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Abstract— In this brief paper, a Stochastic Model Predictive
Control formulation tractable for large-scale systems is devel-
oped. The proposed formulation combines the use of Affine
Disturbance Feedback, a formulation successfully applied in
robust control, with a deterministic reformulation of chance con-
straints. A novel approximation of the resulting stochastic finite
horizon optimal control problem targeted at building climate
control is introduced to ensure computational tractability. This
work provides a systematic approach toward finding a control
formulation which is shown to be useful for the application
domain of building climate control. The analysis follows two
steps: 1) a small-scale example reflecting the basic behavior of
a building, but being simple enough for providing insight into
the behavior of the considered approaches, is used to choose
a suitable formulation; and 2) the chosen formulation is then
further analyzed on a large-scale example from the project
OptiControl, where people from industry and other research
institutions worked together to create building models for realistic
controller comparison. The proposed Stochastic Model Predictive
Control formulation is compared with a theoretical benchmark
and shown to outperform current control practice for buildings.

Index Terms— Affine disturbance feedback (ADF), building
climate control, chance constraints, Stochastic model predictive
control (SMPC).

I. INTRODUCTION

THIS brief paper is concerned with solving a Model Pre-
dictive Control (MPC) problem for the class of discrete-

time linear systems subject to stochastic disturbances. The
aim is to provide a method for efficiently finding control
policies given a set of polytopic input constraints and chance
constraints on the state, which is computationally tractable to
be applicable to large-scale systems.

One example of a control problem, which naturally leads
to chance constraints and which is the primary motivation
for this brief paper, originates from building climate control.
In European building standards, it is required that the room
temperature is kept within a comfort range with a predefined
probability [1]. The control problem is to minimize energy
while satisfying this chance constraint. MPC for building
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climate control using weather and occupancy predictions
has been addressed in several works, see [2]–[10] or the
web site of the OptiControl project [11] and the references
therein.

This brief paper provides a systematic approach to address
the uncertainty in weather predictions, formulate chance con-
straints, and obtain a suitable control formulation for the
building application domain. A deterministic reformulation of
the chance constraints is combined with affine disturbance
feedback, a parameterization of the control inputs, to obtain
a tractable formulation of stochastic MPC, applicable also
to large-scale systems such as buildings. By using affine
disturbance feedback and by exploiting the fact that comfort
violations are allowed from time to time with the chance
constraints, the conservatism of traditional robust solutions is
reduced. The presented material is an extension to the ideas
proposed in [12] and offers a comparison and analysis of
different formulations. The chosen formulation is assessed on
a large-scale building example from the OptiControl project
and shown to outperform current control practice.

A. Dealing With Uncertainty

In the presence of uncertainties, it is generally preferable
instead of finding the optimal open-loop input sequence to
optimize over closed-loop policies, i.e., to assume that the
predicted control inputs at each time step are a state feedback
controller (or, equivalently, a disturbance feedback controller).
Hence the predicted control input at time t is formulated as a
function of the states from now up to time t , or, equivalently,
as a function of the disturbances that have happened from now
up to time t−1.

Finding optimal closed-loop policies involves the opti-
mization over an infinite-dimensional function space and is
not tractable except for very special cases. It is therefore
a common procedure to restrict the optimization to a finite
dimensional subspace of the policies, i.e., to choose a control
parameterization and optimize over its parameters.

A popular approach is to use a fixed feedback gain
[13]–[15], where the control inputs u are parameterized as u =
K x +c, with K being some stabilizing linear feedback control
laws and the perturbation sequence c being the optimization
variable. A natural improvement is to simultaneously optimize
over both the feedback gain and the perturbation sequence.
However, in general, with this approach, the predicted state
and input sequences are nonlinear functions of the sequence
of state feedback gains and hence it results in a nonconvex set
of feasible decision variables.

Inspired from the results in optimization theory
on robust optimization problems, in particular, on
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so-called adjustable robust counterpart [16] problems,
Löfberg [17] and van Hessem and Bosgra [18]
propose to parameterize the control inputs to be affine
functions of the disturbances, which leads to a convex set of
feasible decision variables. This affine disturbance feedback
parameterization is shown to be equivalent to the affine state
feedback parameterization in [19]. A more general approach
is that of nonlinear disturbance feedback, where the decision
variables are the coefficients of a linear combination of
nonlinear basis functions of the disturbance [20]. In this
work, it is investigated how the use of Affine Disturbance
Feedback can be extended to the stochastic setting.

