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Abstract 

 

In many areas of acoustical imaging, such as ultrasonic non-destructive evaluation (NDE), a 

realistic calculation of ultrasonic field parameters and associated elastic wave scattering 

requires the treatment of discontinuous, layered solids in complex geometries. These facts 

suggest the need for an accurate and geometrically flexible numerical approach for the 

simulation of the ultrasonic field, rather than reliance on semi-analytic solutions.  

In this paper we present an approach for solving the elastic wave equation in discontinuous 

layered materials in general complex geometries. The approach, based on a direct 

pseudospectral solution of the time-domain elastodynamic equations consists of five steps. 

The first step decomposes the global computational domain into a number of subdomains 

adding the required geometrical flexibility to the method. Moreover, this decomposition 

allows for efficient parallel computations, hence decreasing the computational time. The 

second step in the method maps every subdomain onto the unit square using transfinite 

blending functions. With this curvilinear mapping the elastodynamic equations can be solved 

to spectral accuracy, and furthermore, complex interfaces can be approximated smoothly, 

thus avoiding staircasing. The third step of the method deals with the evaluation of spatial 

derivatives on Chebyshev-Gauss-Lobatto nodal points whithin each subdomain, by means of 

a pseudospectral approach, while the fourth step reconstruct a global solution from the local 

solutions using properties of the equations of elastodynamics. Each subdomain can be 

prescribed with either open, physical or stress free boundary conditions. Boundary conditions 

are applied by means of characteristic variables. In a final step, the global solution is 

advanced in time using a fourth order Runge-Kutta scheme. Several examples of elastic wave 
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scattering related to ultrasonic NDE are presented as evidence of the accuracy and flexibility 

of the proposed computational method.  
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I. INTRODUCTION 

 

Numerical solutions of the elastic wave equation are needed to study wave propagation in 

complex distributions of material for which analytical solutions do not exist. Such complex 

distributions are, in particular, found in industrial materials and have shown to be a challenge 

for ultrasonic non-destructive evaluation (NDE) systems in which the main interest is the 

recorded transducer signals (A- and B-scans) arising due to elastic scattering from material 

cracks1-2. Much has been written on scattering of ultrasonic waves by inhomogeneities3-4 and 

its effect on ultrasonic images5-6 and quantitative NDE7-8. 

Modeling of the elastic wave equation began around 1970 with the finite difference (FD) 

method. Alford et al.9 model acoustic scattering with a higher order scheme and Kelly et al.10 

show how complex interfaces can be incorporated into the simulations. These techniques 

handle most complex material geometries but are limited by numerical dispersion, preventing 

the modeling of waves propagating over large distances, as well as the inability to impose the 

correct conditions on the statevariables across material interfaces. In the early eighties 

pseudospectral (PS) methods were introduced to enable more accurate long time simulations 

of acoustic and elastic scattering. Kosloff et al.11 and Fornberg12 solve the acoustic wave 

equation using a two-dimensional Fourier PS method and conclude that it is more accurate 

than a FD scheme. Another early paper of interest is Ref. [13], which shows how Fourier PS 

methods can be applied to problems with complex interfaces. The Fourier PS method is 

reviewed in Refs. [14-16]. Fourier series are convenient for problems with periodic boundary 

conditions, but when the solutions are non-periodic, polynomial approximations are a more 

natural choice. Raggio17 solves the acoustic wave equation with a Chebyshev PS scheme. 
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Tessmer et al.18 and Kosloff et al.19 apply a combined Fourier and Chebyshev method to 

compute wave propagation in a seismic environment with surface topography and propose a 

three-dimensional implementation20. Moreover, essentially one-dimensional multidomain 

formulations have been proposed for irregular domains21-22. In order to allow elastic waves to 

pass out from the domain without reflections, absorbing boundary conditions for elastic 

waves have been used in many variations. See for example Refs. [23-27]. Moreover, 

mappings may be used to enhance the accuracy of the Chebyshev PS method28. More 

recently, Chebyshev spectral multidomain techniques have become a standard tool in fluid 

dynamics29-30, and is emerging as such in computational electromagnetics31-32. A more 

comprehensive review of spectral methods for hyperbolic problems can be found in Refs. 

