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Abstract
This thesis investigates methodologies for improving the demand responsiveness of trans-

portation systems through flexibility. The methodologies propose advances both in demand

and supply models having a focus on supply-demand interactions. The demand side enables

to understand the underlying travel behavior and is important to identify the most important

aspects of flexibility that needs to be offered with new transportation alternatives. Supply

models that integrate supply-demand interactions lead to more efficient and flexible decision

support tools with integrated decision problems. Furthermore the supply models enable to

understand the impact of flexibility on transportation operations with appropriate representa-

tion of flexibility aspects. The main study area of the thesis is air transportation however we

believe that the methodological contributions of the thesis are not limited to any mode and

have the potential to provide improvements in various systems.

In the context of demand modeling, advanced demand models are studied. In the first place,

hybrid choice models are developed in the context of a mode choice study motivated by a rich

data set. Attitudes and perceptions of individuals are integrated in choice modeling framework

and an enhanced understanding of preferences is obtained. Secondly, an air itinerary choice

model is developed based on a real dataset. A mixed revealed preferences (RP) and stated

preferences (SP) dataset is used for the estimation of the demand model. A demand model is

obtained with reasonable demand elasticities due to the existence of the SP data.

Advances in demand models can be exploited early in the planning phase when deciding

on the capacity. For this matter an integrated airline scheduling, fleeting and pricing model

is studied with explicit supply-demand interactions represented by the air itinerary choice

model. The integrated model simultaneously decides on schedule design, fleet assignment,

pricing, spill, and seat allocation to each class. Several scenarios are analyzed in order to

understand the added-value of the integrated model. It is observed that the simultaneous

decisions on capacity and revenue bring flexibility in decision making and provide higher

profitability compared to state-of-the art models. The main reference model is called the

sequential approach that solves the planning and revenue problems sequentially representing

the current practice of airlines.

The explicit integration of the demand model brings nonlinearities which cannot be character-

ized as convexity/concavity. For the solution of the model a heuristic method is implemented

which iteratively solves two sub-problems of the integrated model. The first sub-problem

is an integrated schedule planning model with fixed prices and the second sub-problem

is a revenue management problem with fixed capacity. The heuristic is found to provide
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Abstract

better quality feasible solutions, in considerably reduced computational time, compared to

the mixed integer nonlinear solver BONMIN. Local search techniques are embedded in the

heuristic method which enable to obtain better feasible solutions compared to the sequential

approach in reasonable computational time even for instances that are similar to real flight

networks.

In order to reduce the complexity of the problem a logarithmic transformation of the logit

model is proposed. The transformation results with a stronger formulation of the revenue

problem. Price is the only explanatory variable of the logit model that is defined as a decision

variable of the optimization model. However the methodology is flexible for other specifica-

tions. The reformulation of the model is again a mixed integer non-convex problem however

as illustrated with examples and the airline case study, the model can be handled easier. In

order to obtain valid bounds on the revenue a piecewise linear approximation is proposed for

the non-convexities in the model.

In the last part of the thesis, we focus on analyzing the impact of flexibility by a new design

of aircraft called Clip-Air. The main property of Clip-Air is the flexible capacity due to the

decoupling of the wing and the capsules (cabin). One, two, or three capsules can be attached

under the wing and the configuration of Clip-Air can be adapted to the demand volume. Clip-

Air is the main motivation for the contributions of the thesis in the context of supply modeling.

The developed integrated models are therefore used in order to carry out a comparative

analysis between Clip-Air and standard aircraft. It is found that Clip-Air utilizes the available

capacity more efficiently and carries more passengers with less allocated capacity for several

scenarios. A sensitivity analysis is performed for different realizations of cost figures. In a

nutshell it is observed that the solutions are improved as the level of flexibility is increased,

in other words as we move from standard systems to flexible alternatives and from classical

planning models to integrated models with explicit representation of demand.

Keywords: flexible transportation systems, airline fleet assignment, integrated planning, rev-

enue management, nonlinear programming, local search heuristic, mode choice, air itinerary

choice
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Résumé
Cette thèse a pour but le développement de méthodologies visant à améliorer la réactivité

des systèmes de transport face aux fluctuations de la demande, en permettant plus de flexi-

bilité. Les méthodologies ont des contributions dans la modélisation de la demande, d’une

part, et dans la modélisation de l’offre, d’une autre part, et se focalisent en particulier sur

les interactions entre l’offre et la demande. La modélisation de la demande permet de com-

prendre le comportement sous-jacent des gens en matière de déplacements. De plus, elle

est importante pour identifier les aspects de la flexibilité qui doivent être comblés à l’aide

de nouvelles alternatives de transport. Les modèles d’offre intégrant les interactions entre

l’offre et la demande produisent des outils de décision plus efficaces et flexibles. De plus,

les modèles d’offre permettent de comprendre l’impact de la flexibilité sur les opérations de

transport avec une représentation appropriée des aspects de flexibilité. Le principal domaine

d’étude de cette thèse est le transport aérien. Cependant, nous pensons que les contributions

méthodologiques de cette thèse ne sont pas limitées à un seul mode et ont la possibilité

d’améliorer divers systèmes.

Dans le contexte de la modélisation de la demande, nous étudions des modèles de demande

avancés. Premièrement, des modèles de choix hybrides sont élaborés dans le contexte d’une

étude de choix modal motivée par un jeu de données riche. Les attitudes et les perceptions des

individus sont intégrés dans un modèle de choix et mènent à une compréhension approfondie

des préférences. Deuxièmement, un modèle de choix d’itinéraire aérien est développé sur

la base d’un jeu de données réel. Un jeu de données combinant des préférences révélées et

déclarées est utilisé pour l’estimation d’un modèle de demande. Un modèle de demande

avec des élasticités raisonnables est obtenu grâce à l’existence des données de préférences

déclarées.

Les développements dans la modélisation de la demande peuvent être exploités tôt dans la

phase de planification lorsque les décisions sont prises quant à la capacité de transport. Dans

ce but, un modèle intégré de planification des horaires, de la flotte et de la tarification dans

un contexte de déplacements aériens est étudié. Les interactions entre l’offre et la demande

sont représentées de manière explicite par le modèle de choix d’itinéraire aérien. Le modèle

intégré permet de déterminer simultanément l’horaire, l’affectation de la flotte, la tarification,

le surplus de passagers, et l’attribution des sièges à chaque classe. Plusieurs scénarios sont

analysés afin de comprendre la valeur ajoutée du modèle intégré. Il peut être observé que les

décisions simultanées concernant la capacité et le revenu sont davantage flexibles en termes

de prise de décision et génèrent des profits plus élevés par rapport aux modèles actuels. Le
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Abstract

modèle de référence principal consiste en une approche séquentielle qui résout les problèmes

de planification et de revenu de manière séquentielle. Celle-ci est couramment utilisée par les

companies aériennes.

L’intégration explicite du modèle de demande comporte des non-linéarités qui ne peuvent

être considérées ni comme convexes ni comme concaves. Afin de résoudre ce problème, une

méthode heuristique est implémentée et résout de manière itérative deux sous-problèmes du

modèle intégré. Le premier sous-problème est un modèle intégré de planification des horaires

et de la flotte avec des prix fixes. Le second sous-problème est un problème d’optimisation du

revenu avec capacité fixe. Nous montrons que l’heuristique permet d’obtenir des solutions

admissibles de meilleure qualité que celles obtenues à l’aide du solveur BONMIN, en un temps

de calcul considérablement réduit. Des techniques de recherche locale sont intégrées à la

méthode heuristique et permettent d’obtenir de meilleures solutions admissibles par rapport

à l’approche séquentielle, dans un temps de calcul raisonnable même pour des instances

représentant un vrai réseau aérien.

Afin de réduire la complexité du problème, nous proposons une transformation logarithmique

du modèle logit. Cette transformation résulte en une formulation plus solide du problème

de revenu. Le prix est la seule variable explicative du modèle logit qui est une variable de

décision du modèle d’optimisation. Cependant, la méthodologie peut être adaptée à d’autres

spécifications. La reformulation du modèle est à nouveau un problème de programmation

mixte en nombres entiers et non-convexe, mais le modèle peut être résolu plus facilement,

comme le montrent des exemples et l’étude de cas aérien. Pour obtenir des bornes de revenu

valides, une approximation linéaire par morceaux est proposée pour les parties non-convexes

du modéle.

Dans la dernière partie de la thèse, nous nous concentrons sur l’analyse de l’impact de la

flexibilité par une nouvelle conception d’avion appelée Clip-Air. L’avantage principal de Clip-

Air est sa capacité flexible due au découplage des ailes et des capsules (cabine). Une, deux ou

trois capsules peuvent être attachées sous l’aile et la configuration de Clip-Air peut être adaptée

au volume de demande. Clip-Air est la motivation principale aux contributions de cette thèse

dans le contexte de la modélisation de l’offre. Les modèles développés sont donc utilisés afin

d’effectuer une analyse comparative entre Clip-Air et les avions standards. Nous montrons que

Clip-Air utilise la capacité à disposition de manière plus efficace et peut transporter davantage

de passagers avec une capacité attribuée plus faible pour plusieurs scénarios. Une analyse de

sensibilité est effectuée pour différents coûts. En résumé, nous observons que les solutions

sont améliorées lorsque le niveau de flexibilité augmente, c’est-à-dire lorsque les systèmes

standards sont remplacés par des alternatives flexibles, et lorsque les modèles de planification

classiques deviennent des modèles intégrés avec une représentation explicite de la demande.

Mots clés : systèmes de transport flexibles, affectation de la flotte aérienne, planification

intégrée, gestion du revenu, programmation non-linéaire, heuristique de recherche locale,

choix modal, choix d’itinéraire aérien
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1 Introduction

1.1 Context and motivation

Flexible transportation systems concept is a key interest for today’s world with increasing

mobility needs of individuals. The increasing amount of transportation activities and the

complexity of travel patterns bring the need for more efficient use of current transportation

systems. However in order to achieve substantial improvements new alternatives should be

offered with increased flexibility. Therefore, it is an increasing interest to provide flexible

alternatives in the context of different transportation modes.

In order to introduce flexibility, actions should be taken in both demand and supply modeling.

An advanced understanding of travel behavior helps to understand which notions of flexibility

are the most critical. Therefore advanced demand models are needed which take into account

the characteristics of individuals in a disaggregate way. From the supply side, new models and

methodologies should be developed in order to provide the planning of flexible transportation

systems. Furthermore, building flexible decision support tools can be achieved through

integrated models where several decisions are taken simultaneously. These integrated models

can be extended with an explicit representation of demand in the optimization problems in

order to provide an extended flexibility in responding to market demand.

In demand modeling, recent studies focus on disaggregate demand models where the behavior

of individuals can be better analyzed. Discrete choice methodology attracts an increasing

interest in several contexts. The choice of individuals is explained with various explanatory

variables including attitudes and perceptions of individuals. Hybrid choice models can tackle

the modeling of attitudes and perceptions for an enhanced forecasting power. Furthermore

different data sources can be combined in order to take advantage of different datasets with

different characteristics.

In the context of supply modeling, recent models have two main directions. Firstly, several

decision problems are integrated in order to obtain superior planning decisions. This is

challenging both in terms of modeling and solution methodologies. Secondly, the demand
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Chapter 1. Introduction

aspect is being introduced in planning problems through supply-demand interactions. These

interactions extend the classical planning problems, where the demand is a fixed input,

by introducing the reaction of demand to changing planning decisions. This direction is

also challenging in terms of various aspects. An appropriate demand model estimation,

an integrated planning model with supply-demand interactions and the design of solution

methodologies.

In the context of this thesis, advanced demand models are developed motivated by a rich

dataset in the context of a mode-choice study. This dataset is obtained from a data collection

campaign for a collaborative project between PostBus and the Ecole Polytechnique Fédérale

de Lausanne (EPFL). PostBus is the public transport branch of the Swiss postal service, which

typically serves in low-density areas of Switzerland. The data contains detailed information

on the actual trips of individuals, their socio-economic characteristics, their attitudes and

perceptions.

The contributions of the thesis to the supply modeling are motivated by an innovative air-

craft, Clip-Air, that is being designed at EPFL. It is an aircraft with flexible capacity. The main

property of this new design is the decoupling of the wing and the capsules which changes the

concept of fleet. In order to evaluate the advantages of Clip-Air, airline fleet assignment is con-

sidered and the methodological contributions of the thesis are built around fleet assignment

models.

This thesis is motivated by the above listed research directions that bring together various

flexibility notions through advanced demand models, integration of explicit demand models

in supply models and the new design of aircraft. The specific contributions in each of the

given fields will be provided in the next section.

1.2 Thesis contributions

The contributions of the thesis can be categorized as advance demand models, integrated

supply models and innovative application.

Advanced demand models

• We propose hybrid choice models in the context of mode choice taking into account the

perceptions and attitudes of individuals.

Two types of hybrid choice models are developed. The first is a latent variable model

where the attitudes of individuals are considered as continuous variables. The sec-

ond model is a latent class model, where two classes of people, are identified with

psychometric indicators and socio-economic characteristics. The use of psychometric

indicators for the identification of the classes under a simultaneous estimation of class

membership and choice models is one of the initial attempts in the literature. The

2
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heterogeneity in individuals’ behavior is clearly observed thanks to latent segmentation

of the population. Both of the models show the applicability of hybrid choice models

using psychometric indicators. Since the heterogeneity is explained through structural

equation models the model can be applied in different contexts without the need for

attitudinal variables. Indeed we provide forecasting results for both of the models. Fur-

thermore demand indicators such as demand elasticities, market shares, and value of

time are also provided.

• We propose an air itinerary choice model based on a mixed dataset consisting of revealed

and stated preferences data.

In the context of air itinerary choice, obtaining a price-elastic demand model using book-

ing data is difficult due to lack of information regarding unobserved choices. Therefore

the presented methodology of combining the observed choices with a stated preferences

data is a solution for understanding the price elasticity of air travelers.

As mentioned before, the supply modeling part of this thesis is carried out on air trans-

portation. In order to model supply-demand interactions in the context of airline

optimization the proposed demand is a valuable input.

Integrated supply models

• We propose an integrated airline scheduling, fleeting and pricing model where a demand

model is explicitly represented.

The estimated air itinerary choice model is integrated into an airline schedule design

and fleet assignment model. The novelty of the model is that the supply-demand

interactions are explicitly integrated. The pricing decision and spill and recapture effects

are based on the air itinerary choice model. The resulting model optimizes the decisions

of scheduling, fleeting, pricing, and seat allocation. The proposed model is shown to

provide superior schedule planning decisions compared to classical itinerary-based

fleet assignment models for small-medium size instances.

• We propose a local search heuristic for the integrated model.

The integrated airline scheduling, fleeting and pricing model is a mixed integer nonlinear

programming problem where convexity is not guaranteed. For large instances a solution

methodology is needed in order to deal with the complexity.

A local search heuristic is developed which iterates with two sub-problems of the in-

tegrated model and visits improved solutions with the mechanisms of price sampling

and variable fixing. The heuristic is shown to provide good quality feasible solutions for

realistic size instances up to around 300 flights in the network. It is also used to solve the

reformulations of the model and the extended model for the case of Clip-Air. Therefore

the heuristic method is shown to be a potential solution method for integrated schedule

planning models with explicit representation of demand.

3
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• We propose a reformulation of the integrated model and perform sensitivity analysis for

the two formulations with perturbed demand model parameters.

The integrated model is reformulated with a new representation of the logit model.

There is no need for the definition of spill variables in this formulation. The local search

heuristic is adapted for the reformulation. The resulting profit is higher compared to

the previous formulation since the pricing and spill is fully-market driven without the

control of the airline.

Secondly, a sensitivity analysis performed for the integrated model. This sensitivity

analysis is important to see the added-value of the integration of supply-demand inter-

actions and understand how robust it is. It is found out that the model is not sensitive to

changes in the demand model parameters except high perturbations.

• We propose a logarithmic transformation of the logit model which leads to a stronger

formulation.

The logarithmic transformation of the logit model enables to have linear representation

of the demand/market share variable in the model. The transformation is flexible in

terms of the specification of the utility function. The added-value of the approach is

shown with illustrative examples with aggregate and disaggregate demand models and

a case-study of airline revenue management. The model cannot be shown as a convex

programming problem and therefore can only provide feasible solutions. In order to

obtain a valid bound on the revenue a piecewise linear approximation is proposed

which is an ongoing work.

Innovative application

• We extend the itinerary-based airline schedule design and fleet assignment model to

the case of Clip-Air.

The novelty of the model for Clip-Air is that it handles the two-level fleet assignment:

wing to flights and capsules to the wing. A comparative analysis is performed between

Clip-Air and standard aircraft. Several tests are performed in order to show the ad-

vantages and disadvantages of Clip-Air. An enhanced performance is obtained for

well-connected networks with a high flight density. In majority of the instances Clip-Air

carries more passengers with less allocated capacity. A sensitivity analysis is performed

for the cost figures and it is found out that the results are robust to the changes in the

costs. The integrated scheduling, fleeting and pricing model is also tested with Clip-Air.

It is shown that the potential of Clip-Air compared to standard aircraft is even higher

with the integrated approach.
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1.3 Thesis outline

The thesis is organized in three main parts.

Part I focuses on the estimation and application of demand models.

Chapter 2 provides the mode-choice study where hybrid choice models are developed using a

rich data set with individuals’ attitudes and perceptions. A latent variable and a latent class

model is developed; demand indicators such as demand elasticities, market shares, value of

time are provided; and model validation is presented.

This chapter is published and presented as:

Atasoy, B., Glerum, A., and Bierlaire, M. (2013).Attitudes towards mode choice in Switzerland.

disP - The Planning Review, 49 (12): 101 - 117.

Atasoy, B., Glerum, A., and Bierlaire, M. (2011). Mode choice with attitudinal latent class:

a Swiss case-study. Proceedings of the Second International Choice Modeling Conference

(ICMC) July 4-6, 2011.

Chapter 3 presents the air itinerary choice model based on a mixed RP/SP dataset. The

estimation procedure, results and demand indicators are presented.

This chapter is based on:

Atasoy, B., and Bierlaire, M. (2012). An air itinerary choice model based on a mixed RP/SP

dataset. Technical report TRANSP-OR 120426. Transport and Mobility Laboratory, ENAC,

EPFL.

Part II focuses on airline schedule planning models integrated with the air itinerary choice

models, their analysis and solution methodologies.

Chapter 4 presents the integrated airline scheduling, fleeting and pricing model. The demand

model presented in Chapter 3 represents the pricing decision and spill effects. Tests with

small to medium size instances are presented in order to understand the added-value of the

integrated model.

This chapter is published and presented as:

Atasoy, B., Salani, M., and Bierlaire, M. (2013). An integrated airline scheduling, fleeting and

pricing model for a monopolized market. Computer-aided Civil and Infrastructure Engineer-

ing. doi: 10.1111/mice.12032 (article first published online: July 19, 2013).

Atasoy, B., Salani, M., and Bierlaire, M. (2011). Integrated schedule planning with supply-

demand interactions for a new generation of aircrafts . Proceedings of the International

Conference on Operations Research (OR) August 30 - September 2, 2011.
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Atasoy, B., Salani, M., and Bierlaire, M. Integrated airline schedule planning with supply-

demand interactions, IFORS, presented on July 14, 2011, Melbourne, Australia

Chapter 5 presents a heuristic method for the solution of the integrated model presented in

Chapter 4. The results of the heuristic are presented in comparison to the BONMIN solver and

the sequential approach.

This chapter is published and presented as:

Atasoy, B., Salani, M., and Bierlaire, M. (2013). A local search heuristic for a mixed integer

nonlinear integrated airline schedule planning problem. Technical report TRANSP-OR 130402.

Transport and Mobility Laboratory, ENAC, EPFL (Submitted to EJOR - First set of reviews are

incorporated).

Atasoy, B., Salani, M., and Bierlaire, M. An integrated fleet assignment model with supply-

demand interactions, 25th European Conference on Operational Research (EURO), presented

on July 09, 2012, Vilnius, Lithunia

Atasoy, B., Bierlaire, M., and Salani, M. An integrated schedule planning and revenue man-

agement model, LATSIS Symposium: 1st European Symposium on Quantitative Methods in

Transportation Systems, presented on September 07, 2012, Lausanne, Switzerland

Chapter 6 presents a reformulation of the integrated model presented in Chapter 4. Results

are obtained with an adapted version of the heuristic given in Chapter 5. Secondly, a sensitivity

analysis is provided for the two formulations of the integrated model where the demand model

parameters are perturbed and the robustness of solutions is analyzed.

Part of this chapter is published and presented as:

Atasoy, B., Salani, M., and Bierlaire, M. (2013). Models and algorithms for integrated airline

schedule planning and revenue management. Proceedings of the Eighth Triennial Symposium

on Transportation Analysis (TRISTAN VIII) 09-14 June, 2013.

Atasoy, B., Salani, M., and Bierlaire, M. (2013). Integration of explicit supply-demand interac-

tions in airline schedule planning and fleet assignment. Proceedings of the Swiss Transporta-

tion Research Conference (STRC) 24-26 April, 2013.

Chapter 7 presents a log transformation of the logit model which results with a stronger

formulation of the revenue sub-problem. Even though the revenue sub-problem is still a

non-convex problem, it is shown to perform better compared to the original formulations of

the logit with illustrative examples and the airline revenue management model that is used in

chapter 6.

Part of this chapter is published and presented as:

Atasoy, B., Salani, M., and Bierlaire, M. (2013). Models and algorithms for integrated airline
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schedule planning and revenue management. Proceedings of the Eighth Triennial Symposium

on Transportation Analysis (TRISTAN VIII) 09-14 June, 2013.

Atasoy, B., Salani, M., and Bierlaire, M. (2013). Integration of explicit supply-demand interac-

tions in airline schedule planning and fleet assignment. Proceedings of the Swiss Transporta-

tion Research Conference (STRC) 24-26 April, 2013.

Part III provides the application of the developed airline schedule planning models and

methodologies in the context of the innovative aircraft, Clip-Air.

Chapter 8 provides an extension of the airline schedule design and fleet assignment model

for Clip-Air. A comparative analysis is performed between Clip-Air and standard aircraft.

This chapter is published as:

Atasoy, B., Salani, M., Bierlaire, M., and Leonardi, C. (2013). Impact analysis of a flexible

air transportation system, European Journal of Transport and Infrastructure Research 13(2):

123-146.

Finally, Chapter 9 concludes the thesis together with future research directions.

Appendix:

A.1 presents supplementary results for the air itinerary choice model given in chapter 3. A.2

provides the formulation of IFAM sub-problems used in the heuristic algorithm in chapters

5 and 6 and also in the sensitivity analysis in chapter 6. Similarly, A.3 provides the RMM

sub-problems for different formulations of the model that are used in the heuristic algorithm

(chapters 5 and 6) and for the sensitivity analysis (chapter 6). In A.5, we extend the integrated

model given in chapter 6 to the case of Clip-Air. A.6 gives the concavity of the inverse-demand

function approach used in the literature in order to obtain a convex formulation for revenue

maximization models. A.7 provides the integrated model with the logarithmic transformation

that is proposed in chapter 7. In A.8, we provide the framework for Lagrangian relaxation

procedure with subgradient optimization for the solution of the integrated model given in A.7.

Moreover, for the same integrated model, A Generalized Benders’ Decomposition framework

is sketched in A.9.
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Part IAdvanced demand models

9





Part I constitutes the demand modeling part of the thesis and combines two chapters on advance

demand models. Chapter 2 presents hybrid choice models with integrated perception and

attitudes of individuals in the context of mode choice. These models enable to better understand

the demand behavior of individuals through latent variables/classes. Chapter 3 proposes a logit

model for air itinerary choice based on a mixed data set. This chapter provides an important

input for the continuing chapters with integrated supply and demand models.
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2 Attitudes towards mode choice in
Switzerland

We integrate latent attitudes of the individuals into a transport mode choice model through

latent variable and latent class models. Psychometric indicators are used to measure these

attitudes. The aim of the inclusion of attitudes is to better understand the underlying choice

preferences of travelers and therefore increase the forecasting power of the choice model.

We first present an integrated choice and latent variable model, where we include attitudes

towards public transport and environmental issues, explaining the utility of public transport.

Secondly, we present an integrated choice and latent class model, where we identify two seg-

ments of individuals having different sensitivities to the attributes of the alternatives, resulting

from their individual characteristics. The calibration of these types of advanced models on

our sample has demonstrated the importance of attitudinal variables in the characterization

of heterogeneity of mode preferences within the population.

2.1 Introduction

Transport mode choice behavior of the individuals is explained by socio-economic charac-

teristics and attributes of the mode. However these are not the only variables that explain

heterogeneity in the mode preferences. It has been well accepted that attitudes and percep-

tions play an important role in the decision-making process McFadden (1986). Attitudes and

perceptions cannot be directly observed from the data and hence considered latent variables.

Structural equation models (SEM) provide a powerful methodology to translate attitudes and

other latent variables into a statistical model Bollen (1989). SEM has been widely applied

in social sciences Bielby and Hauser (1977). An early example of such application is the

evaluation of the effect of an individual’s occupational aspiration, as a latent variable, on

his best friend’s Duncan et al. (1968). Later, the development of Linear Structural Relation

(LISREL) model Joreskog et al. (1979) contributed to a wider use of SEM in social sciences.

One of the major difficulties in SEM is the collection of adequate measurements for the latent

variable, since it cannot be observed directly from the data. Research in this context has been

concentrating on the measurement of attitudes via psychometrics (Likert, 1932, Bearden and

13
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Netemeyer, 1999, Schüessler and Axhausen, 2011), and more recently by generating data from

words Kaufmann et al. (2010).

In transport research, attitudinal variables are studied to explain the travel behavior of individ-

uals through structural equation models. Golob (2003) provides a detailed literature review

on numerous applications of SEM in transport. Scheiner and Holz-Rau (2007) analyze the

interrelation between socioeconomic characteristics, lifestyle, residential choice and travel

behavior of the individuals. Structural equations are developed by using data from a survey

in Cologne, Germany. They have found out that lifestyle preferences play a key role in the

residential choice of individuals, which in turn has an important impact on the travel mode

choice. Similarly, Van Acker et al. (2010) study how residential and travel attitudes affect the

decision of residential location and travel behavior with data from an Internet survey in the

region of Flanders, Belgium. It is shown that car ownership is significantly affected by the

residential attitudes. Furthermore, Van Acker et al. (2011) extend the model by including

interrelations between residential and travel mode choices for leisure trips. They point out

that the strength of interrelations depends on the mode as well as the activity performed. They

also come up with different lifestyle characteristics that result in different decisions on travel

mode. By comparing the models with and without lifestyle characteristics, they conclude that

there is an improvement in terms of the explained variance in mode choice, with the inclusion

of these subjective variables.

The structural equation models of attitudinal variables are integrated into choice models,

in order to make use of simultaneous estimation of choice and attitudinal variables. These

integrated models are called hybrid choice models, which are introduced by Ben-Akiva et al.

(1999), Walker and Ben-Akiva (2002) and Ben-Akiva et al. (2002). They provide a general

framework where attitudinal variables are considered as latent variables. These variables are

introduced in the choice context through latent variable models and latent classes.

In integrated choice and latent variable models, the attitudinal variables are included as

explanatory variables of the choice. Vredin Johansson et al. (2006) analyze the effect of the

latent variables of environmental preferences, safety, comfort, convenience and flexibility

on the mode choice using a sample of Swedish commuters. They provide insights for policy-

makers so as to improve the transport systems through the use of the attitudinal variables.

Espino et al. (2006) study the mode choice behavior for suburban trips by including the latent

variable of comfort. Abou-Zeid et al. (2010) explain the variability in individuals’ willingness to

pay, with individuals’ attitudes toward travel, through a latent variable model. They introduce

a car-loving attitude and show that the individuals who dislike public transport are more

sensitive to the time and cost changes of public transport compared to others.

Latent class models are used to identify different classes of individuals by making use of

the attitudinal variables Collins and Lanza (2004). Different classes may have different taste

parameters, choice sets, and decision protocols. Ben-Akiva and Boccara (1995) study the

mode choice behavior of commuters and allow different choice sets for different segments

14
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of the population. Gopinath (1995) presents latent class models for mode choice behavior

and shows that different segments of population have different decision protocols for the

choice process as well as different sensitivities for time and cost. Hosoda (1995) works on

the mode choice models for shopping trips where both latent variables and latent classes are

included in the framework. It is shown that without a proper modeling of heterogeneity in

the sample, there can be significant bias in the parameter estimates, even for travel time and

travel cost. Therefore attitudinal variables are proposed to be included through appropriate

hybrid choice models. More recently, Walker and Li (2007) study lifestyle preferences with

a data from Portland, Oregon. They identify different latent classes of individuals that have

different residential location choices, resulting from their lifestyle preferences.

In this chapter we present models that integrate attitudes into choice context through latent

variables and latent classes. These latent variables and classes are identified with psychometric

indicators that are related to the attitudes of individuals in the context of transport modes.

With the presented models, we show that the attitudinal variables have significant impacts on

the transport mode preferences. The models show two different methodologies to integrate

attitudinal variables in a mode choice context. In the first model heterogeneity in the sample

is captured through latent attitudinal variables and in the second model through a latent

segmentation of the population. We show that the models are operational in the sense that

they can be used in order to predict the market shares for different transport modes; to

compute elasticities of demand and willingness to pay for individuals. Moreover, in the area

of behavior modeling, the presented models are advanced behavioral models compared to

classical models and the resulting complexity brings in a better understanding of the travel

behavior.

For the preliminary analysis regarding the same research we refer to Atasoy et al. (2010) and

Atasoy et al. (2011) where latent variables or classes are used to better explain the travel

behavior.

The rest of the chapter is organized as follows: section 2.2 summarizes the data collection

campaign. Section 2.3 provides the model specification and estimation results regarding the

integrated choice and latent variable model and the integrated choice and latent class model.

In section 2.4 we present the validation of the model and the analysis of demand indicators

including market shares, demand elasticities and values of time (VOT). Finally we conclude

and discuss the future directions of our research in section 2.5.

2.2 Data Collection

A comprehensive data collection campaign is carried out between 2009 and 2010 within the

framework of a collaborative project between PostBus and the Ecole Polytechnique Fédérale

de Lausanne (EPFL) on travel mode choice. PostBus is the public transport branch of the Swiss

postal service, which typically serves in low-density areas of Switzerland.
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The first step of the data collection campaign was a qualitative survey conducted by the Urban

Sociology Laboratory (LASUR) of the Ecole Polytechnique Fédérale de Lausanne (EPFL). It

consisted of interviews of 20 individuals in the Swiss canton of Vaud, the purpose of which

was to obtain information on their mobility habits and residential choice. In addition to

the interviews, all trips of the respondents were recorded using GPS devices. A complete

description of the qualitative survey is reported in Doyen (2005). The qualitative survey

provided important insights about the individuals’ opinions on transport modes. These

outcomes were used in the construction of a revealed preferences (RP) survey.

The second step consists of the RP survey, which is the data source used for the models

presented in this chapter. Data on the mobility of inhabitants of suburban areas of Switzer-

land was collected. Questionnaires were sent to households in 57 towns/villages, which

were selected in order to be representative of the PostBus network. For small villages, all

the households were included in the sample. For larger towns the sample included all the

households in the center and a portion of the surrounding neighborhoods. In total 28’193

respondents received a questionnaire and in return 1763 valid questionnaires (6.25%) were

collected. Respondents were asked to report information about all trips performed during

one day, including origins, destinations, travel durations, costs, chosen modes and activities

at destination. In addition, data about the respondents’ opinions on topics related to envi-

ronment, mobility, residential choice or lifestyle were collected, as well as information about

their mobility habits, perceptions of various transport modes, household composition and

socio-economic situation. Part of the survey that was dedicated to collect information on

opinions, included a series of 54 statements. The respondents had to rate their level of agree-

ment on a five-point Likert scale (Likert, 1932) ranging from a total disagreement (response of

1) to a total agreement (response of 5). These statements, refered as psychometric indicators,

were designed on the basis of examples in the existing literature (see Kitamura et al., 1997,

Redmond, 2000, Ory and Mokhtarian, 2005, and Vredin Johansson et al., 2006) and using the

outcomes of the qualitative survey mentioned above.

Examples of the sentences related to the environmental concern of respondents in the revealed

preference survey are reported below:

• I am concerned about global warming.

• We should increase the price of gasoline to reduce congestion and air pollution.

• We must act and take decisions to limit emissions of greenhouse gases.

• We need more public transport services, even if taxes are set up to pay for the additional

costs.

In this chapter, we present discrete choice models which aim at identifying the factors driving

individuals’ mode choices over the reported sequences of trips departing from their home

and returning to that same place. For instance, a sequence of trips could include a first trip
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Table 2.1: Proportions of socio-demographic categories

Category Sample Population
Education

University 14.2% 6.2%
Vocational university 16.2% 10.6%
Certificate of Vocational Training and Education 61.0% 50.9%
Compulsory school 7.6% 27.6%
No school diploma 1.0% 4.7%

Age
16-19 years 2.3% 8.2%
20-39 years 21.2% 33.4%
40-64 years 55.9% 41.6%
65-79 years 18.7% 12.7%
80 years and above 1.8% 4.1%

Gender
Male 53.0% 49.0%
Female 47.0% 51.0%

from home to work, a second trip from work to leisure, and a last trip from leisure to home.

For each of these sets of trips, the main mode was identified. Therefore, the data we used for

estimating the models presented in this chapter consists of 2265 sequences of trips reported

by 1763 respondents.

It is to be noted that due to the inaccuracy of the travel durations and costs reported by the

respondents for each of their trips, the times and costs used in the models presented in this

chapter were imputed using the websites of the Swiss railways (SBB) ������������		��� and

of ViaMichelin �������	
���
�����������. To be able to use these websites, for each trip,

we entered the origin and destination information which was reported by the respondents.

The same websites were used to infer the times and costs for the non-chosen alternatives.

In this sample, some socio-demographic categories were oversampled, i.e. individuals with a

high education level, male respondents or individuals aged between 40 and 79 years. The pro-

portions of individuals in each category in the sample and in the population of the regions con-

sidered in the survey are reported in Table 2.1. For the percentages of each socio-demographic

category in the population, we report the data of the Federal Census of 2000.

In section 2.4.1, we are presenting the aggregate indicators of demand including, market

shares, elasticities and value of time. These indicators must be computed by weighting each

observation of the survey according to the representation of its age category, gender and

education level in the regions considered in the survey, in order to evaluate the real demand

for private motorized modes, public and soft transport modes in these regions. The weights

are calculated by applying the iterative proportional fitting (IPF) algorithm.
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Latent Attitudes 

Number of children 

Number of cars 

Number of bikes 

Student 

Regions  

Age 

Travel time 

Travel cost 

Pro-car 

Utility 

Choice: PMM, PT, SM 

• It is hard to take PT when I travel with 
my children. 

• I do not like to change mode when I 
travel. 

• It is hard to take PT when I have my 
luggage. 

Education (high)  Trip purpose 

Distance 

Number of cars  

Number of bikes  

Environmental 
concern

• I am concerned about global warming. 
• We should increase the price of 

gasoline to reduce congestion and air 
pollution.  

• We must act and take decisions to limit 
emissions of greenhouse gases. 

• We need more public transportation, 
even if taxes are set up to pay for the 
additional costs.  

French part vs 
German part 

Urban vs rural 

Latent variable model Choice model 

Attributes of alternatives 

Characteristics of the 
traveler 

Characteristics of the 
traveler 

Indicators 

Indicators 

Figure 2.1: Continuous model framework

2.3 Model Specification and Estimation Results

The two models are represented by Figures 2.1 and 2.2. Observed variables such as explanatory

variables, psychometric indicators, and choices are represented by rectangular boxes and

latent variables such as utilities, attitudinal variables, and classes are represented by ovals.

Structural equations are represented by straight arrows while measurement equations are

represented by dashed arrows.

The model pictured in Figure 2.1 is called the continuous model, since latent attitudes are inte-

grated as continuous explanatory variables in the choice model. It consists of two components:

a latent variable model and a discrete choice model.

The model in Figure 2.2 is called the discrete model, since two separate choice models are

specified for the two latent classes. These classes are identified by attitudinal indicators. The

integrated model is composed of a latent class model and two class-specific choice models.

As a base reference we estimate a logit model, which has the same specification as the choice

models included in the continuous and discrete models. In sections 2.3.3 and 2.4 we use this

base model as a reference to evaluate the added value of latent variables and classes.

It is important to note that for the construction of structural equations for latent variables as

well as the identification of latent classes, we have performed a factor analysis as an exploratory
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Latent classes 

Education (high)  Utility 

Choice: PMM, PT, SM 

Family 

Single

Independent

• It is hard to take PT when I travel 
with my children. 

• With my car, I can go where I want 
when I want.  

• I would like to spend more time with 
my family and friends. 

Dependent

Latent class model Class-specific choice model 

Indicators Number of children 

Number of cars 

Number of bikes 

Student

Travel time 

Travel cost 

Trip purpose 

Distance 

French part vs 
German part 

Urban vs rural 

Attributes of alternatives 

Characteristics of the 
traveler 

Characteristics of the 
traveler 

Figure 2.2: Discrete model framework

step with the relevant variables.

2.3.1 Continuous model

Psychometric indicators are studied using factor analysis techniques to identify the most

important ones that explain the choice behavior. In Table 2.2 we present results for the first

three factors with indicators having a factor loading higher than 0.2 (in absolute sense), which

is used as the cut-off value. When we analyze the results, we observe that the first factor

corresponds to a negative attitude towards public transport, being positively correlated with

the indicators that are related to the inconvenience of public transport. When we do a similar

analysis for factor 2 and 3, we observe that the second one is related to the environmental

attitude and the third one represents the public transport awareness.

From these results we selected the first and second factors, and named them as pro-car and

environmental concern respectively. For pro-car we included the indicators 8, 9 and 10 and for

environmental concern we worked with 1, 2, 4 and 5 which were found to improve the model.

Structural equations for latent attitudes

In the latent variable model, the structural equations for the attitudes were built as specified

in Table 2.3. The pro-car attitude is represented by Acar and the environmental concern is

represented by Aenv . The explanatory variables can be listed as follows:
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Table 2.2: Factor analysis results for indicators

Indicators Factor 1 Factor 2 Factor 3
1- We should increase the price of gasoline to reduce congestion
and air pollution.

-0.375 0.453

2- We need more public transport, even if it means higher taxes. 0.410
3- Environmentalism harms the small businesses. 0.237
4- I am concerned about global warming. 0.674
5- We must act and make decisions to reduce emissions of
greenhouse gases.

0.675

6- I’m not comfortable when I travel with people I do not know
well.

0.342

7- Taking the bus helps to make the city more comfortable and
welcoming.

0.311

8- It’s hard to take public transport when I travel with my chil-
dren.

0.448

9- It’s hard to take public transport when I travel with bags or
luggage.

0.587

10- I don’t like to change transport modes when I travel. 0.493
11- If I use public transport instead of my car, I have to cancel
some activities.

0.563

12- The bus schedule is sometimes hard to understand. 0.398
13- I know well which bus or train I must take, regardless of
where I’m going.

0.709

14- I know the bus schedule by heart. 0.515
15- I use the Internet for schedules and departure times of
buses or trains.

0.308

16- I have used public transport all my life. -0.240 0.370
17- I know some of the drivers of the buses I take. 0.279
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Table 2.3: Specification table of the structural equations of the continuous model

Attitudes Acar Aenv

Acar 1 -
Aenv - 1
θN car s Ncar s -
θeduc −E duc E duc
θN bi kes - Nbi kes

θag e - Ag e · (Ag e > 45)
θV al ai s V al ai s -
θBer n Ber n -
θB asel−Z ur i ch B asel −Z ur i ch -
θE ast E astSwi t zer l and -
θGr aubünden Gr aubünden -

• Acar and Aenv are the constants for the corresponding attitudes,

• Ncar s represents the number of cars in the household,

• a set of dummy variables (V al ai s, Ber n, B asel −Z ur i ch, E astSwi t zer l and ,

Gr aubünden) represent the regions that are in the German speaking part except

V al ai s where both French and German are spoken,

• E duc is a dummy variable which is 1 for respondents who have a university degree,

• Nbi kes is the number of bikes in the household,

• Ag e · (Ag e > 45) is a piecewise linear variable which is 0 for the individuals under age 45.

Therefore individuals under the age of 45 constitute a reference value and the parameter

is estimated for the remaining population.

Let us remark that the parameter for E duc variable is kept the same for the two attitudes, but

introduced with a minus sign for pro-car. Indeed, considering separate parameters for both

equations did not give significantly different results.

Measurement equations for latent attitudes

As mentioned previously, for the attitude pro-car, indicators 8, 9 and 10 were used and for

environmental concern, indicators 1, 2, 4 and 5 were included in the model. Therefore, mea-

surement equations were built with the corresponding indicators of the attitudes as given in

equation (2.1).

Ik =αk +λk A+υk ∀k, (2.1)

where αk and λk are parameters to be estimated. A denotes the latent attitudes. Ik represents

the psychometric indicators. The error term υk is normally distributed with mean 0 and

standard deviation συk .
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Structural equations for utilities

Mode choice is assumed to be between the alternatives of private motorized modes (PMM),

which include car as a user and passenger, motorbike and taxi, public transport (PT), which

consists of bus, train and car postal, and soft modes (SM), that represents walking and bike. Util-

ities of the alternatives are defined with explanatory variables of modal attributes, individual

characteristics and latent attitudes represented by Table 2.4.

The explanatory variables used in the utilities are listed as follows:

• T TP M M and T TPT represent the travel time,

• CP M M and CPT are the travel costs,

• Ncar s is the number of cars in the household,

• Nchi l dr en is the number of children under age 15 in the household,

• F r ench is a dummy variable being 1 for the respondents in the French speaking part,

• W or kTr i p is a dummy variable being 1 for the work related chain of trips,

• Ur ban is a dummy variable representing the urban regions,

• Student is a dummy variable for the respondents who are either a student or a trainee,

• DSM is the total distance traveled.

Measurement equations for utility

Utilities of the alternatives are measured with the observed choices of the respondents as

given in equation (2.2), where Cn is the choice set of individual n.

yi n =
{

1 if Ui n ≥U j n ,∀ j ∈Cn ,

0 otherwise.
. (2.2)

Having defined the structural and measurement models for the latent attitudes and utilities,

the likelihood of a given observation is built. It is given by the joint probability of observing

choice and indicators of the latent attitudes.
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Table 2.5: Results of factor analysis

Factor 1 Factor 2
Choice PT 0.250
Socio-economic information
Nchi l dr en 0.517
Student/trainee 0.117 0.770
Ncar s 0.203
HighIncome 0.252
Education -0.123
Age ≥ 60 -0.375
Family status
Couple without children -0.606
Couple with children 0.927 -0.368
Living with parents 0.159 0.956
Single -0.371
Single parent -0.170
Roommate -0.142
Psychometric Indicators
PT children
Flexibility car -0.130
Family oriented 0.135

2.3.2 Discrete model

In this section a discrete attitude model is presented where a latent segmentation of the

individuals is simultaneously performed with the choice model. With the latent segmentation

our aim is to identify the classes of travelers who have different sensitivities to changes in the

attributes of the mode alternatives. We decided to work with two latent classes with different

demand elasticities.

To start with a reasonable model, a factor analysis is performed as an exploratory analysis

with socio-economic characteristics, psychometric indicators and the choice variable. This

analysis provides information on the two segments of the individuals with respect to their

characteristics and travel behavior.

The indicators included in the presented factor analysis are:

• PT children: It is hard to take public transport when I travel with my children.

• Flexibility car: With my car, I can go where I want when I want.

• Family oriented: I would like to spend more time with my family and friends.

It is observed that family attributes of individuals play an important role in the segmentation,

together with their income level and age category. The factor loadings with an absolute value

higher than 0.1 can be seen in Table 2.5, where the ones with an absolute value higher than 0.2

are presented in bold. Looking at the results, the two classes are defined as follows:
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Table 2.6: Specification table of the structural equations of the discrete model

Latent class Vi ndependent Vdependent

ASCi nd 1 -
γ f ami l y F ami l y -
γi ncome Hi g hIncome -
γsi ng le - Si ng le

• Class 1 - Independent: Middle-aged individuals that live with their family and children,

are typically active in the professional life, and have high income.

• Class 2 - Dependent: Young individuals who are mostly students and old people. This

class of individuals are typically singles or couples without children.

The idea behind the naming of the classes is that the second group of individuals are either

very young and students/trainees, which makes them economically dependent, or they are

old, which limits their physical activities. We note that the factor loading for the indicator PT

children is not strong. However, this indicator is included in the model since it is observed

that it has a significant role in the segmentation as explained in section 2.3.3.

Structural equations for latent classes

With the help of the exploratory analysis the structural equations for the class membership

model are built as in Table 2.6, where:

• Family is equal to 1 if the individual is living with his/her children, i.e. couples with

children and single parent,

• High Income is 1 if household income is high,

• Single is 1 if the person lives either alone or with parents.

Although there were other characteristics suggested by the factor analysis, these are the ones

who are estimated with success in the integrated model.

Measurement equations for the indicators

The class membership model is strengthened with the inclusion of the measurement model of

psychometric indicators that are mentioned in the beginning of this section.

The probability of an individual n in latent class s giving a particular response r to an indicator

k, P (Ink = r |s) for r = 1,...,5, which is called item-response probability, is defined as a parameter

to be estimated from the model and measured with the psychometric indicators.
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Structural equations for the utilities

For the two latent classes, independent and dependent, a specific mode choice model is

developed. For the class independent we have all three alternatives available. However, the

individuals belonging to the class dependent do not have the soft mode alternative. The reason

is that a low proportion (< 5%) of individuals in the dataset chose soft mode as their main

mode. Therefore the second class, which includes the old people as well, did not allow the

inclusion of soft mode. It is hence assumed that individuals belonging to class dependent do

not consider soft mode as an alternative.

The specification of the utilities is displayed in Table 2.4 and is similar to the specification of

the continuous model. The superscripts 1 and 2 are used to specify the latent class that the

parameters are defined for. Superscript 1 specifies the latent class independent and superscript

2 is for the class dependent. Time and cost parameters are specific to each class to capture taste

heterogeneity. Explanatory variables of Nchi l dr en and W or kTr i p are also defined specific to

each class since the characteristics of classes significantly differ in terms of family attributes

and professional life.

The specification of the measurement equations of the utilities for the discrete model are the

same as the continuous model.

