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Abstract. We present a novel, cell-local shock detector for use with discontinuous Galerkin (DG)6

methods. The output of this detector is a reliably scaled, element-wise smoothness estimate which7

is suited as a control input to a shock capture mechanism. Using an artificial viscosity in the latter8

role, we obtain a DG scheme for the numerical solution of nonlinear systems of conservation laws.9

Building on work by Persson and Peraire, we thoroughly justify the detector’s design and analyze10

its performance on a number of benchmark problems. We further explain the scaling and smoothing11

steps necessary to turn the output of the detector into a local, artificial viscosity. We close by12

providing an extensive array of numerical tests of the detector in use.13
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shock capturing, artificial viscosity15
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1 Introduction17

Discontinuous Galerkin methods [14, 31, 43, 48] are a high-order accurate, geometrically flexible,18

and robust means of approximating solutions of systems of hyperbolic conservation laws. For19

linear conservation laws, these schemes easily deliver highly accurate solutions without much20

effort. For nonlinear hyperbolic systems, the situation is more complicated. If the solution of the21

system remains smooth for the entire time under consideration, and if thereby the decay of modal22
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coefficients is fast enough, the method may be used with little modification for a so-called “nodal1

approach”. Optionally, aliasing error in the computation of integrals for stiffness and mass matrices2

can be avoided by the introduction of quadrature schemes of sufficient order [31].3

If however the solution does not stay smooth for long enough periods of time, the arising4

discontinuities pose a number of problems which have been the subject of intense study since the5

early days of scientific computation and numerical analysis. [e.g. 25, and references therein] Our6

goal is to seek out a method that is able to reliably detect the occurrence of Gibbs phenomena7

(which represent the main issue with the discontinuous solution) in the context of the discontinuous8

Galerkin method. In this paper, the subsequent mitigation of then phenomenon is then achieved9

through a simple artificial viscosity.10

Many authors have proposed methods to capture shocks within a DG setting, by different11

methods. Flux limiting, which has been both successful and popular with Finite Volume practitioners,12

was combined with DG immediately in conjunction with the resurgence of interest in the method13

in the late 1980s. [10, 13, 14, 15, 16, 18, 39, 40, 56, 63]. A common theme to limiting is that the14

solution is modified in some way to retain desirable properties such as positivity and freedom from15

spurious oscillation, and in doing so, reaches various (often low) orders of accuracy.16

Artificial viscosity methods, on the other hand, take the position that the only hope of resolving17

a discontinuity by a high-order approximation lies in smoothing it out. These methods date back18

to [57], were first used in the context of finite difference methods [41], and then spread into finite19

element literature (see, e.g., the study by [34] for a review) and were also applied to time-dependent20

discontinuous Galerkin methods very early on [5], and have since enjoyed continuing popularity21

[e.g. 11].22

One obvious improvement on global artificial viscosities is a more selective application of23

smoothing, guided by a detector. There has been a recent resurgence of interest in such approaches24

[4, 46] in the context of DG. The methods discussed in this article aim to improve on these latter25

schemes, where we would like to emphasize that our detector is not intrinsically tied to guiding the26

application of an artificial viscosity. With appropriate rescaling, it might be suitable in a multitude27

of other scenarios requiring shock detection.28

Other variants of artificial viscosity methods exist as well. The method of Spectrally Vanishing29

Viscosity [e.g. 35, 55] is similar in spirit, but tries to restrict its smoothing action to high-frequency30

solution components.31

One final approach of dealing with discontinuities is that of adapting the mesh and adding32

resolution. It is generally thought that ‘shocks’, i.e. genuine discontinuities, do not exist in nature33

[61], and thereby, if only enough resolution were available, the problem of shock capturing would34

vanish by itself. While nature may obey this statement, mathematical models of it often do not35

(e.g. Burgers’ equation), and so one needs to “help a little”–for example by adding an artificial36

viscosity [e.g. 30]. Others contend that the wiggles are worth keeping simply as indicators of37

numerical trouble [27]. Further, while adaptivity certainly is a useful technique in capturing shocks38

[24, 60, 62], it too depends on a detector that reliably tells the method where refinement is necessary.39
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1.1 The Discontinuous Galerkin Method1

Discontinuous Galerkin (DG) methods [14, 31, 43, 48] are a combination of ideas from Finite-2