B. Formulation of Chance Constraints

For problems, where it is not necessary to apply hard
constraints, the use of chance constraints can be beneficial
because it allows to formulate explicitly the tradeoff between
performance and constraint satisfaction [21]. Let x ∈ R

nx be
the system state, w ∈ R

nw the disturbance, and ξ ∈ R
r×nx ,

δ ∈ R
r×nw , as well as ε ∈ R

r be constants. Chance constraints
are assumed to be of the form

P[ξi x + δiw ≤ εi ] ≥ 1 − βi , i = 1, . . . , r (1)

where βi ∈ (0, 1) is the probability of constraint violation.
Chance constraints were first introduced by [22] and have
been studied extensively in the field of stochastic programming
[23]–[25]. The standard approach in stochastic programming
is to consider discrete distributions and then to look at different
scenarios, which can be computationally very demanding.
Various approaches have been proposed for stochastic MPC,
see [26]–[28] and the references therein.

C. Notation

The real number set is denoted by R, the set of nonnegative
integers by N (N+ := N\{0}), the set of consecutive non-
negative integers { j, . . . , k} by N

k
j . Denote by In ∈ {0, 1}n×n

the identity matrix, by 0n×m ∈ {0}n×m the zero matrix and by 0
without subscript the zero matrix with dimension deemed
obvious by context. ⊗ denotes the Kronecker product. Let
vec(x, y) := [xT yT ]T denote the vertical concatenation of
vectors x and y and let vec(A) be the vertical concatenation
of the columns of matrix A, i.e., if A = [a1, . . . , an], then
vec(A) = vec(a1, . . . , an).

II. PROBLEM SETTING

Consider the following discrete-time LTI system:

x+ = Ax + Bu + Ew (2)

with system state x ∈ R
nx , control input u ∈ R

nu , and
stochastic disturbance w ∈ R

nw .
Assumption 1: (A, B) is stabilizable and at each sample

instant a measurement of the state is available.
Assumption 2: The disturbance is assumed to be inde-

pendent and identically distributed (i.i.d.) and to follow a
multivariate normal distribution, w ∼ N (0nw×1, Inw ).

In the following, predictions about the system’s evolution
over a finite planning horizon are used to define suitable
control policies. Consider the prediction horizon N ∈ N+ and
define

x :=
[
x T

0 . . . x T
N

]T ∈ R
(N+1)nx

u :=
[
uT

0 . . . uT
N−1

]T ∈ R
Nnu

w :=
[
wT

0 . . . wT
N−1

]T ∈ R
Nnw (3)

where x0 denotes the current measured value of the state and
xk+1 := Axk + Buk + Ewk , k ∈ N

N−1
0 denotes the predictions

of the state after k time instants into the future. Let furthermore
prediction dynamics matrices A, B, and E be such that

x = Ax0 + Bu + Ew. (4)

Polytopic constraints on inputs u and chance constraints on
states x over the prediction horizon N are given as

Su ≤ s (5)

P
[
G j x ≤ g j

] ≥ 1 − αx, j ∀ j ∈ N
r(N+1)
1 (6)

where S ∈ R
q N×nu N , s ∈ R

q N , G ∈ R
r(N+1)×nx (N+1), g ∈

R
r(N+1), and αx, j ∈ (0, 0.5] denotes the probability level of

constraint violation for row j of the constraints on x.
Remark 1: αx, j is restricted to be in (0, 0.5] as it can then

be reformulated into a second order cone (SOC) constraint.
x0 is measured, however, the predicted states x1, . . . , xN are
uncertain. To address this uncertainty in the MPC formulation,
consider for predicted control inputs u1, . . . , uN a causal
state feedback controller, or equivalently, a causal disturbance
feedback controller

uk = φk(x1, . . . , xk) = μk(w0, . . . , wk−1). (7)

Remark 2: The state feedback controller is called causal as it
strictly depends on the states that have already been realized.
It is equivalent to consider a disturbance feedback controller,
as the disturbances can be straightforwardly computed with
given states and known inputs.