[33-34]. 

In this paper, we present an approach for solving the elastic wave problem in general 

complex distributions of materials using a pseudospectral multidomain formulation. The 

pseudospectral elastodynamic (PSE) method computes a direct solution to the elastodynamic 

equations in the time domain. In this approach, the general computational domain is split into 

a number of smaller subdomains, each chosen such that they can be smoothly mapped onto a 

unit square. This decomposition is performed in a fully bodyconforming way to avoid 

problems with staircase approximations and the associated errors. This enables the 

representation of general material distributions and allows for the construction of a 

pseudospectral approximation of derivatives within each of the smaller domain and hence an 

accurate updating of the local fields. To recover the global solution from the many local 

solutions a characteristic decomposition in homogeneous regions of the computational 

domain is used while physical boundary and interface conditions are imposed where required. 
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The elastic equations are advanced in time using a 4th order accurate explicit Runge-Kutta 

method and an absorbing matched layer is used to truncate the computational domain in an 

approximately reflectionless manner. 

In the following section the governing elastodynamic equations are introduced on vector form 

and scattering by elastic waves are discussed. In section III, the features of the multidomain 

Chebyshev scheme are described. Section IV gives examples of wave propagating in elastic 

half-spaces illustrated by snapshots of the velocity field at particular times and serves as an 

evaluation of the scheme while Section V contains a few concluding remarks.  

 

II. FORMULATION 

 

This section contains two parts. In part A, the governing elastodynamic equations are 

introduced on vector form and, in part B, elements of elastic wave scattering are reviewed.   

 

A. Elastodynamic Equations 

 

The governing elastodynamic wave equation for a two-dimensional isotropic solid are based 

on a solution of the equations of conservation of momentum combined with the stress-strain 

relations for a linear elastic solid undergoing infinitesimal deformations35. The elastodynamic 

equations are given by a system of two coupled wave equations, as36-37  
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In this system of equations u=(ux, uz)T  is the displacement vector, σσσσ =(σxx, σzz, σxz) represents  

the symmetric stress tensor and (x,z) are the Cartesian coordinates. λ(x,z) and µ(x,z) are the 

Lamé constants (i.e. rigidity and shear modulus, respectively, for fluids: µ=0), t is the time 

and ρ(x,z) is the mass density. The body force is given as f=(fx, fz) and represents the applied 

source.  

The elastodynamic equations in (1) can be recast into a hyperbolic velocity-stress system of 

first order in time. This formulation consists of five coupled first-order partial differential 

equations   
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Here, v is the particle velocity vector related to u as .u
t

∂=
∂

v  

Introducing [ ], , , , T
x z xx zz xzv v σ σ σ=q as the state vector, describing the state of the system, Eq. 

(2) takes the simple vector form 
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where A1 and A2 are matrices containing the isotropic material parameters    

 

1

1

1

0 0 0 0
0 0 0 0
2 0 0 0 0

0 0 0 0
0 0 0 0

ρ
ρ

λ µ
λ

µ

−

−

� �
� �
� �
� �= +
� �
� �
� �
� �

A   , 

1

1

2

0 0 0 0
0 0 0 0
0 0 0 0
0 2 0 0 0

0 0 0 0

ρ
ρ

λ
λ µ

µ

−

−

� �
� �
� �
� �=
� �

+� �
� �
� �

A , (4) 

 

and the body forces are given as [ ], ,0,0,0 T
x zf fρ ρ= − −S . 

  

B. Scattering by Elastic Waves 

 

In general, scattering originates from waves of different type impinging on complex 

interfaces. The most significant waves are compressional waves and vertically polarized 

shear waves (denoted P-waves and S-waves, respectively) with wave speeds  
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The ratio between the velocities of the two wave types is  
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where the Poisson ratio, ν, being given as 
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For industrial solids related to ultrasonic NDE, it is often assumed that the Poisson ratio is 

between 0-0.5. In ferritic steel, for example, the Poisson ratio is around 0.29 and thus 

/ 0.5s pC C ≈ . This means, that the compressional velocity is about 50 percent larger than the 

shear wave velocity. Since the PSE approach is based on the elastodynamic wave equations 

without physical approximations, the approach accounts not only for direct P- and S-waves, 

reflected waves (PP, SS), and multiply reflected waves (PPP, SSS), but also for converted 

reflected waves (PS, SP), refracted waves (PR, SR), diffracted waves (PD, SD), head waves 

(H), and interfacial waves. Among the latter are for example Rayleigh (R) and Stoneley (St) 

waves. Rayleigh waves travel along the surface of the solid while Stoneley waves travel 
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along internal interfaces between two elastic domains. Generally, these waves travel slower 

than the shear wave and decays exponentially away from the interface. 