2.3.3 Estimation results

The maximum likelihood method is used for model estimation where the likelihood function

is defined over the joint probability of observing the choice and the indicators of the latent

components. The estimation is done by using the software package BIOGEME which allows

for the estimation of advanced behavioral modeling as explained in Bierlaire and Fetiarison

(2009). Estimation results are presented in Table 2.7 for the continuous model, the discrete

model and the base model. The log-likelihood values and goodness of fit results are reported

in Table 2.8 for the three models. The log-likelihood values for the continuous and the discrete

models are calculated for only the choice probabilities to be comparable with the base model.

It can be noticed that the discrete model has the best fit compared to the continuous and base

models.

When we look at the utility parameters regarding the modal attributes of time, cost and

distance, it is seen that they have the expected signs such that they affect the utility negatively.

For the base model and the continuous model, the values of the estimates are close to each

other. On the other hand, since latent class model allows the segmentation of the population,

we have different sensitivities for the two classes. Individuals in the class dependent are more

sensitive to the changes in travel cost and time, as expected. The differences in the time and

cost sensitivities are also observed by looking at the demand elasticities and willingness to pay

values, which will be discussed in section 2.4. Since we do not have the soft mode alternative

for the second class, the distance parameter only appears in the utility of the first class. It
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2.3. Model Specification and Estimation Results

results in a lower absolute value, compared to the other models, since active individuals are

less sensitive to changes in distances.

The parameters for the other explanatory variables also have the expected signs and some

further observations are presented below:

• The number of children in the household positively affects the utility of private mo-

torized modes, since it brings the need for more flexible forms of transport. When

we compare the continuous model with the base model, we observe that the value of

the parameter becomes higher with the inclusion of the attitudes regarding the chil-

dren. When we look at the latent class model, the effect is stronger for the individuals

in class independent who are typically living with their children. On the other hand,

the parameter is not significant for the class dependent, which prevents to make any

conclusion, since the children related issues are not applicable to this class. Although it

is not statistically significant, it is decided to be included for the purpose of presenting

the different behavior of the latent segments.

• Individuals performing work related trips have a lower utility for private motorized

modes which is expected due to the nature of these trips, being more frequent and

almost identical from one day to the next. The latent class model allows to capture the

fact that individuals in the class dependent do not behave in the same way since they

are not active in professional life, being either students or retired people.

• The pro-car attitude decreases the utility of public transport and the effect increases

with the number of cars in the household. On the other hand, individuals with high

education and living in the German speaking part of Switzerland have a lower level of

same attitude, which increases the utility of public transport.

• The environmental concern increases the utility of public transport so that the individu-

als who are sensitive to environmental issues use public transport more. This effect is

more evident for the individuals with high level of education and increases with age and

the number of bikes in the household.

• The integration of attitudes into the choice models enables us to see the effect of vari-

ables on the utilities as well as on the attitudes. In the continuous model, we have a

variable Ncar s both in the structural equation of pro-car and the utility of private motor-

ized modes. Both parameters support that the utility of public transport decreases with

the number of cars in the household. Similarly, Nbi kes appears both in the structural

equation of environmental concern and the utility of soft mode.

• Analyzing the results of the discrete model, individuals who are living with their children

and have high income have higher probability to belong to class independent. On the

other hand, single individuals have higher probability to belong to class dependent. This

shows that our assumptions based on the factor analysis is supported by the model.
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Figure 2.3: Estimated item-response probabilities

For the measurement equations of the discrete model regarding the psychometric indicators,

we provide the estimated item-response probabilities in Figure 2.3. We group the probabilities

of responding 1 and 2 under the name of No and 4 and 5 under the name of Yes, and represent

the probability of responding 3 as Neutral (-). It is seen that individuals in class dependent

have very high probability to give a neutral response to the the first indicator which is related

to the difficulty of using public transport when traveling with children. This is parallel to our

assumptions for defining the two classes as explained in section 2.3.2. The second indicator is

related to the flexibility of car and for the two classes, we do not have very different response

probabilities, but the probability to agree with the statement is higher for class independent.

The last indicator is related to the desire to spend time with family and friends and the proba-

bility to give a higher value of response is higher for class independent, who are living with their

family and having their social network. Including these class-specific item-response probabil-

ities in the model strengthens the class membership model by considering the attitudes of

individuals related to their travel behavior.

2.4 Model Application

The estimation results of the models presented in section 2.3 enabled us to uncover the

variables explaining individuals’ mode choices as well as characterizing population segments

with different mobility behaviors. We will now explain how these results can be used to
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Table 2.7: Estimation results

Continuous model Discrete model Base model
Parameter Estimate t-test Estimate t-test Estimate t-test
Utilities
ASCP M M -0.599 -0.810* - - -0.413 -2.39
ASC 1

P M M - - -0.945 -3.63 - -
ASC 2

P M M - - -0.936 -3.21 - -
ASCSM -0.772 -0.930* - - -0.470 -1.27*
ASC 1

SM - - 0.512 1.31* - -
βcost -0.0559 -5.11 - - -0.0592 -5.61
β1

cost - - -0.027 -2.74 - -
β2

cost - - -0.302 -3.68 - -
βT TP M M -0.0294 -4.79 - - -0.0299 -4.96
β1

T TP M M
- - -0.0161 -2.59 - -

β2
T TP M M

- - -0.111 -5.71 - -
βT TPT -0.0119 -4.40 - - -0.0121 -4.55
β1

T TPT
- - -0.00692 -2.5 - -

β2
T TPT

- - -0.0445 -4.96 - -
βdi st ance -0.224 -4.25 - - -0.227 -4.28
β1

di st ance - - -0.199 -3.69 - -
βNcar s 0.970 9.88 1.23 9.8 1.00 10.3
βNchi l dr en 0.215 3.23 - - 0.154 2.37
β1

Nchi l dr en
- - 0.404 4.64 - -

β2
Nchi l dr en

- - -1.03 -1.19* - -

βl ang uag e 1.06 6.59 1.20 6.78 1.09 6.89
βwor k -0.583 -4.94 - - -0.582 -5.01
β1

wor k - - -0.785 -4.83 - -
β2

wor k - - -0.130 -0.410* - -
βur ban 0.283 2.25 0.390 2.81 0.286 2.33
βstudent 3.26 9.62 3.70 7.46 3.21 9.33
βNbi kes 0.385 6.85 - - 0.347 6.34
β1

Nbi kes
- - 0.205 3.46 - -

βAcar -0.574 -3.51 - - - -
βAenv 0.393 2.98 - - - -
Attitudes
Acar 3.02 45.11 - - - -
Aenv 3.23 66.49 - - - -
θN car s 0.104 4.37 - - - -
θeduc 0.235 6.92 - - - -
θN bi kes 0.0845 7.42 - - - -
θag e 0.00445 2.22 - - - -
θV al ai s -0.223 -2.8 - - - -
θBer n -0.361 -4.74 - - - -
θB asel−Z ur i ch -0.256 -4.11 - - - -
θE ast -0.228 -3.21 - - - -
θGr aubünden -0.303 -3.37 - - - -
Latent class
ASCi nd - - -0.629 -2.64 - -
γ f ami l y - - 3.92 3.8 - -
γi ncome - - 0.46 1.93 - -
γsi ng le - - 0.704 3.51 - -

(* Statistical significance < 90%)

29



Chapter 2. Attitudes towards mode choice in Switzerland

Table 2.8: Statistics

Continuous model Discrete model Base model
Log-likelihood -1069.8 -1032.5 -1067.4
ρ2 0.489 0.507 0.490

Table 2.9: Market shares

Model PMM PT SM
Base model 62.31% 32.09% 5.60%
Continuous model 63.11% 31.20% 5.69%
Discrete model Class 1 54.91% 36.13% 8.96%

Class 2 65.73% 34.27% -
Overall 62.70% 32.35% 4.94%

quantify the demand by defining several indicators. Moreover an analysis of the validity of the

models will be provided.

2.4.1 Demand indicators

In this section, we present several aggregate indicators which reveal the demand of individuals

for the different transport modes considered in this study. These indicators consist of market

shares, elasticities and values of time.

Let us note that for the discrete model, the demand indicators were computed using the

individual class membership probabilities. When these probabilities are weighted according

to the representation in the population, their aggregate values are 54.5% for the independent

class and 45.5% for the dependent class.

The first demand indicators that we are interested in are the market shares of each transport

mode. Table 2.9 reports the market shares predicted by the logit model, the continuous model

and the discrete model, for each mode. The latter do not vary much across models and are the

highest for private motorized modes, ranging from 62.31% to 63.11%, the second highest for

public transport, ranging from 31.20% to 32.35%, and the lowest for soft mode, ranging from

4.94% to 5.69%.

The market shares predicted by the continuous model differ from class 1, consisting of in-

dependent individuals, to class 2, representing dependent ones, since it cannot predict the

choice for soft mode of individuals in class 2.

In order to evaluate the variations in the market shares caused by the increase or decrease

of time and cost parameters, the second indicator we report in this chapter are demand

elasticities. The aggregate elasticities for the base model and the continuous model are

computed using formula (2.3), to assess the effect on demand of changes in a variable x ∈
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{CP M M ,T TP M M ,CPT ,T TPT } representing travel costs and times in private motorized modes

and public transport, respectively.

E i
x =

∑N
n=1 wnPn(i )E i

xn∑N
n=1 wnPn(i )

, (2.3)

where wn is the sample weight described in section 2.2 for individual n, Pn(i ) is the probability

that individual n chooses alternative i and E i
xn

is the elasticity of the demand of person n for

variations in individual quantity xn . The complete formula of this disaggregate elasticity is the

following:

E i
xn

= ∂Pn(i )

∂xn

xn

Pn(i )
.

For the discrete model, the formula differs slightly since we need to include the membership

probabilities to the classes of independent and dependent individuals. It is given as follows:

E i
x =

∑N
n=1 wn(Pn(i |C l ass1) ·Pn(C l ass1) ·E i ,C l ass1

xn
+Pn(i |C l ass2) ·Pn(C l ass2) ·E i ,C l ass2

xn
)∑N

n=1 wn(Pn(i |C l ass1) ·Pn(C l ass1)+Pn(i |C l ass2) ·Pn(C l ass2))
,

where Pn(C l ass1) and Pn(C l ass2) are the class membership probabilities for classes inde-

pendent and dependent, respectively, for an individual n, Pn(i |C l ass1) and Pn(i |C l ass2) are

the probabilities that n chooses alternative i given that he belongs to class independent,

respectively class dependent, and E i ,C l ass1
xn

and E i ,C l ass2
xn

are disaggregate elasticities of the

demand of person n for variations in individual quantity xn , given that n belongs to class

independent, respectively class dependent. Precisely, E i ,C l ass1
xn

and E i ,C l ass2
xn

are given by the

following formulas:

E i ,C l ass1
xn

= ∂Pn(i |C l ass1)

∂xn

xn

Pn(i |C l ass1)

E i ,C l ass2
xn

= ∂Pn(i |C l ass2)

∂xn

xn

Pn(i |C l ass2)

Table 2.10 reports the aggregate demand elasticities for each of the three models. Let us

first note that the latter are lower than 1 in absolute value, implying that demand is not very

elastic with respect to changes in time and cost Arnold (2008). No obvious differences in the

elasticities can be noticed between the base model and the continuous model. The elasticities

for the discrete model are slightly higher.

The cost elasticities for private motorized modes are the lowest (| · | ≤ 0.086), implying that an

increase of 1% in the travel costs for such modes, e.g. caused by an increase of the gasoline

price, would result in a decrease in their market shares of less than 0.086%. For public transport,

the cost elasticities are higher (0.2 < | · | < 0.3), showing that an increase of 1% of travel fares

results in a decrease of the market share of public transport slightly higher than 0.2%.

Time elasticities are higher than cost elasticities for all three models and this demonstrates that
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Table 2.10: Demand elasticities

Model
PMM PT

Cost elas. Time elas. Cost elas. Time elas.
Base model −0.064 −0.247 −0.216 −0.471
Continuous model −0.058 −0.234 −0.202 −0.465
Discrete model Class 1 −0.037 −0.165 −0.104 −0.275

Class 2 −0.145 −0.425 −0.441 −0.879
Overall −0.086 −0.282 −0.263 −0.580

individuals are more sensitive to changes in travel durations than to changes in travel costs.

Similar to cost elasticities, time elasticities computed for private motorized modes and public

transport differ: the time elasticities for private motorized modes (0.234 < |·| < 0.282) are lower

than the ones for public transport (0.465 < | · | < 0.580), meaning that private motorized mode

users are less sensitive to changes in their travel durations than users of public transport.

For the discrete model, differences occur in the sensitivity to variations in the travel costs and

times. For individuals in the dependent class, i.e. class 2, an increase in the travel costs of 1%

would result in a larger decrease in their probability to choose their current transport mode

than for individuals in the independent class, i.e. class 1. This is consistent with the fact that

individuals in class independent have larger incomes than individuals in class dependent (see

Table 2.6 for the characterization of the classes). The same effect can be noticed for changes

in travel times, i.e. individuals in class dependent are more sensitive to variations in travel

durations than individuals in class independent.

The third demand indicator we investigate is the value of time. It expresses the willingness to

pay of individuals to gain a travel duration of one hour. Table 2.11 reports the values of time for

private motorized modes and public transport, predicted by all three models. It can be noticed

that for both types of modes, the values of time do not differ much across models: for private

motorized modes, the value of time is close to 30 CHF per hour and for public transport, it is

slightly above 12 CHF per hour. These values are comparable with those reported in a study

on the value of time in Switzerland Axhausen et al. (2008). Precisely, that paper reports a value

of time for public transport of 14.10 CHF per hour, which is close to our results, and a value of

time for car travels of 20.98 CHF per hour, which is slightly lower than the values of time we

obtained for the three models. Nevertheless, a similar trend appears between the study on the

value of time and our research, which demonstrates that individuals are ready to spend more

in order to gain time in private motorized modes than in public transport.

Let us also note that the values of time are different in the two classes of the discrete model.

For both private motorized modes and public transport, they are higher for independent

individuals. This can be explained by the fact that most of the individuals in this class are

active workers for whom gaining an hour in travel is very important, contrary to part of the

individuals in the dependent class who are students or retired persons. Let us remark that

Axhausen et al. (2008) report a value of time of 27.66 CHF/hour for business travels in car,
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Table 2.11: Value of time

Model PMM PT
Base model 30.30 CHF/hour 12.26 CHF/hour
Continuous model 31.54 CHF/hour 12.81 CHF/hour
Discrete model Class 1 35.78 CHF/hour 15.38 CHF/hour

Class 2 22.05 CHF/hour 8.84 CHF/hour
Overall 29.53 CHF/hour 12.40 CHF/hour

Table 2.12: Percentages of choice probabilities higher than 0.5 and 0.9

Threshold Base model Continuous model Discrete model
0.5 72.87% 73.67% 75.00%
0.9 25.80% 25.53% 27.93%

which is close to the value of time obtained for individuals in class independent.

In order to assess if the continuous model and discrete model presented in section 2.3 could be

applied on other potential data sets, we perform a validation. As only one data set is available,

that is, the one on which we calibrated the models, it is split into two parts. First we select

randomly 80% of its observations and estimate the model on the latter and second we apply

the model on the remaining 20% of the observations.

Histograms of the choice probabilities predicting the choice of the individuals in the 20% of

the observations are shown in Figure 2.4 for the base model, the continuous model and the

discrete model.

We observe that choice probabilities are well predicted by all three models, but best by the

discrete model. As a confirmation of this result, Table 2.12 shows the percentages of choice

probabilities higher than 0.5 and 0.9 for each model. For all three models, the percentage of

choice probabilities above 0.5 and 0.9 are quite large, i.e. between 72% and 75% and between

25% and 28%, respectively. We notice that for the discrete model, the percentages of choice

probabilities above 0.5 (75.00%) and above 0.9 (27.93%) are higher than for the two other

models, which shows that the characterization of the two latent classes of independent and

dependent individuals within the choice model results in a better prediction power.

2.5 Conclusions and future research directions

In this chapter we presented two models that aim at characterizing better mode choice

behavior by using attitudinal indicators. In the first model, we integrated latent attitudes

regarding public transport dislike and care for environment within a choice model. Moreover,

in the second model, we could observe and capture heterogeneity in mode preferences for

two different segments of the population via an integrated choice and latent class model.
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Figure 2.4: Histograms of the choice probabilities
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In order to analyze the demand for the different mode choices, several indicators are computed,

i.e. market shares, elasticities and values of time. The indicators obtained for integrated choice

and latent class model showed evidence of differences in the sensitivities to variations in

the travel fares and durations between individuals of the two segments. Such model also

demonstrated a higher prediction power over a simple logit model.

The presented results are obtained with the estimation of the models using 2,265 observations

that are collected with the RP survey. The presented methodologies can simply be repeated

in the existence of richer datasets. In such a case, there is a potential of discovering further

interactions between individuals’ attitudes and their mode choice behavior.

In the presented models the heterogeneity in the sample is explained through structural

equation models for attitudinal variables. Therefore, provided that the necessary variables

are available, the models can be applied for other samples. This is an added value of the

presented models compared to mixtures of models which incorporate heterogeneity within

the population through random distributions.

Regarding the specification of the integrated choice and latent variable model, further research

could consist of the inclusion of more attitudinal variables as well as a better characterization

of their indicators. The integrated choice and latent class model could include additional

classes. Finally, a combination of both models could be considered in order to have a compre-

hensive framework of the complexity and heterogeneity lying in the population.
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3 An air itinerary choice model based
on a mixed RP/SP dataset

In this chapter, we present an itinerary choice model based on a mixed RP/SP dataset. The

aim of the combination of the two datasets is to exploit the variability of the SP data for the

estimation of the RP model parameters. As a result a price elastic demand model is obtained

which will be integrated in an airline schedule planning framework. This integration will

enable us to explicitly model the supply-demand interactions which is critical for airlines for

superior schedule planning decisions.

3.1 Introduction and related literature

Demand forecasting models of airlines are critical in a profitable planning of the network

and schedule. In the last decade discrete choice methodology has been introduced in the

context of demand analysis of airlines (Garrow, 2010). It has been shown by Coldren et al.

(2003) that discrete choice modeling leads to superior forecasts compared to a widely used

Quality Service Index (QSI).

In air transportation context an itinerary is defined as a product between an origin and

destination pair which can be composed of several flight legs. Since the information on the

demand is available on the itinerary level, choice models are developed for the itineraries.

In the literature, random utility models have been used to model the choice of itinerary

depending on various attributes. We refer to the work of Garrow (2010) for a comprehensive

review of different specifications of discrete choice models for air travel demand. Coldren

et al. (2003) propose logit models and Coldren and Koppelman (2005) extend the previous

work with the introduction of GEV and nested logit models. Gramming et al. (2005) propose

a probit model where there is a large set of alternatives in the context of non-IIA problems.

Koppelman et al. (2008) model the time of day preferences under a logit setting in order to

analyze the effect of schedule delay. Carrier (2008) and Wen and Lai (2010) propose some

advanced demand modeling in which customer segmentation is modeled as a latent class.

In this study we develop an itinerary choice model based on a real dataset. The dataset is a
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mixed revealed preferences (RP) and stated preferences (SP) dataset. Combining different

sources of data is a common practice in demand modeling literature in order to make use

of the advantages of different characteristics of the sources (Ben-Akiva and Morikawa, 1990;

Ben-Akiva et al., 1994; Louviere et al., 1999). The considered RP data is a booking data from a

major European airline and the SP data is based on an Internet survey in US. The contribution

of this study is the price elasticity of the resulting demand model which is lacking in the

models based on booking data. This demand model is aimed to be integrated with a schedule

planning model. This integration provides simultaneous decisions on the schedule plan and

revenue management.

The rest of the chapter is organized as follows. Section 3.2 presents the itinerary choice

model we develop. Section 3.3 presents the mixed RP/SP data used for the estimation. The

methodology for the joint estimation of RP and SP models is presented in section 3.4. We

provide the estimation results in section 3.5 together with the indicators of demand including

willingness to pay and elasticities. Finally, we conclude in section 3.6.

3.2 Itinerary choice model

We develop an itinerary choice model for the choice of alternative itineraries in the same

market segments. The market segments , s ∈ Sh , are defined by the origin and destination

(OD) pairs and they are differentiated for each cabin class h. Considered classes are economy

and business classes and therefore we have two segments for each OD pair. The choice

situation is defined for each segment s with a choice set of all the alternative itineraries in the

segment represented by Is . The index i for each alternative itinerary in segment Is carries the

information of the cabin class of the itinerary due to the definition of the segments. Therefore

we do not use the index h for the itineraries. As an example, consider a market segment of

economy passengers between Geneva and Washington. The alternatives for this segment

includes all the available economy itineraries which can be non-stop or connecting itineraries

with different departure times. Finally, in order to better represent the reality, we include

no-revenue options (I
′
s ⊂ Is), which represent the itineraries offered by competitive airlines.

The utility of each alternative itinerary i , including the no-revenue options, is represented by

Vi and the specification is provided in Table 3.1. The alternative specific constants, ASCi , are

included for each itinerary in each segment except one of them which is normalized to 0 for

identification purposes. Other parameters are represented by β for each of the explanatory

variables. Since we have different models for economy and business classes all the parameters

and variables are specified accordingly. Superscripts E and B indicate the economy and

business classes respectively. Moreover, the superscripts N S and S indicate the non-stop and

one-stop itineraries respectively. The explanatory variables are described as follows:

• pricei is the price of itinerary i ine, which is normalized by 100 for scaling purposes,

• timei is the elapsed time for itinerary i in hours,
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3.2. Itinerary choice model

Table 3.1: Specification table of the utilities

Parameters Explanatory variables

constants
ASCE

i 1×economyi
ASCB

i 1×businessi

price

βE ,N S
price ln(pricei /100)×non-stopi ×economyi

βB ,N S
price ln(pricei /100)×non-stopi ×businessi

βE ,S
price ln(pricei /100)× stopi ×economyi

βB ,S
price ln(pricei /100)× stopi ×businessi

time

βE ,N S
time timei ×non-stopi ×economyi

βB ,N S
time timei ×non-stopi ×businessi

βE ,S
time timei × stopi ×economyi

βB ,S
time timei × stopi ×businessi

time-of-day
βE

morning morningi ×economyi

βB
morning morningi ×businessi

• non-stopi is a dummy variable which is 1 if itinerary i is a non-stop itinerary, 0 otherwise,

• stopi is a dummy variable which is 1 if itinerary i is a one-stop itinerary, 0 otherwise,

• economyi is a dummy variable which is 1 if itinerary i is an economy itinerary, 0 other-

wise,

• businessi is a dummy variable which is 1 if itinerary i is a business itinerary, 0 otherwise,

• morningi is a dummy variable which is 1 if itinerary i is a morning itinerary departing

between 07:00-11:00, 0 otherwise. The time slot is inspired by the studies in literature

that show that the individuals have higher utility for the departures in this slot Garrow

(2010).

As seen in Table 3.1 all the parameters are interacted with the economy and business dummies

in order to be able to have two different models for the two classes. In addition to the inter-

action with the cabin class, the time and price variables are interacted with the number of

stops, i.e. the dummies of non-stop and stop since there are strong correlations between the

number of stops and both the time and price of the itinerary. Furthermore, the price variable

is included as a log formulation since it improved the model significantly. The idea behind is

that, the effect of the increase in price is not linear for different levels of the price.

The choice model is formulated as a logit model. It gives the choice probability for each

itinerary i in segment s as represented by equation 3.1.

P s(i ) = exp(Vi )∑
j∈Is

exp(Vj )
∀h ∈ H , s ∈ Sh , i ∈ Is (3.1)
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3.3 Data

For the estimation of the demand model we use an RP data provided in the context of ROADEF

Challenge 20091. This is a booking data from a major European airline which provides the set of

airports, flights, aircraft and itineraries. The information provided for the itineraries includes

the corresponding flight legs therefore we can deduce the information on the departure

and arrival time of itinerary, the trip length and the number of stops. Additionally, we have

information on the demand and average price (e) for each cabin class. Three main sets of

instances are provided in the context of the challenge. The first set includes 608 flights and

1,943 itineraries, the second has 1,422 flights and 11,214 itineraries; and the last one consists

of 2,178 flights and 28,308 itineraries. For the estimation of the demand model a subset of the

whole dataset is used as explained in section 3.5. The same dataset is used for the integrated

models presented in Part II of the thesis. Several data instances are generated as presented in

Table 5.1 in Chapter 5.

The RP data does not include any information concerning the competitive airlines. Therefore

the no-revenue options are not considered in the estimation process. However for applying

the model we assume that these itineraries have the same type of utility functions as presented

in Table 3.1 and their attributes are assigned according to the other available itineraries in the

market offered by competitive airlines.

As it is common with RP data, the lack of variability in some attributes precludes a statistically

significant estimation of key parameters of the choice models. Many models in literature,

which are based on airline booking data, have insignificant price parameters (Garrow, 2010).

Therefore, in this study, the RP data is combined with SP data, where the variability is obtained

by design.

The SP data, which is used to overcome the inelastic nature of RP data, is based on an Internet

choice survey collected in 2004 in the US. Let us note that, the combined dataset therefore

contains both European and US data. The Internet survey was organized to understand the

sensitivity of air passengers to the attributes of an airline itinerary such as fare, travel time,

number of stops, legroom, and aircraft. The respondents were presented hypothetical choice

situations and offered three alternatives as seen in Figure 3.1. The first is a non-stop itinerary,

the second one is a one-stop itinerary with the same airline and the third is connecting with

a different airline. By design, the data has enough variability in terms of price and other

variables. The SP sample has 3609 observations.

3.4 The simultaneous estimation of RP and SP models

As mentioned previously the RP model presented in section 3.2 is simultaneously estimated

with the SP model in order to take the advantage of its elasticity. The SP model is also a logit

1������������	
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3.4. The simultaneous estimation of RP and SP models

Figure 3.1: An example page for the SP survey

model. The choice set consists of three alternatives. The first one is a nonstop itinerary. The

second alternative is a one-stop itinerary both flights being operated by the same airline. The

third alternative is also a one-stop itinerary where the connection is provided by another

airline. The utilities for these alternatives are provided by the equations 3.2, 3.3, and 3.4

respectively.

Since the models for RP and SP datasets are estimated simultaneously, we need to define a

scale variable, scaleSP . The the scale of the RP data is fixed to 1 and scaleSP is to be estimated

in order to capture the differences in the covariance structure of the error terms of the two

models.

Similar to the RP model, the parameters are specified as economy and business. The pa-

rameters of the price variables for each of the alternatives (βE ,N S
price , βB ,N S

price , βE ,S
price, βB ,S

price) are

constrained to be the same as the price parameters of the RP model presented in section

3.2. Similarly the parameters of the time variables (βE ,N S
time , βB ,N S

time , βE ,S
time, βB ,S

time) and the param-

eters of the morning variables (βE
morning, βB

morning) are also designed to be the same as the

parameters of the RP model.

In the SP model, there are additional explanatory variables since it is based on a rich data

set. For business passengers we have the information whether they pay their ticket or their

company pay for that. Therefore there is an additional dummy variable, business/others-pay
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Chapter 3. An air itinerary choice model based on a mixed RP/SP dataset

(denoted by OP ), which is 1 if the business passenger’s ticket is not paid by himself. There are

other explanatory variables which are represented by vector v . These variables include the

legroom provided in the airplane, the delay of the flight in case of late or early arrival and the

variable representing whether the passenger is a frequent flyer or not.

V1 = scaleSP × (βE ,N S
price × ln(price1/100)×economy+βB ,N S

price × ln(price1/100)×business

+βB−OP
price × ln(price1/100)×business/others-pay

+βE ,N S
time × time1 ×economy+βB ,N S

time × time1 ×business (3.2)

+βE
morning ×morning1 ×economy

+βB
morning ×morning1 ×business

+∑
i
βE

i × vi
1 ×economy+βB

i × vi
1 ×business)

V2 = scaleSP × (ASCE
2 ×economy+ASCB

2 ×business

+βE ,S
price × ln(price2/100)×economy+βB ,S

price × ln(price2/100)×business

+βB−OP
price × ln(price2/100)×business/others-pay

+βE ,S
time × time2 ×economy+βB ,S

time × time2 ×business (3.3)

+βE
morning ×morning2 ×economy

+βB
morning ×morning2 ×business

+∑
i
βE

i × vi
2 ×economy+βB

i × vi
2 ×business)

V3 = scaleSP × (ASCE
3 ×economy+ASCB

3 ×business

+βE ,S
price × ln(price3/100)×economy+βB ,S

price × ln(price3/100)×business

+βB−OP
price × ln(price3/100)×business/others-pay

+βE ,S
time × time3 ×economy+βB ,S

time × time3 ×business (3.4)

+βE
morning ×morning3 ×economy

+βB
morning ×morning3 ×business

+∑
i
βE

i × vi
3 ×economy+βB

i × vi
3 ×business)

3.5 Estimation results

From the RP data, 3 OD pairs are selected to be combined with the SP data. There are in total

30 alternative itineraries serving 904 passengers between these 3 OD pairs. These OD pairs are

the ones with the most variability in the attributes. In Appendix A.1.1 we provide results with

24 OD pairs from the RP data where the lack of price elasticity can be observed.

The characteristics of the alternatives for the selected 3 OD pairs can be seen in Table 3.5.

When there is a business itinerary it is in fact the same product with the subsequent economy

42



3.5. Estimation results

itinerary. For example, alternative 7 and 8 of the first OD pair are the same product with

different classes. In this section we provide results for the RP model since the focus of the

study is to obtain an appropriate model for the RP data in order to be used in the framework

of schedule planning models.

The estimation of the parameters for the joint RP/SP model is done with a maximum likelihood

estimation using the software BIOGEME Bierlaire and Fetiarison (2009). In Table 3.3 we present

the estimated parameters. In the following, we present the RP model parameters which are

constrained to be common with those of the SP model. In addition to the common parameters

we also present the scale parameter introduced in the SP model. The main observations can

be listed as follows:

• The cost and time parameters have negative signs as expected since the increase in the

price or the time of an itinerary decreases its utility.

• Economy demand is more sensitive to price and less sensitive to time compared to

business demand as expected (Belobaba et al., 2009).

• For non-stop itineraries time and cost parameters are higher in absolute value compared

to one-stop itineraries. Therefore, passengers on connecting itineraries are less affected

by 1 e increase in price or 1 minute increase in travel time compared to non-stop

itineraries. The reason is that, in our RP data the connecting itineraries are more

expensive and by nature have longer travel time. Therefore we need to check the

indicators of willingness to pay and elasticities to analyze these effects appropriately.

• Departure time of the day parameter, βmor ni ng , is higher for business demand compared

to the economy demand, which means that business passengers have a higher tendency

to chose morning itineraries.

• Scale parameter for the SP model is significant and has a value of 4.32 which indeed

confirms that the variability of the SP data is higher than the RP data.

• In the SP model there is an additional price parameter, βB−OP
price , for the individuals who

do not pay their ticket. This parameter has a positive sign which says that people have

higher utility when their tickets are paid by their companies as expected.

• All the parameters are significant with a 90% confidence level except the time-of-day

parameter for economy class.

In order to see the added value of the combination of the two datasets, in Table 3.4 we present

the estimated values of the same parameters when using only the RP data. It is seen that the

parameters are not significant which prevents us from drawing conclusions. Even the sign

of the parameters are inconsistent with reality. Therefore, the model based on the RP data

cannot be used for forecasting future market shares of the itineraries.
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Table 3.2: The attributes of the alternative itineraries for the RP data

Actual
alt. stops class price (e) time(min) morning demand

O
D

1

1 one-stop E 563.8 260 1 3
2 one-stop E 312.5 260 1 6
3 one-stop E 262.5 360 0 27
4 non-stop E 175 70 0 49
5 non-stop E 175 70 0 56
6 non-stop E 175 70 1 38
7 non-stop B 409.5 70 1 9
8 non-stop E 175 70 1 29
9 non-stop B 409.5 70 0 16
10 non-stop E 175 70 0 26
11 non-stop B 409.5 70 0 2
12 non-stop E 175 70 0 28

O
D

2

1 one-stop E 250 175 1 17
2 non-stop E 150 60 1 29
3 non-stop E 150 60 0 2
4 non-stop E 150 60 0 19
5 one-stop B 953 235 1 1
6 one-stop E 601.2 235 1 2
7 one-stop B 701.8 235 1 2
8 one-stop E 350 235 1 3

O
D

3

1 one-stop B 655.5 265 1 4
2 one-stop E 387.5 265 1 6
3 non-stop E 237.5 95 1 59
4 non-stop E 237.5 95 0 125
5 one-stop E 609.8 230 0 3
6 one-stop E 325 230 0 6
7 non-stop E 237.5 95 0 73
8 non-stop E 237.5 95 0 84
9 non-stop E 237.5 95 0 73
10 non-stop E 237.5 95 0 107
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3.5. Estimation results

Table 3.3: Estimated parameters for the model with joint RP and SP data

Parameters Estimated value t-test

RP & SP

βE ,N S
price -2.23 -3.48

βB ,N S
price -1.97 -3.64

βE ,S
price -2.17 -3.48

βB ,S
price -1.97 -3.68

βE ,N S
time -0.102 -2.85

βB ,N S
time -0.104 -2.43

βE ,S
time -0.0762 -2.70

βB ,S
time -0.0821 -2.31

βE
morning 0.0283 1.21*

βB
morning 0.0790 1.86

SP
scaleSP 4.32 3.50
βB−OP

price 0.813 2.91

(* Statistical significance < 90%)

In Appendix A.1 in Table A.1 we present the results estimated with the SP data. In order to

have a comparison, in Table A.2 we provide the scaled values for the joint estimation results. It

is seen that the results of the joint dataset is close to that of the SP data. Therefore, when we

have only 3 OD pairs for the RP data, the results are mainly guided by the SP data. Especially

when we look at the price parameters, SP data is dominant since RP data does not have

enough variability. For the time parameters the RP data has an effect on the results. However

when more RP observations are included as presented in Appendix A.1.1 the results change

significantly.

Since this is a complicated model with the combination of two datasets, it is better to analyze

the demand indicators such as willingness to pay and elasticities rather than the parameter

estimates themselves.

3.5.1 Value of time

Value of time (VOT) is the willingness of passengers to pay for one hour of travel. For each

alternative i VOT is given by equation 3.5. Since the price is included as a log formulation in

the utilities VOT formula includes the price.

V OTi = ∂Vi /∂t i mei

∂Vi /∂pr i cei

= βt i me ·pr i cei

βpr i ce
(3.5)

In Table 3.5 the VOT values for all the alternatives of the RP data are listed. VOT is higher for

business itineraries compared to economy itineraries. For example, the itineraries 7 and 8
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Table 3.4: Estimated parameters based on the RP data

Parameters Estimated value t-test

βE ,N S
price 0.0851 0.08*

βB ,N S
price -0.451 -0.60*

βE ,S
price -1.47 -0.88*

βB ,S
price -3.19 -1.63*

βE ,N S
time -0.0204 -0.31*

βB ,N S
time -0.108 -1.04*

βE ,S
time -0.0705 -0.12*

βB ,S
time 0.969 1.13*

βE
morning 0.282 0.34*

βB
morning -0.700 -0.85*

(* Statistical significance < 90%)

of the first OD pair. This is also observed for the itineraries 9-10 and 11-12 for the first OD

pair; itineraries 5-6 and 7-8 for the second OD pair; and itineraries 1-2 for the third. When

we compare the VOT for non-stop and one-stop itineraries it seems as if the passengers are

ready to pay more for the one-stop itineraries compared to non-stop itineraries. However this

happens due to the fact that one-stop itineraries are more expensive.

Therefore in order to see the effect of the number of stops in VOT we consider two itineraries

with the same price. As an example, let’s take a non-stop and a one-stop itinerary which have

the same price, 600e. When we calculate the VOT, we observe that passengers are ready to

pay 28e for an hour reduction in the travel time of the non-stop alternative. For the one-stop

itinerary this value is 21e which is lower as expected.

3.5.2 Price and time elasticities of demand

Elasticities of demand give the sensitivity of passengers to the corresponding case. In this

study we are interested in the price and time elasticities. They are given by the following

equations:

E Pi

pr i cei
= ∂Pi

∂pr i cei
· pr i cei

Pi

E Pi

t i mei
= ∂Pi

∂t i mei
· t i mei

Pi

Belobaba et al. (2009) provide a range of airline O-D market price elasticities from -0.8 to -2.0.

For business demand the average is given as -0.8 which means that if there is a 1% increase

in cost, business demand will decrease by 0.8%. For economy demand this value is provided

as -1.6. For time elasticity they mention that business demand has a time elasticity <−1.0

and for economy demand it is >−1.0 meaning that business demand is more elastic to time
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compared to economy demand.

The price and time elasticities are presented in Table 3.5 for the alternatives of the RP data.

Price elasticity is higher for economy alternatives compared to business itineraries. For

example, for the first OD pair, for the alternatives 7-8, 9-10, and 11-12 economy demand is

more elastic to price compared to the business demand. This phenomenon is also observed

for the itineraries 5-6 and 7-8 of the second OD pair and for the itineraries 1-2 of the third OD

pair. Furthermore, the elasticity is higher for the one-stop itineraries compared to non-stop

itineraries. This means that, in case of an increase in price, passengers have a higher tendency

to reject flying with a one-stop itinerary compared to a non-stop alternative. This is in line

with the studies in literature Garrow (2010).

Time elasticities are low compared to the literature for the RP data since it includes European

itineraries and the time attribute does not differ between different itineraries. However when

we look at the relative elasticities for business and economy alternatives, it is seen that business

demand is more elastic to time which is consistent with the empirical studies mentioned

in Belobaba et al. (2009). Similarly, the time elasticity is higher for one-stop alternatives

compared to non-stop ones which says that passengers are more sensitive to changes in the

time for one-stop alternatives as expected.

3.5.3 Illustration for the application of the model

The developed demand model will be integrated in a schedule planning framework for airlines.

Therefore in this section we illustrate how the model will be applied.

The alternative specific constants ASCi for each itinerary i are not used for applying the

model. The critical parameters for the application of the model are the price, the time and

the time-of-day parameters which are kept the same for RP and SP models. The no-revenue

itineraries, which are described in section 3.2 are introduced based on average market prices

for competitor airlines.

For illustration purposes, we choose an arbitrary OD pair A-B. There are two alternatives of

economy itineraries which are both nonstop itineraries. We include the no-revenue itinerary

A-B
′
. The values of attributes can be seen in Table 3.6. According to the attributes the resulting

choice probability, which is referred as the market share, is presented in the last column. The

itinerary 2 has the lowest price and is a morning itinerary. Therefore it attracts the biggest

number of passengers.

3.6 Conclusions and future research directions

In the context of airline network and schedule planning, demand forecasting models lead to an

increasing interest in order to better understand the underlying travel behavior of passengers.

In this chapter, an itinerary choice model is developed based on a real dataset which is aimed
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Table 3.5: Demand indicators for the alternatives for the 3 OD pairs

alt. stops class VOT(eh ) price elas. time elas.

O
D

1
1 one-stop E 19.79 -2.15 -0.33
2 one-stop E 10.97 -2.12 -0.32
3 one-stop E 9.22 -1.97 -0.41
4 non-stop E 8.01 -1.85 -0.10
5 non-stop E 8.01 -1.80 -0.10
6 non-stop E 8.01 -1.94 -0.10
7 non-stop B 21.68 -1.90 -0.12
8 non-stop E 8.01 -2.01 -0.11
9 non-stop B 21.68 -1.86 -0.11
10 non-stop E 8.01 -2.03 -0.11
11 non-stop B 21.68 -1.95 -0.12
12 non-stop E 8.01 -2.01 -0.11

O
D

2

1 one-stop E 8.78 -1.69 -0.17
2 non-stop E 6.86 -1.37 -0.06
3 non-stop E 6.86 -2.17 -0.10
4 non-stop E 6.86 -1.67 -0.08
5 one-stop B 39.81 -1.93 -0.32
6 one-stop E 21.11 -2.11 -0.29
7 one-stop B 29.31 -1.91 -0.31
8 one-stop E 12.29 -2.08 -0.29

O
D

3

1 one-stop B 27.38 -1.95 -0.36
2 one-stop E 13.60 -2.14 -0.33
3 non-stop E 10.87 -1.99 -0.14
4 non-stop E 10.87 -1.71 -0.12
5 one-stop E 21.41 -2.16 -0.29
6 one-stop E 11.41 -2.15 -0.29
7 non-stop E 10.87 -1.93 -0.14
8 non-stop E 10.87 -1.88 -0.14
9 non-stop E 10.87 -1.93 -0.14
10 non-stop E 10.87 -1.79 -0.13

Table 3.6: Attributes of the itineraries and the resulting market shares

OD price time of day market share
A-B1 225 0 0.26
A-B2 203 1 0.44

A-B
′

220 0 0.30
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to be integrated in a schedule planning model in order to explicitly model supply-demand

interactions.

A combined RP/SP dataset is utilized for the estimation of the parameters in order to take

the advantage of the elasticity of the SP data. The combination is carried out by constraining

a subset of the parameters of the two models to be the same and by introducing a scale

parameter for the SP model. As a result, a price elastic demand model is obtained with the

help of the combination of the two datasets.

As a future work, the prediction power of the model needs to be analyzed by applying the

model on a validation data. The RP data used in this chapter is not very rich in terms of the

available explanatory variables. In the existence of a richer dataset the model can be improved.
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Part II focuses on the integrated schedule planning models with explicit representation of

demand models. Chapter 4 introduces an integrated scheduling, fleeting and pricing model.

The pricing decision is integrated through the itinerary choice model presented in Chapter 3.

Chapter 5 presents a local search heuristic for the integrated model. Different size of problem

instances are generated and solved with three approaches. Chapter 6 presents a further analysis

of the integrated model. Firstly, a reformulation of the model is presented and results are

provided for comparison purposes. Then a sensitivity analysis is performed in order to address

the robustness of scheduling decisions to demand model parameters.
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4 An integrated airline scheduling, fleet-
ing and pricing model

In airline schedule planning models, the demand and price information are usually taken as

inputs to the model. Therefore schedule and capacity decisions are taken separately from

pricing decisions. In this chapter we present an integrated scheduling, fleeting and pricing

model for a single airline where these decisions are taken simultaneously. This integration

enables to explicitly model supply and demand interactions and take superior decisions. The

model refers to a monopolized market. However, competing airlines are included in the model

as a reference for the pricing decisions. The pricing decision is formulated through an itinerary

choice model which determines the demand of the alternative itineraries in the same market

according to their price, travel time, number of stops, and the departure time of the day. The

demand model is estimated based on real data as explained in Chapter 3. The seat allocation

for these classes are optimized according to the demand model. The choice model is also used

to appropriately model the spill and recapture effects. The resulting model is evaluated with

different illustrations and the added value of the integrated approach is analyzed compared to

a sequential approach. Results over a set of representative instances show that the integrated

model is able to take superior decisions by jointly adjusting capacity and pricing.

4.1 Introduction and related literature

The increase in the mobility needs of individuals is an indispensable fact for the last decades.

According to the statistics provided by the Association of European Airlines (AEA), air travel

traffic has grown at an average rate of 5% per year over the last three decades. Similarly, Bureau

of Transportation Statistics reports that the number of departures performed increased by

30% in the last decade. This increase in air travel demand justifies the need for improving the

demand responsiveness of air transportation capacity. The underlying demand process should

be understood and included in airline scheduling models for more profitable scheduling

decisions. The air transportation capacity is determined by the fleet assignment process

and is a good canditate to analyze the impacts of the integration of the demand models. In

this chapter, we study the integrated fleet assignment and schedule design models where

we further integrate pricing decisions to better represent the supply-demand interactions
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compared to state of the art studies. Before we provide the model we give reference to the

relevant studies literature.

As a reference for the basic fleet assignment model (FAM) we refer to the models proposed by

Abara (1989) and Hane et al. (1995). There are various extensions of the FAM as reviewed by

Sherali et al. (2006). One of the extensions is the integration of schedule design decision in

fleet assignment models. These integrated models are studied with the purpose of increasing

the revenue by making simultaneous decisions on the schedule and the fleet assignment.

Schedule design is handled in different ways according to the flexibility allowed for the changes

in the schedule. Desaulniers et al. (1997) and Rexing et al. (2000) study the option of shifting

departure and arrival times within a given time-windows. Lohatepanont and Barnhart (2004)

work with sets of mandatory and optional flights where optional flights can be canceled when

not sufficiently profitable.

The integration of schedule design and fleet assignment models necessitate the inclusion

of supply-demand interactions in order to represent the interactions between the proposed

schedule and the demand. Supply-demand interactions are considered in fleeting models

from different perspectives. Yan and Tseng (2002) study an integrated schedule design and

fleet assignment model in which the set of flight legs is built considering the itineraries under

a given expected demand for every origin-destination pair. In the context of itinerary-based

fleet assignment, spill and recapture effects can be integrated in the model. These effects

represent the potential number of passengers that could be redirected to alternative itineraries

in the market when there is a capacity restriction on their desired itinerary. This information

can be considered by the airlines in the planning phase in order to more effectively decide on

the capacity. Barnhart et al. (2002) consider the spill and recapture effects separately for each

fare class resulting from insufficient capacity. Similarly, Lohatepanont and Barnhart (2004)

study the network effects including the demand adjustment in case of flight cancellations

and spill effects. More recently, Dumas et al. (2009) model the passenger flow which gives

the distribution of demand for each itinerary. This passenger flow model is also used as an

estimation for the recapture ratios between itineraries. Cadarsoa and Marín (2011) include

passenger considerations through a schedule development based on passenger satisfaction.

Their integrated schedule design and fleet assignment model takes into account the disrupted

and misconnected passengers.

In the literature, supply-demand interactions are modeled in different ways. Interactions are

either directly integrated into the decision model or external demand simulators are used to

provide better inputs to the planning process. When there is a direct representation of supply-

demand interactions in the planning problems it is assumed that the airlines have a control on

the revenue side. On the other hand, researchers who believe that airlines can not have such

a control prefer to keep the revenue related decisions external to the model. This enables to

keep the stochastic nature of the demand and use advance demand modeling techniques. As

an example for external supply-demand interactions, Jacobs et al. (2008) present a leg-based

FAM where network effects are estimated with a passenger mix model. The passenger mix
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model is a nonlinear network flow model which estimates the total revenue given the capacity.

Simplified network effects are included directly in FAM in order to keep a linear formulation.