The aim is to solve the following stochastic finite horizon
optimal control problem (SFHOCP).

Problem 1 (SFHOCP):

min
u

E

[
N−1∑
k=0

lk(xk, uk) + lN (xN )

]

s.t. Su ≤ s

P
[
G j x ≤ g j

] ≥ 1 − αx, j ∀ j ∈ N
r(N+1)
1

x = Ax0 + Bu + Ew

w ∼ N (0nw N×1, Inw N )

uk = μk(w0, . . . , wk−1)

for some stage cost lk(xk, uk) and some terminal cost lN (xN ).
Note that in Problem I, the aim is not to find an optimal control
input sequence, but to find an optimal control policy as defined
in (7) taking into account that there is recourse/ feedback
at every future stage/ time step. This SFHOCP cannot be
readily solved, as it involves the optimization over an infinite-
dimensional function space. This problem is tackled in this
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brief paper by restricting the policies to a finite-dimensional
subspace. Furthermore, the above problem involves chance
constraints that are to be reformulated so that they can be
efficiently handled in the optimization problem. Sections III
and IV deal with approximations and reformulations to turn
Problem I into a tractable MPC problem. First, Affine Distur-
bance Feedback is introduced and then, three reformulations
of the chance constraints are considered.

III. AFFINE DISTURBANCE FEEDBACK

FOR STOCHASTIC MPC

Affine Disturbance Feedback (ADF) has been successfully
used in robust control [16]–[19].

Definition 1 [Affine Disturbance Feedback]: Define μk :
R

nw N → R
nu

μk(w) :=
k−1∑
j=0

Mk, j w j + hk , k ∈ N
N−1
0 (8)

with Mk, j ∈ R
nu×nw and hk ∈ R

nu .
Let μ(w) := [uT

0 μT
1 (w) . . . μT

N−1(w)]T . We can write
μ(w) = Mw + h defining

M :=

⎡
⎢⎢⎢⎢⎢⎣

0 . . . . . . 0

M1,0 0
. . . 0

...
. . .

. . .
...

MN−1,0 · · · MN−1,N−2 0

⎤
⎥⎥⎥⎥⎥⎦

, h :=

⎡
⎢⎢⎢⎢⎢⎣

h0
...
...

hN−1

⎤
⎥⎥⎥⎥⎥⎦

. (9)

Remark 3: Note that because of the structure of M for
the computation of the control input at time step k, only the
disturbances up to time k − 1 are taken into account. Note
also, that the very first control input is not a function of the
disturbance, but u0 = h0.

Applying such a control policy is also referred to as closed-
loop prediction MPC. In the ADF MPC problem we choose
to minimize a quadratic cost function.

Definition 2 [Cost function]:

J (x, M, h) := E[xT Qx + (Mw + h)T R(Mw + h)]
where Q = QT 	 0 and R = RT 
 0. With E[w] = 0 and
E[wwT ] = I and using (4), (7), and (8), the cost function is
given as JN : R

nx × R
nu N×nw N × R

nu N → R

JN (x0, M, h) = x T
0 AT QAx0 + Tr[ET QE] + · · ·

hT (BT QB + R)h + 2hT BT QAx0 + · · · (10)

Tr[MT BT QBM + MT RM + 2MT BT QE].
Proposition 1: The cost function in (10) is a convex

quadratic function of the decision variables M and h.
Proof: Convexity of the quadratic cost function is preserved

because of the policies being affine and under expectation. �

Using affine disturbance feedback, an approximation of the
SFHOCP in Problem II can be stated.

Problem 2 (Approximate SFHOCP Using ADF):

(M∗(x0), h∗(x0)) := arg min
(M,h)∈�(x0)

JN (x0, M, h).

For state x0, the set of admissible ADF policies (M, h) is
given by the set

�(x0) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(M, h)

∣∣∣∣∣∣∣∣∣∣∣∣∣

(M, h) satisfies (9)

P[Si (Mw + h) ≤ si ] ≥ 1 − αu,i

P[G j (Ax0 + Bh + BMw + Ew) ≤ g j ]
≥ 1 − αx, j ∀i ∈ N

q N
1 , ∀ j ∈ N

r(N+1)
1

w ∼ N (0nw N×1, Inw N )

⎫
⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

.