 

III. NUMERICAL APPROACH  

The PSE-approach for solving the elastic wave equation in complex geometries containing 

general material properties consists of a few steps. The first step decomposes the global 

computational domain into a number of bodyconforming subdomains. The second step in the 

method maps every subdomain onto the unit square using transfinite blending functions. 

These two steps enable the elastodynamic equations to be evaluated using pseudospectral 

methods, and furthermore, complex interfaces can be approximated in a smooth 

bodyconforming way. The third step deals with the construction of a global solution from the 

local solutions as well as enforcing the correct boundary condition as being either open, 

physical or stress free. In the final step, the global solution is advanced in time using a fourth 

order Runge-Kutta scheme. 

This section contains a discussion of the PSE-approach. In part A, complex geometries are 

incorporated using a curvilinear representation. In part B, the approximation of spatial 

derivatives by a Chebyshev collocation scheme is discussed, while part C addresses how 

local solutions are patched using characteristic variables to recover the global solution. 
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A. Curvilinear Formulation 

 

To enable the representation of general distributions of materials and interfaces while 

maintaining a high accuracy, the global computational domain is split into a number of 

smaller subdomains, each chosen such that they can be smoothly mapped to a unit square. As 

the general blocks are curvilinear a mapping is chosen to connect the physical grid with the 

local computational grid as illustrated in Fig. 1. The curviliniar physical grid has the 

coordinates (x,z) whereas the rectangular grid has the coordinates (ξ,η) connected as 

 

 ( , ), ( , )x z x zξ ξ η η= = . (8) 

 

By applying the chain rule, Eq. (3) can be written in the curvilinear representation as  

 

( ) ( ) .
t

ξ η
ξ η

∂ ∂ ∂= ∇ + ∇ +
∂ ∂ ∂
q q qA A S  (9) 

 

Setting n=(nx,nz), the matrix A(n) is given as 

 

0 0 0
0 0 0

(n) ( 2 ) 0 0 0
( 2 ) 0 0 0

0 0 0

x z

z x

x z

x z

z x

n n
n n

n n
n n
n n

ρ ρ
ρ ρ

λ µ λ
λ λ µ
µ µ

� �
� �
� �
� �= +
� �+� �
� �
� �

A . (10) 

 



  Nielsen, JASA 
 

Filename: EPS2D_rev3   Page 12 

Transfinite blending functions are used to establish a connection between the physical 

curvilinear grid and the auxiliary gird. A complete treatment of these functions may be found 

in Gordon et al.38-39.  

 

B. Pseudospectral Differentiation 

In the Chebyshev method a function q(ξ) is approximated by the polynomial 
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that interpolates q(ξ) at N distinct collocation points jξ . Due to the non-periodic nature of the 

problem the grid points are chosen as the Chebyshev-Gauss-Lobatto points   
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and interpolation between the collocation points is based on the Chebyshev-Lagrange 

polynomials given as 
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where 1 2Nc c= =  and 2 3 1... 1Nc c c −= = = = . TN-1 is the Chebyshev polynomial of order N-1 

defined as 
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1
1( ) cos(( 1)cos )NT Nξ ξ−

− = − , (14) 

 

where the computational domain is the region ξ ∈ [-1,1].  

