraint satisfaction upon convergence. A simulated
CSTR example has shown that the proposed approach
can satisfy operational constraints and ensure optimality
upon convergence. This is achieved despite significant
control error and both structural and parametric plant-
model mismatch. Two methods with similar properties
have been presented. If computation time is not an issue,
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we recommend Method A as its unconstrained version
was shown to be closely related to standard MA with a
very logical choice of cost function (Costello et al., 2013).
The structure of the optimization problem to be solved
online in Method B is favorable in terms of computation
time. As shown in this paper, Method B is a first-order
approximation to Method A, with the same properties
upon convergence. For the simulated example shown in
this paper, there is negligible difference between the two
methods.

One of the limitations of this entire approach is that,
being gradient-based, the control law and the system
equations are required to be continuous. Hence, switching
behavior in the controller or the plant would invalidate our
analysis. Although this is an affliction affecting most RTO
techniques, future work will hopefully address this issue.
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Appendix A. ENFORCING CONVERGENCE FOR
UNCONSTRAINED PROBLEMS

The following simple heuristic can be used to ensure that
all steps taken by the algorithm decrease the plant cost.
Insert the following supplementary step after Step (2):

(2a) If Φp(cs,k) > Φp(cs,k−1), reduce the bandwidth of the
exponential filters:

KΦ := ηKΦ, (A.1)

with η ∈ [0, 1]. Decrement the iteration index (go
back a step)

k := k − 1, (A.2)

and return to Step (1).

Step (2a) guarantees that each step of the algorithm
(corresponding to an increment of k) improves the plant
cost function. It can be shown that a filter always exists
such that a finite step is taken that results in cost im-
provement. While monotonic cost decrease is not strictly
sufficient to prove convergence, we observed in numerous



(unconstrained) simulations that this appears to enforce
convergence of Methods A and B.

Figures A.1 and A.2 show Method A with this additional
step applied to the unconstrained example from Section
5. The values of the uncertain parameters are E∗

1 =

7900 kJmol−1 and E∗

2 = 12300 kJmol−1. The initial
filter matrix KΦ is the identity matrix, which is equivalent
to having no filter. The value of η = 0.5 was used.
It can be seen that without Step (2a) the algorithm
oscillates, while including Step (2a) forces convergence in
very few iterations. The filter matrix needs to be decreased
twice. The experimental cost of this primitive line-search
algorithm is not high; it merely requires one plant iteration
to determine that the step taken decreases the profit.
Unfortunately, adapting this rule to the constrained case
is not straightforward.
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Fig. A.1. Evolution of the plant setpoints during the
first 15 iterations of Method A for the unconstrained
CSTR. Blue: with Step (2a), Red: without Step (2a).
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k for the unconstrained CSTR. Blue: with Step (2a),
Red: without Step (2a).