Dumas et al. (2009) present a framework where a passenger flow model and a leg-based FAM

are iteratively solved. Their aim is to keep the stochastic nature of the demand and reflect the

time dimension in the booking process. They assume that demand distributions of itineraries

and recapture ratios are known.

Direct integration of supply-demand interactions lead to itinerary-based fleet assignment

(IFAM) since the information on the demand is at the itinerary level (Barnhart et al., 2002).

As already mentioned, Lohatepanont and Barnhart (2004) present an integrated schedule

design and fleet assignment model with network effects. The considered effects are demand

correction for the market demand in case of flight cancellations and recapture effects. Re-

capture ratios are estimated based on the Quality Service Index (QSI) and introduced as fixed

inputs to the model. Sherali et al. (2010) also present an integrated schedule design and fleet

assignment model where they work with itinerary-based demands for multiple fare classes.

They optimize the allocation of seats for each fare class. However they do not include network

effects in the model. Recently, Wang et al. (2012) use utility models similar to discrete choice

modeling in order to represent the spill and recapture effects. They present the idea with a

basic passenger mix model. Extensions to the model are proposed with fleet assignment and

schedule design decisions as well as market and departure time selections.

Advanced supply and demand interactions can be modeled by letting the model to optimize

itinerary’s attributes (e.g., the price, departure time). There are studies in the context of

schedule planning of airlines where utility of passengers are considered when deciding on the

frequency (Brueckner and Zhang, 2001;Brueckner and Flores-Fillol, 2006). Similarly, Vaze and

Barnhart (2010) work on a game theoretical framework where they include an S-curve demand

model to represent the impact of frequency on the demand. When we move the focus back to

fleet assignment literature, Talluri and van Ryzin (2004b) integrate discrete choice modeling

into the single-leg, multiple-fare-class revenue management model that determines the subset

of fare products to offer at each point in time. They provide the characterization of optimal

policies under a general choice model of demand. To overcome the missing no-purchase

information in airline booking data, they use expectation-maximization (EM) method. Schön

(2006) develops a market-oriented integrated schedule design and fleet assignment model

with integrated pricing decisions. It is assumed that customers can be segmented according

to some characteristics and different fares can be charged for these segments. Schön (2008)

gives several specifications for the inverse price-demand function described in Schön (2006)

including logit and nested logit models where the explanatory variable is the price of the

itinerary. Budhiraja et al. (2006) also work on a similar topic where the change in unconstrained

itinerary demand is incorporated into the model as a function of supply.

In this chapter, we introduce an integrated scheduling, fleeting and pricing model in a monop-

olized market. We refer to this model as IFAM-PR. Integration of pricing decisions in schedule

planning enables to capture supply-demand interactions and improve the profitability of the
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schedule plan. The pricing decisions are captured by the demand model introduced in chapter

3. This itinerary choice model provides profitable average prices for each cabin class. The

developed itinerary choice model is adapted to model the spill and recapture effects. Since

the demand model is explicitly included in the model, these effects are also elastic to the

changes in the attributes of the itineraries. With all the listed considerations, the resulting

model optimizes the schedule design, fleet assignment, average price, and seat allocation

for each cabin class. The added value of the integrated model is analyzed through various

illustrations and experiments. To the best of our knowledge the integrated model is not studied

in literature. The schedule planning model is close to the work of Lohatepanont and Barnhart

(2004). However they include the given demand as an input to the model so that the demand

is inelastic to the attributes of the itineraries. Similarly, they use preprocessed recapture ratios

to represent supply-demand interactions. A variant of the integration of pricing decision in

schedule planning is presented by Schön (2008). However it is carried out with a demand

model where the utility is defined by only the price of the itinerary. Spill and recapture effects

are ignored. Moreover the demand model and the solution of the integrated model is based

on synthetic data. In order to have a concave formulation Schön (2008) utilizes the inverse

demand function rather than the logit formula itself. However this restricts the model for the

inclusion of more policy variables and socio-economic characteristics. The presented model

integrates the logit formula explicitly which brings flexibility for such extensions and allows

for disaggregate models accounting for heterogeneity of behavior in the market.

The remainder of the chapter is organized as follows. In section 4.2 we briefly talk about the

demand model and explain how it is integrated with schedule planning decisions. In section

4.3 we present our integrated model, IFAM-PR. Section 4.4 provides reference models based on

the state-of-the-art models in order to be compared with the integrated model. In section 4.5

we illustrate the added value of the integrated model in comparison to the reference models

and provide computational experiments. Finally we conclude the chapter in section 4.6.

4.2 Demand model

The logit demand model gives the market share (ui ) for each itinerary i in segment s and when

multiplied with the total forecasted demand of the segment, Ds , it provides the estimated

demand of each itinerary as represented by equation 4.1.

ui = exp(Vi (pi , zi ;β))∑
j∈Is

exp(Vj (p j , z j ;β))

d̃i = Dsui ∀h ∈ H , s ∈ Sh , i ∈ Is (4.1)

The explanatory variables of the logit model include price, pi , as a policy variable which

can be controlled by the integrated model. The other explanatory variables given in chapter

3 are context variables which we denote by the vector zi . These context variables provide
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Table 4.1: Resulting recapture ratios

A-B1 A-B2 A-B
′

A-B1 0 0.552 0.448
A-B2 0.487 0 0.513

information for the demand and improves the estimation of the market shares but can not

be modified by the integrated model. In order to explicitly represent these variables we refer

to the utilities Vi as Vi (pi , zi ;β), where β are parameters estimated from real data. For the

specification of the utility function we refer to Table 3.1 in chapter 3 where further details on

the demand model are presented.

The itinerary choice model is also used to model the interactions between the itineraries

in case of capacity shortage. Passengers, who can not be accommodated on their desired

itineraries, may be redirected to other available itineraries in the same market segment in

case of such shortages. This effect is referred as spill and recapture effect and assumed to be

controlled by the airline with associated decision variables. The response from the market

is obtained through the recapture ratios from the choice model. It is important to note that,

the spill effects are not considered in the day of operations but rather in the planning phase.

Airlines can take advantage of this knowledge when planning for the schedule and the design

of fleet capacity. They can keep their capacity at profitable levels by taking into account the

possibility of redirecting passengers to the alternative itineraries. For example, for a flight with

a forecasted demand of 100 passengers, the airline may investigate the option of assigning an

aircraft with 70 seats. If there are similar alternatives in the same market by the same airline,

the airline may assume that a portion of 30 spilled passengers will still fly on those itineraries.

Therefore, the spill and recapture information is not communicated to the passengers but

only investigated at the planning phase. The passengers will be aware of the capacity limits at

the booking phase as usual.

We assume that the spilled passengers are recaptured by the other itineraries with a recapture

ratio based on the logit formulation. Therefore the recapture ratio is represented by equation

(4.2).

bi , j =
exp(Vj (p j , z j ;β))∑

k∈Is \{i }
exp(Vk (pk , zk ;β))

∀h ∈ H , s ∈ Sh , i ∈ (Is \ I
′
s), j ∈ Is . (4.2)

The recapture ratios bi , j represent the proportion of recaptured passengers by itinerary j

among ti , j number of redirected passengers from itinerary i . The recapture ratio is calculated

for the itineraries that are in the same market segment where the desired itinerary i is excluded

from the choice set. Therefore lost passengers may be recaptured by the remaining alternatives

of the company or by the no-revenue options. Since the airline can not control the no-revenue

itineraries, we assume that no spill exist from them.
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In order to illustrate the spill and recapture effects we use the same example given in section

3.5.3. In Table 3.6 the resulting market shares are listed and here the resulting recapture

ratios are presented in Table 4.1. For example, in case of capacity shortage for itinerary 1, the

airline may decide to redirect the passengers to itinerary 2. However 55% of these redirected

passengers will accept to fly on itinerary 2. Similarly, the recapture ratio for the competing

itinerary is 45%. Since the price of itinerary 2 is lower than the price of competitor, the

recapture ratio for itinerary 2 is higher.

4.3 Integrated scheduling, fleeting and pricing model: IFAM-PR

In this section, we introduce an integrated scheduling, fleeting and pricing model for a single

airline. We explicitly model the demand and integrate it in the schedule planning which

enables to make use of the interaction between supply and demand.

Let F be the set of flight legs, there are two subsets of flights: mandatory flights (F M ), which

should be flown, and optional flights (F O) which can be canceled. The included schedule

design context is solely related to the optional flights, apart from that the schedule is known

and assumed to be used without any change. A represents the set of airports and K is for

the fleet where each type of aircraft in the fleet is indexed by k. The schedule is represented

by time-space network such that N (k, a, t) is the set of nodes in the time-line network for

aircraft type k, airport a and time t ∈ T . In(k, a, t ) and Out(k, a, t ) are the sets of inbound and

outbound flight legs for node (k, a, t ).

Objective (4.3) is to maximize the profit calculated as revenue minus operating costs. The

revenue is the sum of the revenues for business and economy passengers taking into account

the lost revenue due to spill, where ti , j is the number of passengers the airline wants to redirect

from itinerary i to j . The price of the itinerary i is represented by pi . Operating cost for flight

f when using aircraft type k is represented by Ck, f which is associated with a binary variable

of xk, f that is one if an aircraft of type k is assigned to flight f .

Firstly, we have the fleet assignment constraints. Constraints (4.4) ensure the coverage of

mandatory flights which must be served according to the schedule development. Constraints

(4.5) are for the optional flights that have the possibility to be canceled. Constraints (4.6) are

for the flow conservation of fleet, where yk,a,t− and yk,a,t+ are the variables representing the

number of type k aircraft at airport a just before and just after time t . Constraints (4.7) ensure

that for each fleet type k, the number of used aircraft does not exceed the number of available

aircarft represented by Rk . minE−
a represents the time just before the first event at airport a

and CT is the set of flights flying at count time. It is assumed that the network configuration at

the beginning and at the end of the day is the same in terms of the number of aircraft at each

airport. This is ensured by the constraints (4.8) where maxE+
a represents the time just after the

last event at airport a.

The relation between the supply capacity and the actual demand should be maintained.
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Therefore we have the constraints (4.9) which maintain that the assigned capacity for a flight

should satisfy the demand for the corresponding itineraries. The assigned capacity for flight

f by an aircraft type k for class h passengers is represented by πh
k, f . The actual demand

is composed of the original demand of the itinerary minus the spilled passengers plus the

recaptured passengers from other itineraries. The same constraints ensure that the itineraries

do not realize any demand if any of the corresponding flight leg is canceled. δi , f is a binary

parameter which is one if itinerary i uses flight f and enables us to have itinerary-based

demand. We let the allocation of business and economy seats to be decided by the model

as a revenue management decision. We assume that the capacity for business and economy

classes can be arranged freely, i.e. there is no physical requirement for the business class seats.

We work with an interval of 10%-30% for the percentage of business class seats. We need

to make sure that the total allocated seats do not exceed the capacity of the aircraft. This is

ensured by the constraints (4.10) where Qk is the capacity of aircraft type k.

Demand related constraints include constraints (4.11) which maintain that the total redirected

passengers from itinerary i to all other itineraries including the no-revenue options do not

exceed its realized demand. We have already explained the constraints (4.12) and (4.13) in

section 4.2.

Finally, we have the non-negativity constraints and upper bounds (4.14)-(4.20) for the decision

variables. A demand variable di is defined in order to allow the airline to decide whether to

lose the passengers or redirect them. This demand value cannot be greater than the demand

value provided by the logit model, d̃i . The price of each itinerary has an upper bound UBi ,

which is assumed to be the average market price plus the standard deviation. Note that, the

price is not a decision variable for the no-revenue options.

For airlines, it is a dream to have flight demands very close to the aircraft capacity. The load

factors of 80-85% are already high for airlines. Therefore, some fleet assignment models take

into account a maximum allowable load factor as presented by Dumas and Soumis (2008) and

Cadarso et al. (2013). Mainly the demand capacity balance constraints (4.10) are modified by

multiplying the actual capacity of the aircraft Qk by the selected maximum load factor. In this

thesis, it is not taken into account and left as a future work.
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z∗
I F AM−PR =

max
∑

h∈H

∑
s∈Sh

∑
i∈(Is \I

′
s )

(di −
∑
j∈Is

ti , j +
∑

j∈(Is \I
′
s )

t j ,i b j ,i )pi

− ∑
k∈K
f ∈F

Ck, f xk, f (4.3)

s.t.
∑

k∈K
xk, f = 1 ∀ f ∈ F M (4.4)∑

k∈K
xk, f ≤ 1 ∀ f ∈ F O (4.5)

yk,a,t− +
∑

f ∈In(k,a,t )
xk, f = yk,a,t+ +

∑
f ∈Out(k,a,t )

xk, f ∀[k, a, t ] ∈ N (4.6)

∑
a∈A

yk,a,minE−
a
+ ∑

f ∈C T
xk, f ≤ Rk ∀k ∈ K (4.7)

yk,a,minE−
a
= yk,a,maxE+

a
∀k ∈ K , a ∈ A (4.8)∑

s∈Sh

∑
i∈(Is \I

′
s )

δi , f (di −
∑
j∈Is

ti , j +
∑

j∈(Is \I
′
s )

t j ,i b j ,i )

≤ ∑
k∈K

πh
k, f ∀h ∈ H , f ∈ F (4.9)∑

h∈H
πh

k, f ≤Qk xk, f ∀ f ∈ F,k ∈ K (4.10)∑
j∈Is

ti , j ≤ di ∀h ∈ H , s ∈ Sh , i ∈ (Is \ I
′
s ) (4.11)

d̃i = Ds
exp(Vi (pi , zi ;β))∑

j∈Is

exp(Vj (p j , z j ;β))
∀h ∈ H , s ∈ Sh , i ∈ Is (4.12)

bi , j =
exp(Vj (p j , z j ;β))∑

k∈Is \{i }
exp(Vk (pk , zk ;β))

∀h ∈ H , s ∈ Sh , i ∈ (Is \ I
′
s ), j ∈ Is (4.13)

xk, f ∈ {0,1} ∀k ∈ K , f ∈ F (4.14)

yk,a,t ≥ 0 ∀[k, a, t ] ∈ N (4.15)

πh
k, f ≥ 0 ∀h ∈ H ,k ∈ K , f ∈ F (4.16)

0 ≤ di ≤ d̃i ∀h ∈ H , s ∈ Sh , i ∈ Is (4.17)

LBi ≤ pi ≤ UBi ∀h ∈ H , s ∈ Sh , i ∈ (Is \ I
′
s ) (4.18)

ti , j ≥ 0 ∀h ∈ H , s ∈ Sh , i ∈ (Is \ I
′
s ), j ∈ Is (4.19)

bi , j ≥ 0 ∀h ∈ H , s ∈ Sh , i ∈ (Is \ I
′
s ), j ∈ Is (4.20)

4.4 Reference models

In order to quantify the impact of the presented IFAM-PR, we consider the state-of-the-art

models as reference models which are already cited in section 4.1. Firstly, we consider the

model of Lohatepanont and Barnhart (2004). This model considers the demand and price

as inputs to the schedule planning model. We compare our integrated model to a similar
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model in order to show the added-value of integrating explicit supply-demand interactions.

Lohatepanont and Barnhart (2004) use QSI index to model the recapture ratios. Since we do

not have access to the parameters of these ratios, we formulate spill and recapture with our

itinerary choice model. Moreover we do not consider the demand correction terms that they

have introduced. We do not have the decision variable on the cancellation of the itineraries.

We decrease the demand for an itinerary to zero by spill and recapture in case of an associated

flight cancellation. We refer to this model as IFAM (see the model in Appendix A.2.1).

Secondly, we consider the model of Schön (2008) which is an integrated schedule planning

and pricing model. This model does not include spill variables since the demand model could

be integrated without any limits on the price (we refer to the discussion in section 7.5.2). This

is achieved with an inverse demand function which enables to have a mixed integer convex

programming problem. In our case we need spill variables and in order to analyze the added

value of spill and recapture, we compare our integrated model with a similar model, named

IFAM-PR w/o spill. Schön (2008) uses a synthetic data and we do not have access to this data.

Therefore, for this reference model we use our estimated parameters. Since our demand model

is specific to the cabin class we keep the revenue management decision on the allocation of

seats to the classes. Schön (2008) does not include this decision since she does not consider

different cabin classes.

The presented integrated model includes explicit interactions between supply capacity and the

demand. On the other hand, many revenue management models assume that the capacity is

fixed and provided by the schedule planning process (Talluri and van Ryzin, 2004a). Therefore

we consider this current practice of airlines through a sequential approach and compare it

with the integrated model. In the sequential approach, firstly, the schedule planning model

is optimized to obtain an optimal fleet assignment. Then as a sequential step, the revenue

maximization is performed with this optimal fleet assignment. In other words, the fleet

assignment is decided with an assumption of inelastic demand and then we expose the model

to elastic demand. The integrated model is compared with the sequential approach in order

to evaluate the advantage of simultaneously optimizing the schedule planning and revenue

related decisions. A similar sequential approach is utilized by Lohatepanont (2002) for the

comparison of leg-based fleet assignment and itinerary-based fleet assignment.
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Table 4.2: The data instance used for the illustrations

Number of airports: 3
Number of flights: 26

Flight density: 4.33 flights per OD pair
Average demand: 56.12 passengers per flight

Number of itineraries: 36
Cabin classes: Economy and business

Level of service: All itineraries are nonstop
Available fleet: 3 types of aircraft (100, 50 and 37 seats)

4.5 Results

In this section we provide illustrations and results to quantify the impact of the integrated

model. The data instances are based on the same RP data source introduced in section 3.3.

We focus on a daily cyclic schedule.

The presented integrated model is a mixed integer nonlinear problem. The nonlinearity is

due to the explicit integration of the demand model. The model is implemented in AMPL1

and BONMIN2 solver (Bonami et al., 2008) is used for the solution of the problem. BONMIN

solver applies several algorithms depending on the nature of the problem including branch-

and-bound, branch-and-cut and outer-approximation. It serves as a heuristic approach since

we cannot guarantee the convexity of the problem.

4.5.1 Illustrative example for the impacts of the integrated demand model

In order to analyze the added value of the integrated scheduling, fleeting and pricing model,

we compare IFAM-PR with IFAM that is defined in section 4.4. The two models are solved with

the data instance provided in Table 4.2. In Table 4.3, we provide the results for IFAM and two

sets of results for IFAM-PR. IFAM-PR has the flexibility to change the prices of the itineraries

which might be higher than the average values used by IFAM. Therefore we first present the

results of IFAM-PR where we constrain the itinerary prices not to be higher than the average

prices used by IFAM (IFAM-PR with limited prices). The motivation for constraining the prices

is to show that the strength of the integrated model is not only due to the ability to increase the

prices, but also the simultaneous decisions which lead to superior schedule planning. Finally

we present the results for IFAM-PR where the prices can be increased above the average prices.

We arbitrarily select 2 of the 3 airports and present the realized price and demand values for

the bi-directional flights (A-B and B-A) between these airports.

1������������	�
���	
2https://projects.coin-or.org/Bonmin
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Chapter 4. An integrated airline scheduling, fleeting and pricing model

The results in Table 4.3 indicate that the integrated model has the flexibility to change the

fleet assignment decisions simultaneously with the pricing decisions in order to have more

profitable planning. For the case of limited prices, the integrated model decreases the prices

of itineraries 8 and 9 and assigns larger capacity to them. It is observed that these itineraries

are morning itineraries and therefore more attractive itineraries according to the logit model.

The model decides to increase the capacity of these itineraries since it can be maintained

without significant decrease in price. It is also observed that the decrease in the prices of

itineraries 8 and 9 affects the demand of the itineraries 5 and 6 respectively and they are

assigned smaller capacity. With similar decisions for the other OD pairs, that are not presented

here, the resulting profit and the number of transported passengers are higher compared to

IFAM. When the integrated model is allowed to increase the prices beyond the average prices

(last column), the resulting profit and the served demand increases more significantly. The

decisions on the prices of the itineraries show that the integrated model increases the prices

whenever it sees a potential and decreases the prices when assigning a larger capacity is more

profitable. We also observe that the decisions taken by the integrated model render additional

optional itineraries profitable and therefore 24 flights are operated instead of 22.

In this example the available fleet is sufficient to serve the mandatory flights and extra aircraft

to serve the optional flights when needed. The integrated model uses these extra aircraft and

carries more passengers with an increased capacity. However, in real applications it is more

typical to work with tight capacity. Therefore further analysis should be carried out in order to

understand the impact of capacity limitations on the results. In section 4.5.4 we evaluate a few

examples with tight fleeting capacity.

4.5.2 Illustrative example for the reaction of the integrated model to the market
conditions

One of the most important factors for airlines in their revenue management is the alterna-

tive itineraries provided by competitive airlines. As explained in section 4.2, we introduce

no-revenue options in our model to represent the attributes of the competitors’ itineraries.

Therefore the integrated model takes into account those competitive itineraries offered by

other airlines, while optimizing the revenue decisions. In order to illustrate this phenomenon

we compare IFAM with IFAM-PR in three different market conditions based on the data in-

stance provided in Table 4.2. Compared to the actual itineraries, the competitors have lower,

similar and higher prices respectively in the presented scenarios.

The results are provided in Table 4.4. For the scenario with similar prices, the scheduling

decisions of IFAM and IFAM-PR are the same and therefore the realized demand is similar.

In the scenario where the competitors are more expensive, IFAM keeps the same scheduling

decisions which result with an improvement in the profit and realized demand since the

competitors are less attractive. For the same scenario, IFAM-PR allocates higher capacity

and operates one more flight which results with a significant increase in realized demand.
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Table 4.4: The results with changing market conditions

Competitors with higher prices
IFAM IFAM-PR

Revenue 206,001 247,269
Operating costs 150,604 173,349

Profit 55,397 73,920 (+ 33%)
Number of flights 22 24

Transported passengers 951 1,076 (+ 13%)
Economy-Business passengers 888 E - 63 B 1007 E - 69 B

Allocated seats 274 324
Competitors with similar prices

IFAM IFAM-PR
Revenue 202,645 218,456

Operating costs 150,604 149,656
Profit 52,401 68,800 (+ 31%)

Number of flights 22 22
Transported passengers 935 935

Economy-Business passengers 876 E - 59 B 878 E - 57 B
Allocated seats 274 274
Competitors with lower prices

IFAM IFAM-PR
Revenue 190,590 215,429

Operating costs 140,822 149,656
Profit 49,768 65,773 (+ 32%)

Number of flights 20 22
Transported passengers 871 926 (+ 6%)

Economy-Business passengers 815 E - 56 B 871 E - 55 B
Allocated seats 274 274

The advantage of IFAM-PR emerges from the fact that either it finds room to attract more

passengers or it has a potential to increase the prices. When we analyze the results in the

case of cheaper competitors, it is observed that IFAM operates less flights. Since it can not

compete with the cheap prices it carries less passengers compared to the other scenarios.

However, IFAM-PR can still accommodate a similar level of passengers thanks to the flexibility

of decreasing the prices in order to attract passengers. It can be concluded that IFAM-PR is

able to react to market changes which is an indication for increased robustness.
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4.5.3 Illustrative example for the spill and recapture effects

We compare our integrated approach with IFAM-PR w/o spill described in section 4.4 in order

to analyze the design flexibility of the schedule gained by airlines with the spill and recapture

effects. In order to be able to see the impact of the spill more clearly, in this analysis the upper

bound on the prices is set to the average price.

The results over the data instance provided in Table 4.2 are presented in Table 4.5. We select

the OD pair C-D arbitrarily among 6 OD pairs to present the impact of spill from an itinerary

level. Spill values with “+” sign means that the itinerary recaptures passengers that are spilled

from other itineraries. On the other hand, spill values with “−” sign corresponds to the total

redirected passengers from the itinerary to the remaining alternatives in the same market. It is

observed that the integrated model with spill modifies the prices of the itineraries relatively to

capture the passengers of the other itineraries for the same market. For example itinerary 4

attracts both economy and business passengers from other itineraries and therefore assigns

a larger aircraft compared to IFAM-PR w/o spill. The flexibility of redirecting passengers to

other itineraries enables to keep the prices higher. As an example, IFAM-PR has a higher

price for itinerary 1 compared to IFAM-PR w/o spill, but realizes the same demand due to

recaptured passengers. Furthermore it is observed that itinerary 5 is not operated since some

of its passengers can be recaptured by other itineraries and it is more profitable to cancel

it. With similar decisions for other OD pairs, IFAM-PR has higher profit and carries more

passengers in the presence of spill and recapture. Note that for this particular OD pair it

IFAM-PR results with less transported passengers. However in total, i.e. considering all OD

pairs, the resulting number of transported passengers is 6.1% higher.
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Chapter 4. An integrated airline scheduling, fleeting and pricing model

Table 4.6: The experiments

No
Airports Flights

Flight
density

Average
demand

Fleet composition

1 3 10 1.67 51.9 2 50-37 seats
2 3 11 2.75 83.1 2 117-50 seats
3 3 12 2.00 113.8 6 164-146-128-124-107-100 seats
4 3 26 4.33 56.1 3 100-50-37 seats
5 3 19 3.17 96.7 3 164-117-72 seats
6 3 12 3.00 193.4 3 293-195-164 seats
7 3 33 8.25 71.9 3 117-70-37 seats
8 3 32 5.33 100.5 3 164-117-85 seats
9 2 11 5.50 173.7 3 293-164-127 seats

10 4 39 4.88 64.5 4 117-85-50-37 seats
11 4 23 3.83 86.1 4 117-85-70-50 seats
12 4 19 3.17 101.4 5 128-124-107-100-85 seats
13 4 15 1.88 58.1 5 117-85-70-50-37 seats
14 4 14 2.33 87.6 5 134-117-85-70-50 seats
15 4 13 2.60 100.1 5 164-134-117-100-85 seats

4.5.4 Experiments on the added value of IFAM-PR

In order to see the added value of the integration of the demand model we need to support our

observations with a comprehensive set of experiments. For that purpose we identified 15 data

instances with different characteristics that are listed in Table 4.6. For the experiments, we

present the number of airports and the number of flights in the network. Moreover, the flight

density stands for the average number of flights per OD pair. The average demand gives the

average number of passengers per flight according to demand forecast. The fleet composition

provides information on the number of different aircraft types in the fleet together with the

seat capacity for each type.

For the considered data instances, we compare the sequential approach presented in section

4.4 and the integrated model, IFAM-PR. The comparative results are presented in Table 4.7. It

is observed that for 8 of these 15 instances there is an improvement (of 3% on average) with the

IFAM-PR in terms of the profit. These are the cases where the simultaneous optimization of

the schedule planning and pricing lead to different scheduling decisions such as the operated

number of flights or the number of allocated seats.

We observe that the improvement is higher for the experiments where the demand values of

the itineraries are not close to the aircraft capacities. In those cases, IFAM-PR is able to adjust

the capacity according to the demand and has significant improvement over the sequential

approach. Experiment 2 is a good example for this phenomenon. There are 2 different fleet

types with 50 and 117 seats. The sequential approach does not use the larger aircraft which is

costlier to fly. On the other hand, IFAM-PR uses this large aircraft thanks to its flexibility in

controlling the demand by pricing decisions. As a result, there is a 5.55% increase in profit

and 33.5% more passengers are transported. Similarly, for the experiments 4 and 9, IFAM-PR
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Table 4.7: The results of the experiments

Sequential approach IFAM-PR Improvement
No Profit Pax. Flights Seats Profit Pax. Flights Seats Profit Pax.

1 15,091 284 8 124 15,091 284 8 124 - -
2 35,372 400 8 150 37,335 534 8 217 5.55% 33.50%
3 43,990 882 10 331 46,037 725 8 207 4.65% -17.80%
4 69,901 931 22 274 70,904 1063 24 324 1.43% 14.18%
5 82,311 1145 16 333 82,311 1145 16 333 - -
6 779,819 1448 10 1148 779,819 1448 10 1148 - -
7 135,656 1814 32 498 135,656 1814 32 498 - -
8 107,927 2236 26 691 107,927 2236 26 691 - -
9 854,902 1270 10 1016 858,544 1344 10 1090 0.43% 5.83%

10 109,906 1448 32 391 112,881 1541 34 391 2.71% 6.42%
11 82,440 1135 20 387 85,808 1164 20 387 4.09% 2.56%
12 37,100 1067 12 377 38,205 1049 12 377 2.98% -1.69%
13 27,076 448 10 207 27,076 448 10 207 - -
14 44,339 599 10 267 45,070 699 12 267 1.65% 16.69%
15 26,486 504 6 185 26,486 504 6 185 - -

decides to use more capacity with the knowledge on the demand response. On the other

hand, in experiment 3, the integrated model allocates less capacity since it decides to increase

the price levels in order to be more profitable. In this particular experiment, the available

capacity is tight and the integrated model cannot freely increase the capacity as done for

experiment 2. In addition to the decision on the allocated capacity, IFAM-PR may decide to

operate less/more flights by changing the attractiveness of the corresponding itineraries as

seen in experiments 3, 4, 10, and 14. For example, in experiment 14, IFAM-PR operates 2 more

flights with the same overall capacity compared to the sequential approach. Furthermore in

experiments 11 and 12 the improvement is due to the changes in the fleet assignments with

the same overall capacity utilization and the same number of flights.
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4.6 Conclusions and future research directions

In this chapter an integrated scheduling, fleeting and pricing model, IFAM-PR, is presented for

a single airline, which enables to take the advantage of explicit supply-demand interactions

in decision making. The novelty of the model is due to the modeling of the demand through

an itinerary choice model based on a real data and the integration of this demand model in a

scheduling and fleeting framework for airlines. The demand model is utilized for pricing as

well as the spill and recapture effects which gives flexibility to airlines in determining their

transportation capacity.

The impacts of the integrated model is evaluated on a European air transportation network

with several illustrations. It is observed that the integrated model has more flexibility on the

decisions thanks to the simultaneous optimization. The pricing is determined according to

the market conditions and whenever there is a potential in increasing the profit by altering the

price the integrated model benefits from it. Therefore the integrated model is elastic to the

market conditions.

The added value of the integrated model is analyzed in comparison to a sequential approach

which mimics the current practice of airlines. It is shown that the integrated model may decide

on different scheduling and/or fleeting compared to the sequential approach by making use

of the supply-demand interactions. These differences may be in terms of the number of flights

operated or the assigned capacity which result with an improved profitability.

The presented analysis shows that the airlines should consider the demand related information

earlier in their planning phase when deciding on the schedule and capacity. Our model is

a proof of concept for the integration of scheduling, fleeting and pricing decisions which

is expected to improve the efficiency of decision support tools for airlines. This effort can

motivate the integration of more detailed demand information through disaggregate demand

models as a future extension. Even though the analysis is done with pricing, the impacts are

expected to be more general serving as an example for introducing the explanatory variables

of demand models as decision variables in optimization models. Furthermore, the explicit

integration of the demand model in the planning process is expected to provide valuable

information to the actual disaggregate revenue management process.

The presented integrated model is a mixed integer non-convex problem which is highly

complex. When we go beyond the instances provided in Table 4.6 in terms of size, the solvers

can not provide good quality feasible solutions. In chapter 5 we address it with a heuristic

algorithm and obtain solutions for data instances that are similar to real flight networks.

In the presented model, the maximum load factor limitation on seating capacity is not in-

cluded. As a future work, this phenomenon could be analyzed. Furthermore in this model, the

spill phenomenon is assumed to occur between the itineraries of the same market segment

only. However, some flight legs may serve different market segments. In such cases, spill and

recapture can occur between flight legs that serve different market segments and airlines can
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benefit from this flexibility. With an itinerary-based revenue management, leg-based spill

and recapture cannot be taken into account in a straightforward way. The demand model

development should be carried out accordingly and the integration of spill effects based on

the demand model should be reconsidered. Therefore, the concept of leg-based revenue

management embedded in itinerary-based fleet assignment models is an interesting future

research direction.

The considered demand model has only one policy variable which is the price of the itinerary.

In other words the integrated model can only control the price of the itineraries in order to

maximize the profit. However there is a variable for the departure time of the day which

indicates whether the itinerary is a morning itinerary or not. As a future work the departure

time can be introduced as a policy variable in addition to the price. This will enable the

integrated model to take the advantage of the flexibility in changing the departure time of the

flights. As another promising research direction, the presented model can be embedded in a

competitive framework with a game theoretical approach in order to represent the response

of each airline in the market segment.
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5 A local search heuristic for the inte-
grated model

In this chapter we present a local search heuristic method for the integrated airline scheduling,

fleeting and pricing model, IFAM-PR, presented in Chapter 4. The model is a non-convex

mixed integer nonlinear problem (MINLP) where the non-convexity is due to the explicit

representation of a demand model guiding the revenue management decisions. The local

search heuristic tackles the complexity of the problem decomposing the problem into two

simplified versions of the integrated model. The first model is a fleet assignment model where

the pricing decision is fixed. The fleet assignment sub-model is a mixed integer linear problem.

The second model is a revenue management model where the fleet assignment decision,

i.e., the transportation capacity, is fixed. This revenue sub-model is a continuous nonlinear

problem. The sub-models are solved in an iterative way with two local search mechanisms.

Firstly, a price sampling procedure is used for a local search on price based on spill information

in order to explore new fleet assignment solutions. Secondly, a subset of fleet assignment

solutions are fixed in a variable neighborhood search framework where the number of fixed

solutions is updated based on the quality of the solution. The selection of the subset to be

fixed is also determined based on the spill information. These metaheuristic mechanisms

permit to escape from local optima. The local search heuristic is presented in comparison to

two other heuristic approaches: a heuristic procedure provided by an open-source generic

MINLP solver and a sequential approach which mimic the current practice of airlines. The

three approaches are tested on a set of experiments with different problem sizes. The local

search heuristic outperforms the two other approaches in terms of the quality of the solution

and computational time.

5.1 Introduction

In Chapter 4 the added value of the model is reported by solving the monolithic model with an

open-source solver, BONMIN. However, the solver is designed for convex problems. Therefore

it is computationally inefficient for solving the full integrated model and cannot provide

good quality feasible solutions for medium size instances even in 24 hours. These limitations

necessitate the development of a more efficient method. We present a local search heuristic
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based on two sub-models of the problem. Inspired by the idea of D’Ambrosio et al. (2012), we

fix either the fleet or the revenue part of the integrated model in order to obtain simplified

models. When we fix the pricing part, we obtain a mixed integer linear problem (MILP). This

sub-model is a fleet assignment problem where the price and recapture ratios are inputs.

When we fix the fleet assignment decisions, we obtain a non-convex nonlinear problem

(NLP) which is a revenue management model with a given capacity. The two sub-models are

solved in an iterative procedure where local search techniques are used to explore alternative

feasible solutions. Local search techniques include price sampling that is used to visit new

fleet assignment solutions with different price inputs. Furthermore a variable neighborhood

search (Hansen and Mladenović, 2001) is developed for large size instances so that a sub-set

of the fleet assignments are fixed and kept for the next iteration based on the quality of the

incumbent solution. The main contribution is a local search heuristic which is designed

to handle the difficulties of the model thanks to a combination of the above-mentioned

techniques. The interactions between supply and demand models are exploited and as a

result, this combination provides better quality feasible solutions compared to other two

heuristic approaches: a MINLP solver (BONMIN, Bonami et al., 2008) and the sequential

approach that is introduced in chapter 4, section 4.4 in order to represent the current practice

of airlines. The presented local search heuristic can easily be used by practitioners for the

solution of integrated scheduling, fleeting and pricing decisions.

The remainder of the chapter is organized as follows. In section 5.2 we introduce the three

heuristic approaches for the integrated model. Section 5.3 describes the data instances used

for the experiments throughout the analysis. In section 5.4 we provide experimental results

on the performance of the three approaches. In section 5.5 we present the details on the

performance on the heuristic and analyze the added value of the components of the heuristic.

We analyze the results in terms of the quality of the solution and computational time with

details on the complexity of the sub-problems. Finally we conclude the chapter and provide

future directions in section 5.6.

5.2 Heuristic approaches

We consider three heuristic approaches for the solution of the integrated airline schedule

planning model. The first two approaches serve as references for testing the performance of

the local search heuristic.

5.2.1 BONMIN solver for the integrated model

BONMIN is an open-source solver proposed by Bonami et al. (2008) and designed to solve

convex MINLPs. As it is designed to be an exact method for convex problems, it can be only

considered as an heuristic for solving the integrated model. The main methods embedded in

the solver are branch and bound and polyhedral outer approximation.
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5.2.2 Sequential approach

As a second heuristic approach for the solution of the integrated model, we mimic the current

practice of airlines where revenue management decisions are taken with a fixed capacity

provided by the schedule planning process. This sequential approach is introduced in chapter

4, in section 4.4. A similar sequential approach is utilized by Lohatepanont (2002) in the

context of a sensitivity analysis for an itinerary-based fleet assignment model.

We represent the sequential approach with two sub-models of the integrated model. The

first sub-model is the itinerary-based fleet assignment model (IFAM), where the price of the

itineraries are inputs and the remaining decisions are optimized with the given price and

demand. The optimized decisions are the schedule design, fleet assignment, seat allocation

and the number of spilled passengers. This model is indeed an extended version of the state-

of-the-art fleet assignment models (Lohatepanont and Barnhart, 2004) with more advanced

methodology on the spill and recapture effects. Since the pricing decision is excluded, the

prices of the itineraries (p) are fixed. The demand given by the logit (d̃) and the recapture

ratios (b) are also parameters that are calculated with the given price. Therefore we represent

them by p̄, d̄ , and b̄ respectively for clarification purposes. IFAM is a MILP and given as

follows:
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z∗
IFAM =

max
∑

h∈H

∑
s∈Sh

∑
i∈(Is \I

′
s )

(di −
∑
j∈Is

ti , j +
∑

j∈(Is \I
′
s )

t j ,i b̄ j ,i )p̄i

− ∑
k∈K
f ∈F

Ck, f xk, f (5.1)

s.t.
∑

k∈K
xk, f = 1 ∀ f ∈ F M (5.2)∑

k∈K
xk, f ≤ 1 ∀ f ∈ F O (5.3)

yk,a,t− +
∑

f ∈In(k,a,t )
xk, f = yk,a,t+ +

∑
f ∈Out(k,a,t )

xk, f ∀[k, a, t ] ∈ N (5.4)

∑
a∈A

yk,a,minE−
a
+ ∑

f ∈C T
xk, f ≤ Rk ∀k ∈ K (5.5)

yk,a,minE−
a
= yk,a,maxE+

a
∀k ∈ K , a ∈ A (5.6)∑

s∈Sh

∑
i∈(Is \I

′
s )

δi , f (di −
∑
j∈Is

ti , j +
∑

j∈(Is \I
′
s )

t j ,i b̄ j ,i )

≤ ∑
k∈K

πh
k, f ∀h ∈ H , f ∈ F (5.7)∑

h∈H
πh

k, f ≤Qk xk, f ∀ f ∈ F,k ∈ K (5.8)∑
j∈Is

ti , j ≤ di ∀h ∈ H , s ∈ Sh , i ∈ (Is \ I
′
s ) (5.9)

xk, f ∈ {0,1} ∀k ∈ K , f ∈ F (5.10)

yk,a,t ≥ 0 ∀[k, a, t ] ∈ N (5.11)

πh
k, f ≥ 0 ∀h ∈ H ,k ∈ K , f ∈ F (5.12)

0 ≤ di ≤ d̄i ∀h ∈ H , s ∈ Sh , i ∈ Is (5.13)

ti , j ≥ 0 ∀h ∈ H , s ∈ Sh , i ∈ (Is \ I
′
s ), j ∈ Is (5.14)

The second sub-model is a revenue management model with pricing (RMM-PR) given a fixed

capacity. The available seat capacity for every flight is given as input. This model is a non-

convex NLP. Since the fleet assignment decisions of x and y are fixed they are parameters

for RMM-PR and represented by x̄ and ȳ for the ease of explanation. RMM-PR is provided as

follows:
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z∗
RMM-PR =

max
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d̃i = Ds
exp(Vi (pi , zi ;β))∑

j∈Is

exp(Vj (p j , z j ;β))
∀h ∈ H , s ∈ Sh , i ∈ Is (5.19)

bi , j =
exp(Vj (p j , z j ;β))∑

k∈Is \{i }
exp(Vk (pk , zk ;β))

∀h ∈ H , s ∈ Sh , i ∈ (Is \ I
′
s ), j ∈ Is (5.20)

πh
k, f ≥ 0 ∀h ∈ H ,k ∈ K , f ∈ F (5.21)

0 ≤ di ≤ d̃i ∀h ∈ H , s ∈ Sh , i ∈ Is (5.22)

LBi ≤ pi ≤U Bi ∀h ∈ H , s ∈ Sh , i ∈ (Is \ I
′
s ) (5.23)

ti , j ≥ 0 ∀h ∈ H , s ∈ Sh , i ∈ (Is \ I
′
s ), j ∈ Is (5.24)

bi , j ≥ 0 ∀h ∈ H , s ∈ Sh , i ∈ (Is \ I
′
s ), j ∈ Is (5.25)

The sequential approach first solves IFAM with the average price values provided in the dataset.

It optimizes the schedule design and fleet assignment (xk, f , yk,a,t ). These decisions on the

capacity are given as inputs to the next step which is the solution of RMM-PR. It provides the

price of each itinerary (pi ), the actual demand (di ), the allocated seats to each class (πh
k, f ) and

the number of spilled passengers (ti , j ).

5.2.3 Local search heuristic

The third heuristic approach is the main contribution of this chapter. It is based on the sequen-

tial approach and the use of appropriate local search mechanisms. The main shortcoming

of the sequential approach is that the capacity provided by IFAM cannot make use of the

information on the revenue since it runs with fixed price and demand for the itineraries. IFAM

is not able to account for the potential in changing the pricing decisions in order to shape

the demand and come up with more profitable schedule planning. Therefore a local search

heuristic is developed answering to this lack of interaction between planning and revenue

decisions. The neighborhood is defined by local search techniques which provide alternative

schedule planning decisions. Namely, the alternative solutions for the xk, f variables constitute

neighborhood solutions.
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The first local search mechanism is price sampling which reveals the potential improvement

on the revenue as a consequence of the adjustments on the price. The second mechanism

is variable neighborhood search which keeps a varying subset of fleet assignment solutions

fixed in the model based on the quality of the solution. Both of the local search procedures

are based on the number of spilled passengers. This information is found to be important

since the spilled passengers are potential revenue sources. The local search procedures are

then capable of realizing the impact of planning decisions on the revenue and directing the

algorithm towards good feasible solutions.

Price sampling

As mentioned previously, IFAM considers fixed price and fixed demand values. In order to

visit alternative solutions, the model is iteratively solved drawing different price samples that

result with different itinerary demands. The sampling procedure takes into account the rate

of spilled passengers resulting from the solution of RMM-PR in the previous iteration. The

spill rate of a flight is defined as the average number of spilled passengers divided by the total

demand for the flight (McGill, 1989; Belobaba, 2006). Similarly, for every itinerary i , the SRg
i

rate is defined as the number of spilled passengers over the realized demand in iteration g as

follows:

SRg
i =

∑
j∈Is

t g
i , j

d g
i

∀h ∈ H , s ∈ Sh , i ∈ (Is \ I
′
s) (5.26)

In price sampling, according to the solution of RMM-PR, the price of an itinerary in iteration

g is altered based on the number of spilled passengers in the previous iteration g −1. The

price is decreased if that itinerary presents a lower SRg−1
i rate compared to the average rate,

which is denoted by SRg−1
mean. The idea is that, if there is a low spill rate it means the capacity

was enough in the previous iterations and lower prices can be tried in the current iteration

in order to attract more passengers. In order to do that, a random price value is uniformly

drawn between the lower bound and the current price value. On the other hand, the price is

increased if the spill rate is higher than SRg−1
mean, since the itinerary already has a high demand

and price can be increased in order to increase the revenue. A random price value is uniformly

drawn between the current price value and the upper bound. This price sampling is given as

follows:

p̄g
i =

{
unirand(LBi , pg−1

i ) if SRg−1
i ≤ SRg−1

mean

unirand(pg−1
i ,U Bi ) otherwise

∀h ∈ H , s ∈ Sh , i ∈ (Is \ I
′
s) (5.27)
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Variable neighborhood search - VNS

While neighborhood schedule planning solutions are being explored, a subset of fleet assign-

ments is fixed, i.e. some flights are kept assigned to the same aircraft, for a number of iterations

in order to keep the good fleet assignment solutions and speed-up the solution of IFAM. The

number of fixed assignments is represented by nfixed. The variable neighborhood mechanism

is embedded in such a way that nfixed is altered according to the quality of the solution. If a

better solution is obtained, nfixed is increased by an increment of ninc in the next iteration

which is referred as intensification. On the other hand, when there is no improvement for a

subsequent number of iterations, a diversification is applied, i.e. nfixed is decreased by 1 in

order to better explore the feasible region.

The set of fixed assignments is represented by Ł which has nfixed elements. Each fixed as-

signment 
 indicates a fleet type kfixed



and a flight f fixed



. This fixing is maintained by the

constraint given by equation (5.28). Therefore IFAM considered for the local search heuristic

is represented by (5.1)-(5.14) and (5.28).

xkfixed



, f fixed



= 1 ∀
 ∈ Ł (5.28)

The decision to fix a fleet assignment is taken considering the number of spilled passengers. In

other words, an aircraft type is assigned to the corresponding flight in the current solution with

a probability which depends on the number of passengers spilled from itineraries involving

that flight. Intuitively the smaller the spill from a flight, the higher the probability that the

flight-aircraft pair is fixed in the current iteration. The set of flights which are flown at iteration

g is represented by F g
flown. The spill rate of a flight, SRg

f , is the sum of the spill rates of all

itineraries involving flight f as stated in equation (5.29).