Following the standard MPC procedure, the optimal control
input u∗(x0) is then given by u∗(x) = h∗

0(x) and the closed-
loop trajectory evolves according to x+ = Ax + Bu∗(x)+ Ew.

Note that the disturbances have an infinite support and the
inputs are, except for the very first input, a function of the
disturbances (see Remark 3). Therefore it is only possible to
define a hard constraint on the first input (see also Remark 4).
Remark 4: Hard constraints on the control inputs are approx-
imated with small values of αu,i to fulfill the hard constraints
with a high probability. Very small values, however, can lead
to infeasibility. Note that the input constraints are not violated
when this strategy is applied in closed-loop because of the
structure of M, i.e., on the first predicted state, which is
applied, a hard constraint is imposed.

IV. CHANCE CONSTRAINT REFORMULATIONS

All chance constraint reformulations are shown for the
chance constraints on the states. They can be applied to the
chance constraints on the inputs accordingly, which is omitted
for brevity.

A. ADF with Quantile Function

Because the constraints in Problem 2 are bi-affine in the
decision variables and disturbances and the disturbances are
normally distributed, the individual chance constraints can be
equivalently formulated as deterministic SOC constraints [23]
as

P
[
G j (Ax0 + Bh + BMw + Ew) − g j ≤ 0

]

≥ 1 − αx, j (11)

⇔ G j (Ax0 + Bh)

≤ g j − 	−1(1 − αx, j )‖G j (BM + E)‖2 (12)

where 	 is the standard Gaussian cumulative distribution
function and its inverse the Quantile Function (QF). The
inequalities (12) are SOC constraints that are convex in the
decision variables M and h.

Problem 3 (ADF With QF):

(M∗(x0), h∗(x0)) := arg min
(M,h)∈�QF (x0)

JN (x0, M, h).

For state x0, the set of admissible ADF policies (M, h) when
using QFs is

�QF(x0) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(M, h)

∣∣∣∣∣∣∣∣∣∣∣∣∣

(M, h) satisfies (8)

Si h ≤ si − 	−1(1 − αu,i )‖Si M‖2

G j (Ax0 + Bh) ≤ g j

−	−1(1 − αx, j )‖Gi (BM + E)‖2

∀i ∈ N
q N
1 ∀ j ∈ N

r(N+1)
1

⎫
⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

,
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Problem 3 is equivalent to Problem 2. Problem 3 is a convex
problem involving SOC constraints.

B. ADF with Bounds on the Disturbance Set

The reformulation of the chance constraints in Section III
led to an SOC problem, this can however be time-consuming
to compute for large-scale systems. Therefore, this section
deals with a linear approximation.

We propose to replace the chance constraint in (11) with
the following robust constraint:

G j (Ax0 + Bh + BMw + Ew) − g j ≤ 0 ∀w ∈ W
W := {w ∈ R

nw |‖w‖∞ ≤ 
x, j } (13)

where 
x, j is chosen according to the following
Theorem 1, which is directly derived by some algebraic
reformulations of (11) and use of [21, Th. 2b]. See
Appendix I.

Theorem 1 (Probability Bound):
For w ∼ N (0, I) and for 
x, j > 1 the following probability
bound of infeasibility holds:

P
[
G j (Ax0 + Bh + BMw + Ew) − g j > 0

]

≤ √
e · 
x, j · exp

(
−
2

x, j

2

)
. (14)

Proof: See Appendix I. �
This theorem provides the following performance guarantee.

Corollary 1: If 
x, j is chosen according to Theorem 1,

i.e., such that αx, j ≥ √
e · 
x, j · exp

(
−
2

x, j/2
)

, and (13) is
applied, then the chance constraint in (11) is satisfied.

As a result, this approximation with Bounds on the Distur-
bance Set (BDS) can be used to reformulate Problem 1 as a
tractable robust optimization problem.

Problem 4 (ADF With BDS):

(M∗(x0), h∗(x0)) := arg min
(M,h)∈�B DS(x0)

JN (x0, M, h).