Volume and Spectral Element methods. We consider DG methods for the approximate solution of a3

hyperbolic system of conservation laws4

u
t

+r · F (u) = 0 (1.1)

on a domain ⌦ =

U
K

k=1

D
k

⇢ Rd consisting of disjoint, face-conforming tetrahedra D
k

with5

boundary conditions6

u|
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i
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U
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:7
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,

where ' is a test function, and (n̂ · F )

⇤ is a suitably chosen numerical flux in the unit normal8

direction n̂. Following [31], we may find a so-called ‘strong’-DG form of this system as9
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u
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by integrating by parts once more. We seek to find a numerical vector solution uk

:= u
N

|Dk
from

the space P n

N

(D
k

) of local polynomials of maximum total degree N on each element, where n is the
number of equations in the hyperbolic system (1.1). We choose the scalar test function ' 2 P
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from the same space and represent both by expansion in a basis of N
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) Lagrange
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with respect to a set of interpolation nodes [58]. We define the mass, stiffness,
differentiation, and face mass matrices
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Using these matrices, we rewrite (1.2) as

0 = Mk@
t
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X

⌫

Sk,@⌫
[F (uk

)]�
X

F⇢@Dk

Mk,A
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Dk,@⌫
[F (uk

)] + Lk

[n̂ · F � (n̂ · F )

⇤
]|

A⇢@Dk
. (1.4)

The matrix Lk used in (1.4) deserves a little more explanation. It acts on vectors of the shape10

[uk|
A1 , . . . , u

k|
A4 ]

T , where uk|
Ai is the vector of facial degrees of freedom on face i. For these11

vectors, Lk combines the effect of applying each face’s mass matrix, embedding the resulting facial12
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Figure 1: Construction of the Lifting Matrix Lk.

values back into a volume vector, and applying the inverse volume mass matrix. Since it “lifts”1

facial contributions to volume contributions, it is called the lifting matrix. Its construction is shown2

in Figure 1.3

It deserves explicit mention at this point that the left multiplication by the inverse of the mass4

matrix that yields the explicit semidiscrete scheme (1.4) is an element-wise operation and therefore5

feasible without global communication. This strongly distinguishes DG from other finite element6

methods. It enables the use of explicit (e.g., Runge-Kutta) time stepping and greatly simplifies7

parallel implementation efforts.8

2 Basic Design Considerations9

This article describes a method for detecting (and also capturing) shocks in the context of DG10

methods. One particular motivation for us was our recent work on the efficient mapping of DG11

onto massively parallel throughput-oriented computer architectures [36], where we demonstrated a12

method to quickly compute the vector A(x) for a linear discontinuous Galerkin operator A and a13

state vector x using graphics hardware (i.e. Graphics Processing Units or “GPUs”). The present14

article describes one stepping stone on the way to generalizing the applicability of GPU-DG to15

nonlinear problems.16

In briefly explaining the unique environment present on GPUs, we seek to inform the reader17

on the considerations that guided our approach. On wide-SIMD, parallel architectures such as the18

GPUs of [36], memory is at a premium and scattered memory access is particularly expensive. As a19

consequence, we argue that matrix-free methods such as the one of [36], if they can be implemented20

efficiently, will always hold a significant performance advantage over approaches that have to build,21

keep in memory, and constantly access a pre-built sparse matrix for A, because such a computation22

is necessarily bound by the speed at which matrix entries can be streamed into the core, where23

they are then used exactly once and discarded [7]. A matrix-free approach has far more freedom24

to exploit local structure and re-use data. We will therefore focus our investigation on matrix-free25

methods.26

This choice has important ramifications. One consequence of it affects the trade-off by which one27

chooses between implicit and explicit time stepping. Consider the case of implicit time integrators,28

in which one must constantly solve large linear systems of equations. Direct, factoring solvers29

for sparse matrices are as yet unavailable on massively parallel hardware, and even if they were,30
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they would doubly suffer from the issues that sparse matrices encounter. One therefore naturally1

looks towards iterative methods for solving large sparse systems. For the complicated linearized2

systems arising from the nonlinear hyperbolic conservation laws we are targeting in this article,3

these methods generally need help in the form of a preconditioner in order to be efficient. This is4

the next implication of the choice of matrix-free methods: One automatically chooses to not use5

the substantial body of literature showing how a preconditioner may be built from a known sparse6

matrix. Instead, one needs to invest further work designing and testing preconditioners (using e.g.7

multi-grid or domain-decomposition methods), and, in addition to the design time spent, these8

preconditioners may carry significant additional computational expense, typically through their9

communication needs. In addition, Krylov methods (which are frequently used to solved the arising10

large, sparse linear systems) in particular involve global reductions (in the form of inner products)11

which are known to not achieve peak performance on graphics processors [29]. Worse, the nonlinear12