The spatial derivative of q(ξ) is calculated by analytically differentiating the interpolation 

polynomial and the differentiation operator may then be represented by a matrix 

( )jk k jD φ ξ′= . Hence, the approximative derivative of q(ξ) at the collocation points can be 

found by a matrix D multiplying the values of q(ξ) at the collocation points 
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where the differentiation matrix has the entries29,34  
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The cost of computing the derivative from the matrix multiplication is O(N2) operations. In 

two dimensions, spatial derivatives are calculated using Eq. (18) and a matrix-matrix product.  
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C. Multidomain Formulation and boundary conditions 

 

Once the computational domain is divided into a number of subdomains consisting of 

curvilinear quadrilaterals, the spatial derivatives are computed locally on each domain, and 

the solution to the elastodynamic equations are advanced in time with a fourth-order Runge-

Kutta scheme. In order to recover a global solution from the subdomains, two strategies of 

interchanging internal information are employed. On boundaries between materials with 

different elastic constants, continuity of stress and displacement vector is required. On 

boundaries between materials with the same elastic constants a reconstruction based 

characteristic variable is employed. The boundary conditions at a stress-free surface require 

the stress to vanish. 

In order to patch the local solutions, the characteristic variables of the matrix A = A1nx +  

A2nz = QΛQ-1 is used. Hence, the diagonal eigenvalue matrix Λii=λi has the entries 

corresponding to the characteristic velocities (0,Cp,-Cp,Cs,-Cs) and Q-1 with � �
x z=| n |( n ,n )n  is 

given as 
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The characteristic variables take the form 
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[ ]1
1 2 3 4 5( ) TR R R R R−= =R Q n q . (18) 

Once the characteristic variables are recovered, one can exploit the signs of the corresponding 

eigenvalues to determine how to pass information between two neighboring elements. 

Indeed, based on the signs of the eigenvalues, one may observe that R2 and R4 will be 

propagating along the direction of the normal, i.e., they will leave the computational domain. 

Hence, they need not to be altered but will enter the neighboring element. Conversely, R3 and 

R5 will enter the current element and will need to be prescribed. This is done by passing the 

information from R2 and R4 from the neighboring element into the present one as what leaves 

one domain must enter the neighboring domain. Finally it may be observed that R1 is not 

propagating and it is required to be continuous. Once the characteristic variables have been 

updated within the element as discussed above, the corrected state vector can be recovered 

and the patching of two elements is completed. This procedure is then repeated along every 

element interface at every time step to continuously recover the global solution from the 

many local solutions and ensure that information is propagating in accordance with the nature 

of the problem.  

Open boundary conditions for simulating an infinite medium and avoiding non-physical 

reflections from the boundaries of the numerical grid is implemented using a matched 

absorbing layer. This layer is introduced through an absorbing term added to Eq. (9) as 

described in Ref. [40].    
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IV. NUMERICAL RESULTS 

 

In this section numerical examples of elastic wave scattering related to ultrasonic NDE are 

presented. In part A, elastic scattering from a plane slit (crack) is calculated. Part B discusses 

elastic scattering from a two-layer elastic solid, while part C presents snapshots of scattering 

by an elastic cylinder.  

 

A. Elastic Scattering from a Slit 

 

The first example involves wave propagation in a two-dimensional homogeneous elastic half-

space with a body force applied at the stress-free surface. This example is a classical 

modeling problem in NDE called Lamb’s problem. The P- and S-wave velocities for the solid 

are set to 1 and 3 , respectively, corresponding to a Poisson ratio of 0.25. As a first test 

case, the 2D pseudospectral code is compared with a 3D analytical solution. The analytical 

solution was found by the Cagniard-de Hoop formalism giving an analytical solution in time 

for Green’s function. The corresponding velocity component was then derived by 

convoluting the Green’s function with a source signal, which here was set to a pulsed raised-

cosine signal. The numerical and analytical time solutions (A-scans) were compared for vz. 

From Table I it can be seen that there is excellent agreement between the two solutions even 

for as few as 14 grid points per spatial wavelength. The global error (or infinity norm) was 

not improved for decreasing time step, due to the fundamental difference between the 2D and 

3D solution.  
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In the next test case, the body force is a directional force applied at the stress free surface and 

representing a source transducer. In this example a Gaussian distribution for the point source 

was used and a time history, s(t) set to 

 

 
2

0( )
0( ) cos(2 ( )) t ts t t t e βα π − −= − − , (19) 

 

where α, β, and to are constants. The current examples consider a rectangular computational 

domain consisting of 40 subdomains, each with 16x16 grid points, as shown in Fig. 2. The 

source was set on a stress free boundary, while the other sides were open (absorbing) 

boundaries. The vertical slit illustrates an infinitesimal thin stress free notch or crack.  