For state x0, the set of admissible ADF policies (M, h) with
BDS is given by

�BDS(x0) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(M, h)

∣∣∣∣∣∣∣∣∣∣∣∣∣

(M, h) satisfies (8)

Sih ≤ si − max‖w‖∞≤
u,i SiMw

Gj(Ax0 + Bh) ≤ gj

− max‖w‖∞≤
x, j Gj(BMw + Ew)

∀i ∈ N
q N
1 ∀ j ∈ N

r(N+1)
1

⎫
⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

.

Problem 4 can be solved as a standard QP, see [12].
Theorem 2 (ADF With BDS): For Problem 4, the following

statements hold: (1) Problem 4 is a conservative approxi-
mation of Problem 2 in the sense that the level of constraint
violation is strictly smaller than α.
(2) Problem 4 is convex:

Proof: 1) The statement follows trivially from Theorem 1
and Corollary 1. It can also be seen from the fact that
linear constraints are used for inner approximations of SOC
constraints.
2) �BDS(x0) is convex (see [12]). This together with the cost
function of Problem 4 being convex according to Proposition 1
establishes the assertion. �

C. Approximation with Fixed Feedback

Problem 3 uses an equivalent deterministic reformulation of
the chance constraints, but leads to a SOC problem, whereas
Problem 4 leads to linear constraints, but uses an approxima-
tion of the chance constraints. These advantages are combined
with a third formulation, Fixed Feedback (FF). We propose to
optimize over the amount of feedback that is considered, i.e.,
to optimize over a scaling factor that multiplies an a priori
determined fixed feedback matrix.

The feedback is computed by taking the average over
some number nM of optimal feedback matrices M∗

t (x) that
are obtained by solving the SOC problem at time t for the
corresponding measured state x

M̄ := 1

nM

nM∑
t=1

M∗
t (x). (15)

This means that for some number of steps, the full SOC
problem is solved (this could be done in a real implementation
in simulation only) and the resulting feedback matrices are
stored. Then the average of these matrices is computed. For
all subsequent simulations, the feedback matrix is fixed to the
average matrix and the optimization is restricted to the scaling
factor.
Problem 5 (ADF With FF):

(γ ∗(x0), h∗(x0)) := arg min
(γ M̄,h)∈�F F (x0)

JN (x0, γ M̄, h).

For state x0, the set of admissible ADF policies (M, h) when
using FF is given by

�FF(x0) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(γ M̄, h)

∣∣∣∣∣∣∣∣∣∣∣∣∣

Si h ≤ si − �i‖Siγ M̄‖2

G j (Ax0 + Bh) ≤ g j

−ϒ j ‖Gi (Bγ M̄ + E)‖2

γ ∈ [0, 1]
∀i ∈ N

q N
1 ∀ j ∈ N

r(N+1)
1

⎫
⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

where �i := 	−1(1 − αu,i ) and ϒ j := 	−1(1 − αx, j ) and
γ ∈ [0, 1] is used to optimize how much feedback is taken
into account ranging from none (i.e., open-loop prediction,
M = 0) to the full preoptimized feedback M̄.

V. SMALL-SCALE EXAMPLE

To test the proposed strategies, a simplified version of
the building example in [29] is examined. This example on
one hand reflects basic properties of the (more complicated)
building example to be tackled, so it can serve as an example
for comparison and selection of the proposed algorithm, but it
is simple enough to carry out many simulations and understand
the basic behavior. The system dynamics have the form of (2),
but with an external input v ∈ R

nv and matrix V of appropriate
size to account for the weather forecast

xk+1 = Axk + Buk + V vk + Ewk . (16)

Let xk = [x(1) x(2) x(3)]T denote the state, where x(1)

is the room temperature, x(2) the temperature in the wall
connected with another room, and x(3) the temperature in the
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wall connected to the outside. There is a prediction for the
external input vk = [v(1) v(2) v(3)]T , the outside temperature
v(1), the solar radiation v(2), and the internal heat gains v(3)