SRg
f = ∑

h∈H

∑
s∈Sh

∑
i∈(Is \I

′
s )

δi , f SRg
i ∀ f ∈ F g

flown (5.29)

The maximum SRg
f rate among all the flights in F g

flown is denoted by SRg
max. The probability of

fixing the assignment of flight f at iteration g , probg
f , is obtained according to the number of

spilled passengers at iteration g −1 as provided in equation (5.30). It is proportional to the

gap between the maximum spill rate and the spill rate of flight f . Therefore, the probability is

higher when the number of spilled passengers is lower.

probg
f =

SRg−1
max −SRg−1

f∑
j∈F g−1

flown

(SRg−1
max −SRg−1

j )
∀ f ∈ F g−1

flown (5.30)
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Algorithm 1 Local search heuristic

Require: x0, y0, d 0, p0, t 0, b0, π0, timemax , nmin, nmax, ninc, notImpr,
g := 0, time := 0, nfixed := nmin, notImpr := 0, z∗ :=−INF,
repeat

p̄g := Price sampling(t g−1, pg−1, d g−1) [section 5.2.3]
{d̄ g , b̄g } := Logit models(p̄g ) [demand and recapture ratios for the sampled price based on equations
(4.12) and (4.13)]
Ł := VNS - Fixing(xg−1, t g−1, d g−1, nfixed) [selection of fixed assignments - section 5.2.3]
{xg , y g ,πg , t g } := solve zIFAM(p̄g , d̄ g , b̄g ,Ł) [solve IFAM with the sampled price]
{pg ,d g ,bg ,πg , t g } := solve zRMM-PR(x̄g , ȳ g ) [solve RMM-PR with fixed capacity]
if (zRMM-PR ≥ z∗) [if a better solution is obtained ] then

Update z∗
VNS - Intensification: nfixed := nfixed +ninc when nfixed ≤ nmax −ninc, nfixed := nmax otherwise
notImpr := 0

else
notImpr := notImpr+1
if ( notImpr == 5) [if no improvement is obtained in the last 5 iterations] then

VNS - Diversification: nfixed := nfixed −1 when nfixed > nmin

notImpr := 0 [reset the number of iterations without improvement]
end if

end if
g := g +1

until time ≥ timemax

The complete local search heuristic

The local search heuristic consists of iterations each of which solves IFAM and RMM-PR

subsequently. As mentioned previously, IFAM is solved by fixing the revenue part and RMM-PR

is solved by fixing the schedule planning decisions. This fixing is embedded in an iterative

process similar to the idea of D’Ambrosio et al. (2012). The iterative process is carried out with

the local search mechanisms defined above. These local search techniques enable to visit

good quality neighborhood solutions.

The procedure is presented by Algorithm 1. The iterations continue until the time limit,

timemax. The decision variables of the model are represented by the same notation in the

algorithm. The price variables are initialized with the given price values in the data set. This

implies that the first iteration of the local search heuristic is actually the sequential approach.

However with the local search mechanisms this sequential approach solution is improved.

Since we have a non-convex problem, the initial point is important for the performance of the

heuristic approach. Therefore, the solution of the sequential approach is selected as the initial

solution of the heuristic method.

nmin and nmax are defined as the minimum and maximum number of fixed assignments

according to the data instance. ninc is the increment in the number of fixed fleet assignments.

It is added to the actual number of fixed assignments when the solution is improved in order

to intensify the search. notImpr is the number of subsequent iterations where there was no
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improvement in the best objective function value, z∗.

5.3 The data instances

As done throughout the thesis, data instances are generated based on the data provided for

ROADEF Challenge 2009. In order to test the heuristic, new data instances are generated in

addition to the ones provided in Chapter 4 Table 4.6. These new instances include relatively

larger flight networks (20-27). Instances 26-27 are the largest and similar to real life cases.

Instance 26 has high demand values and 10 different aircraft types while instance 27 has 272

flights a day that generate 485 itineraries. For the sake of completeness we provide all the

instances in Table 5.1. Real flight networks, especially in the US market, may count as much

as 1,000 a day. According to AEA (2007) average number of daily flights is around 300-350

flights in the European context. Therefore the instances 26 and 27 can be considered as

large enough to represent real life instances. Furthermore, the problem size for each data

instance is presented in Table 5.2 as given by AMPL, with details on the number of variables

and constraints.

5.4 Performance of the heuristic approaches

In this section we present results for the three heuristic approaches presented in section 5.2.

We present the comparison between the three heuristic approaches and analyze the results. All

the models are implemented in AMPL. BONMIN runs over the full integrated model presented

in section 4.3. The sequential approach and the local search heuristic work with the models

IFAM and RMM-PR. IFAM is a MILP and solved using the GUROBI1 solver. RMM-PR is a

non-convex NLP and therefore BONMIN solver is used as done for the integrated model. For

all the RMM-PR’s solved in the sequential approach and in the local search heuristic, BONMIN

converges to a local optima.

The heuristic is implemented in C++ communicating with AMPL for the solution of the models.

For the computations Intel Xeon 3.33 GHz CPU with 64 GB of RAM for a total of 24 threads is

used. For a single thread RAM is 2.67 GB. BONMIN uses a single thread for all the computations.

On the other hand, the maximum number of threads for GUROBI is limited to 20.

In order to test the performances of the three approaches we use the set of instances provided

in Table 5.1. The time-limit for the solution of the integrated model with BONMIN is chosen

as 24 hours in order to obtain feasible solutions to this highly complex problem. Maximum

computational time allowed for the sequential approach and the local search heuristic is 1

hour. Sequential approach consists of one solution of IFAM and RMM-PR each and therefore

does not need an excessive computational time. For the local search heuristic we also preferred

to have a 1 hour limit in order to show that the resulting method is a practical method which

1������������	
��
�����
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Chapter 5. A local search heuristic for the integrated model

Table 5.1: The data instances for the experiments

no airports flights
flights demand OD itine-

fleet compositionper per pairs raries
route flight

1 3 10 1.67 51.90 6 16 2 50-37
2 3 11 2.75 83.10 4 11 2 117-50
3 3 12 2.00 113.80 6 12 2 164-100
4 3 12 2.00 113.80 6 12 6 164-146-128-124-107-100
5 3 26 4.33 56.10 6 36 3 100-50-37
6 3 19 3.17 96.70 6 22 3 164-117-72
7 3 19 3.17 96.70 6 22 5 124-107-100-85-72
8 3 12 3.00 193.40 5 28 3 293-195-164
9 3 33 8.25 71.90 4 33 3 117-70-37

10 3 32 5.33 100.50 6 33 3 164-117-85
11 3 32 5.33 100.50 6 33 5 128-124-107-100-85
12 2 11 5.50 173.70 2 22 3 293-164-127
13 4 39 4.88 64.50 10 51 4 117-85-50-37
14 4 23 3.83 86.10 8 27 4 117-85-70-50
15 4 19 3.17 101.40 6 19 4 134-117-100-85
16 4 19 3.17 101.40 6 19 5 128-124-107-100-85
17 4 15 1.88 58.10 8 18 5 117-85-70-50-37
18 4 14 2.33 87.60 7 16 5 134-117-85-70-50
19 4 13 2.60 100.10 6 14 5 164-134-117-100-85
20 3 33 8.25 71.90 4 33 4 85-70-50-35
21 3 46 7.67 86.85 6 59 5 128-124-107-100-85
22 7 48 2.29 101.94 23 50 4 124-107-100-85
23 3 61 15.25 69.15 4 61 4 117-85-50-37
24 8 77 2.08 67.84 39 109 4 117-85-50-37
25 8 97 3.46 90.84 33 106 5 164-117-100-85-50
26 5 100 6.25 347.99 16 140 10 452-400-335-293-185

174-150-146-128-124
27 33 272 1.3 148.25 157 485 5 293-195-146-117-100
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5.4. Performance of the heuristic approaches

Table 5.2: Details on the problem size

Instance no
Number of variables Number of constraints

total binary total nonlinear
1 282 20 282 63
2 279 22 238 68
3 267 24 241 59
4 551 72 481 59
5 1,016 78 875 247
6 602 57 529 130
7 830 95 727 130
8 616 36 558 177
9 1,280 99 971 354

10 1,254 96 959 340
11 1,632 160 1,274 340
12 577 33 502 175
13 1,681 156 1,399 375
14 930 92 765 191
15 693 76 593 118
16 808 95 689 118
17 643 75 591 85
18 605 70 523 87
19 563 65 484 78
20 1,471 132 1,130 354
21 2,975 230 2,215 841
22 1,663 192 1,435 262
23 3,559 244 2,490 1,082
24 3,091 308 2,749 593
25 4,632 485 3,560 772
26 9,514 1,000 7,453 1,831
27 13,459 1,360 12,331 2,434
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Chapter 5. A local search heuristic for the integrated model

can be used by practitioners. For all the approaches we report the time when the best solution

is found. We note that since the considered revenue models are non-convex for all the

approaches, the presented results are the best solutions obtained in the time limit and we can

not provide any guarantee of optimality.

The comparative results of the three approaches are presented in Table 5.3. The analysis of the

results enables us to distinguish the following three cases.

5.4.1 Case 1 - Easy instances with no improvement due to the integrated model

For the first 19 test cases, BONMIN converges to a local optima when solving the integrated

model. For 9 of these instances (1, 3, 6, 8, 9, 10, 15, 17, 19), the integrated model does not

improve the solution of the sequential approach. In other words, these instances do not show

the superiority of simultaneous decision making on pricing and schedule planning. Therefore,

these instances are not useful to validate the performance of the local search heuristic. They

are signified by a gray row color in Table 5.3. Since the solution of the sequential approach is

the same as the integrated model solution, the local search heuristic stops after one iteration.

As mentioned earlier, the local search heuristic solves the sequential approach as the first

iteration. The computational time needed is less than a second for those instances. This

implies 2 orders of magnitude reduction for instances 3, 15, 17, 19. The gain of computational

time is even more evident for instances 6, 8, 9, and 10 with 3 to 4 orders of magnitude.

5.4.2 Case 2 - Easy instances with an improvement due to the integrated model

Among the easy instances, the integrated model results with a superior solution compared to

the sequential approach for instances 2, 4, 5, 7, 11, 12, 13, 14, 16, and 18. The computational

time needed for the sequential approach is again less than a second. However it cannot

reach the quality provided by the integrated model. The deviation of the sequential approach

from the best solution can be up to 5.26% as observed for instance 2. We observe that the

local search heuristic is able to find all but one best solutions provided by BONMIN in a

significantly reduced computational time. This reduction is observed as 4 orders of magnitude

for instances 5, 12, 14 and 3 orders of magnitude for instances 7 and 13. This shows that

the local search heuristic is successful to improve the sequential approach solution in a

reasonable computational time. There is only one instance, 5, where the solution of the

local search heuristic deviates (0.78%) from the solution of the integrated model provided by

BONMIN.
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Chapter 5. A local search heuristic for the integrated model

5.4.3 Case 3 - Complex instances

The last 8 instances are larger compared to the first 19. The generic solver BONMIN does not

converge for instances 20-25. Moreover, for experiments 26 and 27, BONMIN cannot provide

any feasible solution in 24 hours.

When the results for experiments 20-25 are analyzed, it is observed that, the sequential

approach runs less than 5 seconds and provides better feasible solutions in 4 of these instances.

This means that with BONMIN the added value of the integrated approach cannot be shown.

The local search heuristic performs better compared to the sequential approach in all the

instances. The highest improvement is for experiment 21 with 4.00%. Similarly it outperforms

the solutions provided by BONMIN on the integrated model. For instances 26 and 27 we

observe that the local search heuristic again outperforms the two other approaches. For

experiment 27, with 272 flights, the local search heuristic provides an improvement of 1.65%

over the sequential approach. This supports that for relatively larger instances the heuristic

enables us to evaluate the advantages of the integrated approach. Note that, in order to test

the heuristic with instance 27, IFAM is solved with a gap allowance of 0.5% (the default gap of

GUROBI is 0.01%).

The local search heuristic has a reasonable computational time with a time reduction of 1

to 3 orders of magnitude compared to BONMIN. The highest time reduction is observed for

experiment 20 with 3 orders of magnitude. Even experiment 27 is solved to a better feasible

solution compared to the sequential approach in less than 1 hour.

All in all, the local search heuristic provides better feasible solutions compared to BONMIN

and the sequential approach. It can be used for flight networks similar to real networks,

where available solvers cannot provide good quality solutions or even any feasible solution.

Therefore the local search heuristic enables to understand the added value of the integrated

modeling framework and can be used in decision making.

5.5 Details regarding the numerical performance

In this section we provide further results for the numerical performance of the heuristic

in order to assess the added value of each of the components. We first evaluate the VNS

procedure, i.e., the fleet assignment fixing in the IFAM model. Then we analyze the impact of

the spill-based neighborhood search compared to a fully random search.

5.5.1 Added value of the VNS procedure

In order to assess the advantages and disadvantages of the VNS procedure, we compare two

versions of the heuristic. In the first version, we disable the VNS procedure and therefore the

fleet assignment is solved to optimality at each iteration. We refer to this algorithm as the

heuristic without VNS. The second version is the original heuristic with the VNS procedure is
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referred as the heuristic with VNS.

In Table 5.4 we provide information for the number of iterations and the computational time

of the experiments. Note that we only present results for 18 of the 27 instances where the

integrated approach results are different from the sequential approach. The presented values

are averages over 5 replications for both versions of the heuristic. In the first part of the

table we provide the results for the heuristic without VNS and in the second part we have

the heuristic with VNS. For both of the algorithms we provide the total number of iterations,

the total computational time until the best solution is found, and the average computational

time needed for IFAM and RMM-PR per iteration. For the case with VNS, we also provide the

parameters selected for the VNS procedure. It is seen that as the data size is larger we increase

the number of fixed fleet assignments (nmin, nmax) and the increment ninc.

It is observed that when the size of the instance gets larger, RMM-PR can still be solved in

reasonable time for both versions of the heuristic. Indeed, RMM-PR is kept the same regardless

of the VNS procedure. On the other hand, the time needed for IFAM increases considerably as

the size increases. As mentioned before, instance 27 is addressed with a gap allowance of 0.5%

for the stand alone solution of IFAM by GUROBI. When the size is increased further, the gap

allowance should be increased in order to obtain solutions in reasonable computational time.

As an example, the IFAM model results with a gap of 3.10% after 24 hours for an instance of

554 flights and 5 fleet types. It is 5.26% for the same instance with 10 fleet types.

It is clear that for large size instances, IFAM is the bottleneck and solution methods can

be developed for its solution rather than using available solvers directly. These solution

methodologies could be heuristic approaches, column generation; or reformulations of the

model could be considered. As an example, Lohatepanont and Barnhart (2004) propose a

column generation approach for the solution of a similar IFAM. They have a running time

of 19 hours for an instance of 1,988 flights. Furthermore, in the context of leg-based fleet

assignment Lasalle Ialongo and Desaulniers (2012) propose a heuristic branch-and-bound

procedure which could be exploited for the itinerary-based setting.

Our methodology to tackle with the computational time of IFAM is the VNS procedure where

we fix a subset of fleet assignment solutions as explained in section 5.5.1. In general we see a

time reduction in the computational time of IFAM with the VNS procedure. The reduction

becomes more evident as the size of the instance increases, especially for the last two instances.

The heuristic with the VNS procedure runs more number of iterations in the given time frame.

In return, with a reduced computational time of IFAM, more neighborhood solutions can be

explored. It is also observed that with the VNS procedure we are able to find better quality

feasible solutions for the last three instances. When the total computational time values

are analyzed, it is observed that in general for small instances the heuristic without VNS is

faster since the optimal solution of IFAM without any fixed solutions leads to a more rapid

improvement in the objective function. However for larger instances, as of instance 24, the

version with VNS becomes faster. Note that the computational time for instance 27 seems
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increased with the VNS, however a better (+0.79%) solution is found.

We also demonstrate the % improvement in the objective function with respect to the sequen-

tial approach as a function of the computational time for experiment 27. In order to do that,

we increase the time limit from 1 hour to 4 hours for the sake of a more thorough analysis. In

Figure 5.1 we provide a comparison between the heuristic with VNS and without VNS. The

solid lines correspond to the case with VNS and dashed lines are for the algorithm without VNS.

The first 500 seconds represent the time spent for the first iteration, i.e. sequential approach.

The presented results without VNS corresponds to 15 iterations on the average and average

improvement of 1.23% is obtained over the sequential approach. On the other hand with VNS,

heuristic runs on the average 133 iterations and results with an average improvement of 1.79%.

We observe that the heuristic without VNS needs more computational time to reach improved

solutions. With a computational time limit of 1 hour, the improvement is 0.85% as reported

in Table 5.3. In 4 hours this increases to 1.23%. On the other hand for the case with VNS, a

good feasible solution is obtained more rapidly. The reduced computational time allows to

run more iterations and to explore the feasible region more effectively. The improvement with

respect to the sequential approach increases from 1.65% to 1.79% when we increase the time

limit. We observe that the improvement in the objective function is in general more evident in

the early iterations. However, improvements are observed also in the later iterations but are

relatively smaller. We report that for most of the other instances the heuristic finds the best

solution in much shorter computational time being clearly less than an hour.
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As a result, the heuristic with the VNS procedure is clearly better for dense flight networks

consisting of around 100 or more flights. It reduces the computational time for the IFAM

sub-problem and leads to significantly better solutions for the integrated model. On the other

hand, for smaller instances the version without VNS can be preferred since IFAM can be solved

to optimality without any fixed solutions in reasonable computational time.

5.5.2 Added value of the spill based local search

As mentioned in section 5.2, local search heuristic involves mechanisms which enable to visit

neighborhood solutions based on the spilled number of passengers. The reasoning behind is

that spill information provides the relation between the demand and capacity which could

be used to create a communication between the two sub-problems. In order to quantify

the advantage of using the spill information, the local search heuristic is tested against its

counter part with a fully random local search. The prices of the itineraries are uniformly

drawn between the lower and upper bounds. Similarly the fixing of assignments is done

randomly regardless of the spill values in the context of the VNS procedure. For this particular

experiment, the heuristic results are presented without the VNS procedure for the instances

up to 24, and with the VNS procedure for the instances 25-27.

The comparative results between the random neighborhood and the one based on spill is

presented in Table 5.5. The instances where the sequential approach and the integrated model

result with the same solution are again omitted since in this case the local search heuristic is

equivalent to the sequential approach.

Both versions of the local search heuristic have a time limit of 1 hour and the presented results

are the average values for 5 replications of each. For 8 of the 18 instances, the random neigh-

borhood does not improve the initial solution which is the same as the sequential approach in

1 hour. The neighborhood based on spill provides better quality solutions compared to the

random neighborhood in 14 of the instances. The maximum improvement obtained in the

profit is 2.87% (instance 24) and on the average this improvement is around 0.9%. In almost all

of the instances the spill based local search reduces the computational time and the number

of iterations considerably. The reduction in time can be up to 3 orders of magnitude as for

instances 5 and 20. The advantage of using the spill information is more evident for instances

with relatively high number of flights. For small instances, even a fully random setting may be

able to explore the feasible region. However for larger instances a better guided local search is

needed. Therefore, it is concluded that the information provided by the demand model on the

spill guides the heuristic method in the right direction and generates better feasible solutions

in less computational time.
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5.6 Conclusions and future research directions

In this chapter a local search heuristic method is presented for solving the integrated airline

scheduling, fleeting and pricing model. The main motivation for the heuristic is to obtain good

quality feasible solutions in a reasonable computational time for flight networks similar to real

life instances. The iterative process is carried out over two simplified versions of the integrated

model and local search mechanisms are employed to explore better feasible solutions. The

local search mechanisms are based on the information provided by the demand model on

spill. This is an important feature of the heuristic approach which explores better feasible

solutions in less computational time compared to a fully random neighborhood search. The

resulting heuristic is practical and provides insights about the added value of the integrated

approach for data instances similar to real life networks.

The performance of the local search heuristic is compared to an available MINLP solver

BONMIN and a sequential approach that represents the current practice of airlines. The local

search heuristic outperforms the sequential approach when there is a potential gain from the

simultaneous decision making. Otherwise, if there is no potential, it is equivalent to sequential

approach. For instances that have more than 30-35 flights, the heuristic outperforms both of

the other approaches. It is able to find better feasible solutions in a reasonable computational

time.

As mentioned in section 5.5.1, the bottleneck of the heuristic is IFAM. Development of appro-

priate solution methodologies for IFAM is a promising research direction. The VNS procedure

in this chapter where a subset of fleet assignment solutions is fixed based on the spill informa-

tion reduces the computational time and enables to obtain better feasible solutions. Heuristic

approaches, decomposition techniques or stronger reformulations of the model could be

potential candidates for solution methodologies.

The performance of the presented heuristic is evaluated in terms of the best feasible solution

found. Since the problem is non-convex, no evaluation can be done in terms of the duality gap.

Therefore a potential future research is the extension of the study to obtain a valid upper bound

through appropriate decomposition methods and/or transformations of the mathematical

model. In the literature there are studies that come up with approximations to deal with

the complexity of non-convex MINLPs. We refer to Nowak (2005) for a comprehensive set of

methods for solving non-convex mixed integer nonlinear programs. Some studies present

convex under estimation techniques for the non-convex functions in order to obtain valid

bounds to the original problem (Gangadwala et al., 2006;Ballerstein et al., 2011). D’Ambrosio

and Lodi (2011) present an overview on the available tools for convex and non-convex MINLPs.

D’Ambrosio et al. (2012) develop an iterative technique for a non-convex MINLP based on

a convex approximation of the model and a non-convex nonlinear program (NLP) that is

obtained by fixing the integer part of the problem.
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6 Analysis of the integrated model: re-
formulation and sensitivity analysis

The model presented in chapter 4 assumes that the realization of the demand is given by

the expected demand and the spilled/recaptured passengers. It is assumed that the airline

controls the number of spilled passengers with an associated decision variable. A recapture

ratio is then considered over the number of spilled passengers based on the demand model.

In case of a flight cancellation the only decision of the airline related to demand is to reduce

it through lost and/or redirected passengers. There is no decision on the cancellation of the

itineraries (which were actually introduced by Lohatepanont and Barnhart (2004)). Therefore,

the initial expected demand (d̃) is a function of all the itineraries in the each market segment.

This limits the potential revenue since the pricing decision and recapture ratios are restricted

by the originally desired itineraries of the passengers.

In this chapter we reformulate the integrated model where the logit model on the recapture

ratios is removed. Therefore the realized demand with the spill and recapture effects is based

on a single logit model. As will be illustrated, the main difference between the reformulated

model and the previous one is the impact of canceled flights on the prices of the operated

itineraries. In the reformulated model, the attributes of the itineraries that are not operated

do not play any role on the attractiveness of the remaining itineraries.

We first provide a reformulation of the logit model in section 6.1. The reformulated integrated

model is presented in section 6.2 together with an illustrative example. The local search

heuristic is adapted to the reformulated model in section 6.3. The local search heuristic

has modifications due to nature of the reformulation. Secondly, we provide a sensitivity

analysis in section 6.4 addressing the demand fluctuations and demand model parameters.

The robustness of the integrated model solutions are tested in comparison to a leg-based FAM

model.
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6.1 Reformulation of the logit model

Here we recall the demand model presented in Chapter 3. As mentioned in Chapter 4 the only

policy variable which could be controlled by the optimization model is the price (pi ). The

other variables (trip length, departure time of day, number of stops) improve the estimation of

choice probabilities but are only inputs to the optimization model. They are aggregated with

their associated β coefficients as a constant and represented by zi in the optimization model.

For the specification of the utility function we refer to Table 3.1. With the simplification in the

notation, the utility is rewritten as follows:

Vi =β ln(pi )+ zi ∀h ∈ H , s ∈ Sh , i ∈ Is (6.1)

Depending on the utility, the choice probability/market share and the demand associated

with itinerary i in segment s is given by:

ui = exp(Vi )∑
j∈Is

exp(Vj )
= exp(β ln(pi )+ zi )∑

j∈Is

exp(β ln(p j )+ z j )
(6.2)

di = Dsui ∀h ∈ H , s ∈ Sh , i ∈ Is (6.3)

The denominator in equation (6.2) is same for all the itineraries in the segment. Similar to

some studies in literature (e.g. Schön, 2008, Dong et al., 2009, Haase and Müller, 2013) a new

variable υ is defined as follows :

υs = 1∑
j∈Is

exp(β ln(p j )+ z j )
∀h ∈ H , s ∈ Sh (6.4)

Therefore the market share of each itinerary in the segment can be written as below:

ui = υs ·exp(β ln(pi )+ zi ) ∀h ∈ H , s ∈ Sh , i ∈ Is (6.5)

Since we do not use the full logit formula we need to make sure that the market shares sum up

to 1. Therefore we need the following relation for each market segment:∑
i∈Is

ui = 1 ∀h ∈ H , s ∈ Sh (6.6)

The equations (6.5) and (6.6) together represent the market share equation given in (6.2).

However this is not enough to represent the spill and recapture effects. Recall that the no-

revenue options (I
′
s) have fixed price since the airline has no control on the pricing decision of

these competitive itineraries. We represent the price of competitors’ prices by p̄. The market

share of these options could be considered as a reference and the market share equation could

98



6.2. Reformulated integrated model

be rewritten as follows:

ui ≤ υs ·exp(β ln(pi )+ zi ) ∀h ∈ H , s ∈ Sh , i ∈ (Is \ I
′
s) (6.7)

u j = υs ·exp(β ln(p̄ j )+ z j ) ∀h ∈ H , s ∈ Sh , j ∈ I
′
s (6.8)

As mentioned before υs is common for the itineraries of the same market segment and will

change depending on the utility of them. Inequality (6.7) imposes an upperbound on the

market share of each itinerary with respect to its relative utility value compared to the utility

of no-revenue options given by equation (6.8). The reason behind having an inequality for

the market share is that the capacity is limited on each itinerary. Ideally, the demand model

will find the best price value which exactly fits to the given capacity. However, in terms of

computational purposes we introduce bounds on the price. As a result the demand model

is not free to choose any price value. This phenomenon, which will be further discussed in

section 7.5.2, necessitates the concept of spill on itineraries which is represented by the in-

equality constraints. Note that the introduction of constraints (6.6), (6.7) and (6.8) is sufficient

and there is not need for the definition of υs given in equation (6.4). A similar relation is used

by Wang et al. (2012) in a setting where the utilities of the itineraries are fixed inputs for the

optimization model.

6.2 Reformulated integrated model

Following the reformulation of the logit model, in this section we present the reformulated

integrated model, which is referred as IFAM-PR
′
. Here we mention the main differences

compared to the model presented in section 4.3. The spill and recapture variables disappear

from the model since the demand is based on a single logit model. The realized demand is

represented by market share (ui ) times the total market demand (Ds). Therefore, the revenue

in the objective function (6.9) and the realized demand in constraints (6.15) are updated

accordingly. Constraints (6.17)-(6.19) represent the choice-based supply-demand interactions

as mentioned in section 6.1.

The reformulated problem is again a mixed integer non-convex problem due to the utility

functions which include the price as a decision variable and also the revenue in the objective

function.
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Chapter 6. Analysis of the integrated model: reformulation and sensitivity analysis

z∗
I F AM−PR ′ =

max
∑

h∈H

∑
s∈Sh

Ds
∑

i∈(Is \I
′
s )

ui pi −
∑

k∈K
f ∈F

Ck, f xk, f (6.9)

s.t.
∑

k∈K
xk, f = 1 ∀ f ∈ F M (6.10)∑

k∈K
xk, f ≤ 1 ∀ f ∈ F O (6.11)

yk,a,t− +
∑

f ∈In(k,a,t )
xk, f = yk,a,t+ +

∑
f ∈Out(k,a,t )

xk, f ∀[k, a, t ] ∈ N (6.12)

∑
a∈A

yk,a,minE−
a
+ ∑

f ∈C T
xk, f ≤ Rk ∀k ∈ K (6.13)

yk,a,minE−
a
= yk,a,maxE+

a
∀k ∈ K , a ∈ A (6.14)∑

s∈Sh

Ds
∑

i∈(Is \I
′
s )

δi , f ui ≤
∑

k∈K
πh

k, f ∀h ∈ H , f ∈ F (6.15)

∑
h∈H

πh
k, f ≤Qk xk, f ∀ f ∈ F,k ∈ K (6.16)∑

i∈Is

ui = 1 ∀h ∈ H , s ∈ Sh (6.17)

ui ≤ υs exp(Vi (pi , zi ;β)) ∀h ∈ H , s ∈ Sh , i ∈ (Is \ I
′
s ) (6.18)

u j = υs exp(Vj (p̄ j , z j ;β)) ∀h ∈ H , s ∈ Sh , j ∈ I
′
s (6.19)

xk, f ∈ {0,1} ∀k ∈ K , f ∈ F (6.20)

yk,a,t ≥ 0 ∀[k, a, t ] ∈ N (6.21)

πh
k, f ≥ 0 ∀h ∈ H ,k ∈ K , f ∈ F (6.22)

LBi ≤ pi ≤ UBi ∀h ∈ H , s ∈ Sh , i ∈ (Is \ I
′
s ) (6.23)

ui ≥ 0 ∀h ∈ H , s ∈ Sh , i ∈ Is (6.24)

υs ≥ 0 ∀h ∈ H , s ∈ Sh (6.25)

6.2.1 Illustration for the differences between the two formulations

In order to illustrate the differences between the reformulated model and the previous for-

mulation, we consider experiment 2 that is already used in chapter 4 (see Table 4.6). The

results for the two versions of the model are presented in Table 6.1. As mentioned before, the

integrated model given in chapter 4 may underestimate the potential revenue as the demand

and recapture ratios are computed considering all the available itineraries, including those

that cannot be operated because of some flight cancellation. The results show that the profit

is higher with the reformulated model as the prices are in general higher. Even if the number

of assigned aircraft is the same for the two formulations, the selection of flights is different.

Therefore, the operated itineraries are different for the two models (see itineraries 9 and 11).

For the comparison between the two formulations over the whole set of experiments, we refer

to the results that will be given in section 6.3.1. Furthermore, we provide a detailed illustration

for the resulting market shares with the reformulation for a selected OD-pair of data instance
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6.3. The local search heuristic for the reformulated problem

Table 6.1: An illustrative example for the reformulated model

Previous model Reformulated model
IFAM-PR IFAM-PR

′

Revenue 118,729 125,527
Operating costs 81,394 81,394

Profit 37,335 44,133 (+18.2%)
Number of flights 8 8

Transported passengers 534 534
Allocated seats 217 217

Itineraries demand price demand price
1 canceled canceled
2 canceled canceled
3 50 250 50 250
4 50 225 50 225
5 50 250 50 250
6 50 225 50 225
7 117 200 117 238.9
8 117 205.8 117 225
9 50 250 canceled

10 50 225 50 225
11 canceled 50 250

Boldface values show the differences between the results of the two formulations

2 in Appendix A.4

6.3 The local search heuristic for the reformulated problem

The local search heuristic proposed in chapter 5 can be adapted to the reformulated problem,

IFAM-PR
′
. The fleet assignment problem used for the heuristic for the reformulated case

is represented by IFAM
′
. It is the version of the reformulated integrated model (IFAM-PR

′
)

presented in section 6.2 where the price variables are fixed to the given average prices in the

dataset (see Appendix A.2.2). Similarly, the revenue sub-problem is replaced by RMM-PR
′

(see

Appendix A.3.3). The iterative process for the heuristic method is therefore carried out with

these reformulated sub-problems.

An important feature of the reformulated problem is that we do not have the decision variables

on the number of spilled passengers. The heuristic method on the other hand makes use of

this information while exploring neighborhood solutions. Therefore, we need to provide this

input to the procedure which can be represented by:

SRg
i = Ds

⎛⎜⎜⎝ exp(Vi )∑
j∈Is

exp(Vj )
−ui

⎞⎟⎟⎠ ∀h ∈ H , s ∈ Sh , i ∈ (Is \ I
′
s). (6.26)
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Chapter 6. Analysis of the integrated model: reformulation and sensitivity analysis

This term represents the difference between the potential demand and the realized demand

for each itinerary and it is used to replace the information carried by the ti , j variables in

equation (5.26). With this adaptation, the price sampling procedure can be applied in a similar

way for the reformulated problem.

At the flight level, it is found out that the gap between the assigned capacity and the realized

demand provides a better guidance for the heuristic. Therefore, in the variable neighborhood

search, a subset of fleet assignment solutions are fixed according to:∑
k∈K

xg
k, f −

∑
h∈H

∑
s∈Sh

Ds
∑

i∈(Is \I
′
s )

δi , f ui , (6.27)

where the first term gives the assigned capacity and the second term is the associated demand

for the flight. Namely, it is a measure of how well the demand and capacity match. Since this

result is obtained with a feasible solution of RMM-PR
′
, it is always positive. This measure is

used for fixing the fleet assignment solutions in the context of VNS instead of the spill rate in

equation (5.29) for the previous formulation of the model.

6.3.1 Heuristic results for the reformulated problem

The adapted heuristic procedure is tested in the same manner as done in section 5.4. We

compare the results obtained by BONMIN for IFAM-PR
′
, the sequential approach and the

local search heuristic. IFAM
′

is solved by GUROBI and RMM-PR
′

is solved by BONMIN as

done for the previous case. For the solution of IFAM-PR
′
, BONMIN is given a time limit of 24

hours and the time limit for SA and the heuristic is 1 hour except the last 3 instances.

The same data instances are considered for the numerical experiments, that are already intro-

duced in chapter 5, in Table 5.1. The results are presented in Table 6.2. As mentioned before

the profit values are higher compared to the results obtained with previous the formulation

given in chapter 5.

When solving the integrated model, BONMIN converges to a local optima for the first 20

instances. Note that BONMIN does not converge when solving instance 20 with the previous

formulation. We again distinguish the cases where the sequential and integrated approaches

converge to the same solution by gray color. It is observed that the number of such cases are

fewer in this case (experiments 1, 6, 13, 15, 16, 17, and 19). When the integrated approach

improves the solution of the sequential approach (in 20 out of 27 instances) there is an average

improvement of 2%. The highest improvement is observed for experiment 4 with 7%. For

all these instances, the local search heuristic finds the best solution provided by BONMIN in

significantly less computational time. Only in instance 18, there is a deviation of 0.04% from

the best solution given by BONMIN. The maximum gain on computational time is observed

for experiment 7 with 4 orders of magnitude.

The experiments 21-24 are larger instances where BONMIN does not converge to a local
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6.3. The local search heuristic for the reformulated problem

optima and we present the best solution found until the time limit. The solution provided

by BONMIN is inferior compared to the sequential approach for experiments 21 and 23.

Therefore, with general purpose solvers the potential of the integrated approach is hindered

and we need alternative solution methodologies. With the heuristic algorithm, better quality

solutions are obtained compared to both BONMIN and the sequential approach with an

average improvement of 2.02% and 1.75%, respectively. The highest improvement over the

sequential approach is 3.25% for experiment 24 that is obtained in around 15 minutes. The

time reduction with respect to BONMIN is observed as 1-2 orders of magnitude for these 4

instances. Note that the discrepancy between the sequential approach and the integrated

model (when solved by BONMIN) is lower for IFAM-PR
′

compared to IFAM-PR given in chapter

4. The reason is, for these instances, more feasible solutions are explored and better quality

solutions are obtained in the given time frame for the solution of IFAM-PR
′
. When the size of

the problem gets larger, this phenomenon goes in the opposite direction.

The reformulated model behaves similar to the previous formulation in terms of computa-

tional time for the first 24 instances. However, experiments 25-27 are difficult to handle, the

complexity increases exponentially. As can be seen in the table, the computational time is

significantly higher and the time limit is increased to 3-4 hours for these instances for the

heuristic algorithm. BONMIN does not find any feasible solution for instances 26 and 27. On

the other hand with the heuristic, we are able to obtain superior solutions compared to both

BONMIN and the sequential approach. The improvement with respect to sequential approach

is on the average 0.6% for these last two instances which are similar to real flight networks.
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Chapter 6. Analysis of the integrated model: reformulation and sensitivity analysis

The details on the performance of the heuristic algorithm are given in Table 6.3. Similar to

the analysis performed in chapter 5, we present details on the computational time and the

number of iterations. The last three columns provide the selected parameters for the VNS

procedure. The number of fixed fleet assignment solutions is increased as the size of the

instance increases. When the results are compared to that of the previous formulation given

in Table 5.4, it is seen that the complexity of the sub-problems are different for the two cases.

RMM-PR
′

is easier to handle with the reformulation and we observe significant reduction in

its computational time per iteration. Even for the instances that are relatively larger, it is at

most few seconds. However IFAM
′

is computationally expensive. Compared to the previous

case, instances 25-27 need significantly more computational time. Instances 25 and 27 are

very hard to solve as only two iteration can be performed within the time limit.

We also evaluate the advantages and disadvantages of the VNS procedure. In general, we

observe that the introduction of VNS reduces the computational time needed for the IFAM
′

sub-problem due to fixing of fleet assignment solutions. For small to medium size instances,

VNS does not bring clear advantages. In instances 18 and 22 some quality is even lost on the

resulting solution. There are instances like 4, 18, 20, 22 and 23, for which the total computa-

tional time increases with VNS. On the other hand, in experiments 14, 21, 24, 25, 26, and 27

VNS helps to reduce the computational time significantly. When we analyze larger instances,

24-27, the advantage of VNS can be clearly observed with an improvement in the quality of

the solution. The time reduction when solving IFAM
′

is significant which enables to run more

iterations and explore the feasible region more efficiently. On the other hand, the heuristic

without VNS is able to run only few iterations and gets stuck at the solution of the sequential

approach for instances 25 and 27.

Furthermore, we present the % improvement in the objective function over the sequential

approach as a function of time in Figure 6.1 for experiment 27. The considered algorithm is the

one with the VNS procedure. We do not present the results without VNS since the algorithm

gets stuck at the solution of the sequential approach. The figure illustrates the idea behind

the selection of the time limit. The time needed for the first iteration which is the sequential

approach is around 6000 seconds. Then, with the VNS, more rapid solutions are obtained.

Significant improvements are obtained in the early iterations and very few improvements

are observed close to the time limit. In the last hour there is almost no improvement for the

replications of the heuristic. This supports the selection of the time limit as 4 hours.

Similar to the conclusions in chapter 5.2.3, we propose the use of the heuristic with the VNS

procedure for data instances that have high number of flights, in order to reduce computa-

tional time and obtain good feasible solutions in reasonable computational time. For small

instances on the other hand the heuristic without VNS can be chosen.
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6.3. The local search heuristic for the reformulated problem
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Chapter 6. Analysis of the integrated model: reformulation and sensitivity analysis

6.4 Sensitivity analysis

In this chapter we perform sensitivity analysis in order to address the key assumptions of the

presented choice-based IFAMs. We have four different IFAMs: IFAM and IFAM-PR introduced

in Chapter 4 where the spill decision is controlled by the airline; IFAM
′

(for the model see

Appendix A.2.2) and IFAM-PR
′

introduced in Chapter 6 where the demand is given by a single

logit model without any additional spill/recapture variables.

The sensitivity analysis addresses the assumptions related to the unconstrained demand,

price parameter in the logit model and the assumptions regarding the competitors’ offers. In

section 6.4.1 we provide a description of the analysis with a reference FAM. The analysis for

the demand uncertainty is presented in section 6.4.2. The impact of the price parameter is

addressed in section 6.4.3 and analysis with different prices of competitors is carried out in

section 6.4.4.

6.4.1 The framework for the sensitivity analysis

As a reference model we consider a leg-based FAM where itinerary level information is not

considered. This leg-based FAM is similar to the model introduced by Hane et al. (1995).

z∗
FAM = min

∑
k∈K

∑
f ∈F

Ck, f xk, f + spill costs (6.28)

∑
k∈K

xk, f = 1 ∀ f ∈ F M (6.29)∑
k∈K

xk, f ≤ 1 ∀ f ∈ F O (6.30)

yk,a,t− +
∑

f ∈In(k,a,t )
xk, f = yk,a,t+ +

∑
f ∈Out(k,a,t )

xk, f ∀[k, a, t ] ∈ N (6.31)

∑
a∈A

yk,a,minE−
a
+ ∑

f ∈C T
xk, f ≤ Rk ∀k ∈ K (6.32)

yk,a,minE−
a
= yk,a,maxE+

a
∀k ∈ K , a ∈ A (6.33)

xk, f ∈ {0,1} ∀k ∈ K , f ∈ F (6.34)

yk,a,t ≥ 0 ∀[k, a, t ] ∈ N (6.35)

(6.36)

A time-space network is used for the representation of the flight network. The objective (6.28)

is to minimize the operating costs and the spill costs. Since the leg-based formulation does

not carry information regarding demand, assumptions are made for the estimation of spill

costs. First assumption is the full fare allocation where each flight in the itinerary is assigned

the full fare of the itinerary. The spill estimation is performed in a deterministic way where the

itineraries are listed in order of decreasing fare and the demand is assigned respecting this

order. These assumptions on the fare allocation and spill estimation are explained by Kniker
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Figure 6.2: Framework for the sensitivity analysis

(1998). A similar approach is also considered by Lohatepanont (2002).

In addition to the fleet assignment decisions, the schedule design feature with mandatory

and optional flights is integrated (6.29)-(6.30). The remaining constraints are classical FAM

constraints: flow of aircraft should be conserved (6.31), the number of available aircraft for

each type should be respected (6.32) and a cyclic schedule is maintained (6.33).

For the sensitivity analysis, we perform a comparative analysis between the leg-based FAM

and itinerary based models that are introduced as IFAM and IFAM-PR in the thesis.

The sensitivity analysis for each of the assumptions starts with the solution of different

FAM/IFAM/IFAM-PR models. The resulting fleeting and scheduling decisions are fixed. Using

these decisions as an input, a passenger allocation model is employed to determine the quality

of the planning decisions given by the models. The passenger allocation model is considered

as the revenue management model, RMM, which consists of all the demand/revenue related

equations of the IFAM-PR. In order to have a fair comparison for the models we have utilized

the version with pricing (RMM-PR) and without pricing (RMM). These revenue subproblems

are listed in Appendix A.3.

When solving the RMMs, perturbations on the demand model parameters are introduced

and the profit obtained by the fleeting decision of different FAM/IFAM/IFAM-PR models are

compared. The methodology for sensitivity analysis, that is illustrated in Figure 6.2, is inspired

by the work of Lohatepanont (2002).
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Chapter 6. Analysis of the integrated model: reformulation and sensitivity analysis

6.4.2 Demand uncertainty

In all the presented models we assume that the total demand for each market segment is

known. The demand share of each itinerary in a market segment is proportional to this total

demand given by the logit model. This is a strong assumption given the daily and seasonal

fluctuations of the demand. In this section we address this assumption and test the added

value of IFAMs and IFAM-PRs compared to FAM with simulated values of demand.

We randomly draw 500 realizations of the unconstrained itinerary demand from a Poisson

distribution with a mean equal to the average demand value provided in the dataset. Fur-

thermore, we introduce perturbations on the average demand value in a range of -30%-+30%

for each market segment. Therefore for each perturbation on the average demand value we

have 500 simulations. These 500 realizations of demand are meant to represent day-to-day

variations on each average demand value. In order to decide on a meaningful range for the

demand fluctuations we analyzed passenger flow statistics from The Airline Origin and Desti-

nation Survey (DB1B). For example for the OD pair JFK-FLL the total demand varies at most

by around 15% from quarter to quarter in a year (data range 2005-2010). Similarly, a maximum

of 20% variation is observed on the average itinerary demand from quarter to quarter. Since

the daily fluctuation would be higher than the quarterly fluctuation we keep the range wider.

Analysis with IFAM and IFAM-PR

First of all, the added value of IFAM with choice-based recapture is tested compared to leg-

based FAM using experiments 14 and 24 (see Table 5.1 for data instances). The considered

RMM for passenger allocation is a model with choice-based recapture but without pricing

(see Appendix A.3.1).

In experiment 14, supply-demand interactions embedded in IFAMs result with a higher

capacity allocation since spilled passengers can be accommodated by other itineraries and

the cost of larger capacity aircraft can be compensated. However, leg-based FAM decides

to assign less capacity since it cannot make use of recapture effects. Therefore, as seen in

Figure 6.3, when the demand is over-estimated FAM performs better in the range -30% to -5%.

However starting with -5% IFAM performs better. When the demand is under-estimated the

improvement due to IFAM can be clearly observed. After a level of underestimation (around

15%) leg-based FAM cannot change the revenue since the allocated capacity is not enough to

accommodate all the demand.

Experiment 24 includes business class passengers which have higher average price compared

to economy passengers. The existence of business passengers increases the revenue that could

be obtained through recapture and therefore IFAM decides to allocate less capacity compared

to leg-based FAM. As seen in Figure 6.4, IFAM performs better up to the perturbation level

+20%. When the demand is under-estimated by more than 20% FAM performs better. The

higher capacity allocation of FAM helps to recover the unexpected increase in the demand.

110



6.4. Sensitivity analysis

0 

10,000 

20,000 

30,000 

40,000 

50,000 

60,000 

70,000 

80,000 

-30% -25% -20% -15% -10% -5% 0% 5% 10% 15% 20% 25% 30% 

Pr
of

it
 

Perturbation on average market demand (Ds) 

FAM 

IFAM 

Figure 6.3: Sensitivity to demand fluctuations - IFAM vs FAM - Exp. 14

-50,000 

0 

50,000 

100,000 

150,000 

200,000 

-30% -25% -20% -15% -10% -5% 0% 5% 10% 15% 20% 25% 30% 

Pr
of

it
 

Perturbation on average market demand (Ds) 

FAM 

IFAM 

Figure 6.4: Sensitivity to demand fluctuations - IFAM vs FAM - Exp. 24

111



Chapter 6. Analysis of the integrated model: reformulation and sensitivity analysis

25000 

35000 

45000 

55000 

65000 

75000 

85000 

95000 

105000 

-30% -25% -20% -15% -10% -5% 0% 5% 10% 15% 20% 25% 30% 

Pr
of

it
 

Perturbation on average market demand (Ds) 

FAM 

IFAM 

IFAM-PR 

Figure 6.5: Sensitivity to demand fluctuations - IFAM/IFAM-PR vs FAM - Exp. 14

-50000 

0 

50000 

100000 

150000 

200000 

250000 

-30% -25% -20% -15% -10% -5% 0% 5% 10% 15% 20% 25% 30% 

Pr
of

it
 

Perturbation on average market demand (Ds) 

FAM 

IFAM 

IFAM-PR 

Figure 6.6: Sensitivity to demand fluctuations - IFAM/IFAM-PR vs FAM - Exp. 24

112



6.4. Sensitivity analysis

In order to test the sensitivity of IFAM-PR we performed the same analysis using the RMM-

PR (see Appendix A.3.2). In Figures 6.5 and 6.6 the results for FAM, IFAM and IFAM-PR are

presented. It is observed that the integration of pricing increases the robustness of the fleeting

decisions. For experiment 14, IFAM is outperformed by FAM up to -5% fluctuation. However

with IFAM-PR this is pulled back to -10%. A similar phenomenon is observed with experiment

24. IFAM is outperformed by FAM when demand is under-estimated by more than 20%. With

IFAM-PR this is shifted towards 25%. This supports the fact that when the planning model has

more flexibility and information from the revenue side, the perturbations can be absorbed

better.