Figure 3 displays elastic scattering from a vertical stress free slit due to the vertical point 

force. The vertical velocity component vz is seen at different times (a) t = 1.8 µs,  (b) t = 4.1 

µs, and (c) t = 5.5 µs. Figure 3a, shows the P-, S- and R-wave just after leaving the point 

source at the free surface and Figs. 3b and 3c illustrate the Head (H) wave propagation. The 

head wave originates at the vertical slit together with the P-wave and ends at the S-wave front 

where it is perpendicular with the radius vector. The angle of the head wave with respect to 

vertical depends, as expected, on the ratio between the two velocities, i.e. the Poisson ratio, as 

seen in Eq. (7). Notice, that no artificial reflections are observed at the open boundaries due 

to the matched absorbing layer. 

Figure 4 displays elastic scattering from a horizontal slit due to the vertical point force. The 

vertical velocity component vz is seen at different times (a) t = 4.1 µs,  (b) t = 5.5 µs, and (c) t 

= 8.2 µs. Figure 4a shows the reflected PP-wave after impinging on the horizontal stress-free 
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slit. In Fig. 4b, the wave develops and several wave phases are present, including the 

diffracted pressure wave (PD) and Rayleigh wave (R). As can be appreciated, the P-wave 

looses amplitude with time due to geometrical spreading, while the Rayleigh wave keeps the 

same amplitude since it is confined to the slit. Figure 4c shows the multiply reflected wave 

(PPP) due to the stress-free slit and the free surface. 

The corresponding time history (A-scan) is seen in Fig. 5 for two different receiver positions 

on the stress-free surface. The first receiver position is identical with the transmitter (i.e. a 

pulse-echo transducer) and indicated with a dotted line. In this position, the initial wave pulse 

is followed by the PP-wave reflected from the horizontal slit. The second receiver position is 

illustrated in Fig. 2 and as indicated with a solid line in Fig. 5, the S-wave is proceeded by the 

PP-wave.  

 

B. Scattering from a Two-Layer Elastic Solid 

 

The second example illustrates scattering from a two-layered elastic solid. The model 

consists of two different elastic regions, e.g. a steel rod embedded in a lead coating with 

material parameters given in Table II. The calculations were performed on the same grid as 

used in the previous example, but with the extension of an elastic steel layer in 5 subdomains. 

The time interval was 19.5 ns and the total calculation time was 9.8 µs.  

Figure 6 illustrates snapshots at times (a) t = 7.4 µs and  (b) t = 9.8 µs of the particle velocity. 

It may be noticed from Fig. 6a, that the P-wave is refracted according to Snell’s law within 

the steel rod and that the polarity of the reflected P-wave (PP) is changed. In Fig. 6b, a 
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diffracted P-wave (PD) is seen near the edge of the steel rod and a Stoneley (St) wave may 

also be identified along the interface of the two elastic solids. 

 

C. Scattering from an Elastic Cylinder 

 

The final example illustrates scattering by an elastic cylinder. This example is chosen because 

it appears frequently in the NDE community. The model consists of the same two different 

elastic regions as used in the previous example. The transmitting line source (i.e. transducer) 

is located at the stress free surface and consists of 11 point sources distributed evenly over 

three subdomains. The computational domain consisted of 29 subdomains, each with 20 x 20 

grid points, as shown in Fig. 7. Figure 8 displays elastic scattering by an elastic cylinder due 

to the transducer. The velocity component is seen at different times (a) t = 4.9 µs and  (b) t = 

7.1 µs. Figure 8a, shows the P-wave impacting the elastic steel cylinder. The steel cylinder 

has a magnifying effect on the P-wave due to the faster velocity compared with the lower 

velocity in lead. In Fig. 8b, the Stoneley (St) wave is seen clearly propagating along the 

cylinder. For this calculation, the time interval was 2.37 ns and the wave propagation time 

was 14.2 µs. The CPU-time for each time step was about 5.1 seconds, corresponding to a 

total computational time of about 8 hours. The corresponding backscattered velocity profile 

(B-scan) was calculated from 11-point receivers distributed over the aperture of the 

transducer. The B-scan is seen in Fig. 9 and is usually the main component in solving the 

inverse problem. Here, it corresponds to a single projection.    
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V. CONCLUSIONS 

 

A multidomain pseudospectral method is proposed for the simulation of scattering from 

complex interfaces in elastic media. The method is based on a Chebyshev pseudospectral 

formulation and computes a direct time-domain solution of the elastodynamic equations. 