(people, appliances). The predictions of internal gains are
assumed to be perfect in this example, i.e., the realization is
equal to the prediction. However, for the weather variables,
the realization is equal to the prediction plus some random
noise w(1) and w(2), which is assumed to consist of i.i.d.
Gaussian random variables. The control objective is to keep the
room temperature > 21 ºC with minimum energy. The single
available input u(1) is the heating, which is constrained to
0 ≤ u(1) ≤ 45 [W/m2]. The time step is 1 h. The system
matrices are given as

A =

⎡
⎢⎢⎣

0.8511 0.0541 0.0707

0.1293 0.8635 0.0055

0.0989 0.0032 0.7541

⎤
⎥⎥⎦ B =

⎡
⎢⎢⎣

0.070

0.006

0.004

⎤
⎥⎥⎦ (17)

V =

⎡
⎢⎢⎣

0.02221 0.00018 0.0035

0.00153 0.00007 0.0003

0.10318 0.00001 0.0002

⎤
⎥⎥⎦ E =

⎡
⎢⎢⎣

0.4 0.014

0.028 0.006

1.857 0.001

⎤
⎥⎥⎦.

The following five control strategies were compared.

1) CLP-BDS: Closed-loop prediction MPC with BDS
(Problem 4);

2) OLP-BDS: Open-loop prediction MPC with BDS (Prob-
lem 4, with M = 0);

3) CLP-QF: Closed-loop prediction MPC using the QF
(Problem 3);

4) OLP-QF: Open-loop prediction MPC using the QF
(Problem 3, with M = 0);

5) FF-QF: Fixed feedback using the QF (Problem 5).

To obtain an upper bound on the performance, the feedback
matrix is computed by first computing the feedback matrices
for the whole simulation and determining their average and
then starting the simulation with the precomputed feedback
matrix.

Compared to (2), we have in this example an external input,
i.e., a time-varying linear system. To compare the above strate-
gies, we first consider a constant external input to focus on the
effects of the formulation. We assume that the random noise
takes its average value and we observe how far away from the
nominal constraint the strategy takes us, i.e., for how much
backup from the nominal constraint the controller is planning
because of the uncertainty (Investigation 1). Second, we take
into account the variation in external input and observe how
far away from the nominal constraint we are in presence of the
external variations (Investigation 2). Third, the external input
is held constant, the random noise is varied, and a Monte Carlo
study is carried out to evaluate how often the constraints are
violated (Investigation 3).

Investigation 1: The external input prediction was kept
constant at v1 = 10.6 ◦C, v2 = 18 W/m2, and v3 = 18 W/m2.
The random noise was set to its mean value, w1 = w2 = 0,
i.e., the external input realization was equal to the prediction,
and αu,i = 0.0003 to have a high probability to fulfill the
(hard) input constraints, and αx, j was varied.

Investigation 2: The external input prediction was assumed
to be time-varying. The random noise was set to its mean
value, w1 = w2 = 0, i.e., the external input realization was
equal to the prediction, αu,i = 0.0003, and αx, j was varied.

Investigation 3: The external input prediction was kept
constant at v1 = 10.6 ◦C, v2 = 18 W/m2, and v3 =
18 W/m2. The random noise following a standard Gaussian
distribution was applied to the system in a Monte Carlo
study with 70 samples, i.e., the external input realization
differed from the prediction. αu,i = 0.0003, and αx, j was
varied.

All investigations were carried out for three days = 72 h,
with a prediction horizon of N = 6. To minimize energy only
the control inputs were penalized, i.e., the cost function in (10)
was used, but with Q = 0

J Ex1
N (x0, M, h) := hT Rh + Tr[MT RM]. (18)

A. Results

Investigation 1: In Fig. 1, the control performance in terms
of energy use of the five investigated strategies for different
levels of αx, j is depicted. OLP-BDS has highest energy usage.
Considering instead the closed-loop prediction formulation
(CLP-BDS) improves the performance clearly. OLP-QF uses
even less energy, and again, using the closed-loop formulation
further improves the performance (CLP-QF). To summarize,
closed-loop prediction improves the performance and using
QF is better than BDS. The performance of CLP-QF and
FF-QF is almost identical. Fig. 3 shows the room temperature
profile of the same investigation. As expected, OLP-BDS
is very conservative and CLP-QF is the least conservative.
Fig. 5 depicts the corresponding heating input that was applied.
Note that if the prediction horizon length N is increased,
then it is not possible anymore to get a feasible solution for
OLP-BDS.