The presented results are generated with the average profit values over 500 simulations for

each market demand value. In order to see the impact of day-to-day variations on the results

we present box-plots in Figure 6.7. The box-plots are generated with 500 simulations for

each market demand value. We compare the results of IFAM-PR and FAM for experiment 24.

It is seen that the improvement provided by IFAM-PR is not significant when the demand

is underestimated by more than 10%. We also analyze the deviation of the observed profit

from the expected profit. For each model, we have a single expected profit value which is

obtained with the expected demand value. The % absolute deviation is computed based on

the following:

%deviation = 100

∣∣observed profit−expected profit
∣∣

expected profit
. (6.37)

For each of the simulated demand values based on the perturbations, the deviation on the

profit is calculated and boxplots are generated as seen in Figure 6.8. It is observed that the %

deviation for IFAM-PR is less compared to the % deviation of FAM. The reduction in deviation

is significant for an overestimation of more than 10% and for an underestimation of more

than 5%. Furthermore, the variation on the % deviation of IFAM-PR is less than the variation

observed for FAM as seen by the sizes of the boxes in the plot. This supports the fact that the

fleeting and scheduling decisions obtained by IFAM-PR are more robust to the perturbations

on the market demand.
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Figure 6.9: Sensitivity to demand fluctuations - IFAM
′
/IFAM-PR

′
vs FAM - Exp. 14

Analysis with the reformulated model

A similar analysis is performed with the reformulated models IFAM
′

and IFAM-PR
′
. It is

preferred to keep the analysis for the models with pricing since the conclusions are similar.

Throughout the analysis reformulated revenue model RMM-PR
′

is used.

The results are provided in Figures 6.9 and 6.10 for experiments 14 and 24 respectively. The

improvement due to pricing can be observed more obviously with the reformulated problem.

Compared to IFAM
′
, IFAM-PR

′
provides better profit in experiment 14 in almost all the cases

except when the demand is overestimated more than 30%. The improvement over leg-based

FAM can be observed in a wider range of demand when there is an integrated pricing deci-

sion. IFAM
′

is outperformed by FAM when average demand is overestimated by more than

10%. However this value is between 15% and 20% for IFAM-PR
′
. Similary, in experiment 24,

IFAM-PR
′

results with a higher profit compared to IFAM
′

except when the demand is overesti-

mated more than 25%. There is a clear improvement with IFAM-PR
′

compared to FAM even

the demand is underestimated by up to 25%. However with IFAM
′
, the fleeting solution of

FAM is not improved when there is an underestimation of 15% or more.

In order to see the impact of day-to-day variations on the results we present box-plots in

Figure 6.11. As done before, the box-plots are generated with 500 simulations for each market

demand value. We compare the results of IFAM-PR
′

and FAM for experiment 24. It is seen that

the improvement provided by IFAM-PR
′

is not significant when the demand is underestimated

by more than 15%. Furthermore, the % deviation on the profit is analyzed with the boxplots

116



6.4. Sensitivity analysis

-50000 

0 

50000 

100000 

150000 

200000 

250000 

-30% -25% -20% -15% -10% -5% 0% 5% 10% 15% 20% 25% 30% 

Pr
of

it
 

Perturbation on average market demand (Ds) 

FAM 

IFAM' 

IFAM-PR' 

Figure 6.10: Sensitivity to demand fluctuations - IFAM
′
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vs FAM - Exp. 24

presented in Figure 6.12. It is observed that the deviation on the profit is reduced with IFAM-

PR
′

compared to FAM. The reduction is significant for an underestimation of more than 10%

and for an overestimation of more than 10%. The variation of the deviation is also reduced

with IFAM-PR
′

as seen from the sizes of the boxes in the plots.
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Evaluation on the sensitivity to demand fluctuations

The analysis performed for the demand uncertainty shows that the performance of IFAMs

are not affected by slight changes on the average demand. The sensitivity analysis performed

by Lohatepanont (2002) concludes that the improvement due to IFAM is not clear even with

a perturbation of 2-3% on average demand. In our case, the improvement provided by the

IFAMs is more evident even when there is a deviation on the average demand by more than

10%. It can be concluded that a flexible planning model provides robust solutions since it can

deal with more significant perturbations.

The integration of pricing decision introduces flexibility so that the robustness is increased.

When IFAM-PRs and IFAMs are compared it is seen that the robustness to demand fluctuations

is increased. In other words FAM solutions are outperformed in a wider range (around 10-15%

wider) with the help of pricing decision. The significance of the improvement provided by the

integrated models is analyzed with the box-plots of the simulations for each market demand

value. It is observed that the improvement becomes insigificant when the perturbation on

market demand is more than 10% and 15% for IFAM-PR and IFAM-PR
′

respectively. It is also

observed that the mean and variance of the % absolute deviation on the profit accross different

realizations of the market demand are reduced with IFAM-PR and IFAM-PR
′

compared to

FAM. This supports the fact that the integrated models improve the robustness of fleeting and

scheduling decisions.

It is important to note that experiment 14 is a smaller size instance compared to experiment 24

and BONMIN solver converges when solving instance 14. However for experiment 24 we work

with the heuristic solution when solving IFAM-PR and IFAM-PR
′
. Therefore the improvement

due to pricing is less evident for experiment 24 compared to experiment 14.

6.4.3 Price parameter of the itinerary choice model

The parameters of the demand model are estimated based on a mixed RP/SP dataset as

explained in Chapter 3. Since the only policy variable is the price among the set of explanatory

variables, its coefficient has a direct impact on the market shares. Depending on the data

set used, the estimated value of the parameter will be different. Therefore in this section we

perform a sensitivity analysis with perturbations on the price parameter.

As given in Table 3.3 in Chapter 3 the price parameter consists of 4 β parameters for non-

stop/economy, nonstop/business, one-stop/economy, and one-stop/business itineraries. As

a result of the estimation with BIOGEME we can obtain the variance-covariance matrix for the

parameters. With the standard errors provided in this matrix we randomly generate 100 sets of

price parameters from a standard normal distribution.

We perform the analysis on the price parameter with experiment 24. We present the analysis

only with the reformulated models since the overall conclusions are the same. In Figure 6.13

we compare FAM, IFAM
′
, and IFAM-PR

′
. It is seen that IFAM-PR

′
has the highest profit for
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all of the cases and FAM has the lowest profit as expected. It is observed that FAM is more

sensitive to the changes in the price parameter. In order to observe that box-plots are drawn

as seen in Figure 6.14. The box-plots confirm that FAM is more sensitive to the perturbations.

This analysis concludes that the improvement provided by the supply-demand interactions

through the itinerary choice model is not sensitive to the price parameter. There is a consistent

improvement and the variability of the results with simulated price parameters is reduced

thanks to supply-demand interactions.

6.4.4 Competitors’ price

As mentioned in Chapter 3 in section 3.2 we introduce no-revenue options in the choice

set. These alternative itineraries represent the alternatives offered by the competitors. The

price of these alternatives are assumed to be known and even if there is a pricing decision

they are kept fixed. Since the market share of the itineraries depends on the offer by the

competitors, in this section we perform an analysis on the price of the competitor’ itineraries.

For each no-revenue option 100 prices are uniformly generated in a range of -50%- +50% with

respect to the originally selected price. Similar to section 6.4.3, the analysis is carried out with

reformulated models using experiment 24.

In Figure 6.15 we compare FAM, IFAM
′
, and IFAM-PR

′
with uniformly drawn 100 sets of

prices. It is observed that FAM has the lowest profit and IFAM-PR
′

provides the highest profit

in general. It is also concluded that FAM has a higher variation with competitors’ prices

compared to IFAMs. This can be confirmed by box-plots given in Figure 6.16. The difference

between IFAM
′

and IFAM-PR
′

is relatively low in this case since the pricing decision is closely

related to the price offered by the competitors and IFAM-PR
′

is sensitive to high fluctuations.

This analysis shows that an itinerary-based setting is more robust to the changes in competi-

tors’ prices. Integrated supply-demand interactions with a choice model enables to react to

market conditions which cannot be achieved through a leg-based FAM setting. Furthermore

IFAM-PR
′

provides the best profit among the three, given that the perturbation is not very

high.
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6.5 Conclusions

In this chapter we present a reformulation of the model which changes the way the demand

model is introduced. In chapter 4 the spill and recapture is modeled with explicit variables

as a control of the airline. In this chapter it is maintained by a single demand model and

passengers settle to their desired itineraries without the spill and recapture variables. This

reformulation is a relaxed version of the one in chapter 4 and results with higher profit.

The local search heuristic is adapted to the reformulated model. In general, a similar perfor-

mance is observed which supports the use of the heuristic for different formulations of the

model. It is observed that IFAM
′

is a more difficult problem compared to IFAM. On the other

hand RMM-PR
′

is much simpler than RMM-PR with the new representation of the logit model.

It is again observed that the IFAM
′

is the bottleneck of the heuristic and a promising future

research direction is the development of solution methodologies for the solution of it rather

than using a MILP solver.

This chapter analyzes the sensitivity of the integrated models with respect to demand model

parameters. It is observed that the itinerary-based models are not sensitive to slight changes

in the inputs and provides a consistent improvement over the leg-based FAM. Furthermore

the integration of pricing decision through IFAM-PRs provides an improved robustness of

the solutions. The explicit representation of supply-demand interactions facilitate the simul-

taneous decision making in both demand and supply side. As a result better solutions are

obtained.
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7 Log transformation of the logit model

In this chapter we present a log transformation for revenue maximization models integrated

with a demand model. The demand model integration alters classical optimization models

since the demand becomes a variable of the optimization model rather than being an input

parameter. As presented in the previous chapters, the integrated model is a complex problem

due to the explicit demand model. Inspired by this complexity we present the transformation

in a more general setting of revenue maximization models. The demand is represented by

a logit model which is flexible in terms of the explanatory variables in the utility function.

In other words, multiple explanatory variables and/or disaggregate variables such as socio-

economic characteristics can be introduced in the utility of the alternatives. Moreover some

explanatory variables of the demand model can be variables of the optimization model which

increases the complexity. A logarithmic transformation is proposed for the logit model which

facilitates a stronger reformulation of the optimization model. Illustrative examples are

provided for aggregate and disaggregate demand models. As a case study, an airline revenue

maximization model is presented, which is the sub-problem of the integrated model given in

chapter 6. The proposed methodology is applied to realistic size instances.

7.1 Introduction and motivation

In classical operations research literature, demand is assumed to be an input parameter while

optimizing planning decisions. Therefore demand is inelastic to the changes in supply (e.g.

discussion in the context of revenue management by Kocabıyıkoğlu et al., 2013). Similarly, the

demand forecast is usually done with fixed inputs from the planning decisions, typically with

given capacity as mentioned by McGill and van Ryzin (1999). However supply and demand

are highly interrelated; supply decisions change the attracted demand and vice versa. This

motivates researchers for working on supply-demand interactions in various contexts.

In order to take into account supply-demand interactions, iterative/sequential methodologies

are adapted (e.g. in airline optimization Dumas et al., 2009) where planning and demand

problems are solved iteratively. The iterative process provides flexibility in terms of the
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considered demand forecasting such that complex statistical methodologies can be utilized

without increasing the complexity of the planning problem. Also, there is an increasing interest

for the explicit integration of demand models in planning problems which enables to better

represent supply-demand interactions.

The considered demand models for the integration can be categorized as aggregate and

disaggregate models. The demand-curve used in micro-economics (O’Sullivan and Sheffrin,

2006) is the basis for the aggregate demand modeling. The demand for a certain product is

represented by the price of the product which is an average behavior of individuals across

population. Disaggregate demand modeling through discrete choice methodology (McFadden,

2001) on the other hand provides flexibility in understanding the behavior of the choice maker.

In the last decade there is an increasing interest for the integration of explicit demand models

in optimization problems using discrete choice models. Examples from the literature include

revenue management problems (Talluri and van Ryzin, 2004b; Dong et al., 2009; Zhang and

Lu, 2013) and airline planning problems where the market shares are given by discrete choice

models (Schön, 2008; Wang et al., 2012), facility location problems where the choice probability

of each facility is expressed by a utility function depending on the location (Benati and Hansen,

2002;Haase, 2009), and the railway timetable design, where the quality of the timetable affects

the attracted demand through a logit model (Cordone and Redaelli, 2011).

The integration of choice models generates an increased complexity. The level of complexity

depends on the relation between the decision variables of the optimization problem and the

explanatory variables of the choice model. If the explanatory variables of the demand model

are input parameters to the optimization model it is easier to control the complexity. Wang

et al. (2012) deal with choice-based spill and recapture in air transportation networks where

the explanatory variables of the demand model are input parameters. They keep the model

linear by representing the market shares relatively to the attractiveness rather than inserting

the full logit formula. Haase and Müller (2013) present several reformulations of the logit

embedded facility location problems which help to preserve linearity.

When an explanatory variable of the demand model is a variable of the optimization model,

the complexity grows significantly. The nonlinearity is usually unavoidable and even convexity

may be lost. Wang and Lo (2008), Cordone and Redaelli (2011), Atasoy et al. (forthcoming),

and Mesa et al. (2013) present integrated models formulated as mixed integer non-convex

problems, which can only treated by heuristic approaches. This type of integration is widely

used in revenue management models where pricing decision is given by a demand model

(e.g. Dong et al., 2009; Zhang and Lu, 2013). The non-convexity is avoided using an inverse-

demand function so that price is written in terms of the market shares. Therefore a concave

objective function is obtained with linear constraints. We provide the concavity analysis of

this inverse-demand approach in Appendix A.6. This practical solution allows for a single

explanatory variable of the demand model to be the decision variable of the optimization

model. Otherwise the inverse function cannot be defined as proposed. Furthermore, in

the existence of disaggregate level information such as socio-economic characteristics, the
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methodology can not be applied in a straightforward way. In case of non-convex formulations

valid bounds can be obtained through approximations of the demand model. Wang and

Lo (2008) make use of the relative market shares of the alternatives with log transformation.

However the methodology is presented with two alternatives only. Cordone and Redaelli (2011)

use the piecewise linear approximation of the logit model and adapt a branch and bound

methodology in order to obtain valid bounds. In a game theoretical framework Cadarso et al.

(2013) study an airline schedule planning model where the frequency of an airline is a decision

variable of the optimization model and an explanatory variable of the demand model. They

also use a piecewise linear approximation in order to deal with the complexity.

The mentioned studies in the literature clearly show the trade-off between an enhanced

representation of demand in optimization models and the problem complexity. Therefore the

integration of demand models in optimization problems is a fruitful and challenging research

direction in terms of both mathematical modeling and solution methodologies.

In this chapter we propose a framework for revenue maximization models where a demand

model is integrated as a logit model. A reformulation is proposed by a logarithmic transforma-

tion of the logit model. The framework is flexible for the introduction of multiple explanatory

variables and disaggregate level information. Moreover, it is flexible for more than one explana-

tory variable of the demand model to be defined as a decision variable of the optimization

model. The rest of the chapter is organized as follows: in section 7.2 we present a general

revenue maximization model integrated with a logit model. The optimization model is refor-

mulated in section 7.3 with a logarithmic transformation of the logit model which results with

a non-convex formulation in general. Illustrative examples are provided in section 7.4. The

methodology is presented with a case study in the context of airline optimization in section

7.5. This case study is linked to previous chapters having the same airline setting. However in

this chapter we only focus on the revenue part which is similar to RMM-PR
′

(see Appendix

A.3.3). In section 7.6 we propose a piecewise linear approximation in order to have a valid

upper bound as an ongoing work. The chapter is concluded together with future research

ideas in section 7.7.

7.2 The revenue maximization model integrated with a logit model

We consider a competitive market where one player seeks to maximize its revenues by opti-

mizing the price for the alternatives she offers. The market is composed of a number of market

segments and the player offers a set of alternatives in each market segment. There are com-

petitors which also offer alternatives in each segment. The reaction of competitors is ignored

contrary to a game theoretical approach. Therefore, the prices of competing alternatives are

assumed to be given and fixed. The relation between the attributes of the alternatives and the

market share is given by a logit model. The total demand in each segment is assumed to be

known and according to the logit model, a portion of demand is attracted by the player and

the rest is lost to the competitors. The available capacity is assumed to be given so that we
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only focus on the demand related decisions.

We present the defined setting with a revenue maximization model where a demand model

is explicitly integrated. The notation is similar to the previous chapters with few exceptions.

The choice set is represented by C and the set of individuals in the market is represented

by N . Since there are competitors in the market we define two sets C o ⊂C and C c ⊂C that

represent the own alternatives of the company and the alternatives offered by the competitors,

respectively. The choice probability for product i and individual n is denoted by yi ,n . The

prices of competitive alternatives, p̄i , are fixed since the reaction of competitors is ignored.

For the ease of notation, the model is defined for a single market segment. However, the

extension is straightforward with the assumption of independent market segments. The

general deterministic revenue maximization model P is given as follows:

zP =max
∑

i∈C o

∑
n∈N

yi ,n pi (7.1)

s.t. yi ,n = logit(p, p̄, z;β) ∀i ∈C o ,n ∈ N (7.2)

gi ,n(yi ,n , pi ) ≤ 0 ∀i ∈C ,n ∈ N (7.3)

0 ≤ yi ,n ≤ 1 ∀i ∈C ,n ∈ N (7.4)

pi ≥ 0 ∀i ∈C o (7.5)

The decision variable of the optimization problem is the price, p. The objective function is the

total revenue obtained with all the available products in the market (7.1). It is the product of

the choice probability y and the price p. The demand model is embedded through constraints

(7.2) which define the auxiliary variable y . The logit model gives the choice probability for a

product i for choice-maker n as follows:

yi ,n = logit(p, p̄, z;β)

= exp(Vi ,n(pi , zi ,n ;β))∑
j∈C o

exp(Vj ,n(p j , z j ,n ;β))+ ∑
j ′ ∈C c

exp(Vj ′ ,n(p̄ j ′ , z j ′ ,n ;β))
∀i ∈C o ,n ∈ N , (7.6)

where Vi ,n represents the deterministic utility for alternative i and individual n. Similar to the

notation in chapter 4, z represents the set of explanatory variables of the demand model which

are input parameters for the optimization model. β represents the set of estimated parameter

values for the explanatory variables that are also input parameters for the optimization model.

Here we provide a general representation for the utility function:

Vi ,n =β1
i pi +β2

i ,n zi ,n ∀i ∈C o ,n ∈ N , (7.7)

where β1 and β2 represent the estimated coefficients for the explanatory variables. Since z is a

vector of explanatory variables, the second part of the utility can be sum of several of them.

For the ease of explanation we represented it with a single element of the vector z. In the

following sections, different specifications will be provided for the illustrative examples and
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the case study. If the utility function does not have an individual dependent specification (e.g.

socio-economic characteristics, individual specific coefficients), the choice probability for

product i is the same for every individual, and is therefore equivalent to the market share:

ui =

∑
n∈N

yi ,n

N
∀i ∈C . (7.8)

The set of constraints for the optimization problem (7.3) is represented by the function g .

These constraints can be related to the capacity which limits the attracted demand. Fur-

thermore, market conditions may constrain the attributes of the alternatives or the choice

probabilities. Even if g is convex, this problem is typically a non-convex problem due to the

explicit representation of the logit model and the revenue function in the objective.

The revenue maximization problem is presented with a single decision variable, price. How-

ever the methodology is valid for additional explanatory variables of the logit model to be

defined as a decision variable of the optimization model. Depending on the structure of

the model, i.e. the way these decision variables appear in the model the complexity may be

increased. For revenue maximization models price is the critical variable as it appears in the

objective function.

7.3 The log transformation

As done in section 6.1, for each choice-maker n we define a new variable υn as follows:

υn = 1∑
j∈C

exp(Vj ,n)
∀n ∈ N . (7.9)

With this definition, the choice probability given in (7.6) can be represented by the following

equations:

yi ,n = υn exp(Vi ,n) ∀i ∈C ,n ∈ N , (7.10)∑
i∈C

yi ,n = 1 ∀n ∈ N . (7.11)

Equation (7.11) is a linear constraint, however equation (7.10) is non-convex. We propose a

logarithmic transformation over the choice probability equation (7.10) as follows:

y
′
i ,n = υ

′
n +Vi ,n ∀i ∈C ,n ∈ N , (7.12)

where y
′
i ,n represents ln(yi ,n) and υ

′
n represents ln(υn). Therefore, the choice probability

definition is reformulated as a linear constraint given that the utility is linear in the decision

variables of the optimization model. When the utility is nonlinear, some available lineariza-

tions may be applied, for example variable substitution. One example is illustrated in section

7.5.
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Figure 7.1: A plot for the penalty term
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As function g is defined over the original choice probability variables y , we need to explicitly

include the relation between the two variables. Adding a constraint exp(y
′
) = y to impose

equality destroys the convexity of the problem. Instead, we propose to penalize the deviation

between exp(y
′
) and y in the objective function. Since the problem is a maximization problem,

the penalty on the deviation is introduced with a negative sign as follows:

f (y, y
′
) =−M(y −exp(y

′
))2, (7.13)

where M ≥ 0 is the penalty value. The Hessian for the penalty term is given by:

H =
⎛⎝ ∂2 f

∂y2
∂2 f

∂y∂y ′

∂2 f

∂y ′
∂y

∂2 f

∂y ′2

⎞⎠=
(

−2M 2M exp(y
′
)

2M exp(y
′
) 2M exp(y

′
)(y −2exp(y

′
))

)
.

The Hessian is negative semi-definite if the diagonals are ≤ 0 and the determinant is ≥ 0. First

diagonal, −2M , is clearly negative. The second diagonal of the Hessian is 2M exp(y
′
)(y −

2exp(y
′
)). It is negative when y ≤ 2exp(y

′
). The determinant of the Hessian matrix is given by:

−4M 2 exp(y
′
)(y −exp(y

′
)), (7.14)

which is non-negative when y ≤ exp(y
′
). Therefore the penalty term is concave provided

that y ≤ exp(y
′
). This can be illustrated with a 3D plot of the penalty term as given in Figure

7.1. The range for y is selected in [0,1] since it represents a probability and the range of y
′

is

arranged accordingly to match the values. The function is flat along the curve y = exp(y
′
) as

seen in the figure. Taking this curve as a reference, when y decreases a concave subregion is

reached as can be observed from the figure. Therefore, given that the condition y ≤ exp(y
′
) is

guaranteed the penalty term is shown to be concave. However, the constraint y ≤ exp(y
′
) is a

concave function and when introduced in the problem, renders the problem a non-convex

programming problem.

A similar procedure can be adopted to reformulate the objective function. Define Ri ,n as the

revenue obtained from individual n with alternative i (Ri ,n = yi ,n pi ). Therefore the objective

function given in (7.1) can be re-written as:

zP =max
∑

i∈C o

∑
n∈N

yi ,n pi ,

=max
∑

i∈C o

∑
n∈N

Ri ,n . (7.15)

Note that Ri ,n is not defined for competitive alternatives. We consider a similar logarithmic

transformation and define R
′
i ,n as ln(Ri ,n). The deviation between Ri ,n and exp(R

′
i ,n) also

needs to be penalized in the objective function. R
′
i ,n is considered by including the following
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constraint:

R
′
i ,n ≤ y

′
i ,n + ln(pi ) ∀i ∈C o ,n ∈ N , (7.16)

where the right hand side corresponds to the logarithm of yi ,n pi . Instead of an equality

constraint, we can safely formulate it as an inequality in order to define a convex relation.

Indeed, this is the only constraint binding R
′
i ,n from above and the objective direction is

maximization. The right hand side is composed of a linear term and a concave function which

shows that (7.16) is convex.

Therefore, the reformulated model with the logarithmic transformation (Pln) and penalty

terms can be written as:

zPln =max
∑

i∈C o

∑
n∈N

Ri ,n −M1i ,n(Ri ,n −exp(R
′
i ,n))2

− ∑
i∈C

∑
n∈N

M2i ,n(yi ,n −exp(y
′
i ,n))2 (7.17)

s.t. R
′
i ,n ≤ y

′
i ,n + ln(pi ) ∀i ∈C o ,n ∈ N (7.18)

y
′
i ,n = υ

′
n +Vi ,n(pi , zi ,n ;β) ∀i ∈C o ,n ∈ N (7.19)

y
′
j ,n = υ

′
n +Vj ,n(p̄ j , z j ,n ;β) ∀ j ∈C c ,n ∈ N (7.20)∑

i∈C
yi ,n = 1 ∀n ∈ N (7.21)

gi ,n(yi ,n , pi ) ≤ 0 ∀i ∈C ,n ∈ N (7.22)

yi ,n ≤ exp(y
′
i ,n) ∀i ∈C ,n ∈ N (7.23)

yi ,n ≥ 0 ∀i ∈C ,n ∈ N (7.24)

y
′
i ,n ∈R ∀i ∈C ,n ∈ N (7.25)

υ
′
n ∈R ∀n ∈ N (7.26)

Ri ,n ≤ exp(R
′
i ,n) ∀i ∈C o ,n ∈ N (7.27)

Ri ,n ≥ 0 ∀i ∈C o ,n ∈ N (7.28)

R
′
i ,n ∈R ∀i ∈C o ,n ∈ N (7.29)

pi ≥ 0 ∀i ∈C o (7.30)

The set of penalty terms, M1, is introduced for the deviation of the revenue variable and set

M2 is for the deviation of the choice probability. As a result, the objective function is concave;

constraints (7.19)-(7.21) are linear constraints given that Vi ,n(pi , zi ,n ;β) is linear in pi (or given

that it can be linearized); constraints (7.22) are convex with a convex definition of g . However

constraints (7.23) and (7.27) are non-convex functions.

With the proposed reformulation we do not obtain a convex programming problem. However,

computational experiments suggest that this reformulation in much stronger and easier to

solve. Intuitively, there is a subspace where the problem is convex, and where an algorithm
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may benefit from this convexity. Furthermore, for specific cases these constraints can be

relaxed as described in section 7.4.1.

It is important to note that the conditioning of the Hessian matrix related to the full objective

function depends on the values of M1 and M2. These values should be carefully selected

according to the structure of the revenue function. As it is common with any penalty method

the numerical stability of the problem depends on the values of the penalties, M1 and M2. A

lower penalty value means a better conditioning of the Hessian and vice versa.

7.4 Illustrative examples

In this section, we illustrate the added value of the proposed transformation with two simple

examples. The first one is carried out with an aggregate demand model. On the other hand

the second example integrates a disaggregate demand model with two groups of individuals

with different characteristics.

7.4.1 Aggregate demand model

Consider two alternative products with the following utility functions:

V1 =βp1, V2 =βp̄2, (7.31)

where there is no additional explanatory variable, z, and price is introduced with a generic

coefficient, β in the utility function. The second product here represents the competing

alternative and its price, p̄2, is fixed. Therefore the only decision is on p1.

The utility is defined with aggregate variables and the market share for alternative 1 is given as:

u1 = exp(V1)

exp(V1)+exp(V2)
= exp(βp1)

exp(βp1)+exp(βp̄2)
(7.32)

The objective is to maximize the revenue for alternative 1 and consider that there are 100

potential customers for the products. Therefore the model P given in (7.1)-(7.5) is formulated

for this simple example as:

zP1 =max 100u1p1 (7.33)

s.t. u1 = exp(βp1)

exp(βp1)+exp(βp̄2)
(7.34)

u2 = exp(βp̄2)

exp(βp1)+exp(βp̄2)
(7.35)

p1 ≥ 0 (7.36)
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The revenue for alternative 1 (7.33) is given by the product of the market share, the price,

and the total demand 100. The market shares for the products are given in (7.34) and (7.35)

respectively. It is assumed that there are no other constraints.

In this simple example we do not need to have a log transformation over the revenue function

since there is only one revenue to be considered. Therefore, the objective function of this

problem can be treated as below in order to have a concave function:

max 100u1p1 ⇔ max u
′
1 + ln(p1), (7.37)

which follows from the relation 100u1p1 = exp(ln(100)+ ln(u1)+ ln(p1)). exp() can be ignored

since it is strictly monotonic. Furthermore ln(u1) is represented by u
′
1 and ln(100) can be

removed since it is a constant. The objective function for the reformulated problem with the

penalty terms can be written as:

u
′
1 + ln(p1)−M1(u1 −exp(u

′
1))2 −M2(u2 −exp(u

′
2))2. (7.38)

The Hessian for the objective function is given as follows:

H =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

− 1
p2

1
0 0 0 0

0 −2M1 2M1 exp(u
′
1) 0 0

0 2M1 exp(u
′
1) 2M1 exp(u

′
1)(u1 −2exp(u

′
1)) 0 0

0 0 0 −2M2 2M2 exp(u
′
2)

0 0 0 2M2 exp(u
′
2) 2M2 exp(u

′
2)(y2 −2exp(u

′
2))

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

which indicates the interrelation between the conditioning of the matrix and the values

selected for M1 and M2.

The reformulated model for the problem can be given by:

zPln
1
=max u

′
1 + ln(p1)−M1(u1 −exp(u

′
1))2 −M2(u2 −exp(u

′
2))2 (7.39)

s.t. u
′
1 = υ

′ +βp1 (7.40)

u
′
2 = υ

′ +βp̄2 (7.41)

u1 +u2 = 1 (7.42)

u1 ≤ exp(u
′
1) (7.43)

u2 ≤ exp(u
′
2) (7.44)

u1,u2 ≥ 0 (7.45)

u
′
1,u

′
2 ∈R (7.46)

υ
′ ∈R (7.47)

p1 ≥ 0 (7.48)

In this specific problem the objective function is written as a concave function. Furthermore

since u
′
1 is in the objective rather than u1, the constraint (7.43) is redundant in the formulation.
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On the contrary, constraint (7.44) is necessary.

We present results with the original formulation P1 given in (7.33)-(7.36) and the reformulated

problem Pln
1 given in (7.39)-(7.48). For the solution of the two formulations, BONMIN solver

(Bonami et al., 2008) is used which is designed for convex problems and can treat non-convex

problems as a heuristic. The price of the second alternative, p̄2, is assigned to 2 and two

different β values are selected as scenarios.

Moderate price elasticity: β=−1

The model is illustrated in Figure 7.2. The change of the associated market shares and the

revenues of the alternatives is given as a function of the price of alternative 1, p1. It can be

seen that the maximum value for the revenue is realized when p1 = 2 which gives equal market

shares for the alternatives. When the two versions of the model are solved, this solution is

obtained for both of them.

This is an easy instance where the price elasticity is relatively low. The price elasticity for

alternative 1 is given as:

E 1
p1

= ∂u1

∂p1

p1

u1
= (1−u1)p1β (7.49)

as explained in Ben-Akiva and Lerman (1985). For the price value of 2, the price elasticity is

computed as -1 since the alternatives get a 0.5 market share each. For the reformulated model,

experiments are done with penalty values in a range of [1−1,000,000] and the optimal price

is always found in this range.

High price elasticity: β=−2.5

According to (7.49), the price elasticity is computed as -2.5 when p1 = 2. Therefore the price

elasticity is higher compared to the previous case. The model is illustrated in Figure 7.3. It is

observed that the maximum value for the revenue is realized when p1 is around 1.55.

Numerical problems occur when solving the original formulation and 0 revenue is obtained

as a result. However when we add the constraints p1 ≤ 2 and p1 ≥ 1.5 the optimum price of

1.57 is obtained. These additional constraints define a concave subregion as can be observed

in Figure 7.3. If the shape of the objective function is easy to analyze, this kind of a treatment

can be done. However, in real life problems it is not trivial to find the appropriate constraints

on the variables.

When the reformulated model is solved, the optimum p1 value is obtained with penalty values

in a range of [1−1,000,000]. Even though the elasticity is higher, the reformulated model can

be solved with BONMIN without any penalty related problems.
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These two scenarios based on the aggregate demand model show that the non-convexity is

manageable when the elasticity is relatively low. In such a case the original formulation and

the reformulation can be solved to optimality without any problem. However when the price

elasticity is higher the original problem cannot be solved with BONMIN. The reformulated

problem on the other hand, can be solved to optimality for a wide range of penalty values. The

same experiment is conducted with increased β values up to −10. The same observations are

made; the original formulation does not allow to find the optimum, while the reformulation

can be solved to optimality under a wide range of penalty values. It is concluded that with an

aggregate setting as in this example, the penalty terms seem not to be critical. Even with low

penalty values the optimal solution can be found. The flexibility in keeping the penalty value

low improves the numerical stability of the problem.

7.4.2 Disaggregate demand model

In this example, individual specific coefficients are introduced through two groups of individ-

uals. These two groups have different price elasticities. Consider that there are two alternative

products in the market with the following utilities:

Vi ,n =βn pi + zi i ,n ∈ {1,2}. (7.50)

The index i is for the alternatives and n stands for the groups with different characteristics.

Consider that there are 600 individuals in the first group and 400 individuals in the second

group. For each group, the price parameter is generic across alternatives. An alternative

specific constant, zi , is introduced in the utility of the alternatives. In order to introduce such

a constant we should fix the constant for one alternative (typically to zero) for identification

purposes in the estimation process.

Similarly to the previous example, assume that the objective is to maximize the revenue

resulting from the first alternative and that the price of the second alternative, p̄2 is fixed to 2.

The choice probability of alternative i for each group n is represented by yi ,n and the model P

given in (7.1)-(7.5) is formulated for this example as:

zP2 =max 600y1,1p1 +400y1,2p1 (7.51)

s.t. y1,n = exp(βn p1 + zi )

exp(βn p1 + z1)+exp(βn p̄2 + z2)
n ∈ {1,2} (7.52)

y2,n = exp(βn p̄2 + z2)

exp(βn p1 + z1)+exp(βn p̄2 + z2)
n ∈ {1,2} (7.53)

p1 ≥ 0 (7.54)

The revenue for the first alternative (7.51) is the sum of the revenues resulting from the

attracted individuals in each group. In order to apply the proposed formulation given in

section 7.3, the objective function of this problem should be modified with the penalty terms.
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Figure 7.2: The market share and the revenue with β=−1
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Figure 7.3: The market share and the revenue with β=−2.5
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The revenue for each group is given as:

R1,1 = 600y1,1p1, R1,2 = 400y1,2p1 (7.55)

As done before, we define y
′
i ,n as the logarithm of the choice probabilities. Furthermore, as

explained in section 7.3, R
′
i ,n is defined as the logarithm of the revenue for alternative i and

group n.

The reformulated model for the problem is given by:

zPln
2
=max

2∑
n=1

R1,n −
2∑

n=1
M1n(R1,n −exp(R

′
1,n))2

−
2∑

n=1

2∑
i=1

M2i ,n(yi ,n −exp(y
′
i ,n))2 (7.56)

s.t. R
′
1,1 ≤ ln(600)+ y

′
1,1 + ln(p1) (7.57)

R
′
1,2 ≤ ln(400)+ y

′
1,2 + ln(p1) (7.58)

R1,n ≤ exp(R
′
1,n) n ∈ {1,2} (7.59)

y
′
1,n = υ

′
n +βn p1 + z1 n ∈ {1,2} (7.60)

y
′
2,n = υ

′
n +βn p̄2 + z2 n ∈ {1,2} (7.61)

2∑
i=1

yi ,n = 1 n ∈ {1,2} (7.62)

yi ,n ≤ exp(y
′
i ,n) i ,n ∈ {1,2} (7.63)

yi ,n ≥ 0 i ,n ∈ {1,2} (7.64)

y
′
i ,n ∈R i ,n ∈ {1,2} (7.65)

R1,n ≥ 0 n ∈ {1,2} (7.66)

R
′
1,n ∈R n ∈ {1,2} (7.67)

υ
′
n ∈R n ∈ {1,2} (7.68)

p1 ≥ 0 (7.69)

As shown in section 7.3, penalty terms are concave when R1,n ≤ exp(R
′
1,n) and yi ,n ≤ exp(y

′
i ,n).

Therefore constraints (7.59) and (7.63) are included in the model. Constraints (7.57)-(7.58)

define the revenue in the logarithmic representation. They are introduced as ≤ constraints, in

order to have convex representation. The remainder of the model is similar to the previous

example. Since we cannot avoid (7.59) and (7.63), the reformulation is also non-convex. Since

this problem is also easy, it is possible to identify the global optimum point.

We perform experimental analysis with the original representation of the problem, P2, given in

(7.51)-(7.54) and the reformulated problem Pln
2 given in (7.56)-(7.69). As done before, BONMIN

solver is used for solving the two formulations. Different scenarios are tested with different

price parameters, βn , and alternative specific constants, zi . With the analysis of the aggregate
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Table 7.1: Penalties resulting with global optimum, βn = (−0.75,−0.5), zi = (−0.5,0)

M1n M2i ,n

100,000 100,000
100,000 10,000
100,000 1,000
100,000 100

10,000 10,000

demand model example in section 7.4.1, it is concluded that high price parameter values result

with higher elasticity and make the problem more difficult. For that reason lower β values are

selected in this example, in order to see the impact of disaggregate demand model clearly.

Experiment with β1 =−0.75, β2 =−0.5, z1 =−0.5, z2 = 0

The revenue function with the selected parameters is presented in Figure 7.4. In this experi-

ment, the elasticity of the two groups are -0.93 and -0.62 respectively when p1 = 2 given by the

equation (7.49). The elasticities are not very different and there is a unique optimum at around

p1 = 2.3. This experiment presents an easy setting since the elasticity around the optimum

point is not high (it is -1.16 for the first group and -0.76 for the second).

The original formulation allows to find the optimum price value. Similarly, the reformulation

is solved to optimality for a wide range of penalty values. In Table 7.1 we present the set of

penalty values which allows to find the optimal price. It is observed that, in this example

with lower penalty values we cannot find the optimum price value. However in the aggregate

demand model example given in section 7.4.1, the penalty values could be chosen much lower.

Experiment with β1 =−0.75, β2 =−0.1, z1 =−0.5, z2 = 0

The revenue function with the selected parameters is presented in Figure 7.5. It is seen that

there are two critical points of the function. One is at p1 = 3.2 and the second is at p1 = 12.2.

Visually it is obvious that the second point is the global maximum. The price elasticities of

the two groups are significantly different. It is calculated as -0.93 and -0.13 respectively when

p1 = 2. The first local optimum occurs when there are high number of attracted individuals

from both of the groups with a low price. The second occurs when there is a very high price

and a number of individuals from the second group are still attracted since they are less elastic

to price compared to the first group.

Since this is a more critical experiment, the reformulation needs carefully selected penalty

values. The penalty values which allow the solution of the problem to optimality are presented

in Table 7.2. Note that the penalty values for the revenue resulting from the two groups,

M11 and M12, are selected differently. With lower penalty values, BONMIN gets stuck at
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Figure 7.4: The revenue function with βn = (−0.75,−0.5), zi = (−0.5,0)

Table 7.2: Penalties resulting with global optimum, βn = (−0.75,−0.1), zi = (−0.5,0)

M11 M12 M2i ,n

100,000,000 1,000,000 1,000,000
10,000,000 100,000 1,000,000

1,000,000 10,000 1,000,000
1,000,000 10,000 100,000

the local optimum when solving the reformulated problem as happens with the original

formulation. When higher penalty values are selected numerical issues may occur since the

Hessian matrix becomes ill-conditioned. This example shows that when the problem becomes

more difficult with significantly different elasticities, the reformulation enables us to obtain

the global optimum with appropriate penalty values.

A further understanding can be obtained when the price-elasticity of demand is analyzed at

the critical points. The elasticity around the first critical point is approximately -1.93 and -0.21

for the first and second group respectively. For the global maximum these values are around

-9.00 and -0.98. The global optimum lies at a point with very high elasticity and makes the

problem difficult to solve.
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Figure 7.5: The revenue function with βn = (−0.75,−0.1), zi = (−0.5,0)

Experiment with β1 =−0.75, β2 =−0.1, z1 = 5, z2 = 0

In the previous experiment, different price elasticities of the two groups are analyzed. In this

experiment, we also introduce a significant difference in the alternative specific constants.

Having such a big constant results with an almost price-inelastic demand. The price elasticity

of the two groups are calculated as -0.01 and -0.001 respectively for p1 = 2. The revenue

function is presented in Figure 7.6. It is observed that the optimum price is higher compared

to the two previous cases and there are again two local optimum points: p1 = 7.8 and p1 = 40.8.

The elasticity around the first critical point is approximately -2.0 and -0.009 for the first and

second group respectively. For the global maximum these values are around -30.5 and -0.99.

The global optimum lies at a point with extremely high elasticity and makes the problem

difficult to solve. Note that, the elasticities observed in this example are not realistic and will

not appear often in practice. Similarly, in the previous example the global optimum is at a

point with very high elasticity for the first group of individuals. These examples are meant to

investigate the role and limitations of the transformation rather than representing realistic

illustrations.

When the original formulation is solved, infinite revenue is obtained due to numerical prob-

lems. Compared to the previous case, the solution of the original formulation creates more

severe issues, even finding a local maximum is difficult.
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Figure 7.6: The revenue function with βn = (−0.75,−0.1), zi = (5,0)

Table 7.3: Penalties resulting with global optimum, βn = (−0.75,−0.1), zi = (5,0)

M11 M12 M2i ,n

1,000,000,000 10,000,000 1,000,000
100,000,000 1,000,000 1,000,000

1,000,000 10,000 100,000
100,000 1,000 100,000

The reformulation on the other hand, enables to obtain the global optimum with high enough

penalty values. The penalty values that allow to solve the problem to optimality are presented

in Table 7.3. The penalty values on the revenues for the two groups, M11 and M12, are again

selected differently.

These three experiments with a disaggregate demand model show that, the individual charac-

teristics increase the difficulty of the problem. The original formulation does not allow to find

the global optimum when the population consists of significantly different characteristics. On

the other hand, the reformulation can be solved to optimality given that penalty values are

selected carefully. Compared to the case with aggregate demand model, higher penalty values

and a finer calibration is needed for each penalty term.

As mentioned before, the constraints (7.59) and (7.63) are added in the formulation in order

to have concave penalty terms. Even though these constraints themselves are not convex,
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they guide the algorithm for obtaining the global optimum solution. When these constraints

are removed, BONMIN gets stuck at the local optimum values for the last two experiments.

It is observed that, these non-convex constraints are handled without any problem in the

illustrative experiments. Therefore, the reformulation is observed to be a stronger formulation

compared to the original formulation. We presented the experiments only with BONMIN

solver. However we expect similar results with other NLP solvers.

7.4.3 Conclusions on the illustrations

The illustrative examples provide valuable insights about the impact of the demand model

parameters on the complexity of the optimization problem where price is an explanatory

variable of the logit model and introduced as a decision variable in the optimization model.

First of all, it is observed that the most critical parameter is the price parameter which directly

affects the price elasticity. When the elasticity is high the original formulation can not be solved

and the reformulation can be solved with higher penalty values. Secondly, having low price

parameters is not a complete solution. If the demand model is disaggregate with individual-

specific parameters, the optimal solution may be at a point where the elasticity is high. The

shape of the objective function may change significantly in the existence of individuals with

different elasticities. The reformulation of the model enables to obtain solutions with a careful

selection of the penalty parameters for different specifications of the logit model.

7.5 A case study: airline revenue maximization

In this section we present the methodology with the revenue maximization model for airlines.

The considered model is very similar to RMM-PR
′

which is the revenue sub-problem of the

integrated model, IFAM-PR
′
. It is given in Appendix A.3.3.

As explained in the first illustrative example in section 7.4.1, one way to deal with the non-

convexity is introducing bounds on price. Therefore, in the integrated models presented in

chapters 4 and 6, we impose bounds on prices with constraints (4.18) and (4.18) respectively.

Since the considered demand model is aggregate, BONMIN is able to cope with the integrated

model in the existence of these bounds. We acknowledge the potential use of bounds on

the price in practical terms. There could be cases where airlines desire to keep the prices in

pre-defined limits as a policy in specific market segments. Anyway, the existence of bounds

on price may lead to sub-optimal solutions. With the proposed logarithmic transformation,

the bounds can be removed in order to obtain superior decisions as the resulting formulation

is stronger.

7.5.1 The model

In this section we present the original representation of the revenue management model
without any bounds on the price. The objective function (7.70) is given by the sum of the
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revenues obtained for each itinerary operated by the airline. Competing itineraries (i ∈ I
′
s) do

not contribute to the revenue. The market shares, ui , are defined by the logit model as given
in (7.71). The market shares for the competing itineraries are given by (7.72).

z�RMM = max
∑

h∈H

∑
s∈Sh

Ds
∑

i∈(Is \I
′
s )

ui pi (7.70)

s.t. ui =
exp(βi ln(pi )+ zi )∑

j∈(Is \I
′
s )

exp(β j ln(p j )+ z j )+ ∑
j ′ ∈I

′
s

exp(β j ′ ln(p̄ j ′ )+ z j ′ )
∀h ∈ H , s ∈ Sh , i ∈ (Is \ I

′
s ) (7.71)

u j =
exp(β j ln(p̄ j )+ z j )∑


∈(Is \I
′
s )

exp(β
 ln(p
)+ z
)+ ∑


′ ∈I

′
s

exp(β


′ ln(p̄



′ )+ z



′ )

∀h ∈ H , s ∈ Sh , j ∈ I
′
s (7.72)

∑
h∈H

∑
s∈Sh

Ds
∑

i∈(Is \I
′
s )

δi , f ui ≤ Cap f ∀ f ∈ F (7.73)

pi ≥ 0 ∀h ∈ H , s ∈ Sh , i ∈ (Is \ I
′
s ) (7.74)

The considered logit model is the one estimated in Chapter 3. It is defined by attributes of the

itineraries, i.e. there is no socio-economic characteristics or individual specific parameters.

Therefore, the choice probability is equivalent to the market shares of the alternatives. The

only policy variable is the price, pi , i.e. it is defined as a decision variable of the optimization

model. All the other explanatory variables are aggregated and represented by zi which is a

constant for every alternative i . For the specification of the utility function, we refer to Table

3.1. Constraints (7.73) ensure that the total demand for a flight does not exceed the allocated

capacity, Cap f . For this problem we assume that capacity is given typically by a decision

problem on airline fleet assignment.