Complex interfaces are resolved with a curvilinear multidomain representation and local 

solutions are patched using characteristic variables. 

The first example demonstrate the ability of the PSE-approach to accurately compute 

scattering from a plane stress free slit and illustrate different wave types. The second and 

third example demonstrate elastic scattering from two elastic regions with a plane and 

cylindrical shape. Clear indications of interfacial waves caused by the elastic cylinder were 

observed.    
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TABLE I. Global error of the velocity component vz for 
Lamb’s problem as a function the grid points per wavelength. 

 
 
 

Grid Points (N)  
Parameter 

 
Symbol 12 x 12 16 x 16 16 x 16 

Grid points 
/Wavelength 

Nppw 10.6 14.2 14.2 

Step size dt 0.033 0.018 0.0078 
Global error E 0.13 0.077 0.077 
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TABLE II. Material parameters used in the calculation of two-layer simulation. 
 
 
 

Value  
Parameter 

 
Symbol Steel Lead 

P-wave velocity Cp (m/s) 5900 2050 
S-wave velocity Cs (m/s) 3200 670 
Poisson ratio v 0.29 0.44 
Lamé constant λ (Gpa) 113.2 16.5 
Lamé Constant µ (Gpa) 80.9 5.5 
Mass density ρ (g/cm3) 7.9 11.3 
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Figure Captions 
 
 
 
FIG. 1. Mapping between physically curved grid onto auxiliary rectangular grid. 
 
FIG. 2. Decomposition of Lamb’s problem into 40 subdomains. 
 
 
FIG. 3. Elastic scattering from a vertical slit due to a point force  (a) t = 1.8 µs,  (b) t = 4.1 µs, and 
(c) t = 5.5 µs. 
 
 
FIG. 4. Elastic scattering from a horizontal slit due to a point force (a) t = 4.1 µs,  (b) t = 5.5 µs, and 
(c) t = 8.2 µs. 
 
 
FIG. 5. Time history (A-scan) comparison between elastic vz component at (x,z)=(0,0) and (0,2). 
 
FIG. 6. Snapshot of particle velocity in two different elastic solids (a) t = 7.4 µs, and  (b) t = 9.8 µs. 
 
FIG. 7. Decomposition of cylinder into 29 subdomains. 
 
FIG. 8. Scattering from elastic cylinder due to a line source (a) t = 4.9 µs, and (b) t = 7.1 µs. 
 
FIG. 9. B-scan of backscattered velocity component. 
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FIG. 1. Mapping between physically curved grid onto auxiliary rectangular grid. 
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FIG. 2. Decomposition of Lamb’s problem into 40 subdomains. 
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FIG. 3. Elastic scattering from a vertical slit due to a point force 
(a) t = 1.8 µs,  (b) t = 4.1 µs, and (c) t = 5.5 µs. 
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FIG. 4. Elastic scattering from a horizontal slit due to a point force 
(a) t = 4.1 µs,  (b) t = 5.5 µs, and (c) t = 8.2 µs. 
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FIG. 5. Time history (A-scan) comparison between elastic vz component at (x,z)=(0,0) and (0,2). 
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FIG. 6. Snapshot of particle velocity in two different elastic solids. 
(a) t = 7.4 µs, and  (b) t = 9.8 µs. 
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FIG. 7. Decomposition of cylinder into 29 subdomains. 
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FIG. 8. Scattering from elastic cylinder due to a line source. 
(a) t = 4.9 µs, and (b) t = 7.1 µs. 
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FIG. 9. B-scan of backscattered velocity component. 
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