Investigation 2: In Fig. 2, the control performance in terms
of energy use of the five investigated strategies for different
levels of αx, j is depicted. The results are very similar to the
one of Investigation 1, i.e., QF is superior to BDS and CLP is
better than OLP. The applied energy is less in this investigation
as additional heat gains were introduced because of the outside
temperature, solar radiation, and internal gains. Figs. 4 and 6
show the room temperature profile and the heating input,
respectively. Here, the effect of the varying outside weather
conditions can be clearly seen.

Investigation 3: The comparison of the control performance
in terms of energy use versus αx, j is similar to the results from
the first two investigations. QF is better than BDS and the
closed-loop controllers outperform the open-loop controllers
(Fig. 7). The tradeoff between energy use and allowed con-
straint violation level can clearly be seen for all strategies.

From the results, it can be concluded that QF can be
expected to outperform BDS, whereas with the FF-QF for-
mulation, almost a similar performance as CLP-QF can be
achieved. Furthermore, the parameter α can be used as a
tuning parameter to change the resulting amount of violations.
Therefore, the FF-QF was further tested and analyzed on a
large-scale building example.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
400

600

800

1000

1200

1400

1600
E

ne
rg

y 
us

ag
e 

[W
h/

m
2 ]

αx,j

CLP−BDS
OLP−BDS
CLP−QF
OLP−QF
FF−QF

Fig. 1. Investigation 1: energy use [Wh/m2] versus αx, j .

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
400

600

800

1000

1200

1400

1600

E
ne

rg
y 

us
ag

e 
[W

h/
m

2 ]

αx,j

CLP−BDS
OLP−BDS
CLP−QF
OLP−QF
FF−QF

Fig. 2. Investigation 2: energy use [Wh/m2] versus αx, j .
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Fig. 3. Investigation 1: room temperature profile [degC] for αx, j = 0.0003.

VI. EXAMPLE FROM BUILDING CLIMATE CONTROL

The stochastic MPC formulation was primarily motivated by
the use of building control. To determine the energy savings
potential of using stochastic MPC in building control, a large-
scale simulation study with different buildings and weather
conditions was carried out in the framework of the project
OptiControl [11]. An excerpt of the results is presented here
to highlight the applicability of the proposed method. More
details and analyses can be found in [2], [30], and [31].

A. Modeling

The building dynamics are represented with a bilinear
model [2], which is augmented by an autoregressive model of
first order driven by Gaussian noise describing the uncertainty
in weather predictions. This uncertainty model is obtained
from historical weather data [2] and also used in a Kalman
filter for filtering the weather predictions. Weather predictions
and measurements are obtained from MeteoSwiss [32]. To deal
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Fig. 4. Investigation 2: room temperature profile [degC] for αx, j = 0.32.
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Fig. 5. Investigation 1: heating [W/m2] for αx, j = 0.0003.
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Fig. 6. Investigation 2: heating [W/m2] for αx, j = 0.32.

with the bilinear model, we apply a form of sequential linear
programming, [31], [33], in which we iteratively linearize
around the current solution yielding a time-varying input
matrix Bu,k . At each time step, an MPC problem for the linear
system is formulated with the form

xk+1 = Axk + Bu,kuk + V vk + Ewk . (19)

B. Control Strategies and Benchmarks

Three different control strategies were considered in the
investigation as well as a benchmark. All are listed as follows.

Rule-based control: The standard strategy in current practice
and used by, amongst others, Siemens Building Technologies
is RBC [34]. As the name indicates, RBC determines all
control inputs based on a series of rules of the kind if condition
then action.

Deterministic MPC: This formulation assumes that the
disturbance takes its expected value neglecting the uncertainty.
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Fig. 7. Investigation 3: average energy use [Wh/m2] from Monte Carlo trials
versus αx, j .
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Fig. 8. Tuning of SMPC for Case 1 in [2]. Tradeoff curve of NRPE usage
versus comfort violations.