This model is a non-convex problem due to the objective function and the market share

definition with logit formula. The same model can be represented in an easier formulation as

done in Chapter 6, by replacing the market share constraints (7.71) with:

ui = υs exp(βi ln(pi )+ zi ) ∀h ∈ H , s ∈ Sh , i ∈ (Is \ I
′
s), (7.75)

u j = υs exp(β j ln(p̄ j )+ z j ) ∀h ∈ H , s ∈ Sh , j ∈ I
′
s , (7.76)∑

i∈Is

ui = 1 ∀h ∈ H , s ∈ Sh , (7.77)

υs ≥ 0 ∀h ∈ H , s ∈ Sh , (7.78)

which is the first step towards the logarithmic transformation presented in section 7.3. Fur-

thermore, this formulation, that is referred as �RMM
′
, is numerically more stable. In the next

section we apply the logarithmic transformation procedure given in section 7.3.

7.5.2 The reformulated model

For the reformulation of the problem, we define the logarithm of revenue and market share
variables as R

′
i and u

′
i respectively. The objective function (7.79) represents the reformulated
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revenue function. The logarithmic transformation of the revenue and market share variables
results with deviation from the original variables. Similar to the example in section 7.4.2,
penalty terms are introduced for the for both of them.

z�RMM
ln =max

∑
h∈H

∑
s∈Sh

∑
i∈(Is \I

′
s )

Ri −M1i (Ri −exp(R
′
i ))2

− ∑
h∈H

∑
s∈Sh

∑
i∈Is

M2i (ui −exp(u
′
i ))2 (7.79)

s.t. R
′
i = ln(Ds )+u

′
i +p

′
i ∀h ∈ H , s ∈ Sh , i ∈ (Is \ I

′
s ) (7.80)

Ri ≤ exp(R
′
i ) ∀h ∈ H , s ∈ Sh , i ∈ (Is \ I

′
s ) (7.81)

u
′
i = υ

′
s +βi p

′
i + zi ∀h ∈ H , s ∈ Sh , i ∈ (Is \ I

′
s ) (7.82)

u
′
j = υ

′
s +β j p̄

′
j + z j ∀h ∈ H , s ∈ Sh , j ∈ I

′
s (7.83)∑

i∈Is

ui = 1 ∀h ∈ H , s ∈ Sh (7.84)

ui ≤ exp(u
′
i ) ∀h ∈ H , s ∈ Sh , i ∈ Is (7.85)∑

h∈H

∑
s∈Sh

Ds
∑

i∈(Is \I
′
s )

δi , f ui ≤ Cap f ∀ f ∈ F (7.86)

Ri ≥ 0 ∀h ∈ H , s ∈ Sh , i ∈ (Is \ I
′
s ) (7.87)

R
′
i ∈R ∀h ∈ H , s ∈ Sh , i ∈ (Is \ I

′
s ) (7.88)

ui ≥ 0 ∀h ∈ H , s ∈ Sh , i ∈ Is (7.89)

u
′
i ∈R ∀h ∈ H , s ∈ Sh , i ∈ Is (7.90)

υ
′
s ∈R ∀h ∈ H , s ∈ Sh (7.91)

p
′
i ∈R ∀h ∈ H , s ∈ Sh , i ∈ (Is \ I

′
s ) (7.92)

The considered logit model has the price as a logarithm in the utility function as described

in chapter 3. Therefore we define p
′
i in order to represent the logarithm of the price and we

do not need to define the original price variables. As mentioned in section 7.3, the utility

function can be introduced as a linear constraint if it is linear in decision variables of the

optimization model, which is the price. However, it is possible to relax this condition whenever

it is appropriate to define a new variable for the nonlinear relation. In this formulation, instead

of working with original price variable, we define the logarithm of price and the utility can be

represented as a linear constraint.

Constraints (7.80) give the logarithm of the revenue for each itinerary (Dsui pi ). Constraints

(7.81) and (7.85) are introduced to ensure the concavity of the penalty terms. Constraints

(7.82) and (7.83) provide the transformed market shares of the itineraries. υ
′
s is the logarithm

of the variable υs given in (7.9). Note that, as done for the price variable we work with the

logarithm only and do not need the original variable υs . The price of competing itineraries

(i ∈ I
′
s) are given as parameters, p̄, as usual.Constraints (7.84) maintain that the market shares

of the itineraries in the same segment sum up to 1. Capacity constraints (7.86) are introduced

as done for the original formulation �RMM. The variable definitions are given in (7.89)-(7.92).
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The presented reformulation can be simplified since there is indeed no need for the first set

of penalty values, M1i . The reasoning is that, the maximization will result with no slack on

constraints (7.81) and Ri will be the best when it is equal to exp(R
′
i ) since there is no other

constraint on Ri . Furthermore constraints (7.80) could be introduced as equality constraints

since price is introduced as p
′
i . The only relaxed variable on the right hand side is the market

shares. Therefore, if the deviation of the market share is penalized, there is not need for M1i

and can simply be replaced by 0. The same simplification could not be done in the illustrative

example of section 7.4.2 since the definition of revenue variables is given as ≤ constraints, in

(7.57) and (7.58).

An important understanding is the concept of spill in case of integrated model with explicit

demand representation. When the demand is introduced as a variable rather than an input

parameter, the passengers should settle to the desired itineraries according to the demand

model. This includes the concept of spill and therefore there is no need for an explicit modeling.

However, this holds when explanatory variables are not constrained in the optimization model.

In our context, there is no need for spill consideration when the price values are not limited. In

other words, no spill occurs when the model is free to optimize the price without any bounds

as the price will match the optimum given the available capacity. Since the non-convexity of

the models do not allow for such a case due to numerical tractability, the integrated models in

chapters 4 and 6 do consider spill. In chapter 4, the spill variables, ti , j are explicitly modeled

as a control of the airline and recapture ratios bi , j are modeled with the logit used for the

demand model. On the other hand in chapter 6, the spill is maintained by allowing the market

share to be less than the potential market share given by the logit model (see constraints (6.7)

and (6.18)). However, with the transformed model presented in this section, �RMM
ln

, we do

not need to impose bounds on the price (7.92) and the market share equations can be given as

equality (7.82). This is an added value of the logarithmic transformation. In this chapter the

analysis is performed with the revenue maximization model only. However the same holds

for the integrated model. The integrated model can be written without any bounds on the

price. In Appendix A.7 we present the integrated model, that is given in chapter 6, with the log

transformation and provide an illustrative example.

7.5.3 Application of the models

The application of the models is carried out with realistic data instances that are generated

using the ROADEF Challenge 2009 dataset as done throughout the thesis. 3 data instances are

selected with 10, 97 and 980 flights and referred as small, medium and large size instances

respectively as seen in Table 7.4. The small and medium data instances are actually the

experiments 1 and 25 introduced in Table 5.1. The large one was not considered for the

integrated model throughout the thesis since it is not tractable in terms of computational time.

However, if we consider the log transformation we can treat such large instances.

For the capacity related information, consider that there is an external decision tool which
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Table 7.4: Air travel data instances

Small Medium Large
Number of airports: 3 8 161

Number of flights: 10 97 980
Total demand (passengers): 519 8,811 164,137

Number of itineraries: 16 106 2,197
Level of service: Nonstop Nonstop/one-stop Nonstop/one-stop

Assigned capacity for all flights: 50 seats 100 seats 195 seats

Table 7.5: Experimental results

Small instance Medium instance Large instance�RMM Revenue does not converge does not converge does not converge

�RMM
′ Revenue 77,721 1,661,130 does not converge

Runtime 0.02 sec 0.04 sec -

�RMM
ln

M2i Deviation∗ M2i Deviation∗ M2i Deviation∗∗

Experiments

104 220.7619% 106 36.1224% 108 0.7197%
105 22.0762% 107 3.6126% 109 0.0720%
106 2.2076% 108 0.3612% 1010 0.0072%
107 0.2208% 109 0.0361% 1011 0.0008%
108 0.0220% 1010 0.0036% 1012 0.0001%
109 0.0022% 1011 0.0006% 1013 0.0000%

1010 0.0003% 1012 0.0000%
1011 0.0000%

Avg. runtime 0.02 sec 0.06 sec 4.87 sec

(* Deviation from the revenue obtained with �RMM
′
)

(** Deviation from the revenue obtained with a penalty of 1013)

provides the capacity for each flight, Cap f . For the presented data instances, the capacity of

the flights in the network is assumed to be the same with 50, 100 and 195 seats for the small,

medium and large size instances respectively.

In order to solve �RMM and �RMM
′
, presented in section 7.5.1 and the transformed problem,�RMM

ln
, given in section 7.5.2, BONMIN is used as done for the illustrative examples.

The results for the three versions of the model are given in Table 7.5. It is observed that�RMM cannot be solved for any of the instances. On the other hand �RMM
′

can be solved

for the small and medium instances, but not for the large instance. For the reformulated

model several penalty values are tested. As mentioned before, when applying the logarithmic

transformation, we do not need to penalize the deviation of the revenue variables. Therefore,

the experiments are carried out with M2i only. For the small and medium instances, the

deviation from the solution obtained by �RMM
′

is reported. The penalty is increased by an

order of magnitude until a deviation inferior to 1 ×10−4 is reached. For the large instance there
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is no reference point since we cannot solve the problem with the original formulations of the

model. Therefore the reported deviations for the large instance are reported with respect to

the solution obtained with a penalty of 1013. For each instance, the same set of prices are

found even if the final revenue is different due to deviation. It is observed that when the size

of the instance increases, a higher penalty value is needed to converge. The runtime for the

experiments is negligible even for the large instance which represents a large real network

with 980 daily flights.

The case-study shows that, revenue maximization problem with explicit demand model is

intractable to handle with the original formulation for realistic size data instances. With the

logarithmic transformation, solutions can be obtained with available solvers. Note that we

present results with the BONMIN solver only.

7.6 Obtaining a valid upper bound

The proposed formulation with logarithmic transformation is non-convex. The solution of

this non-convex formulation provides a feasible solution which gives a lower bound to the

revenue but no proof of optimality. In order to have a valid upper bound to the revenue, we

propose an approximation in this section. We use the notation for the general case given in

section 7.2.

The penalty terms in the previous section are introduced in order to penalize the deviation

between the original variables and the logarithmic transformation, namely the deviation

between Ri ,n and exp(R
′
i ,n); yi ,n and exp(y

′
i ,n). Working with penalties is preferred rather

than simply imposing Ri ,n = exp(R
′
i ,n) and yi ,n = exp(y

′
i ,n) since the non-convexity with the

equality constraints is more difficult to handle.

In order to obtain an upper bound on the revenue, we elaborate on the equality constraints.

Let’s consider the transformation of the choice probability. The equality yi ,n = exp(y
′
i ,n) can

be represented as the intersection of:

yi ,n ≤ exp(y
′
i ,n) ∀i ∈C ,n ∈ N , (7.93)

yi ,n ≥ exp(y
′
i ,n) ∀i ∈C ,n ∈ N . (7.94)

Constraints (7.93) are non-convex as mentioned in section 7.3. On the other hand, constraints

(7.94) are convex and can be safely kept in the model. Constraints (7.93) can be approximated

from above with a piecewise linear function as illustrated in Figure 7.7. It is observed that the

feasible region in the existence of both constraints are the separable convex regions under each

of the pieces. A similar approach is carried out by D’Ambrosio and Lee (2009) in an extended

framework where feasible region is separable into convex and concave subregions. In each

convex/concave region a further approximation is done with piecewise linear functions. In

our case the function we address is concave and we can proceed with the second step directly.

149



Chapter 7. Log transformation of the logit model

The model with the piecewise linear approximation is given as:

z
pwl

Pln =max
∑

i∈C o

∑
n∈N

Ri ,n (7.95)

s.t. R
′
i ,n ≤ y

′
i ,n + ln(pi ) ∀i ∈C o ,n ∈ N (7.96)

y
′
i ,n = υ

′
n +Vi ,n (pi , zi ,n ;β) ∀i ∈C o ,n ∈ N (7.97)

y
′
j ,n = υ

′
n +Vj ,n (p̄ j , z j ,n ;β) ∀ j ∈C c ,n ∈ N (7.98)∑

i∈C
yi ,n = 1 ∀n ∈ N (7.99)

gi ,n (yi ,n , pi ) ≤ 0 ∀i ∈C ,n ∈ N (7.100)

yi ,n ≥ exp(y
′
i ,n ) ∀i ∈C ,n ∈ N (7.101)

yi ,n ≤ ỹb + (y
′
i ,n − ỹ

′
b )

ỹb+1 − ỹb

ỹ
′
b+1 − ỹ

′
b

+M(1−ω1b,i ,n ) ∀b ∈ B1, i ∈C ,n ∈ N (7.102)

y
′
i ,n ≤ ỹ

′
b+1 +M(1−ω1b,i ,n ) ∀b ∈ B1, i ∈C ,n ∈ N (7.103)

y
′
i ,n ≥ ỹ

′
b −M(1−ω1b,i ,n ) ∀b ∈ B1, i ∈C ,n ∈ N (7.104)∑

b∈B1
ω1b,i ,n = 1 ∀i ∈C ,n ∈ N (7.105)

yi ,n ≥ 0 ∀i ∈C ,n ∈ N (7.106)

y
′
i ,n ∈R ∀i ∈C ,n ∈ N (7.107)

Ri ,n ≥ exp(R
′
i ,n ) ∀i ∈C o ,n ∈ N (7.108)

Ri ,n ≤ R̃b + (R
′
i ,n − R̃

′
b )

R̃b+1 − R̃b

R̃
′
b+1 − R̃

′
b

+M(1−ω2b,i ,n ) ∀b ∈ B2, i ∈C o ,n ∈ N (7.109)

R
′
i ,n ≤ R̃

′
b+1 +M(1−ω2b,i ,n ) ∀b ∈ B2, i ∈C o ,n ∈ N (7.110)

R
′
i ,n ≥ R̃

′
b −M(1−ω2b,i ,n ) ∀b ∈ B2, i ∈C o ,n ∈ N (7.111)∑

b∈B2
ω2b,i ,n = 1 ∀i ∈C o ,n ∈ N (7.112)

Ri ,n ≥ 0 ∀i ∈C o ,n ∈ N (7.113)

R
′
i ,n ∈R ∀i ∈C o ,n ∈ N (7.114)

υ
′
n ∈R ∀n ∈ N (7.115)

pi ≥ 0 ∀i ∈C o (7.116)

ω1b,i ,n ∈ {0,1} ∀b ∈ B1, i ∈C ,n ∈ N (7.117)

ω2b,i ,n ∈ {0,1} ∀b ∈ B2, i ∈C o ,n ∈ N (7.118)

The piecewise linear approximation for the choice probability is given by (7.102)-(7.105).

Consider that there is a set of breakpoints B1 for the piecewise function. (ỹ
′
b , ỹb) represents

the breakpoint b where ỹb = exp(ỹ
′
b). Binary variable ω1b,i ,n is 1 if the constraint defined by

the piece starting with breakpoint b is active for y
′
i ,n and yi ,n . Constraints (7.102) actually

define the line segment between b and b +1 and relate y
′
i ,n and yi ,n accordingly if this line is

active. Constraints (7.103)-(7.104) restrict the variable y
′
i ,n to be in the correct interval. Finally,

constraints (7.105) ensure that only 1 piece is active for each alternative i and individual n.

The piecewise linear approximation related to the revenue variable is similarly given by the

constraints (7.109)-(7.112). The associated binary variables are called ω2b,i ,n for the set of
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Figure 7.7: Piecewise linear approximation

breakpoints b ∈ B2. (R̃
′
b , R̃b) similarly represents the breakpoint b with R̃b = exp(R̃

′
b).

Therefore the resulting model consists of separable convex programming problems; the

objective function is linear, the constraints (7.96), (7.100), (7.101), and (7.108) are convex

constraints and the remaining constraints are linear. The binary variables for the piecewise

linear approximation can be considered in a branch-and-bound framework as a solution

methodology.

7.7 Conclusions and future research

In this chapter we present a general framework for the integration of explicit demand models

in revenue maximization problems. The considered demand model is formulated as logit and

the presented methodology is flexible for a wide range of model specifications. The utility

function may include any number of explanatory variables some of which can be defined

as the decision variables of the optimization model. The explanatory variables can be at a

disaggregate level such as socio-economic characteristics.
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The presented methodology is analyzed with illustrative examples in order to show the advan-

tages and disadvantages of the approach. As a case study, the airline revenue optimization

problem is presented. It is shown that the reformulation enables to obtain solutions in reason-

able computational time for real flight networks where no solution can be obtained with the

original formulation.

In this chapter the results with the reformulated model are provided in an experimental setting.

The penalty values are selected as high as possible at the beginning which do not create any

numerical issues. Note that high penalty values lead to numerical instability. The values of the

penalties are then lowered until the pricing decision starts to be different. Therefore the set of

penalty values with which the same pricing decision is obtained are presented. An interesting

future work would be an algorithmic framework for the selection of penalty parameters which

provides the appropriate penalties depending on the problem setting in an efficient way.

The presented idea for obtaining a valid upper bound in section 7.6 is an imminent future

research direction. Since the logarithmic transformation significantly improves the formula-

tion, we believe that a future direction in approximating the model to obtain valid bounds is

promising. Moreover, an interesting research topic would be the design of an algorithm which

stays in the convex part of the feasible region. As mentioned before, the integrated models in

chapters 4 and 6 are studied with bounds on price which help for the convergence. These cuts

could be studied for obtaining such an algorithmic framework.

The considered optimization problem assumes that supply information is given, i.e. supply

decisions on capacity are already taken. The presented methodology is expected to facilitate

the solution of integrated models where supply and demand decisions are taken simulta-

neously. Appropriate decomposition methods can be developed for the solution of such

integrated models since the revenue sub-problem can be formulated as a convex problem.

We demonstrate the solution of the integrated model in a Lagrangian relaxation framework

with subgradient optimization in Appendix A.8, and in a Generalized Benders’ Decomposition

framework in Appendix A.9. Given that an efficient algorithm is obtained for the solution of

the piecewise linear approximation, the presented decomposition methods will provide valid

bounds.
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Part IIIInnovative application
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Part III provides an application with the new design of aircraft: Clip-Air. This part analyses

Clip-Air that changes the concept of traveling and approaches flexibility from a different angle.

The general concept is described with a focus on its impact in transportation systems. The

advantages of this flexible system is analyzed in comparison to standard aircraft in several

scenarios. For the analysis, the models developed in Part II are used.
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8 Impact analysis of a flexible air trans-
portation system

The chapter provides analytical evidence of the added-value of flexibility for air transportation

systems. More specifically, the impact of a new innovative modular aircraft on the operations

of an airline is deeply analyzed. The impact analysis is carried out with an integrated schedule

planning model which presents a combination of appropriate optimization and behavioral

modeling methodologies. The results show that the flexible system uses the transportation

capacity more efficiently by carrying more passengers with less overall capacity. Moreover,

it is observed that the flexible system deals better with insufficient transportation capacity.

Furthermore, the scheduling decisions are robust to the estimated cost figures of the new

system. For the analyzed range of costs, it is always carrying more passengers with less

allocated capacity compared to a standard system.

8.1 Introduction and related literature

According to the statistics provided by the Association of European Airlines (AEA), air travel

traffic has grown at an average rate of 5% per year over the last three decades (AEA, 2007)1.

Consequently, sustainability of current transportation systems is threatened by increased en-

ergy consumption and its environmental impacts. Moreover, the increased mobility needs are

inducing major disruptions in operations. Regarding air transportation, there is an increased

number of landings and takeoffs from airports, resulting in frequent congestion and delays.

The trade-off between the sustainability of transportation and the mobility needs justifies

the investigation of new concepts and new solutions that can accommodate the increased

demand with a minimal impact on the environment and the economy. The building stone

of such new concepts is the introduction of various aspects of flexibility in transportation

systems in general, and in air transportation systems in particular.

1The source is included as an example for year 2007 but there are yearly releases available
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8.1.1 Flexibility in transportation systems

‘Flexibility’ is defined as ‘the ability of a system to adapt to external changes, while maintaining

satisfactory system performance.’ (Morlok and Chang, 2004). Flexibility is a key concept for

the robustness of transportation systems and studies on flexible transportation systems have

an increased pace during the last decade. We refer to the work of Morlok and Chang (2004) for

the techniques to measure the flexibility with a focus on capacity flexibility. Similarly, Chen

and Kasikitwiwat (2011) develop network capacity models for the quantitative assessment of

capacity flexibility.

Flexibility is studied for different transportation systems including land, rail, ship and air

transportation. Brake et al. (2007) provide examples of Flexible Transportation System (FTS)

applications that aim to improve the connectivity of public transport networks in the context

of land transportation. Crainic et al. (2010) work on the flexibility concept with Demand-

Adaptive Systems which combine the features of traditional fixed-line services and purely

on-demand systems. Errico et al. (2011) provide a review on the semi-flexible transit systems

where different flexibility concepts are introduced on the service areas and the time schedule.

Zeghal et al. (2011) studies flexibility for airlines in terms of the active fleet and departure

time of flights. An airline can increase or decrease the fleet size renting or renting out planes.

Departure times can be adjusted within a given time-window. These flexibilities facilitate the

integration of schedule design, fleet assignment, and aircraft routing decisions.

The nature of flexibility already embedded in transportation systems differs considerably.

For example, in rail transportation, there is a natural capacity flexibility which rises from the

modularity in fleet. In maritime transportation, the usage of standard unit load facilitates

a more efficient practice of multi-modality with an efficient transfer between ships, trucks

and trains. In this chapter we are investigating what impacts such flexibility may have in air

transportation.

Rail transportation

Flexibility in rail transportation rises from modular carrying units and several operations

research techniques are applied to improve this flexibility. We refer to Huisman et al. (2005) for

a review on the models and techniques used in passenger railway transportation for different

planning phases. Kroon et al. (2009) discuss the construction of a new timetable for Nether-

lands Railways which improves the robustness of the system decreasing the delays. Similarly,

Jespersen-Groth et al. (2009) study the disruption management problems in passenger railway

transportation drawing the analogies with airline disruption management.

Maritime transportation

Multi-modality is widely studied in the context of freight transportation where standard unit

loads are transferred between maritime, land and rail transportation systems. In freight
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transportation, each movement of a loaded vehicle generates an empty flow and for the

efficient use of the transportation system these empty flows need to be taken care of. We refer

to Dejax and Crainic (1987) for a review of empty vehicle flow problems and proposed models

on the subject. They also point out the potential advantages of an integrated management of

loaded and empty vehicle movements. In maritime transportation Crainic et al. (1993) present

models for the repositioning of empty containers in the context of a land transportation

system. Olivo et al. (2005) study the repositioning problem in a multi-modal network where

empty containers are transported by both maritime and land transportation. Di Francesco

et al. (2009) consider empty container management problem under uncertainty and present a

multi-scenario formulation regarding different realizations of uncertain parameters.

Air transportation

In the context of air transportation, airlines have dedicated a lot of efforts in increasing the

flexibility through demand and revenue management (Talluri and van Ryzin, 2004a). Flexibility

is obtained namely from differentiated fare products offered to different customer segments

with the objective to increase the total revenue. Recently, additional attention has been paid

to better represent the demand through advanced demand models. Coldren et al. (2003) work

on logit models for travel demand, Coldren and Koppelman (2005) extend the models of the

previous work using GEV, particularly nested logit model. Koppelman et al. (2008) apply logit

models to analyze the effect of schedule delay by modeling the time of day preferences. Carrier

(2008) and Wen and Lai (2010) work on advance demand modeling that enable customer

segmentation with the utilization of latent class choice modeling. We refer to the work of

Garrow (2010) for a comprehensive presentation of different specifications of choice models.

Advanced demand models are integrated into optimization models in different levels of the

airline scheduling process. Talluri and van Ryzin (2004b) integrate discrete choice modeling

into the single-leg, multiple-fare-class revenue management model. Authors provide char-

acterization of optimal policies for the problem of deciding which subset of fare products to

offer at each point in time under a general choice model of demand. Schön (2006) develops

a market-oriented integrated schedule design and fleet assignment model with integrated

pricing decisions. In order to deal with the non-convexity that is brought by the pricing model,

an inverse demand function is used. The final model is a mixed integer convex problem

and preliminary results are provided over a synthetic data. More recently Atasoy et al. (2012)

introduces an integrated scheduling, fleeting and pricing model where a demand model,

which is estimated on a real data, is explicitly included in the optimization model. The explicit

representation of the demand model allows for further extensions of the framework with

disaggregate passenger data. They also consider spill and recapture effects based on the

demand model.

In addition to revenue management, schedule planning of airlines are more and more designed

to be robust to unexpected disruptions, such as aircraft breakdowns, airport closures, or bad

weather conditions (Lan et al., 2006; Gao et al., 2009), and associated recovery strategies are

159



Chapter 8. Impact analysis of a flexible air transportation system

applied after the occurrence of these disruptions (Lettovsky et al., 2000; Eggenberg et al., 2010).

The application of robust schedule planning models increases the profitability of airlines

introducing flexibility to adapt to unexpected disruptions. In the literature, robustness is

introduced for different subproblems of airline scheduling. Rosenberger et al. (2004) study a

robust fleet assignment model that reduces the hub connectivity and embeds cancellation

cycles in order to decrease the sensitivity to disruptions and they obtain a better performance

compared to traditional fleet assignment models. Shebalov (2006) work on robust crew

scheduling models where they introduce robustness by maximizing the number of crew pairs

that can be swapped in case of unexpected situations. Lan et al. (2006) present two approaches

to minimize passenger disruptions: a robust aircraft maintenance routing problem where

they aim to reduce the delay propagation and a flight schedule re-timing model where they

introduce time windows for the departure times of flight legs. Similarly, Weide (2009) studies

an integrated aircraft routing and crew pairing model where the departure time of flights are

allowed to vary in a time window. Inclusion of time windows in the schedule is shown to

increase the flexibility of the model having improved results.

As mentioned previously, in air transportation the improvements are mostly investigated

through decision support systems. Although these efforts are promising it is limited to the

definition of the system itself. In this chapter we introduce and analyze a new way to bring

flexibility into air transportation, based on the concept of a modular aircraft, called Clip-

Air. The objective is to provide analytical evidences of the added-value of flexibility for air

transportation systems.

8.1.2 A modular flexible aircraft: Clip-Air

A new family of modular aircraft, called Clip-Air, is being designed at the Ecole Polytechnique

Fédérale de Lausanne (EPFL, Leonardi and Bierlaire, 2011). Figures 8.1 and 8.2 illustrate the

new design. Clip-Air is based on two separate structures: a flying wing, designed to carry the

engines and the flight crew, and capsules, designed to carry the payload (passengers and/or

freight). The wing can carry one, two or three capsules with a clipping mechanism which

facilitates the separate handling of capsules. This modularity is the foundation of the Clip-Air

concept for flexible transportation.

The Clip-Air project started in 2010. The project is now in its second phase called “feasibility

studies” which is planned to be finished in 2013. The feasibility studies involve various research

groups from EPFL that work on the aerodynamic structure, the energy aspects, the tests of

Clip-Air in a simulation environment etc. Our research group is interested in the impact of

the flexibility of Clip-Air on transportation systems. This impact analysis is important for

understanding the potential of introducing flexibility and is expected to motivate the studies

on various aspects of flexibility in other transportation systems, such as railways and transit

systems.

The Clip-Air project introduces a new concept in aircraft design. But its potential impact is
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(a) Three capsules (b) Two capsules

(c) One capsule

Figure 8.1: Modularity of Clip-Air

Figure 8.2: Clip-Air at an airport

161



Chapter 8. Impact analysis of a flexible air transportation system

significantly more far-reaching. Indeed, the flexibility provided by the new aircraft modifies

the fundamental operations of multi-modal transportation systems.

Clip-Air broadens the flexibility with its innovative design. In the first place, the decoupling of

the wing and capsules brings the modularity of railways to airline operations. This decoupling

provides several advantages in terms of operations. The capacity of Clip-Air can be adjusted

according to the demand by changing the number of capsules to be attached to the wing.

This flexibility in transportation capacity is highly important in case of unbalanced demand

between airports. As another example, Clip-Air’s modularity is expected to significantly

improve the operations in hub-and-spoke networks where the itineraries connect through

the hub airport. The flexibility of interchanging the capsules attached to the wings at the hub

airport provides a better utilization of the capacity and simplifies the fleeting operations.

Secondly, Clip-Air imports the concept of standard unit loads from freight to passenger trans-

portation thanks to the structure of the capsules. The capsules are easy to transfer and store

which facilitates their move by other means of transportation. As an illustration, in case of

unbalanced demand in the flight network, the empty capsules can be transfered by railways

in order to better respond to the demand in busy airports. A similar notion is also provided

for passenger transportation by the design of Clip-Air. A passenger can board the capsule at

a railway station (Figure 8.3), and the loaded capsule is attached to the wing at the airport.

Such a concept brings new dimensions for multi-modal transportation. Furthermore, Clip-Air

is designed for both passenger and freight transportation (Figure 8.4). A capsule containing

freight can fly under the same wing with passenger capsules so that mixed passenger and

freight transportation can be operated without any compromise in comfort. This flexibility

enables airlines to better utilize their capacity according to the variable demand pattern they

are facing. All in all, the integration of air transportation in multi-modal networks, for both

passenger and freight transportation, is expected to be strengthened by the design of Clip-Air.

The dedication of Clip-Air capsules to different commodities can be extended through spe-

cial utilization of the capsules. Energy efficient and environmental friendly solutions are

expected to be provided by dedicating one of the capsules to other sources of energy such as

hydrogen (Figure 8.5). Normally, storing hydrogen is not efficient. However with Clip-Air this

can be achieved since the capsule provides a substantial volume and since it is completely

separated from other capsules with passengers. In addition to energy, capsules with special

functions (Figure 8.6) can be attached to the wing such as capsules with medical personnel

and equipment. All these possibilities provide flexibility in terms of the allocation of capsules

for multiple purposes depending on the need.

The Clip-Air system combines the mentioned flexibility aspects, modularity and multi-modality,

with the efficient demand management and robust scheduling methods of airlines. Therefore,

the four types of flexibility (demand management, robustness and recovery, modular capacity,

and multi-modality) are brought together in an integrated transportation system.
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(a) Clip-Air capsules at a railway station

(b) A boarding passenger

Figure 8.3: Multi-modal transportation with Clip-Air
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(a) passengers (b) freight

(c) mixed

Figure 8.4: Mixed passenger and freight transportation with Clip-Air

Figure 8.5: Energy solutions with Clip-Air
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Figure 8.6: Multi-purpose Clip-Air capsules

8.1.3 Impact analysis of the flexibility of Clip-Air

The objective is to analyze the impact of Clip-Air’s flexibility from an airline’s perspective

through the application of appropriate methodologies. For the concept of flexibility we

focus on modularity and demand management. The design of Clip-Air has impact on many

processes of air transportation. We focus on fleeting since Clip-Air’s modularity alters the

fleet assignment process considerably and the impact of flexibility can be directly observed

through fleeting.

The novelty of the presented model is that it captures the modularity of Clip-Air by a simulta-

neous decision on the two levels of assignments: the assignment of wing to the flights and the

assignment of capsules to the wing. This model is indeed the extension of IFAM presented in

section 5.2.2 to the Clip-Air with two level of fleet assignments.

Beyond the analysis of Clip-Air itself, the contribution is the analysis of flexibility in transporta-

tion systems in general based on real data and through optimization models that integrate

supply demand interactions. The non-trivial integration of the models is used to carry out a

comparative analysis between a standard and a flexible system. In return, the introduction

of flexibility provides promising advantages and motivates the analysis of flexibility in other

modes of transportation as well as the analysis of other flexibility notions. All conservative

assumptions and the design of experiments are detailed constituting a valuable reference for

flexible transportation systems to be designed in the future.

8.2 Integrated schedule planning

As mentioned at the end of section 8.1.3 we focus on the aspects of modular capacity and

demand management in the context of airline operations.

Modular capacity is provided by the design of Clip-Air and we analyze the impacts of modular-

ity on fleet assignment process. As illustrated in section 8.1.2 capsules can be detached from

the wing. This feature generates an additional level of assignment decisions to be made in
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comparison to the assignment problem of standard planes. Therefore we build an integrated

schedule design and fleet assignment model which enables the appropriate assignment of

wing and capsules (section 8.2.1).

As for the demand management dimension, we integrate supply-demand interactions into the

fleet assignment problem through spill and recapture effects as already explained in section

4.2. The logit model for the estimation of recapture ratios is estimated based on a dataset

where the flights are flown by standard aircraft. For the comparative analysis between standard

aircraft and Clip-Air we assumed that the utilities would be the same for the flights regardless

of the considered fleet. For the passenger acceptance of Clip-Air, a further study should be

carried out with the help of a stated preferences survey. The data provided by such a survey

would enable to extend the demand model in order to take into account the potential impact

of Clip-Air on the demand.

8.2.1 Integrated schedule design and fleet assignment model

We present an integrated schedule design and fleet assignment model which facilitates the

modularity of Clip-Air. The model optimizes the schedule design, the fleet assignment, the

number of spilled passengers and the seat allocation to each class. The considered model

is the extension of IFAM which is presented in section 5.2.2. The model with the pricing

decision, IFAM-PR, is not considered mainly because the objective is to show how the fleeting

operations are altered with Clip-Air. Furthermore, we aim at presenting experimental results

with relatively large instances with around 100 flights and 10 aircraft types which is difficult

to address with the integrated model. However we present results for IFAM-PR for one data

instance in section 8.4.

The most important difference of Clip-Air from standard planes is that the fleet assignment

includes both the assignment of wing and capsules. A flight can not be realized if there is

no wing assigned to that flight. When a wing is assigned there is another decision about the

number of capsules to be attached to the wing. Secondly, the operating cost allocation is

different such that the costs are decoupled between wing and capsules. Flight crew cost is

related only to the wing and cabin crew cost is related to the capsules. As will be explained in

section 8.3.1, some other cost figures are also decoupled according to the weights of wing and

capsules.

In this section we present the model for a fleet composed of Clip-Air wings and capsules,

which considers a single airline. Schedule design is modeled with two sets of mandatory

and optional flights such that schedule design decision is to operate the optional flights or

to cancel them. The decision about the subset of flights to be flown could be integrated with

a different convention based on the importance of flights. The proposed demand model is

flexible to take into account different level of priorities for flights provided that the data is

available to estimate the associated parameters. In case of such an extension, the schedule

planning model will decide on the flights to be flown based on this additional information.
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The notation is similar to the notation provided in Chapters 4 and 5 except the definition

of fleet with Clip-Air. However we prefer to keep the explanation on the notation for the

sake of completeness. Let F be the set of flights, mandatory flights and optional flights are

represented by the sets of F M and F O . A represents the set of airports and K represents the set

of aircraft types which can be a Clip-Air wing with one, two or three capsules. The schedule

is represented by time-space network such that N (a, t) is the set of nodes in the time-line

network, a and t being the index for airports and time respectively. In(a, t ) and Out(a, t ) are

the sets of inbound and outbound flight legs for node (a, t). H represents the set of cabin
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classes which is assumed to consist of economy and business classes. Sh is the set of market

segments for class h, which is taken as distinct origin and destination pairs in this study.

For example, all the available business class itineraries for Geneva-Paris represent a market

segment. Is represents the set of itineraries in segment s. We include a set of no-revenue

itineraries I
′
s ∈ Is for each segment s which stands for the itineraries offered by other airlines.

This set of itineraries is included in order to better represent the reality by considering the lost

passengers to competitive airlines.

The objective (8.1) is to minimize the operating cost and loss of revenue due to unsatisfied

demand. Operating cost for each flight f , has two components that correspond to operating

cost for wings and capsules which are represented by C w
f and Ck, f respectively. These are

associated with binary decision variables of xw
f and xk, f . xw

f equals one if there is a wing

assigned to flight f . xk, f represents the number of capsules assigned to flight f in such a

way that it is one if there are k capsules assigned to flight f . The decision variable on the

number of capsules could also have been defined as an integer variable. However the proposed

formulation allows for more modeling flexibility. For example, it would allow to extend the

model to capture the possible nonlinear relation between cost and the number of capsules.

ti , j is the decision variable for the number of passengers redirected from itinerary i to itinerary

j typically when there is insufficient capacity. bi , j is the proportion of passengers who accept

to be redirected from itinerary i to j . The price of itinerary i is represented by pi .

Constraints (8.2) ensure that every mandatory flight should be assigned at least one capsule.

Optional flights are not exposed to such a constraint which forms the decision on the schedule

design. Constraints (8.3) maintain the wing capsule relation such that if there is no wing

assigned to a flight, there can be no capsule assigned to that flight. On the other hand if there

is a wing assigned there can be up to three capsules flying. Constraints (8.4) and (8.7) are for

the flow conservation of wings and capsules. y w
a,t− and yk

a,t− represent the number of wings

and capsules at airport a just before time t respectively. Similarly y w
a,t+ and yk

a,t+ stand for the

number of wings and capsules just after time t respectively. Constraints (8.5) and (8.8) limit

the usage of fleet by the available amount which is represented by Rw and Rk for wings and

capsules respectively. minE−
a represents the time just before the first event at airport a and CT

is the set of flights flying at count time. In this study it is assumed that the number of wings

and capsules at each airport at the beginning of the period, which is one day, is the same as

the end of the period. Constraints (8.6) and (8.9) ensure this cyclic schedule property, where

maxE+
a represents the time just after the last event at airport a.

Constraints (8.10) ensure the relation between supply and capacity. Decision variables π f ,h

represent the allocated seats for flight f and class h. δi
f is a binary parameter which is one if

itinerary i uses flight f and enables us to have itinerary-based demand. The left hand side

represents the actual demand for each flight taking into account the spilled and recaptured

passengers, where Di is the expected demand for each itinerary i . Therefore, the realized

demand is ensured to be satisfied by the allocated capacity. Similarly, these constraints

maintain that when a flight is canceled, all the related itineraries do not realize any demand.
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We let the allocation of business and economy seats to be decided by the model as a revenue

management decision. Therefore we need to make sure that the total allocated capacity for

a flight is not higher than the physical capacity of Clip-Air and this is represented by the

constraints (8.11). The capacity of one capsule is represented by Q and the total capacity can

be up to 3×Q. Constraints (8.12) are for demand conservation for each itinerary saying that

total redirected passengers from itinerary i to all other itineraries in the same market segment

should not exceed its expected demand.

8.3 Results on the potential performance of Clip-Air

For carrying out the comparative analysis between standard planes and the Clip-Air fleet we

work with a dataset from a major European airline which is the same dataset used throughout

the thesis. Note that the tests used in chapters 4, 5 and 6 are not appropriate to show the

performance of Clip-Air since the majority of them have not high number of passengers per

flight (see Table 5.1). Since Clip-Air has minimum 150 seats (case with one capsule) we work

with additional instances. Only experiment 26 is common with the previous chapters, which

is used as a realistic size instance for the case of Clip-Air.

In addition to the data on the flight network, we need the estimated cost figures for Clip-Air

wings and capsules which are explained in section 8.3.1.

As Clip-Air exists only in a simulated environment we make the following assumptions for the

comparison with standard planes:

• The results for the standard fleet have been obtained by letting the model select the

optimal fleet composition from a set of different available plane types. On the other

hand Clip-Air capsules are of the same size. This is an advantage for standard fleet since

it is able to adjust the fleet composition according to the characteristics of the network.

We only impose that the overall capacity is the same for both standard fleet and Clip-Air.

• In the set of different fleet types, the aircraft that are close to the capacities of 1 capsule,

2 and 3 capsules are kept present in the experiments (A320 - 150 seats, A330 - 293

seats, B747-200 - 452 seats). As mentioned in section 8.3.1, Clip-Air is more expensive

compared to these aircraft except when flying with 3 capsules. Standard fleet and Clip-

Air have almost the same set of aircraft sizes. This experimental design is meant to

minimize the impacts of the differences in size and to reveal to a larger extent the impact

of modularity. This is clearly in favor of the standard fleet. Having higher costs, Clip-Air

can only compete with its modularity and flexibility.

• Total available transportation capacity in number of seats is sufficient to serve all the

demand in the network for all the analyzed instances. It is explained in section 8.3.5

that this is in favor of the standard fleet and whenever the capacity is restricted, Clip-

Air performs significantly better than the standard fleet in terms of the number of
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transported passengers.

• The schedule is assumed to be cyclic so that the number of aircraft/wings/capsules at

each airport is the same at the beginning and at the end of the period, which is one day.

This a limiting factor for Clip-Air since the modularity of the capsules is not efficiently

used in such a case. The repositioning of the capsules by other means of transport

modes could lead to more profitable and efficient schedules. However, we do not take

into account the repositioning possibility in this study.

• As explained in section 8.3.1, we adjust only the fuel costs, crew costs and airport nav-

igation charges. However the design of Clip-Air is expected to considerably decrease

the maintenance costs due to the simple structure of the capsules. The capsules do

not necessitate critical maintenance since all the critical equipments are on the wing.

Furthermore, the overall number of engines needed to carry the same amount of pas-

sengers is reduced. Consequently, maintenance costs can be further reduced. These

potential savings are ignored in this study.

• We challenge Clip-Air against a schedule conceived for a standard fleet. However the

decoupling of wing and capsules is expected to reduce the turn around time and this

advantage is ignored in this study.

• Clip-Air is designed for both passenger and cargo transportation. When the demand is

insufficient to fill three capsules, additional revenue can be generated by using a capsule

for freight. This is not considered in this study.

• As shown in sections 8.3.2-8.3.5, Clip-Air is found to allocate less capacity to carry the

same amount of passengers compared to standard fleet. In other words, the flight

network is operated with less number of aircraft due to the modularity of Clip-Air. It

means that the total investment for the airline is potentially less important for a Clip-Air

fleet than for a standard fleet. In this study we do not take this into account. Therefore

the potential of Clip-Air in reducing the investment costs is ignored.

• Finally, we assume that the unconstrained demand for the itineraries (Di ) and the

demand model for the recapture ratios are the same when the fleet is changed to Clip-

Air. The overall impacts of the new system on passenger demand is not analyzed being

out of scope of this study.

The assumptions above lead to a conservative comparison between Clip-Air and standard

fleet. Therefore, the results presented below provide lower bounds on the expected gains that

a Clip-air fleet may provide to the airline.

We have implemented our model in AMPL and the results are obtained with the GUROBI

solver. We first present a small example to illustrate the advantages of the enhanced flexibility

of the Clip-Air system. Then we present the results for different scenarios about the network
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Table 8.1: Clip-Air configuration

Clip-Air A320
Maximum Capacity 3x150 (450 seats) 150 seats

Engines 3 engines 2 engines
Maximum 1 (plane/capsule) 139t (+78%) 78t

Aircraft Weight 2 (planes/capsules) 173.5t (+11%) 2x78t (156t)
3 (planes/capsules) 208t (-11%) 3x78t (234t)

configuration, fleet size, fleet type and the costs of the Clip-Air fleet. The presented results

include productivity measures in order to show the efficiency of the utilization of the capacity:

• Available seat kilometers (ASK): The number of seats available multiplied by the number

of kilometers flown. This is a widely used measure for the passenger carrying capacity.

Since our data does not provide information on the kilometers flown for the flights, we

convert the total flight duration to kilometers with a speed of 850 kilometers per hour.

• Transported passengers per available seat kilometers (TPASK): A productivity measure

which we adapt to compare the standard fleet and Clip-Air. It is the total number

of transported passengers divided by the available seat kilometers and measures the

productivity of the allocated capacity.

8.3.1 Cost figures for Clip-Air

As mentioned previously Clip-Air exists only in a simulated environment. Therefore estimated

values are used for the operating cost of Clip-Air using analogies with the aircraft A320. The

capacity of Clip-Air is designed to be 150 seats, the same as the capacity of an A320. In Table 8.1

we present the weight values for Clip-Air flying with one, two and three capsules in comparison

to one, two and three aircraft of type A320. As seen from the Table, Clip-Air is 78% heavier

than one A320 plane when it is flying with one capsule, and 11% heavier than two A320 planes

when flying with two capsules. However when flying with three capsules Clip-Air is 11% lighter

than three A320 planes. We use these weight differences to proportionally decrease/increase

the fuel cost and air navigation charges since both depend on the aircraft weight. The airport

charges are usually applied depending on the weight class of the aircraft rather than being

directly proportional (ICAO, 2012). However to be on the conservative side we apply an

increase which is proportional to the weight.

Furthermore we make adjustment on the crew cost due to the decoupling of wing and capsules.

Flight (cockpit) crew cost is associated with the wing, and the cabin crew cost is associated with

the capsules. Clip-Air flies with one set of flight crews regardless of the number of capsules

used for the flight. It is given by the study of Aigrain and Dethier (2011) that flight crew

constitutes 60% of the total crew cost for the A320. Therefore Clip-Air decreases the total crew

cost by 30% and 40% when flying with two and three capsules respectively. Note that, the
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Figure 8.7: Time-line network for the illustrative example

modification on the flight crew cost is kept linear with seating capacity for standard fleet. In

other words, having the flight crew cost for A320 as a basis, the cost is proportionally increased

with increasing seating capacity.

The adjusted cost figures sum up to 56% of the total operating cost of European airlines: fuel

cost 25.3% (IATA, 2010), crew cost 24.8% (IATA, 2010), airport and air navigation charges 6%

(Castelli and Ranieri, 2007). The remaining operating cost values are assumed to be the same

as the A320 for the utilization of each capsule.

8.3.2 An illustrative example

We present results for a small data instance to illustrate the flexibility provided by the Clip-Air

system. The network consists of four flights with the demand and departure-arrival times

given in Figure 8.7. There is an expected demand of 1200 passengers which is generated by 4

itineraries between airports A-C, B-C, C-A and C-B. The available fleet capacity is not limited

and the circular property of the schedule is ignored for this example. For the standard fleet, it

is assumed that there are three types of planes which have 150, 300 and 450 seats. Clip-Air

capsules are assumed to have a capacity of 150 seats as presented in Table 8.1.

In order to fully satisfy the demand with standard planes, 2 aircraft with 300 seats each should

depart from the airports A and C. At airport B an aircraft with 450 seats is needed for the
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departure to airport C and an aircraft with 150 seats for the departure to airport A. Therefore

4 aircraft are used with 1200 allocated seats. Clip-Air is able to cover the demand with 2

wings. The wings depart from airport A and C with 2 capsules each. At airport B, 1 capsule is

transfered to the flight that departs to airport C. Therefore the flight B-C is operated with 3

capsules and the flight B-A is operated with 1 capsule. The total number of allocated seats

is 600 which means that Clip-Air is able to transport the same number of passengers with

50% of the capacity of the standard fleet. This change in the fleet assignment operations

leads to several simplifications in the operations. Since the same type of aircraft is used for

all the flights the type of crew does not need to be changed for different flights. The airport

operations are also simplified since the same type of aircraft can be assigned to the flights with

necessary adjustments in the number of clipped capsules.

We can analyze the same data instance with a limited capacity of 600 seats for standard planes

and Clip-Air. In that case 2 aircraft with 300 seats each will be operated from the airports

A and C to airport B. The same aircraft will depart from airport B which will result with a

loss of 150 passengers on the flight B-C and with an excess capacity of 150 seats on the flight

B-A. However Clip-Air covers the demand without any loss or excess capacity with its flexible

capacity.

This illustrative example gives the idea of the potential savings with Clip-Air which is quantified

with the experiments presented in the continuation of this section.

8.3.3 Network effect

The type of the network is an important factor that needs to be analyzed for quantifying the

performance of Clip-Air. For this matter, we present results for three different network struc-

tures: airport pair, hub-and-spoke network with single hub and peer-to-peer well connected

network. Flight densities of these networks are different from each other which affects the

performance of Clip-Air.

Airport-pair network

We present a network with 2 airports and 38 flights which are balanced for the two routes. The

description of the data set is given in Table 8.2 and the results are provided in Table 8.3. It is

observed that Clip-Air carries 7% more passengers compared to a standard fleet. The increase

in the number of transported passengers is also reflected by the spill cost which is higher

for standard fleet. Therefore the profit is 5% higher when flying with Clip-Air. The allocated

capacity is similar for the two cases. The average demand per flight does not favor the usage

of 3 capsules therefore the operating cost for Clip-Air is higher. This is compensated by the

increased revenue due to the flexibility of Clip-Air on the allocated transportation capacity.
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Table 8.2: Data instance for the airport-pair network

Airports 2
Flights 38
Density (Flights/route) 19
Passengers 13,965
Itineraries 45
Standard fleet types A320(150), A330(293), B747-200(452)

Table 8.3: Results for the airport-pair network

Standard fleet Clip-Air
Operating cost 1,607,166 1,725,228
Spill costs 604,053 448,140
Revenue 2,419,306 2,575,219
Profit 812,140 849,991 (+4.66 %)
Transported pax. 10,276 11,035 (+7.39 %)
Flight count 38 38
Total flight duration 3135 min 3135 min
Used fleet 2 A320 7 wings

5 A330 12 capsules
Used aircraft 7 7
Used seats 1765 1800
ASK 78,388,063 79,942,500
TPASK (×10−5) 13.11 13.80
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Table 8.4: Data instance for the hub-and-spoke network

Airports 5
Flights 26
Density (Flights/route) 3.25
Passengers 9,573
Itineraries 37
Standard fleet types A320(150), A330(293), B747-200(452)

Table 8.5: Results for the hub-and-spoke network

Standard fleet Clip-Air
Operating cost 817,489 938,007
Spill costs 484,950 393,677
Revenue 1,247,719 1,338,992
Profit 430,230 400,985 (- 6.80 %)
Transported pax. 5,031 5,721 (+ 13.71 %)
Flight count 24 22
Total flight duration 1850 min 1700 min
Used fleet 5 A320 6 wings

2 A330 12 capsules
1 B747

Used aircraft 8 6
Used seats 1788 1800
ASK 46,860,500 43,350,000
TPASK (×10−5) 10.74 13.20

Hub and spoke network with a single hub

The Clip-Air system is analyzed for a hub-and-spoke network with a single hub where all

the flights need to connect through the hub. Details for the data instance are given in Table

8.4. With Clip-Air, less flights are operated and there is a 14% increase in total transported

passengers allocating a similar capacity as the standard fleet. The increase in the transported

passengers with less number of flights is reflected through the TPASK measure. Since the flight

density is low, which is 3.25 flights per OD pair, and since the connections are only possible

through the hub, the profit with Clip-Air is 7% less compared to the standard fleet. However

we are still using two aircraft less with Clip-Air which will reduce the number of flight crews

and simplify the ground operations for airports. We need to mention that in this particular

instance the incoming and outgoing flights from the hub are balanced in terms of the demand

for each spoke airport. Therefore a standard fleet can also perform well in this situation.

Well connected peer-to-peer network

In this section we present results for a peer-to-peer network where the airports are well

connected with 98 flights and 28,465 expected passengers as seen in Table 8.6. Clip-Air
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Table 8.6: Data instance for the peer-to-peer network

Airports 4
Flights 98
Density (Flights/route) 8.17
Passengers 28,465
Itineraries 150
Standard fleet types A320(150), A330(293), B747-200(452)

Table 8.7: Results for the peer-to-peer network

Standard fleet Clip-Air
Operating cost 3,189,763 3,117,109
Spill costs 982,556 978,683
Revenue 5,056,909 5,060,782
Profit 1,867,146 1,943,673 (+ 4.1 %)
Transported pax. 20,840 21,424 (+ 2.8 %)
Flight count 91 84
Total flight duration 6650 min 6160 min
Used fleet 7 A320 13 wings

10 A330 28 capsules
3 B747

Used aircraft 20 13
Used seats 5336 4200 (- 21.3 %)
ASK 502,695,667 366,520,000
TPASK (×10−5) 4.15 5.85

transports 2.8% more passengers with a 21.3 % reduction in the allocated capacity compared

to the standard fleet. This means that Clip-Air uses the capacity more efficiently which is also

supported by the increased TPASK measure. When we look at the used number of aircraft we

see that there is a clear difference between standard fleet and Clip-Air. Therefore the minimum

number of flight crews is 35% less for Clip-Air which is important for the crew scheduling

decisions. The density of the network is higher compared to the hub-and-spoke instance and

all the airports are connected pairwise. The possibility to change the number of capsules at

airports is utilized more efficiently. Therefore this type of network reveals more prominently

the advantages of the flexibility of Clip-Air.

8.3.4 Effect of the standard fleet configuration

Clip-Air is composed of modular capsules, the standard fleet can be composed of any aircraft

type and the model has the opportunity to select the best fleet composition. Therefore it is

important to see the effect of the fleet configuration when comparing with the performance of

Clip-Air. This analysis enables us to figure out which type of airlines may profit better from

the Clip-Air system.
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We use the same data instance as the peer-to-peer network given in Table 8.6. We change the

available standard fleet configuration by gradually decreasing the fleet heterogeneity. The

total transportation capacity is kept high enough to serve the whole demand for all the tested

instances. The first scenario is designed to be composed of a highly heterogeneous fleet which

is representative of the existing aircraft types in the European market. The gradual decrease

afterwards is carried out in such a way that the remaining set of aircraft have enough variation

in terms of size. Therefore the aircraft which have a similar counterpart in the fleet are selected

to be removed which is done to have a fair comparison between Clip-Air and standard fleet.

The results for Clip-Air and standard fleet with different fleet configurations are provided in

Table 8.8. It is observed that the richer the fleet configuration, the better the performance of

standard fleet. When the standard fleet has 10 or 7 plane types available, the profit is higher

compared to Clip-Air. However the transported number of passengers is always higher for

Clip-Air although it is allocating less capacity. The profit and the transported passengers

dramatically decrease when the fleet configuration is highly restricted with one type of plane.

When we look at the results with 1 plane type, which has the same capacity as 2 capsules, the

decrease in profit is 12.8% and 8.8% less passengers are carried. The change of profit and total

number of transported passengers with the fleet configuration can be seen more clearly in

Figure 8.8. Furthermore, the measure of TPASK is better for Clip-Air for all the cases except

the last case where the utilization of the capacity is very high due to the insufficient capacity

allocation. In this last case, standard fleet operates significantly less flights since the flights are

not profitable with a single type of aircraft.
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Figure 8.8: Profit and transported passengers for different fleet configurations
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Table 8.9: Data instance for the tests with different available capacity

Airports 5
Flights 100
Density (Flights/route) 6.25
Passengers 35,510
Itineraries 140
Standard fleet types A319(124), A320(150), A321(185),

A330(293), A340(335), B737-300(128),
B737-400(146), B737-900(174),

B747-200(452), B777(400)

8.3.5 Effect of the available seating capacity

All the previous results are obtained without any limit on the total capacity so that it is enough

to cover the total expected demand. However in reality there may be capacity shortage in

case of unexpected events, weather conditions or in high season. Therefore it is important to

test the performance of Clip-Air compared to standard fleet when there is limited capacity.

The data instance seen in Table 8.9, that consists of 100 flights, is used for the tests. Available

capacity is decreased gradually and the results corresponding to each level of capacity is

presented in Table 8.10.

For the unlimited capacity case, Clip-Air is able to carry 7% more passengers with 25% less

transportation capacity. In all of the cases Clip-Air is able to carry more passengers compared

to the standard fleet. In case of capacity restrictions, this advantage of Clip-Air over a standard

fleet becomes more evident as the restriction becomes harder to overcome. This can also be

observed from the TPASK measures which state that the productivity is higher for the allocated

capacity compared to standard fleet.

As mentioned previously, there are mandatory flights which need to be served. Our dataset

does not include information about the mandatory flights and to be able to represent the

schedule design decision we randomly select a percentage of the flights to be mandatory.

In this instance 50% of the flights are assumed to be mandatory. As the capacity restriction

becomes more severe, Clip-Air flies with one capsule in order to operate these mandatory

flights. This significantly increases the operating cost of Clip-Air and decreases the resulting

profit. In the last case in Table 8.10 the standard fleet has 16% more profit due to the explained

phenomenon. In order to see the effect of the mandatory flights, the same instance with an

available capacity of 1950 seats is analyzed, where all the flights are assumed to be optional.

In such a case Clip-Air has 9% more profit and carries 5% more passengers compared to a

standard fleet. Indeed, when all the flights are optional, Clip-Air can select the most profitable

flights where the level of demand enables to avoid the usage of one capsule flights.

When the available capacity is decreased further neither the standard fleet nor Clip-Air can

serve the mandatory flights which makes the problem infeasible.
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8.3.6 Sensitivity analysis on the costs of Clip-Air

Since the Clip-Air system does not exist yet, sensitivity analysis needs to be carried out for the

assumed operating cost of Clip-Air. As mentioned in section 8.3.1, we estimate the crew cost,

fuel cost, airport and air navigation charges for Clip-Air. Therefore we present a sensitivity

analysis of these cost figures. For example, for the fuel cost we analyze what happens if Clip-Air

consumes more than our expectation. For this purpose we have analyzed 5 different scenarios:

base case which is the expected cost and cases with an increase of 10%, 20%, 30%, 50% in fuel

consumption. Similarly, airport and air navigation charges are analyzed with the cases of 10%,

20%, 30% and 50% higher values compared to the base values we have initially used.

The crew cost does not depend on the weight of the aircraft. Clip-Air always flies with one set

of flight crews regardless of the number of capsules used. Therefore, Clip-Air crew cost savings

depend on the repartition of overall crew costs between flight and cabin and we analyze the

sensitivity of the results to this repartition. As mentioned in section 8.3.1, we assume that flight

crew and cabin crew constitute 60% and 40 % of the total crew cost respectively. Therefore

60% represents the base case for the flight crew cost throughout the analysis. We consider two

other cases where flight crew constitutes the 50% and 70% of the total crew cost. The 50% case

implies a reduction in the potential savings of Clip-Air and the 70% case is in favor of Clip-Air

where the crew cost is further decreased.

The analysis is carried out for the same data instance used for the analysis of the effect of

transportation capacity in section 8.3.5. The results in Table 8.11 are presented in comparison

to the results for standard fleet given in Table 8.10 for the case of unlimited capacity.

It is observed that the scheduling decisions are the same for almost all of the cases having 18

assigned aircraft and allocating 25% to 29% less capacity compared to the standard fleet. This

is a good indicator which says that our model is robust in the analyzed range and the general

conclusions remain valid. The number of transported passengers is higher for Clip-Air for all

the analyzed cases and the range of this increase is between 4.5%-8.3%. The highest increase

in profit is 14.8% which occurs when all the cost values are in favor of Clip-Air. On the other

hand, the lowest profit of Clip-Air (20.9% lower than standard fleet) is observed when all the

cost figures are in favor of the standard fleet.

Furthermore, we can draw conclusions on the relative impacts of each cost figure on the

resulting profit and transported passengers. When all the other cost values are at their base

levels, even a 50% increase in airport and air navigation charges does not affect the superiority

of Clip-Air over a standard fleet. A 30% increase in the fuel cost decreases the profit of Clip-Air

below that of a standard fleet even when all other costs are at their base levels. The impact of

different percentages for flight crew cost is more evident when the fuel cost is increased. For

example, when there is a 20% increase in fuel cost, the profit of Clip-Air may become inferieur

to a standard fleet depending on the flight crew percentage. When it is 70% Clip-Air is still

more profitable even for a 30% increase in airport and air navigation charges. However when

the flight crew percentage is 50% Clip-Air is less profitable even for the base case.
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Chapter 8. Impact analysis of a flexible air transportation system

It is observed that both the increase in the fuel cost and the increase in airport and air nav-

igation charges decrease the profit as expected. However the total number of transported

passengers is not considerably affected by the change of the costs. When the percentage of the

flight crew cost increases, Clip-Air uses the advantage of the decoupling of wing and capsules

and reduces the crew cost considerably. Although the number of carried passengers is not

highly affected, it is increased when the flight crew percentage is high. It can be concluded

that crew cost and fuel cost are more critical compared to airport and air navigation charges

in terms of the profit and the number of transported passengers, although there is not a

significant effect on the scheduling decisions.

8.4 Integrated airline scheduling, fleeting and pricing model for the

case of Clip-Air

Computational results in the previous sections are obtained with IFAM which does not have

the pricing decision and average price/demand values are used as given in the dataset. This is

preferred in order to present the comparative analysis based on provable optimal solutions

obtained with a MILP model. In this section we present results with the integrated scheduling,

fleeting and pricing model. For that purpose the formulation given in chapter 6, IFAM-PR
′
, is

used.

The extension to the Clip-Air case is done similarly by modifying the fleet assignment related

parts of the model. The model and the main differences to the standard aircraft case is given

in Appendix A.5.

The results are presented in Table 8.12 for data instance 26 which is also used for the results in

sections 8.3.5 and 8.3.6. The details on the data instance are provided in Table 8.9. We provide

results for the application of sequential approach and the local search heuristic presented

in chapter 5. Since we work with the reformulated model the adapted heuristic method is

used (see chapter 6, section 6.3). We do not report any results by BONMIN solver as it does

not converge to any feasible solution in 24 hours of computation. The results show that

for both sequential approach and the integrated approach solved by the heuristic, Clip-Air

has a significantly higher profit compared to standard aircraft. Furthermore it is carrying

more passengers. The improvements are higher with the heuristic method compared to the

sequential approach. The improvement in the profit is also higher compared to the results

with IFAM presented in Table 8.10. This means that the potential of Clip-Air becomes more

evident with the integrated model.

When the results of the heuristic are compared to the sequential approach, it is seen that the

improvement is higher with Clip-Air. IFAM
′

is computationally easier in the case of Clip-Air

since it has 3 aircraft options whereas standard fleet has 10 different aircraft sizes. Therefore

more iterations are realized in the case of Clip-Air and better solutions are explored.

This analysis shows that bringing several flexibility notions together (integrated modeling of
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Table 8.12: Comparative results with the integrated model

Standard Clip-Air % Improvement
aircraft with Clip-Air

Sequential
approach (SA)

Profit 2,265,013 2,688,751 18.71%
Pax. 26,644 26,952 1.16%

Heuristic ∗(avg.
over 5
replications)

Profit 2,271,312 2,735,556 20.44%
Pax. 26,512 27,981 5.54%

Number of iterations 101.0 632.6
Time (sec) 2,645.25 2613.60

IFAM
′

time per iter 25.34 3.56
RMM-PR

′
time per iter 0.25 0.38

% Impr. over SA 0.28% 1.74%
*Heuristic is run with VNS for both of the cases where nmi n = 60 and nmax = 100

supply and demand, flexible capacity of Clip-Air) provides superior solutions for the airline

case study. It motivates the further analysis of flexible transportation systems with better deci-

sion support tools thanks to integrated supply-demand models and with new transportation

alternatives that provide flexibility by design.

8.5 Conclusions and future research directions

In this chapter, the added value of flexibility in air transportation systems is analyzed. We have

focused on the flexibility brought by the modularity of a new type of aircraft, Clip-Air, which

is currently being designed. It is clearly shown that bringing flexibility helps to both better

respond to the network demand and to increase revenues. The analysis of flexibility is not

limited to Clip-Air and can be a reference for future studies on flexible transportation systems.

This study is a promising step towards the integration of different types of flexibility in various

transportation systems.

In order to quantify the added value of flexibility, a comparative analysis is carried out between

the Clip-Air system and an existing standard configuration. For this purpose an integrated

schedule design and fleet assignment model is developed for both Clip-Air and a fleet with

standard planes. Sustainability of transportation systems is closely related to the demand

responsiveness and this can not be achieved without introducing demand orientation in trans-

portation models. For that matter, supply-demand interactions are integrated in the model

through an itinerary choice model which represents spill and recapture effects. Therefore the

presented methodology is an integration of advanced optimization and demand modeling

methods for airlines.

Since the Clip-Air system does not exist yet, the estimation of the cost is based on reasonable

assumptions. In order to perform a conservative comparison, our scenarios include some

advantages for the standard fleet compared to Clip-Air. For instance, we do not allow Clip-Air
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Chapter 8. Impact analysis of a flexible air transportation system

to use different types of capsules, while the standard fleet can rely on different plane types.

Different scenarios are analyzed to quantify the performance of Clip-Air. The scenarios are

designed to test the effects of the network type, fleet size, fleet configuration and the estimated

cost of the Clip-Air system. In all analyzed cases, Clip-Air is found to carry more passengers

allocating less capacity compared to the standard fleet. This is supported by the high TPASK

measures which means that Clip-Air uses the available capacity more efficiently than the

standard fleet. The scenarios show that the potential advantages of Clip-Air are more evident

in a large network where the flight density is high and the airports are well connected. In such

a network, airlines fly with different types of aircraft as a strategy to capture various demand

patterns. Clip-Air is more efficiently responding to the demand with a single capsule type due

to its flexibility. Therefore, airlines that operate over a large network with a high density of

flights are expected to gain the most by switching to a Clip-Air fleet.

As mentioned previously, the cost estimation for the Clip-Air system is based on various

assumptions. Therefore a sensitivity analysis is presented for crew cost, fuel cost and airport

and air navigation charges. It is seen that scheduling decisions are not sensitive to the cost in

the range of our analysis. Clip-Air is found to always perform better in terms of the number of

carried passengers. In terms of profit, Clip-Air becomes less advantageous mainly when the

fuel costs are increased above 20%.

The overall results show that Clip-Air has a significant potential for an efficient use of the

capacity, as well as an increase of the airline profits. The conservative nature of the scenarios

and the sensitivity analysis suggest that these reported improvements will be outperformed

by a real implementation of the system. The presented model can simply be used for further

generation of results when cost figures of Clip-Air are updated.

It has been mentioned that the investment cost for the purchase of aircraft is ignored in this

study. However, the results suggest that a better utilization of the transportation capacity is

provided by Clip-Air. Therefore we believe that the potential of Clip-Air will be better shown

if the investment cost is included. The presented model can easily be extended with the

adjustment of the objective function. The model already tracks the number of used aircraft for

each type and this number can be used to take into account the investment cost.

The Clip-Air system can be analyzed from different perspectives thanks to its design. For

instance, a standardization of the Clip-Air capsule would give a multi-modal dimension to the

system. The capsules could be carried on railways and on trucks, allowing passengers to board

outside of the airport. Since the capsules are of simple structure, their storage and transfer

is relatively easy. We believe that the repositioning possibility will increase the flexibility of

Clip-Air and help to show more clearly how it can adapt to different situations of the capacity

and demand. A preliminary analysis on the repositioning of empty capsules is carried out by

Blaiberg (2012). Moreover, the modularity of Clip-Air allows to have freight and passenger

loaded capsules on the same flight which opens up new frontiers to mixed passenger and

cargo transportation. Furthermore, it is more realistic for an airline company to have only
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part of the fleet composed of Clip-Air wings and capsules the rest being composed of standard

aircraft. Therefore, a model with mixed fleet is crucial to see what types of aircraft should

be replaced by Clip-Air. A dynamic business plan for companies can be obtained with the

inclusion of the fixed cost for the purchase of the Clip-Air wings and capsules. Furthermore, a

business model where the companies operating the wings are different from the companies

operating the capsules should be analyzed.

The considered flexibilities share the viewpoint of airlines. However, Clip-Air is expected to

change the airport operations as well. The ground operations will alter with the easy transfer

of Clip-Air capsules. The needed turn-around time is expected to be reduced. The presented

model can be used for such modifications on the schedule. Furthermore, this study considers

that the schedule is given and the only option is the cancellation of optional flights. However,

Clip-Air might be more profitable with an adapted flight schedule. As a future work, the

presented methodology can be used with more flexibility in the schedule.

The Clip-Air concept opens the door to a wide range of new research opportunities in the

context of flexible transportation. Analogies and differences among the existing transportation

modes can be utilized better in order to design new concepts. Modularity, which is a flexibility

we are used to see in railways, is shown to be significantly advantageous in airline operations.

Therefore, the presented analysis is a promising step towards the new flexibility concepts

without being confined in the boundaries of the existing systems.
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9 Conclusions and future research di-
rections

This thesis combines together methodologies in the context of demand, supply and integrated

supply-demand models towards flexible transportation systems. A better understanding of

the travel behavior and an integrated supply-demand modeling framework provide a more

efficient use of the current transportation systems through better decision support tools.

The methodologies not only improve the current systems but also motivate the design of

new transportation alternatives thanks to the gained insights. Furthermore the presented

methodologies facilitate the planning and analysis of these flexible transportation systems

with the integrated decision mechanisms.

In this chapter we provide the main conclusions and future research directions for the thesis

in three sections parallel to the overall presentation.

Advanced demand models

Advanced demand models presented in this thesis enable to better understand the underlying

travel behavior of individuals. The integration of attitudes and perceptions through latent

variable and latent class models is shown to be a promising research field. The results motivate

the collection of comprehensive datasets including the attitudes and perceptions of individu-

als. With such rich datasets the preferences of passengers can be more deeply analyzed. The

results of such analysis generates valuable insights for the improvements in the current public

transport modes and for the design of more flexible transportation alternatives. Indeed the

presented study is followed by further research, outside this thesis, where the results obtained

with the revealed and stated preferences datasets are used by PostBus for improvements in

their services and for the launch of new flexible services (Bierlaire et al., 2011, Danalet and

Sahaleh, 2012, Schuler et al., 2012).

Advanced demand models provide important outputs and they can be further exploited

in the planning phase of transportation systems. In order to achieve that, the reaction of

demand to supply decisions should be modeled explicitly. Available datasets in the context of
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transportation are usually restricted having no access to the non-chosen alternatives. This

is more evident in the case of airlines. In this thesis, a joint RP/SP dataset is used in order to

obtain a price-elastic air itinerary choice model. The itinerary choice model is then used in

the development of an integrated model where the revenue related decisions are given based

on the choice of travelers. We believe that in the existence of more detailed datasets, advanced

demand models can be estimated and used for a better understanding of travel behavior and

for a more efficient planning of supply.

Integrated supply models

The thesis presents two formulations for the integrated airline scheduling, fleeting and pricing

problems. The integrated models explicitly represent supply-demand interactions through

the air itinerary choice model. Several tests are performed with a real European dataset in

comparison to state-of-the-art models. It is shown that the integrated approach provides

superior planning decisions due to the simultaneous decisions on the planning and revenue

management. The airline profit is increased when the information from the demand model

alters the planning decisions. The increase in profit is usually a few percents but it is important

considering the tight profit margins of airlines.

A comprehensive sensitivity analysis is performed addressing the uncertainty on the demand

model parameters. The analysis supports that the simultaneous decision making improves the

robustness of the solution with respect to the fluctuations on the demand side. Even though

the presented models are in the context of air transportation, they motivate the development

of integrated supply-demand models in other contexts. The ability to react to alternating

market conditions is an asset and provides flexibility in decision making in the context of

all service systems. Indeed the use of such integrated models is a very recent trend. There

are ongoing research projects worldwide where advance demand models are integrated for

improving the planning problems.

The integration of explicit demand models in optimization problems is not only interesting

in terms of modeling but also challenging in terms of solution methodologies. Integration

of a demand model in an optimization framework brings nonlinearities which often lead

to non-convexity. The presented formulations in this thesis are mixed integer non-convex

problems. The complexity in terms of nonlinearity arises since price is a decision variable of

the optimization model. With the logit model, the price directly affects the demand/market

share which is another decision variable. Moreover the combinatorics in the problem due to

the fleet assignment binary variables increases the problem complexity exponentially for large

flight networks.

We propose a local search heuristic for the solution of the integrated models where the fleet as-

signment and revenue sub-problems are solved in an iterative way. Local search mechanisms

are employed in order to explore the feasible region during the iterative process. The perfor-

mance of the heuristic is tested compared to two other heuristics: MINLP solver BONMIN
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and a sequential approach which is a single iteration for the solution of the sub-problems.

The heuristic is found to provide better quality solutions in reasonable computational time

compared to the two other heuristics. The heuristic is tested for data instances up to around

300 daily flights and it provides better solutions for both of the formulations of the integrated

model. The same heuristic is also utilized in the case of Clip-Air which shows that it can be used

as a solution method for a range of integrated models with explicit demand representations.

The quality of the results provided by the heuristic method should be evaluated with valid

bounds. The heuristic provides a lower bound on the profit and approximation methods

can be considered in order to obtain upper bounds. This is a challenging task due to the

non-convexity of the model. In the thesis we present a logarithmic transformation of the logit

model which significantly improves the formulation. The strength is supported by illustrative

examples and the revenue management sub-problem of the integrated model. Furthermore a

piecewise linear approximation is proposed in order to obtain a convex programming problem.

This methodology is valid theoretically however in order to obtain tight bounds, a very fine

approximation should be used with several pieces which makes the problem intractable in

terms of computational time even for small size instances. A promising research direction

is the design of efficient approximation methods which provides tight upper bounds on the

profit for realistic size instances. In this thesis, it is shown that it is not trivial to handle the non-

convexities in the model. Therefore we believe that there are many potential developments in

this area. The recent studies in mixed integer nonlinear programming (e.g. D’Ambrosio et al.,

2012) can be exploited as a further research of this thesis.

The development of an efficient solution methodology for the integrated models with explicit

supply-demand interactions is critical for a better use of such advanced planning models.

We believe that it will lead to the development of a general framework for the integration of

advanced demand models in optimization problems. As already mentioned, such models

are attracting an increased attention in literature with applications in real life problems.

Pioneering studies including this thesis show the potential of integrated approaches over

classical planning models. The considered demand models to be integrated in planning

models in the literature are so far basic models having mostly an aggregate nature with

few explanatory variables. However, as observed from the estimation results of advanced

demand models with the integration of individuals’ attitudes and perceptions, there is a high

potential towards a better understanding of travel behavior. Therefore a general framework

with integrated modeling features and efficient solution methodologies which can deal with

generalized models is a promising research direction with methodological contributions and

crucial real-life implications.

Innovative application

The presented models in the thesis are applied to the case of Clip-Air which is an innovative

flexible air transportation system. The models are extended in order to account for two levels
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of fleet assignment brought by the decoupling of wing and capsules. The advantages of Clip-

Air is studied in a comparison to standard aircraft in several scenarios. The scenarios are

always kept conservative with realistic and fair assumptions. Many of the potential advantages

of Clip-Air are ignored. The main focus is the flexibility to adjust the number of attached

capsules according to the demand. With this main feature Clip-Air is shown to outperform

standard fleet in terms of profit and number of transported passengers. Since the cost figures

of Clip-Air are based on preliminary investigations, a sensitivity analysis is performed and it is

seen that Clip-Air has a better performance compared to standard fleet except the cases with

very high perturbations.

This thesis shows the potential of such a flexible system from an airline point of view. As

future work, the Clip-Air system should be analyzed in various aspects in order to evaluate the

advantages and disadvantages more globally. Airport operations is one of such future work

areas. The airport design should be studied with the needs of the Clip-Air system. Specifically,

the flexibility to attach and detach capsules will create a flow in the airport and operations

should be re-considered in this aspect. Furthermore, the integration of Clip-Air in multi-modal

transportation networks due to its transferable capsules is a very fruitful research direction.

Multi-modal networks are studied in the literature with an increasing pace and an efficient

integration of air transportation in such networks is a key innovation. Moreover, Clip-Air

brings a new dimension to mixed passenger and cargo transportation with a flexibility in

completely separating passenger and cargo capsules. This is an interesting research direction

with potential real-life benefits. These are some main future research directions which can be

extended with several others.

Furthermore, the presented study is important as a motivation towards flexible systems in

other transportation modes. With a single flexibility dimension in transportation capacity, sig-

nificant advantages are obtained as supported by the experimental analysis. The conservative

nature of the experimental analysis enables us to confidently state the potential of Clip-Air.

We believe that introducing flexibility in any dimension will be followed by improvements in

all aspects given that it is based on the needs of the current transportation systems. Combined

with an appropriate analysis of the travel behavior with advance demand models, several

flexibility notions can be brought together in new transportation alternatives that better meet

the needs of today’s mobility needs.
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A Appendix

A.1 Supplementary results for the air itinerary choice model

In this section we provide supplementary results for the air itinerary choice model presented

in chapter 3.

A.1.1 Estimation with 24 OD pairs from the RP dataset

We provide the estimation results with 24 OD pairs of RP data is included in the mixed RP/SP

dataset. There are 165 alternative itineraries in total serving 5503 passengers between these 24

OD pairs.

In Table A.3 we see the results for RP and SP observation obtained with the joint estimation.

The presented results are in this case are significantly different compared to the estimation

results from the SP data (Table A.1). In Table A.4 we present the resulting demand elasticities

and value of time for OD1 when the estimation is carried out with 24 OD pairs. It is observed

that the elasticity of demand is reduced significantly compared to the results provided in Table

3.5. The demand model parameters in this case do not reflect the behavior of passengers and

when integrated into the planning model the price of the itineraries are allowed to increase

unrealistically because of the inelasticity.
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Appendix A. Appendix

Table A.1: Estimated parameters based on the SP data

Parameters Estimated value t-test

βE ,N S
price -9.63 -24.05

βB ,N S
price -8.50 -10.21

βE ,S
price -9.37 -24.89

βB ,S
price -8.51 -10.63

βB−OP
price 3.52 3.52

βE ,N S
time -0.439 -4.91

βB ,N S
time -0.456 -2.99

βE ,S
time -0.328 -4.23

βB ,S
time -0.361 -2.76

βE
morning 0.122 1.28*

βB
morning 0.341 2.10

(* Statistical significance < 90%)

Table A.2: Estimated parameters for the model with joint RP and SP data

Parameters Estimated value scaled value for SP t-test

βE ,N S
price -2.23 -9.63 -3.48

βB ,N S
price -1.97 -8.49 -3.64

βE ,S
price -2.17 -9.37 -3.48

βB ,S
price -1.97 -8.49 -3.68

βB−OP
price 0.813 3.52 2.91

βE ,N S
time -0.102 -0.440 -2.85

βB ,N S
time -0.104 -0.449 -2.43

βE ,S
time -0.0762 -0.329 -2.70

βB ,S
time -0.0821 -0.354 -2.31

βE
morning 0.0283 0.122 1.21*

βB
morning 0.0790 0.341 1.86

(* Statistical significance < 90%)
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Table A.3: Estimated parameters for the model with joint RP (24 OD pairs) and SP data

Parameters Estimated value scaled value for SP t-test

βE ,N S
price -1.28 -9.57 -24.73

βB ,N S
price -1.16 -8.64 -12.46

βE ,S
price -1.25 -9.32 -25.66

βB ,S
price -1.17 -8.71 -13.17

βB−OP
price 0.493 3.68 4.00

βE ,N S
time -0.060 -0.445 -5.07

βB ,N S
time -0.072 -0.534 -3.72

βE ,S
time -0.045 -0.333 -4.39

βB ,S
time -0.0058 -0.429 -3.350

βE
morning 0.0154 0.115 1.21*

βB
morning 0.0414 0.309 2.02

(* Statistical significance < 90%)

Table A.4: Demand indicators for OD1 when estimated with 24 ODs

alt. stops class VOT(eh ) price elas. time elas.

O
D

1

1 one-stop E 20.16 -1.23 -0.19
2 one-stop E 11.17 -1.22 -0.19
3 one-stop E 9.38 -1.13 -0.25
4 non-stop E 8.15 -1.06 -0.06
5 non-stop E 8.15 -1.03 -0.06
6 non-stop E 8.15 -1.11 -0.06
7 non-stop B 25.33 -1.12 -0.08
8 non-stop E 8.15 -1.15 -0.06
9 non-stop B 25.33 -1.10 -0.08
10 non-stop E 8.15 -1.16 -0.06
11 non-stop B 25.33 -1.15 -0.08
12 non-stop E 8.15 -1.16 -0.06
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A.2 Fleet assignment sub-problems

A.2.1 IFAM

z∗IFAM = max
∑

h∈H

∑
s∈Sh

∑
i∈(Is \I

′
s )

(di −
∑

j∈Is

ti , j +
∑

j∈(Is \I
′
s )

t j ,i b̄ j ,i )p̄i

− ∑
k∈K
f ∈F

Ck, f xk, f (A.1)

s.t .
∑

k∈K
xk, f = 1 ∀ f ∈ F M (A.2)

∑
k∈K

xk, f ≤ 1 ∀ f ∈ F O (A.3)

yk,a,t− + ∑
f ∈In(k,a,t )

xk, f = yk,a,t+ + ∑
f ∈Out (k,a,t )

xk, f ∀[k, a, t ] ∈ N (A.4)

∑
a∈A

yk,a,tn
+ ∑

f ∈C T
xk, f ≤ Rk ∀k ∈ K (A.5)

yk,a,mi nE−
a
= yk,a,maxE+

a
∀k ∈ K , a ∈ A (A.6)∑

s∈Sh

∑
i∈(Is \I

′
s )

δi , f di −
∑

j∈Is

δi , f ti , j +
∑

j∈(Is \I
′
s )

δi , f t j ,i b̄ j ,i

≤ ∑
k∈K

πh
k, f ∀h ∈ H , f ∈ F (A.7)

∑
h∈H

πh
k, f ≤Qk xk, f ∀ f ∈ F,k ∈ K (A.8)

∑
j∈Is

ti , j ≤ di ∀h ∈ H , s ∈ Sh , i ∈ Is (A.9)

xk, f ∈ {0,1} ∀k ∈ K , f ∈ F (A.10)

yk,a,t ≥ 0 ∀[k, a, t ] ∈ N (A.11)

πh
k, f ≥ 0 ∀h ∈ H ,k ∈ K , f ∈ F (A.12)

0 ≤ di ≤ d̄i ∀i ∈ I (A.13)

ti , j ≥ 0 ∀i ∈ I , j ∈ I (A.14)

This model uses the given price values (p̄i ) in the dataset. It assumes that the recapture

ratios, bi , j are given by a logit formula. With the given itinerary attributes in the dataset,

recapture ratios (b̄i , j ) and forecasted demand (d̄i ) are calculated and taken as an input. The

model optimizes the revenue minus operating costs (A.1). The revenue function explicitly

includes the spill and recapture effects. In addition to the schedule planning decisions, seat

allocation to each class of passengers is optimized. Constraints (A.7) maintain the balance

between demand and allocated seats. Constraints (A.8) ensure that actual capacity of aircraft

is respected. The number of spilled passengers from an itinerary cannot be more than the

expected demand of that itinerary which is given by constraints (A.9).
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A.3. Revenue sub-problems

A.2.2 IFAM
′

z∗
IFAM

′ =
max

∑
h∈H

∑
s∈Sh

Ds
∑

i∈(Is \I
′
s )

ui p̄i −
∑

k∈K
f ∈F

Ck, f xk, f (A.15)

s.t.
∑

k∈K
xk, f = 1 ∀ f ∈ F M (A.16)∑

k∈K
xk, f ≤ 1 ∀ f ∈ F O (A.17)

yk,a,t− +
∑

f ∈In(k,a,t )
xk, f = yk,a,t+ +

∑
f ∈Out(k,a,t )

xk, f ∀[k, a, t ] ∈ N (A.18)

∑
a∈A

yk,a,minE−
a
+ ∑

f ∈C T
xk, f ≤ Rk ∀k ∈ K (A.19)

yk,a,minE−
a
= yk,a,maxE+

a
∀k ∈ K , a ∈ A (A.20)∑

s∈Sh

Ds
∑

i∈(Is \I
′
s )

δi , f ui ≤
∑

k∈K
πh

k, f ∀h ∈ H , f ∈ F (A.21)

∑
h∈H

πh
k, f ≤Qk xk, f ∀ f ∈ F,k ∈ K (A.22)∑

i∈Is

ui = 1 ∀h ∈ H , s ∈ Sh (A.23)

ui ≤ υs exp(Vi (p̄i , zi ;β)) ∀h ∈ H , s ∈ Sh , i ∈ (Is \ I
′
s) (A.24)

u j = υs exp(Vj (p̄ j , z j ;β)) ∀h ∈ H , s ∈ Sh , j ∈ I
′
s (A.25)

xk, f ∈ {0,1} ∀k ∈ K , f ∈ F (A.26)

yk,a,t ≥ 0 ∀[k, a, t ] ∈ N (A.27)

πh
k, f ≥ 0 ∀h ∈ H ,k ∈ K , f ∈ F (A.28)

ui ≥ 0 ∀h ∈ H , s ∈ Sh , i ∈ Is (A.29)

υs ≥ 0 ∀h ∈ H , s ∈ Sh (A.30)

This model does not have the pricing decision and therefore prices are represented by p̄i for

the ease of explanation.

A.3 Revenue sub-problems

The revenue sub-problems optimize the revenue with a fixed capacity, which is provided by

the solution of the fleet assignment models. Therefore the fleet assignment solutions are input

parameters for revenue models and represented by x̄k, f .
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A.3.1 RMM

z∗RMM = max
∑

h∈H

∑
s∈Sh

∑
i∈(Is \I

′
s )

(di −
∑

j∈Is

ti , j +
∑

j∈(Is \I
′
s )

t j ,i b̄ j ,i )p̄i (A.31)

s.t.
∑

s∈Sh

∑
i∈(Is \I

′
s )

δi , f (di −
∑

j∈Is

ti , j +
∑

j∈(Is \I
′
s )

t j ,i b̄ j ,i )

≤ ∑
k∈K

πh
k, f ∀h ∈ H , f ∈ F (A.32)

∑
h∈H

πh
k, f ≤Qk x̄k, f ∀ f ∈ F,k ∈ K (A.33)

∑
j∈Is

ti , j ≤ di ∀h ∈ H , s ∈ Sh , i ∈ (Is \ I
′
s ) (A.34)

πh
k, f ≥ 0 ∀h ∈ H ,k ∈ K , f ∈ F (A.35)

0 ≤ di ≤ d̄i ∀h ∈ H , s ∈ Sh , i ∈ Is (A.36)

ti , j ≥ 0 ∀h ∈ H , s ∈ Sh , i ∈ (Is \ I
′
s ), j ∈ Is (A.37)

Note that this RMM does not have the pricing decision and therefore price (p̄i ), recapture

ratios (b̄i , j ), and the forecasted demand values (d̄i ) are input parameters to the model.

A.3.2 RMM-PR

z∗RMM-PR = max
∑

h∈H

∑
s∈Sh

∑
i∈(Is \I

′
s )

(di −
∑

j∈Is

ti , j +
∑

j∈(Is \I
′
s )

t j ,i b j ,i )pi (A.38)

s.t.
∑

s∈Sh

∑
i∈(Is \I

′
s )

δi , f (di −
∑

j∈Is

ti , j +
∑

j∈(Is \I
′
s )

t j ,i b j ,i )

≤ ∑
k∈K

πh
k, f ∀h ∈ H , f ∈ F (A.39)

∑
h∈H

πh
k, f ≤Qk x̄k, f ∀ f ∈ F,k ∈ K (A.40)

∑
j∈Is

ti , j ≤ di ∀h ∈ H , s ∈ Sh , i ∈ (Is \ I
′
s ) (A.41)

d̃i = Ds
exp(Vi (pi , zi ;β))∑

j∈Is

exp(Vj (p j , z j ;β))
∀h ∈ H , s ∈ Sh , i ∈ Is (A.42)

bi , j =
exp(Vj (p j , z j ;β))∑

k∈Is \{i }
exp(Vk (pk , zk ;β))

∀h ∈ H , s ∈ Sh , i ∈ (Is \ I
′
s ), j ∈ Is (A.43)

πh
k, f ≥ 0 ∀h ∈ H ,k ∈ K , f ∈ F (A.44)

0 ≤ di ≤ d̃i ∀h ∈ H , s ∈ Sh , i ∈ Is (A.45)

LBi ≤ pi ≤U Bi ∀h ∈ H , s ∈ Sh , i ∈ (Is \ I
′
s ) (A.46)

ti , j ≥ 0 ∀h ∈ H , s ∈ Sh , i ∈ (Is \ I
′
s ), j ∈ Is (A.47)

bi , j ≥ 0 ∀h ∈ H , s ∈ Sh , i ∈ (Is \ I
′
s ), j ∈ Is (A.48)
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A.4. Illustration for the market shares with the reformulated model

A.3.3 RMM-PR
′

z∗
RMM-PR

′ = max
∑

h∈H

∑
s∈Sh

Ds
∑

i∈(Is \I
′
s )

ui pi ) (A.49)

∑
i∈Is

ui = 1 ∀h ∈ H , s ∈ Sh (A.50)

ui ≤ υs exp(Vi (pi , zi ;β)) ∀h ∈ H , s ∈ Sh , i ∈ (Is \ I
′
s ) (A.51)

u j = υs exp(Vj (p j , z j ;β)) ∀h ∈ H , s ∈ Sh , j ∈ I
′
s (A.52)∑

s∈Sh

Ds
∑

i∈(Is \I
′
s )

δi , f ui ≤
∑

k∈K
πh

k, f ∀h ∈ H , f ∈ F (A.53)

∑
h∈H

πh
k, f ≤Qk x̄k, f ∀ f ∈ F,k ∈ K (A.54)

πh
k, f ≥ 0 ∀h ∈ H ,k ∈ K , f ∈ F (A.55)

LBi ≤ pi ≤U Bi ∀h ∈ H , s ∈ Sh , i ∈ (Is \ I
′
s ) (A.56)

ui ≥ 0 ∀h ∈ H , s ∈ Sh , i ∈ Is (A.57)

υs ≥ 0 ∀h ∈ H , s ∈ Sh (A.58)

A.4 Illustration for the market shares with the reformulated model

We illustrate how the logit model behaves in the reformulated integrated model given in

Chapter 6. For that purpose we pick an OD-pair, i.e. a market segment, provided in experiment

2. The selected market segment consists of the itineraries 3, 5, 7, 9, and 11 that are presented

in Table 6.1. Itinerary 9 is not operated since the corresponding flight is canceled as a decision

of the model.

The detailed results are provided in Table A.5. Note that the last row represents the no-revenue

option, i.e. an itinerary offered by a competing airline, which have a fixed price that cannot

be controlled by the airline. In the second column, we present the assigned capacity for the

corresponding flights of the itineraries. In this simple example, all the itineraries are non-

stop. Therefore, the capacity is used by a single itinerary which makes the analysis easier.

Third column is the resulting price for the itineraries and the fourth column provides the

corresponding utilities. The sixth column gives the upper bound on price which is indeed

the right hand side of the constraints (6.18). To remind that, this upper bound is determined

by the relative attractiveness of each itinerary with respect to the no-revenue option. The

seventh column on the other hand provides the resulting market shares for all the itineraries

in the market segments. As discussed in section 7.5.2, the market share constraints (6.18) are

introduced as inequality constraints due to the bounds on the price values. It is observed that

the only itinerary which has a realized price that is different than the upper bound is itinerary

7. Therefore, the realized market share for itinerary 7 is exactly equal to υexp(Vi ), i.e. the

market share constraint is active.

Finally, in the last column we present a set of hypothetical market share values for the
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Table A.5: An illustration of the market shares for the reformulated model - experiment 2

υ for the OD-pair: 2.401
UB on price for the OD-pair: 250
itineraries cap. price utility exp(Vi ) UB on resulting hypothetical

(seats) Vi market market market
share share share

υexp(Vi ) ui

3 50 250 -2.196 0.111 0.267 0.130 (50 pax) 0.189 (73 pax)
5 50 250 -2.196 0.111 0.267 0.130 (50 pax) 0.189 (73 pax)
7 117 238.9 -2.067 0.127 0.304 0.304 (117 pax) 0.215 (83 pax)

11 50 250 -2.196 0.111 0.267 0.130 (50 pax) 0.189 (73 pax)
no-revenue 235 -2.058 0.128 0.306 (118 pax) 0.217 (83 pax)

itineraries. We take the resulting utilities for the itineraries (excluding 9) and compute the

market shares based on the logit formula (6.2). It is done in order to have a feeling of the

realized spill and recapture effects. When the resulting market shares are compared to these

hypothetical values, it is seen that itineraries 3, 5, and 11 lose passengers and result with a

lower market share. On the other hand, itinerary 7 and the no-revenue option attract pas-

sengers with a lower price. We see that in total 69 passengers are spilled from itineraries 3,

5 and 11. The remaining itineraries in the market, which are itinerary 7 and the competing

alternative, attract a number of the spilled passengers proportional to their expected utility.

The recapture ratio for itinerary 7 is 0.127/(0.127+0.128) = 0.498 which corresponds to 34 of 69

passengers. As a result, the realized demand for itinerary 7 becomes 83 + 34 = 117 with the

spill and recapture effects.

This analysis shows that, in the presence of price bounds, it is necessary to manage the market

share variables, ui , using inequality constraints as in the model (6.2). Indeed the same decision

on the pricing of the itineraries would imply unfeasible number of passengers, i.e. the assigned

capacity would not be sufficient the resulting demand. Therefore, the inequality constraints

on the market shares give flexibility to the model and the resulting profit is increased.