This is equivalent with Problem 1, setting all disturbances
equal to zero and assuming hard constraints on the states
instead of chance constraints. A prediction horizon of 24 h
and a control horizon of 1 h was used.

Stochastic MPC: The formulation in Problem 5 with the
FF was used with a prediction horizon of 24 h and a control
horizon of 1 h. Deviating from Problem 5, no scaling factor
γ was used, but the feedback M̄ at each time step was fully
applied, and furthermore, soft constraints [35] were used.

Performance bound: PB is defined as optimal control with
perfect knowledge of both the system dynamics as well as
all future disturbances acting upon the system. PB is not a
controller, but a concept that can serve as a benchmark. To
compute PB, the same MPC algorithm was used as for DMPC,
but with perfect weather predictions.

In this brief paper, the Non-Renewable Primary Energy
(NRPE) usage was assessed as well as the amount and number
of violations. For this, the cost function in Example 2 is a
linear cost function of the form

J Ex2
N (x0, M, h) := diag(R)T h. (20)

According to the standards, a reasonable violation level is
70 Kh/a (Kelvin hours per annum, 1 Kh denotes the violation
by one Kelvin for one hour). The considered buildings and
weather scenarios are Cases 1, 2, 3, 7, 17, 18 in [2].

C. Results

In Fig. 8, the tuning of Case 1 in [2] is shown by varying
the level of constraint violation α. A tradeoff curve of NRPE
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Fig. 9. Comparison of SMPC, RBC, and DMPC for the example cases in
[2]. Results of the same case are connected with a line.

usage versus comfort violations is obtained. A comparison
of the three control strategies is given in Fig. 9. The NRPE
usage is normalized with the NRPE usage of PB and only the
additional NRPE usage in % of PB is considered. The amount
of violations is not normalized, as PB has no violations. For
each case, the results of the three controllers are connected
with a line. The closer to the origin the better, since the origin
is equal to the performance of PB. The performance of DMPC
(without any tuning) is worst for all cases, as it gives rise to the
largest NRPE usage and the largest violations. The violations
are very high, so DMPC would need to be tuned to better
meet the constraints. This could be achieved by a tightening
of the comfort band, see [30]. Similarly, SMPC can be tuned.
This is however much easier, as there exists a natural tuning
parameter, the violation level α. Without any tuning, for all
cases, SMPC uses the least amount of NRPE and in four of
six cases also the least violations.

VII. CONCLUSION

A stochastic MPC formulation involving chance constraints
which is tractable for large-scale systems such as buildings
was presented. This formulation combines the use of ADF
with a tractable reformulation of the chance constraints. Three
reformulations were compared and analyzed on a small-scale
example. One formulation, which turned out to be well-suited
for the purpose of building control was tested on a large-scale
building example and compared to current control practice as
well as a theoretical benchmark.

APPENDIX I

To use the results from [21], the argument of (11) is
equivalently restated as
([

G j B 01×nun p N2

]
+

[
01×nu N (� j w)T

])
z

+ (
G j Ax0 − g j + G j Ew

) ≤ 0 (21)

where z :=
[
hT mT

]T
contains the vectors h and m, where

m is a vectorized version of M defined as

m := [0 vec(M1,0)
T vec(M2,0)

T · · · vec(MN−1,0)T

0 0 vec(M2,1)
T · · · vec(MN−1,1)

T · · · 0]T (22)
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and � j is defined as follows. To show equivalence of (11)
and (21), the only nonobvious part is to show that G j BMw =
(� j w)T m. First, note that G j BMw is scalar ⇒ G j BMw =(
G j BMw

)T . Similarly, (� j w)T m = mT � j w. Thus, it needs
to be shown that G j BM = mT � j .

Let
f T := G j B

with
f T =

[
f1 . . . fN

]
. ⇒ G j BM = f T M.

For each j ∈ N
N−1
0 it can be written

f j Mk,l = vec(Mk,l )
T (

Imp ⊗ f j
)
.

Define

F̂ j :=
[
Imp ⊗ f0 Imp ⊗ f1 . . .

]T

which multiplies each column of M. Consequently, if � j :=(
I ⊗ F̂ j

)
, f T M can be written as mT � j . Having the inequal-

ity in this form, the assertion now follows from [21, Th. 2b].
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