A.5 Integrated model for the case of Clip-Air

In this section we provide the integrated airline scheduling, fleeting and pricing model pre-

sented in chapter 6 for the case of Clip-Air. We mention the main differences with respect to

the model for standard aircraft. First of all, in addition to the fleet assignment variable xk, f ,

that represents the assignment of capsules, variable xw
f is introduced for the assignment of

wings to the flights. The operating cost in the objective is written as the sum of the costs for

wings and capsules. The relation between the wings and capsules are maintained by the set

of constraints given in (A.61). When there is no wing assigned for the flight, capsules cannot

be assigned neither. The constraints for the fleet assignment process is included for both

wings and capsules as given in (A.62)-(A.67). Supply-demand balance constraints (A.68) and

(A.69) are presented according to Clip-Air fleet as explained in section 8.2.1. The remaining
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A.5. Integrated model for the case of Clip-Air

constraints are similar to previous formulations.

z∗
IFAM-PRClip-Air′ =

max
∑

h∈H

∑
s∈Sh

Ds
∑

i∈(Is \I
′
s )

ui pi −
∑
f ∈F

(C w
f xw

f + ∑
k∈K

Ck, f xk, f ) (A.59)

s.t.
∑

k∈K
xk, f = 1 ∀ f ∈ F M (A.60)∑

k∈K
xk, f ≤ xw

f ∀ f ∈ F (A.61)

y w
a,t− +

∑
f ∈In(a,t )

xw
f = y w

a,t+ +
∑

f ∈Out (a,t )
xw

f ∀[a, t ] ∈ N (A.62)

∑
a∈A

y w
a,minE−

a
+ ∑

f ∈C T
xw

f ≤ Rw (A.63)

y w
a,mi nE−

a
= y w

a,maxE+
a

∀a ∈ A (A.64)

yk
a,t− +

∑
f ∈In(a,t )

k∈K

k xk, f = yk
a,t+ +

∑
f ∈Out (a,t )

k∈K

k xk, f ∀[a, t ] ∈ N (A.65)

∑
a∈A

yk
a,minE−

a
+ ∑

f ∈C T
k∈K

k xk, f ≤ Rk (A.66)

yk
a,mi nE−

a
= yk

a,maxE+
a

∀a ∈ A (A.67)∑
s∈Sh

Ds
∑

i∈(Is \I
′
s )

δi , f ui ≤π f ,h ∀h ∈ H , f ∈ F (A.68)

∑
h∈H

π f ,h ≤ ∑
k∈K

Q k xk, f ∀ f ∈ F (A.69)∑
i∈Is

ui = 1 ∀h ∈ H , s ∈ Sh (A.70)

ui ≤ υs exp(Vi (pi , zi ;β)) ∀h ∈ H , s ∈ Sh , i ∈ (Is \ I
′
s ) (A.71)

u j = υs exp(Vj (p̄ j , z j ;β)) ∀h ∈ H , s ∈ Sh , j ∈ I
′
s (A.72)

xw
f ∈ {0,1} ∀ f ∈ F (A.73)

xk, f ∈ {0,1} ∀k ∈ K , f ∈ F (A.74)

y w
a,t ≥ 0 ∀[a, t ] ∈ N (A.75)

yk
a,t ≥ 0 ∀[a, t ] ∈ N (A.76)

π f ,h ≥ 0 ∀ f ∈ F,h ∈ H (A.77)

LBi ≤ pi ≤ UBi ∀h ∈ H , s ∈ Sh , i ∈ (Is \ I
′
s ) (A.78)

ui ≥ 0 ∀h ∈ H , s ∈ Sh , i ∈ Is (A.79)

υs ≥ 0 ∀h ∈ H , s ∈ Sh (A.80)
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A.6 Inverse demand function

Market share, ui , is given by:

ui = υs exp(βpi + zi ), (A.81)

which is similar to (6.5). If we have the inverse function we can write the price as a function of

the choice probability:

pi = 1

β
(ln(

ui

υs
)− zi ) (A.82)

The revenue for each itinerary, Ri , is given by ui pi Ds which can be written as:

Ri = 1

β
Dsui (ln(

ui

υs
)− zi ) (A.83)

The Hessian for Ri is therefore given by:

H =
⎛⎝ ∂2Ri

∂u2
i
= Ds

1
β

1
ui

∂2Ri
∂ui∂pi

=−Ds
1
β

1
υs

∂2Ri
∂pi∂ui

=−Ds
1
β

1
υs

∂2Ri

∂p2
i
= Dsui

1
β

1
υ2

s

⎞⎠
where ui ,Ds ,υs are ≥ 0 by definition. β ≤ 0 since it gives the effect of price on the utility.

Therefore ∂2Ri

∂u2
i

and ∂2Ri

∂p2
i
≤ 0 The determinant of the Hessian is given by:

∂2Ri

∂u2
i

∂2Ri

∂p2
i

− ∂2Ri

∂ui∂pi

∂2Ri

∂pi∂ui
,

= D2
s

1

β2

1

υ2
s
−D2

s
1

β2

1

υ2
s
= 0,

which shows that the revenue function is concave (not strictly concave) ∀u ≥ 0,υs ≥ 0.

A.7 The integrated model with the logarithmic transformation

In this section, we provide the integrated model with the logarithmic transformation proposed

in chapter 7. We refer to this transformed integrated scheduling, fleeting and pricing model

as IFAM-PRln. The presented formulation is based on the integrated model IFAM-PR
′

that is

given in chapter 6. Remember that, the most important advantage of the log transformation is

the reduced complexity of the problem which allows obtaining solutions without the need for

bounds on the price. The integrated models given in chapters 4 and 6 on the other hand, does

not result with any feasible solution without the bounds due to complexity.
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A.7. The integrated model with the logarithmic transformation

z∗
I F AM−PR ln =

max
∑

h∈H

∑
s∈Sh

∑
i∈(Is \I

′
s )

Ri −M1i (Ri −exp(R
′
i ))2

− ∑
h∈H

∑
s∈Sh

∑
i∈Is

M2i (ui −exp(u
′
i ))2

− ∑
k∈K

∑
f ∈F

Ck, f xk, f (A.84)

s.t.
∑

k∈K
xk, f = 1 ∀ f ∈ F M (A.85)∑

k∈K
xk, f ≤ 1 ∀ f ∈ F O (A.86)

yk,a,t− +
∑

f ∈In(k,a,t )
xk, f = yk,a,t+ +

∑
f ∈Out(k,a,t )

xk, f ∀[k, a, t ] ∈ N (A.87)

∑
a∈A

yk,a,minE−
a
+ ∑

f ∈C T
xk, f ≤ Rk ∀k ∈ K (A.88)

yk,a,minE−
a
= yk,a,maxE+

a
∀k ∈ K , a ∈ A (A.89)∑

s∈Sh

Ds
∑

i∈(Is \I
′
s )

δi , f ui ≤
∑

k∈K
πh

k, f ∀h ∈ H , f ∈ F (A.90)

∑
h∈H

πh
k, f ≤Qk xk, f ∀ f ∈ F,k ∈ K (A.91)∑

i∈Is

ui = 1 ∀h ∈ H , s ∈ Sh (A.92)

u
′
i = υ

′
s +βi p

′
i + zi ∀h ∈ H , s ∈ Sh , i ∈ (Is \ I

′
s ) (A.93)

u
′
j = υ

′
s +β j P

′
j + z j ∀h ∈ H , s ∈ Sh , j ∈ I

′
s (A.94)

ui ≤ exp(u
′
i ) ∀h ∈ H , s ∈ Sh , i ∈ Is (A.95)

R
′
i = ln(Ds )+u

′
i +p

′
i ∀h ∈ H , s ∈ Sh , i ∈ (Is \ I

′
s ) (A.96)

Ri ≤ exp(R
′
i ) ∀h ∈ H , s ∈ Sh , i ∈ (Is \ I

′
s ) (A.97)

Ri ≥ 0 ∀h ∈ H , s ∈ Sh , i ∈ (Is \ I
′
s ) (A.98)

R
′
i ∈R ∀h ∈ H , s ∈ Sh , i ∈ (Is \ I

′
s ) (A.99)

ui ≥ 0 ∀h ∈ H , s ∈ Sh , i ∈ Is (A.100)

u
′
i ∈R ∀h ∈ H , s ∈ Sh , i ∈ Is (A.101)

υ
′
s ∈R ∀h ∈ H , s ∈ Sh (A.102)

p
′
i ∈R ∀h ∈ H , s ∈ Sh , i ∈ (Is \ I

′
s ) (A.103)

xk, f ∈ {0,1} ∀k ∈ K , f ∈ F (A.104)

yk,a,t ≥ 0 ∀[k, a, t ] ∈ N (A.105)

πh
k, f ≥ 0 ∀h ∈ H ,k ∈ K , f ∈ F (A.106)

We illustrate the different decisions of the transformed model and the previous formulations.

For that purpose we select instance 1 (see Table 5.1), which is used in several sections of the

thesis. For this data instance, the solution of models IFAM-PR given in chapter 4 and IFAM-PR
′
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Table A.6: An illustrative example for the transformed model - experiment 1

Previous models Transformed model
IFAM-PR/IFAM-PR

′
IFAM-PRln

Revenue 65,717 70,482
Operating costs 50,626 46,751

Profit 15,091 23,731
Number of flights 8 8

Transported passengers 284 256
Allocated seats 124 74

Itineraries demand price demand price
1 canceled canceled
2 9 365.61 9 365.61
3 12 141.26 12 141.26
4 8 375 8 380.57
5 11 143.06 11 143.06
6 2 525 2 528.10
7 33 225 33 275.34
8 37 250 37 318.98
9 49 203.06 34 275.34

10 50 250 37 314.97
11 5 449.28 5 463.71
12 31 170.75 31 174.89
13 4 450 4 530.88
14 33 200 33 255.65
15 canceled canceled
16 canceled canceled

Boldface values show the differences between the results of the models

given in chapter 6 are the same. In Table A.6 we compare the results for IFAM-PRln and the

previous models. It is observed that, the canceled flights are the same flights for the models.

However with the transformed model, higher prices are obtained for most of the itineraries

since there are no bounds on the price and since the price elasticity allows for it. As the prices

are increased, relatively less number of passengers are attracted and the allocated capacity is

decreased. Therefore, the resulting profit is higher.

Note that constraints (A.93) are kept as equality constraints since there are no bounds on the
price. In order to see if the transformed integrated model is a valid transformation of IFAM-PR

′
,

we impose the same bounds as used in chapters 4 and 6. Moreover, we change the constraints
(A.93) back to ≤ constraints in order to allow spill due to the bounds on price. It is observed
that the same solution as IFAM-PR

′
is obtained given that a high enough penalty is imposed.
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A.8 Lagrangian relaxation

In this section, we demonstrate the application of Lagrangian relaxation method over the IFAM-

PRln model that is given in Appendix A.7. In order to obtain valid bounds we need convexity,

which is addressed by section 7.6. Since the presented piecewise linear approximation of the

revenue maximization problem is not tractable in terms of computational time, we present

the methodology over the integrated model without the piecewise linear approximation.

First of all, for a more compact representation, we merge the constraints (A.90) and (A.91) by:∑
h∈H

∑
s∈Sh

Ds
∑

i∈(Is \I
′
s )

δi , f ui ≤
∑

k∈K
Qk xk, f ∀ f ∈ F, (A.107)

where we remove the decision on the seat allocation, namely the decision variable πh
k, f .

For Lagrangian relaxation we relax the constraints (A.107) and introduce the Lagrangian

multipliers λ f for each flight f . Therefore, the objective function (A.84) is re-written as:

z(λ) =max
∑

h∈H

∑
s∈Sh

⎛⎝ ∑
i∈(Is \I

′
s )

Ri −M1i (Ri −exp(R
′
i ))2 − ∑

i∈Is

M2i (ui −exp(u
′
i ))2

⎞⎠
− ∑

k∈K

∑
f ∈F

Ck, f xk, f

+ ∑
f ∈F

λ f

⎛⎝ ∑
k∈K

Qk xk, f −
∑

h∈H

∑
s∈Sh

Ds
∑

i∈(Is \I
′
s )

δi , f ui

⎞⎠ , (A.108)

which is subject to constraints (A.85)-(A.89) and (A.92)-(A.106). By re-arranging the terms we

can write the objective function as:

z(λ) =max
∑

h∈H

∑
s∈Sh

⎛⎝ ∑
i∈(Is \I

′
s )

Ri −M1i (Ri −exp(R
′
i ))2 − ∑

i∈Is

M2i (ui −exp(u
′
i ))2

⎞⎠
− ∑

f ∈F
λ f

⎛⎝ ∑
h∈H

∑
s∈Sh

Ds
∑

∈(Is \I
′
s )

δi , f ui

⎞⎠
− ∑

f ∈F

∑
k∈K

(
Ck, f −λ f Qk

)
xk, f . (A.109)

The model now can be decomposed into two subproblems. The first is a revenue maximization

model where the Lagrangian multipliers modify the revenue depending on the demand-
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capacity balance. The objective function is given by:

zRMM(λ) =max
∑

h∈H

∑
s∈Sh

⎛⎝ ∑
i∈(Is \I

′
s )

Ri −M1i (Ri −exp(R
′
i ))2 − ∑

i∈Is

M2i (ui −exp(u
′
i ))2

⎞⎠
− ∑

f ∈F
λ f

⎛⎝ ∑
h∈H

∑
s∈Sh

Ds
∑

∈(Is \I
′
s )

δi , f ui

⎞⎠ (A.110)

which is subject to constraints (A.92)-(A.103).

The second subproblem is a fleet assignment model where seat prices are assigned through

Lagrangian multipliers. The objective function is given by:

zFAM(λ) =min
∑
f ∈F

∑
k∈K

(
Ck, f −λ f Qk

)
xk, f , (A.111)

which is subject to constraints (A.85)-(A.89), (4.10) and (A.104)-(A.105).

A.8.1 Solving the Lagrangian dual via sub-gradient optimization

We apply sub-gradient optimization to solve the Lagrangian dual zD = min
λ≥0

max z(λ). The

gradient for flight f is defined as:

G f =
∑

k∈K
Qk xk, f −

∑
h∈H

∑
s∈Sh

Ds
∑

i∈(Is \I
′
s )

δi , f ui (A.112)

The step size for flight f is defined as:

T f =
η(zU B − zLB )∑

f ∈F
G2

f

, (A.113)

where η is a scale parameter, typically initialized at 2; zU B and zLB are upper and lower bounds,

respectively. We update the Lagrangian multipliers using the gradient and the step size by:

λ f = max(0,λ f −T f G f ). (A.114)

A.8.2 Lagrangian heuristic

At each iteration of the solution of the Lagrangian dual zD , the optimal solution of z(λ) may

violate the capacity constraints (A.107) for some f ∈ F . Therefore we need to obtain a primal

feasible solution which serves as a lower bound. As an heuristic way to achieve such a lower

bound we use the optimal solution to zF AM (λ) = {x̄, ȳ} and fix this fleet assignment solution

and provide as an input to �RMM
ln

given in chapter 7. Remember that this model has capacity

constraints and with the optimized fleet assignment solution we will obtain a primal feasible
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solution.

A.8.3 Overall algorithm

Having provided the necessary steps, we can give the pseudo-code of the Lagrangian relaxation

procedure. no improvement() function checks if the upper bound is improved in the last 4

Algorithm 2 Subgradient procedure

Require: zLB , kmax, ε
λ0 := 0, k := 0, zU B :=∞, η := 2
repeat

{ū, p̄
′
} := solve zRMM(λk )

{x̄, ȳ} := solve zFAM(λk )
zU B (λk ) := zRMM(λk )− zFAM(λk )
update the upper bound zU B := min(zU B , zU B (λk ))
if no improvement(zU B ) then

η := η/2
end if
obtain a primal feasible solution lb := z�RMM

ln (x̄)
update the lower bound zLB := max(zLB , lb)
G := compute sub-gradient(zU B , zLB , {ū, x̄})
T := compute step(zU B , zLB , ū, x̄})
update multipliers λk+1 := max(0,λk −T G)
k := k +1

until ||TG||2 ≤ ε or k ≥ kmax

iterations in order to reduce the scale if there is no improvement. As the stopping criteria, the

maximum number iterations, kmax, can be selected or the algorithm can be kept running until

the update on the Lagrangian multipliers becomes less than the threshold value ε.

A.9 A generalized Benders’ decomposition framework

A Generalized Benders’ Decomposition framework can be designed for the reformulated

model with logarithmic transformation, IFAM-PRln, based on the Mixed Integer Nonlinear

Programming chapter of Li and Sun (2006). Similar to the Lagrangian relaxation procedure

explained in section A.8, we need convexity in order to have valid bounds. However, in order to

illustrate the idea, we present it over IFAM-PRln. Given that, an efficient algorithm is designed

for the solution of the piecewise linear approximation of the model given in section 7.6, the

revenue part should be modified accordingly. The resulting convexity will then enable to

obtain valid bounds.

In order to apply the idea to our case, we fix the fleet assignment variables xk, f and obtain the

sub-problem that is similar to the revenue maximization problem, �RMM
ln

given in chapter 7,
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section 7.5.2. The sub-problem optimizes the price and market share in order to maximize the

revenue with a fixed set of fleet assignment decisions, xk, f . The solution of the sub-problem

provides Benders’ cuts to the master problem through the supply-demand balance constraints

(A.107). We define λ f ’s as the dual variables associated with these constraints. The master

problem is a fleet assignment model, where the revenue related decisions are fixed. The master

problem is provided as follows:

zmaster = max α (A.115)

s.t. α≤ ∑
h∈H

∑
s∈Sh

Ds
∑

i∈(Is \I
′
s )

exp(p̄
′c
i )ūc

i −
∑

k∈K

∑
f ∈F

Ck, f x̄c
k, f

+ ∑
k∈K

∑
f ∈F

(Qkλ
c
f −Ck, f )[xk, f − x̄c

k, f ] ∀c ∈ CUTS (A.116)

∑
k∈K

xk, f = 1 ∀ f ∈ F (A.117)

yk,a,t− +
∑

f ∈In(k,a,t )
xk, f = yk,a,t+ +

∑
f ∈Out(k,a,t )

xk, f ∀[k, a, t ] ∈ N (A.118)

∑
a∈A

yk,a,minE−
a
+ ∑

f ∈C T
xk, f ≤ Rk ∀k ∈ K (A.119)

yk,a,minE−
a
= yk,a,maxE+

a
∀k ∈ K , a ∈ A (A.120)

xk, f ∈ {0,1} ∀k ∈ K , f ∈ F (A.121)

yk,a,t ≥ 0 ∀[k, a, t ] ∈ N (A.122)

The objective value is bounded by the potential profit that would be obtained with a change

on the fleet assignment solution, as given by (A.116). The first part of this bound is the actual

profit given by the fixed decision variables p̄
′
, ū and x̄. The actual revenue is modified by

the Lagrangian multipliers λ f . These multipliers, that are introduced in the Benders’ cuts,

represent the main idea of the framework. The information on the potential revenue change,

by a modification on the fleet assignment, is carried with λc
f ’s at each iteration c. In the

framework presented by Li and Sun (2006) there are also feasibility cuts, which are added

when the sub-problem is infeasible. In our case, the sub-problem is always feasible since

with any fleet assignment solution, a feasible revenue solution can be obtained. The supply-

demand balance is represented by inequality constraints (7.86) which allows the feasibility

with any supply capacity. So we only have the cuts given in (A.116).

The λ f multipliers should be obtained through the optimality conditions of the sub-problem

and transfered to the master problem. Then the capacity provided by the master problem is

transfered to the sub-problem. This iterative framework is provided in Algorithm 3.

As common with Benders’ Decomposition, the convexity of the master problem increases

with the number of cuts. Algorithms can be developed in order to accelerate the process (e.g.

Rei et al., 2009).

208



A.9. A generalized Benders’ decomposition framework

Algorithm 3 Generalized Benders’ Framework

Require: Choose the initial fleet assignment solution x̄1, and ε

λ0 := 0, k := 1, zLB :=−∞, zU B :=∞, k := 1
repeat

Step 1. Solve the subproblem with fixed fleet assignment �RMM
ln

(x̄k ). We obtain the price,
p̄

′k , the market share ūk and the Lagrangian multipliers λk . We update the lower bound,
zk

LB := max(zk−1
LB , z∗

IFAM-PRln (x̄k , ūk , p̄
′k )). For the lower bound the objective function of

the integrated model (IFAM-PRln) with fixed decision variables is calculated.
Step 2. Solve the master problem with λk , ūk and p̄

′k , obtain x̄k+1 with the objective
function value αk . Set zU B =αk .
k := k +1

until zLB ≥ zU B +ε
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B Glossary

B.1 Definitions

airline schedule planning: the set of processes for designing future airline schedules to

maximize airline profitability. It includes the decisions on the markets to serve, the frequency,

the time schedule for flights, the aircraft type, aircraft routing and the crew.

aggregate demand model: a demand model where the behavior of individuals are modeled

with the attributes of the alternatives rather than the characteristics of individuals.

available seat kilometers (ASK): the number of seats available multiplied by the number of

kilometers flown.

Clip-Air capsules: the cabin part of CliP-Air that is designed to carry the passengers/freight

and that is separated from the wing.

Clip-Air wing: the flying unit of Clip-Air that is designed to carry the engines and the flight

(cockpit) crew.

day-to-day variation of demand: the variation of the number of passengers that are willing

to travel on an itinerary/flight from day to day; e.g. on certain market segments demand may

be higher on Mondays compared to other days of the week.

demand responsiveness: the ability of a system/model to react to the changes in the demand

patterns.

disaggregate demand model: a demand model where the behavior of individuals are modeled

taking into account the different characteristics of individuals in addition to the attributes of

the alternatives. Therefore, the estimations can be obtained for different groups of individuals

in the population.

fleet assignment: the process of assigning aircraft types to the flights.
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fleeting: the output of a fleet assignment model which gives the assignment of aircraft types

to the flights.

flight density: the average number of flights per OD pair for a given data instance.

flight leg: operation which starts with exactly one take-off and ends with exactly one landing.

hub and spoke: an airline network type where the flights connect only through the main

airports that are called hubs.

itinerary: the product offered for passengers between an origin and destination which may

consist of multiple flight legs.

itinerary-based fleet assignment: a fleet assignment model where the demand information

is considered at the itinerary level rather than the flight level.

itinerary choice model: discrete choice model for the behavior of passengers for their decision

on which itinerary to fly.

latent variable: a variable that cannot be directly observed but rather inferred from other

observed variables; e.g. attitudes and perceptions of individuals that have an impact on their

behavior.

latent class: a segment of population which is identified based on the latent characteristics of

individuals.

load factor of a flight: the ratio of the number of passengers to the total number of seats

assigned to the flight.

local search: the method for solving an optimization problem through local changes in the

solution in a given neighborhood.

market segment: the passengers that desire to travel between an origin airport and a destina-

tion airport for a given class; e.g. economy class passengers who want to travel from Geneva

to Boston.

mandatory flights: the set of flights which needs to be served by the airline.

mixed passenger and freight transportation: the transportation of passenger and freight on

the same transportation unit. It is typical for airlines to carry mixed load on the same aircraft.

mode choice model: discrete choice model for the behavior of passengers for their decision

on which transportation mode to perform their trips.

modularity (in transportation): the concept for the design of a transportation system where a

set of functional units can be composed into a transportation mode. In the context of Clip-Air,

the configuration can be altered with different number of capsules attached to the wing.
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multi-modal transportation: the transportation of passengers/freight through multiple means

of transportation modes.

no-revenue options: alternative itineraries in a market segment which represent the alterna-

tives provided by the competing airlines. These alternatives are included in order to have a

reference value for the market price and the airline does not have a control on the attributes

of these alternatives.

optional flights: the set of flights which might be served based on their profitability, i.e. they

can be canceled if they are not expected to be profitable.

peer-to-peer network (airlines): an airline network type where the airports in the network

are connected to each other without the need for a main airport (hub). The flights therefore

are operated between each airport pair.

perturbation: a change in the expected value of a parameter in the system.

price sampling: the process of randomly selecting the price of the itineraries in a given range

of prices.

quality service index (QSI): a method of assessing the relative quality of different services in

order to forecast the market share of these services in a market.

recapture: the process of accommodating passengers on other itineraries in the market

segment in case their originally desired itinerary has capacity restrictions.

recapture ratio: the ratio of passengers who can be accommodated on a specific itinerary

when spilled from their desired itinerary. This ratio typically depends on a demand model.

revealed preferences: the preferences of individuals which can be revealed from their actual

choices; e.g. preference of an individual towards the use of public transportation can be

revealed from the actual trips he/she performs.

revenue management: the process of understanding, anticipating and influencing consumer

behavior in order to maximize the revenue. For airlines, this process is based on demand

forecasts for flights/itineraries and is performed with the decisions on capacity allocation for

different cabin classes and the pricing of alternatives for the considered market segments.

robustness: the ability of a system to resist change without adapting its initial configura-

tion. For a model it can be considered as the stability of the decisions with changing input

parameters.

sensitivity analysis: the analysis of a system/model in order to assess the sensitivity of the

outputs/results to the uncertainties or fluctuations in the inputs/parameters.

spill: the process of rejecting passengers due to capacity limitations so that passengers are

not able to fly on their desired itinerary.
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spill cost: the lost revenue due to spilled passengers.

spill rate: the average number of spilled passengers divided by the total demand for the

flight/itinerary.

standard fleet: the fleet composed of standard aircraft that are already used in airline industry.

stated preferences: the preferences which are stated by the individuals but not confirmed by

their actual choice; e.g. preference of an individual towards the use of a future transportation

alternative can only be based on his/her statement.

time-of-day preferences: the preferences of travelers for the departure time of their flights

which is commonly used in demand modeling.

time-space network: the graphical representation of a network where a node has information

about both time and space and an arc represents the movements of the aircraft.

transported passengers per available seat kilometers (TPASK): the total number of trans-

ported passengers divided by the available seat kilometers.

turnaround time of an aircraft: the time needed between the unloading of the aircraft at the

end of a flight and the loading for the next flight.

unconstrained demand: the number of passengers that would travel on an itinerary/ a flight

if there was no capacity limitations.

value of time (VOT): the amount that a traveler would be willing to pay in order to reduce the

traveling time.

variable neighborhood search (VNS): a metaheuristic method for solving combinatorial op-

timization problems where the size of the neighborhood varies according to the quality of the

solution.

B.2 Notation

Sets related to the optimization models

A : the set of airports indexed by a

B1, B2: sets of breakpoints for the piecewise linear approximation of the choice variable,

indexed by b

C : the choice set for a general setting of a logit model

C o : the set of alternatives provided by the considered supplier, C o ∈C

C c : the set of alternatives provided by the competitors, C c ∈C

C T : the set of flights flying at count time

F : the set of flight legs indexed by f
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FM : the set of mandatory flights

FO : the set of optional flights

H : set of cabin classes indexed by h

Is : the set of itineraries in segment s, indexed by i

I
′
s : the set of no-revenue itineraries, I

′
s ∈ Is

K : the set of fleet types indexed by k

Ł : the set of fixed assignments in the local search heuristic indexed by 


N : the set of individuals for a general setting of a logit model indexed by n

N (k, a, t ) : the set of the nodes in the time-line network, for fleet type k, airport a and time t

In(k, a, t ) : the set of inbound flight legs for node (k,a,t )

Out(k, a, t ) : the set of outbound flight legs for node (k,a,t )

Sh : the set of market segments indexed by s, for cabin class h

T : the set of time of the events in the network indexed by t

Parameters of the optimization models

b̄i , j : the fixed recapture ratio for the passengers spilled from itinerary i , and redirected to

itinerary j - used in IFAM and RMM

Ck, f : operating cost for flight f when operated by fleet type k, also used for Clip-Air capsules

C w
f : operating cost of Clip-Air wing for flight f

C ap f : the capacity assigned to flight f

d̄i : the fixed demand of itinerary i based on the logit model - used in IFAM and RMM

Di : unconstrained demand for itinerary i

Ds : unconstrained demand for market segment s

LBi : the lower bound on the price of the itinerary i

M , M1, M2 , M1, M2 : arbitrary large numbers used in optimization problems

maxE+
a : the time just after the last event at airport a

mi nE−
a : the time just before the first event at airport a

p̄i : the fixed price of itinerary i - used in IFAM, IFAM
′
, and RMM, also represents the price of

no-revenue options

Qk : the capacity of fleet type k in number of seats, used as Q for the case of Clip-Air in order

to represent the number of seats per capsule

Rk : available number of aircraft of type k, also used for Clip-Air capsules

Rw : available number of Clip-Air wings

UBi : the upper bound on the price of the itinerary i

x̄k, f : fixed parameter used as the fixed fleet assignment solution in RMM-PR and RMM-PR
′

xkfixed



, f fixed



: a fixed fleet assignment solution used in the heuristic, where flight f fixed



is fixed to

aircraft kfixed



zi : airline case - the vector of explanatory variables for itinerary i

zi ,n : general case - the vector of explanatory variables for alternative i and individual n
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β, βn : the vector of coefficients to be estimated for the logit model

δi , f : 1 if itinerary i uses flight leg f , 0 otherwise

Variables of the optimization models

bi , j : recapture ratio for the passengers spilled from itinerary i , and redirected to itinerary j

di : realized demand of itinerary i

d̃i : expected demand of itinerary i based on the logit model

pi : price of itinerary i

p
′
i : the logarithm of the price variable

Ri ,n : the revenue obtained from individual n for the purchase of product i

R
′
i ,n : the logarithm of the revenue variable Ri ,n

ti , j : redirected passengers from itinerary i to itinerary j

ui : market share of itinerary i

Vi : airline case - the utility of itinerary i

Vi ,n : the general case - the utility for alternative i and individual n

xk, f : binary variable, 1 if fleet type k is assigned to flight f , 0 otherwise, also used for Clip-Air

capsules

xw
f : binary variable, 1 if a Clip-Air wing is assigned to flight f , 0 otherwise

yk,a,t− : the number of type k planes at airport a just before time t

yk,a,t+ : the number of type k planes at airport a just after time t

yk
a,t− : the number of Clip-Air capsules at airport a just before time t

yk
a,t+ : the number of Clip-Air capsules at airport a just after time t

y w
a,t− : the number of Clip-Air wings at airport a just before time t

y w
a,t+ : the number of Clip-Air wings at airport a just after time t

yi ,n : a general representation for the choice probability for alternative i and individual n

based on the logit model

y
′
i ,n : the logarithm of the variable yi ,n

πh
k, f : assigned seats for flight f on a type k aircraft for cabin class h, used as π f ,h for the case

of Clip-Air in order to represent the total seats assigned to class h passengers on flight f

υn : a variable defined to represent 1∑
j∈C exp(Vj ) for individual n

υ
′
n : the logarithm of variable υn

υs : a variable defined to represent 1∑
j∈Is exp(Vj ) for market segment s

υ
′
s : the logarithm of variable υs

ω1b,i ,n ,ω2b,i ,n : binary variables defined for the piecewise linear approximation of the choice

probability variable yi ,n
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Other notations

f (): the function that represents the penalty term for the logarithmic transformation

F g
flown : the set of flights which are flown at iteration g of the local search heuristic

g (): a general convex function in order to represent the constraints of the revenue maximiza-

tion problem

nfixed : the number of fixed fleet assignment solutions

ninc : the increment in the number of fixed fleet assignment solutions in the VNS procedure

nmax : the maximum number of fixed fleet assignment solutions in the VNS procedure

nmin : the minimum number of fixed fleet assignment solutions in the VNS procedure

not Impr : the number of subsequent iterations of the local search heuristic without any

improvement in the objective function

p̄g
i for the value in iteration g of the local search heuristic

probg
f : the probability of fixing the assignment of flight f at iteration g of the local search

heuristic

SRg
f : the spill rate for flight f in iteration g of the local search heuristic

SRg
i : the spill rate for itinerary i in iteration g of the local search heuristic

SRg
max : the maximum spill rate in iteration g of the local search heuristic

SRg
mean : the average spill rate per itinerary in iteration g of the local search heuristic

time : the elapsed time since the start of the local search heuristic

timemax : the maximum running time for the local search heuristic

λ f : Lagrangian multipliers for flight f in the Lagrangian relaxation and GBD procedures
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Berlin, 2005.

A. Olivo, P. Zuddas, M. Di Francesco, and A. Manca. An operational model for empty container

management. Maritime Economics & Logistics, 7(3):199–222, 2005.

225



Bibliography

D. T. Ory and P. L. Mokhtarian. Don’t work, work at home or commute? discrete choice

model of the decision for San Francisco Bay area residents. Technical report, Institute of

Transportation Studies, University of California, Davis., 2005.

A. O’Sullivan and S.M. Sheffrin. Economics: Principles in Action. Prentice Hall Science/Social

Studies. Prentice Hall (School Division), 2006.

L. S. Redmond. Identifying and analyzing travel-related attitudinal, personality, and lifestyle

clusters in the san francisco bay area. Master’s thesis, University of California, Davis, USA,

August 2000.

W. Rei, J. F. Cordeau, M. Gendreau, and P. Soriano. Accelerating benders decomposition by

local branching. INFORMS J. on Computing, 21(2):333–345, April 2009.

B. Rexing, C. Barnhart, T. S. Kniker, T.A. Jarrah, and N. Krishnamurthy. Airline fleet assignment

with time windows. Transportation Science, 34:1–20, 2000.

J. M. Rosenberger, E. L. Johnson, and G. L. Nemhauser. A robust fleet-assignment model with

hub isolation and short cycles. Transportation Science, 38(3):357–368, 2004.

J. Scheiner and C. Holz-Rau. Travel mode choice: affected by objective or subjective determi-

nants? Transportation, 34:487–511, 2007.

C. Schön. Market-oriented airline service design. Operations Research Proceedings, pages

361–366, 2006.

C. Schön. Integrated airline schedule design, fleet assignment and strategic pricing. In

Multikonferenz Wirtscaftsinformatik (MKWI), February 2008.

N. Schüessler and K. Axhausen. Psychometric scales for risk propensity, environmentalism

and variety seeking. In Conference on survey methods in transport, November 2011.

Martin Schuler, Prisca Faure, Sébastien Munafó, Antonin Danalet, and Pierre Dessemontet.

Projet de recherche sur la mobilité combinée : Amélioration de la qualité de service et

évolution de la fréquentation de carpostal. Technical Report TRANSP-OR 121130, Transport

and Mobility Laboratory, Ecole Polytechnique Fédérale de Lausanne, 2012.

D. Shebalov, S.and Klabjan. Robust airline crew pairing: Move-up crews. Transportation

Science, 40(3):300–312, 2006.

H. D. Sherali, E. K. Bish, and X. Zhu. Airline fleet assignment concepts, models, and algorithms.

European Journal of Operational Research, 172(1):1–30, 2006.

H. D. Sherali, K.-H. Bae, and M. Haouari. Integrated airline schedule design and fleet assign-

ment: Polyhedral analysis and benders’ decomposition approach. INFORMS Journal on

Computing, 22(4):500–513, 2010.

226



Bibliography

K. T. Talluri and G. J. van Ryzin. The Theory and Practice of Revenue Management. Kluwer

Academic Publishers, Boston, first edition, 2004a.

K. T. Talluri and G. J. van Ryzin. Revenue management under a general discrete choice model

of customer behavior. Management Science, 50(1):15–33, 2004b.

V. Van Acker, P. L. Mokhtarian, and F. Witlox. Car ownership explained by the structural

relationships between lifestyles, residential location and underlying residential and travel

attitudes. Submitted to Transport Policy, 2010.

V. Van Acker, P. L. Mokhtarian, and F. Witlox. Going soft: on how subjective variables explain

modal choices for leisure travel. European Journal of Transport and Infrastructure Research,

11:115–146, 2011.

V. Vaze and C. Barnhart. Competitive airline scheduling under airport demand management

strategies. Working paper, 2010.

M. Vredin Johansson, T. Heldt, and P Johansson. The effects of attitudes and personality traits

on mode choice. Transportation Research Part A: Policy and Practice, 40(6):507–525, 2006.

J. Walker and M. Ben-Akiva. Generalized random utility model. Mathematical Social Sciences,

43(3):303–343, 2002.

J. L. Walker and J. Li. Latent lifestyle preferences and household location decisions. Journal of

Geographical Systems, 9(1):77–101, 2007.

D. Wang, S. Shebalov, and D. Klabjan. Attractiveness-based airline network models with

embedded spill and recapture. Working Paper, Department of Industrial Engineering and

Management Sciences, Northwestern University, 2012.

David Z.W. Wang and Hong K. Lo. Multi-fleet ferry service network design with passenger

preferences for differential services. Transportation Research Part B: Methodological, 42(9):

798 – 822, 2008.

O. Weide. Robust and integrated airline scheduling. PhD thesis, The University of Auckland,

2009.

C.-H. Wen and S.-C. Lai. Latent class models of international air carrier choice. Transportation

Research Part E: Logistics and Transportation Review, 46:211–221, 2010.

S. Yan and C.-H. Tseng. A passenger demand model for airline flight scheduling and fleet

routing. Computers and Operations Research, 29:1559–1581, 2002.

F. M. Zeghal, M. Haouari, H. D. Sherali, and N. Aissaoui. Flexible aircraft fleeting and routing

at TunisAir. Journal of the Operational Research Society, 62(2):1–13, 2011.

D. Zhang and Z. Lu. Assessing the value of dynamic pricing in network revenue management.

INFORMS Journal on Computing, 25(1):102–115, 2013.

227





Bilge (Küçük) Atasoy

Born: July 14th, 1984, Turkey.
Marital Status: Married
Maiden Name: Küçük

Address: Transport and Mobility Laboratory - TRANSP-OR
École Polytechnique Fédérale de Lausanne - EPFL
CH-1015 Lausanne
Office: +41 21 6939329
Email: bilge.kucuk@epfl.ch
Homepage: http://transp-or.epfl.ch/personnal.php?Person=ATASOY
http://people.epfl.ch/bilge.kucuk

Current Position

Doctoral Assistant, Transport and Mobility Laboratory, EPFL: Since September 2009

Education

Ph.D. Operations Research, TRANSP-OR, EPFL, September 2009 - November 2013 (Defended on October 7,
2013.).

Ph.D. Thesis: Integrated supply-demand models for the optimization of flexible transportation systems

Supervisors: Prof. Michel Bierlaire, Dr. Matteo Salani

Committee Members: Prof. Cynthia Barnhart, Prof. François Soumis, Prof. François Maréchal, Prof.
Philippe Thalmann

Visiting Ph.D. Student, Transportation/Operations Research, MIT, February 2013 - March 2013.

Supervisor: Prof. Cynthia Barnhart

M.Sc. Industrial Engineering, Bogazici University, Istanbul, Turkey, 2009.

M.Sc. Thesis: A deterministic demand inventory model with advance supply information.

Supervisor: Prof. Refik Güllü

M.Sc. Exchange student, Operations Management and Logistics, TUE, Netherlands, Fall 2008.

Supervisor: Prof. Tarkan Tan

B.Sc. Industrial Engineering, Bogazici University, Istanbul, Turkey, 2007.

Dissertation: Measurement, analysis and evaluation of academic publications and citations.

Supervisor: Prof. Yaman Barlas

Academic Experience

Doctoral Assistant, Transport and Mobility Laboratory, EPFL , 2009 - .

Research and Teaching Assistant, Industrial Engineering, Bogazici University, 2007-2009.
229



Bilge (Küçük) Atasoy 2

Research

Research projects

Inferring transport model preferences from attitudes - 2009-2011

Development of discrete choice models with latent variables

Clip-Air concept: Integrated schedule planning for a new generation of aircraft - Since 2010

Development of airline schedule planning and fleet assignment models

MyTosa: Simulation tool for the dimensioning, commercial promotion and case study set-up for ABB’s rev-
olutionary "Catenary-Free" 100% electric urban public mass-transportation system: Tosa 2013 - Since May
2012

Development of optimization models for the location of charging stations

Publications in International Journals

Accepted/Published Research Papers

Atasoy, B., Salani, M., Bierlaire, M., and Leonardi, C. (2013). Impact analysis of a flexible air transportation
system. European Journal of Transport and Infrastructure Research 13 (2), 123-146.

Atasoy,B., Salani, M., and Bieriare, M. (2013). An Integrated Airline Scheduling, Fleeting, and Pricing Model
for a Monopolized Market. Computer-Aided Civil and Infrastructure Engineering - Special issue on Computa-
tional Methods for Advanced Transportation Planning (article first published online: July 19, 2013).

Atasoy, B., Glerum, A., and Bierlaire, M. (forthcoming). Attitudes towards mode choice in Switzerland. disP
- The Planning Review (accepted for publication in April 2012).

Atasoy, B., Güllü, R, and Tan, T. (2012). Optimal Inventory Policies with Non-stationary Supply Disruptions
and Advance Supply Information. Decision Support Systems 53 (2), 269-281.

Papers Under Revision

Glerum, A., Atasoy, B., and Bierlaire, M. (second revision submitted). Using semi-open questions to integrate
perceptions in choice models. Journal of Choice Modeling.

Atasoy, B., Salani, M., and Bierlaire, M. (under first revision at EJOR) A local search heuristic for a mixed
integer nonlinear integrated airline schedule planning problem.

Technical Reports/Working Papers

Atasoy, B. and Bierlaire, M. Reformulation of a class of optimization problems with a disaggregate demand
function.

Atasoy, B. and Bierlaire, M. (2012) An air itinerary choice model based on a mixed RP/SP dataset. Technical
report TRANSP-OR 120426. Transport and Mobility Laboratory, ENAC, EPFL.

Conference Proceedings

Atasoy, B., Salani, M., and Bierlaire, M. (2013). Models and algorithms for integrated airline schedule
planning and revenue management. Proceedings of 8th Triennial Symposium on Transportation Analysis
(TRISTAN) June 09-14, 2013.

Atasoy, B., Salani, M., and Bierlaire, M. (2013). Integration of explicit supply-demand interactions in airline
schedule planning and fleet assignment. Proceedings of the 13th Swiss Transport Research Conference (STRC)
April 24-26, 2013.

230



Bilge (Küçük) Atasoy 3

Chen, J., Atasoy, B., Robenek, T., Bierlaire, M., and Thémans, M. (2013). Planning of feeding station install-
ment for electric urban public mass-transportation system. Proceedings of the 13th Swiss Transport Research
Conference (STRC) April 24-26, 2013.

Atasoy, B., Salani, M., and Bierlaire, M. (2012). An integrated fleet assignment and itinerary choice model
for a new flexible aircraft. Proceedings of the 12th Swiss Transport Research Conference (STRC) May 2-4,
2012.

Atasoy, B., Salani, M., and Bierlaire, M. (2011). Integrated schedule planning with supply-demand inter-
actions for a new generation of aircrafts. Operations Research Proceedings, Part 13, 495-500, August 30 -
September 2, 2011.

Atasoy, B., Glerum, A., and Bierlaire, M. (2011). Mode choice with attitudinal latent class: a Swiss case-study.
Proceedings of the Second International Choice Modeling Conference (ICMC) July 4-6, 2011.

Glerum, A., Atasoy, B., Monticone, A., and Bierlaire, M. (2011). Adjectives qualifying individuals’ percep-
tions impacting on transport mode preferences. Proceedings of the Second International Choice Modeling
Conference (ICMC) July 4-6, 2011.

Atasoy, B., Salani, M., and Bierlaire, M. (2011). Integrated schedule planning with supply-demand interac-
tions. Proceedings of the 11th Swiss Transport Research Conference (STRC) May 11-13, 2011.

Atasoy, B., Glerum, A., Hurtubia, R., and Bierlaire, M. (2010). Demand for public transport services: Inte-
grating qualitative and quantitative methods. Proceedings of the 10th Swiss Transport Research Conference
(STRC) September 1 - 3, 2010.

Hurtubia, R., Atasoy, B., Glerum, A., Curchod, A., and Bierlaire, M. (2010). Considering latent attitudes in
mode choice: The case of Switzerland. Proceedings of the World Conference on Transport Research (WCTR)
July 11-15, 2010.

Küçük, B., Güler, N., and Eskici, B. (2008). A dynamic simulation model of academic publications and
citations. Proceedings of the 26th International System Dynamics Conference July 20-24, 2008.

External Seminars

Gave 20 talks at OR and transportation conferences/seminars/workshops.
Details: http://transp-or.epfl.ch/personnal-seminars.php?Person=ATASOY

Teaching activities

EPFL (2009-)

Introduction to differentiable optimization - Fall 2010, 2011, 2012

Operations Research - Spring 2010

Master thesis supervision for 2 mathematics and 1 civil engineering students

Semester project supervision for 4 mathematics and 5 civil engineering students

Helped for the one week Discrete Choice Analysis Course - 2011, 2012

Bogazici University (2007-2009)

IE 423 Quality Engineering - Fall 2007

IE 304 Operations Research III: Stochastic Models - Spring 2008

IE 306 Systems Simulation - Spring 2009

231



Bilge (Küçük) Atasoy 4

Reviewing

4OR: A Quarterly Journal of Operations Research

Annals of Operations Research

EURO Journal on Transportation and Logistics

Decision Support Systems

Journal of Airline and Airport Management

Computer-Aided Civil and Infrastructure Engineering

Skills

Computer: C, C++, C�, Matlab, Python, R, AMPL, GLPK, GAMS, Biogeme

Languages: Turkish (mother tongue), English (advanced), French (intermediate)

Honors, Awards, & Fellowships

Best Poster Runner Up Award at the 26th International Conference of the System Dynamics Society held at
Athens, Greece on 20 - 24 July, 2008.

Graduated with high honor M.Sc. (3.92/4.00) and B.Sc. (3.71/4.00) degrees.

Scholarship from TUBITAK (The scientific and technological research council of Turkey) during Master studies.

Scholarship from Bogazici University during bachelor studies.

Ranked 5th in the national university entrance exam in Turkey among 1.5 million participants.

References
Prof. Michel Bierlaire
Transport and Mobility Laboratory - TRANSP-OR
École Polytechnique Fédérale de Lausanne - EPFL
Lausanne, Switzerland
michel.bierlaire@epfl.ch
+41 21 693 2537

Dr. Matteo Salani
Dalle Molle Institute for Artificial Intelligence
IDSIA
Manno-Lugano, Switzerland
matteo.salani@idsia.ch
+41 58 666 6670

Prof. Cynthia Barnhart
Associate Dean of Engineering
Massachusetts Institute of Technology - MIT
Room 1-206, 77 Massachusetts Avenue
Cambridge, MA 02139
cbarnhar@mit.edu
+1 617 253 3815

Prof. Refik Güllü
Department of Industrial Engineering
Bogazici University
34342, Bebek, Istanbul, Turkey
refik.gullu@boun.edu.tr
+90 212 359 7034

Last updated: November 7, 2013

232



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