PDEs we are targeting in this paper require a nonlinear system of equations to be solved (likely by13

Newton iteration, which in turn requires Jacobians to be evaluated).14

This collection of drawbacks and uncertainties in the application of implicit time integration on15

massively parallel hardware makes it seem opportune to examine the use of explicit time steppers,16

which were already used with good success in [36]. We aim to find out if the single big disadvantage17

of explicit methods, namely their small time step restriction, can be offset by the judicious choice of18

methods combined with the advantages conferred by the hardware.19

Since the scheme we are aiming to design involves the use of artificial viscosity, the scaling of20

the explicit time step is typically given by21

�t ⇠ 1

�max
N2

h
+ k⌫k

L

1
N4

h2

, (2.1)

where �max is the largest characteristic velocity and ⌫ is the magnitude of the viscosity, h is the22

local mesh size and N is the approximation’s polynomial degree [31]. Within (2.1), the numerical23

diffusion time scale N4k⌫k
L

1/h2 can be rather damaging, as it contains discretization-dependent24

factors at high exponents.25

Luckily, (2.1) does not tell the entire story. For example, we expect the occurrences of high26

viscosity ⌫ to be localized in both space and time. Localization in space could conceivably be dealt27

with using local time stepping, but this is beyond the scope of this article. Localization in time28

on the other hand is easily dealt with by the use of time-adaptivity [e.g. 19]. Adaptivity in time is29

particularly important for explicit time stepping of artificial-viscosity-enhanced PDE solvers.30

One further aspect of the time discretization should be considered: Much of the effort in31

this research is targeted at mitigating the effect of oscillations in the spatial discretization of a32

conservation law that trace their roots back to the polynomial expansions used for them. Time33

discretizations, however, are equally based on polynomials, and many varieties of so-called Strong34

Stability Preserving (SSP) time integrators have been devised to mitigate oscillations originating35

in temporal expansions [51]. Even embedded pairs of SSP Runge-Kutta methods are available36

[26]. Based on initial experiments, it appears that in the setting of this work, spatially-generated37

oscillations by far dominate their temporal cousins at the time step sizes encountered. Thus varying38

the time integration method does not have an appreciable effect on the reported results.39
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In summary, the emergence of massively parallel hardware along with the use of purposefully1

chosen, adaptive time discretizations may help explicit methods be competitive with implicit2

methods for the integration of large-scale nonlinear systems, a few of which we will introduce next.3

3 Applications and Equations4

3.1 Advection Equation5

At the very simple end of the spectrum of hyperbolic conservation laws, the advection equation6

@
t

u + v · r
x

u = 0 transports its initial condition along its one characteristic, described by the7

velocity vector v. We will apply artificial viscosity to this PDE as8

@
t

u + v ·r
x

u = r
x

· (⌫r
x

u).

Here, and in all further equations, it is important to write the viscosity in “conservation” form9

r
x

· (⌫r
x

u). The desired consequence of this is that the resulting DG method will be conservative10

[1].11

In DG discretizations of this equation, we use a conventional upwind flux in a strong-form DG12

formulation. The diffusion termr
x

· (⌫r
x

u) is discretized by a first-order (“dual”) interior penalty13

method [1], with the gradient being computed in strong form, and the divergence computed in weak14

form. The diffusive fluxes are given by15

u⇤
N

:= {u
N

}, �⇤
N

:= {⌫r
x,h

u
N

}� N2

h
⌫ Ju

h

K ,

where �
N

is the discretization of ⌫r
x

u.16

3.2 Second-Order Wave Equation17

The wave equation @t2u + c24u = 0 is valuable for testing artificial viscosity methods because it
is the simplest system where the effects of two coupled characteristics may be observed. We rewrite
this PDE as a first-order system of conservation laws and apply artificial viscosity to this system to
obtain

@
t

u + cr
x

· v = r
x

· (⌫r
x

u), (3.1a)
@

t

v + cr
x

u = r
x

· (⌫r
x

v), (3.1b)

where we have again been careful to use the conservative form of the diffusive term. The vector18

diffusion term r
x

· (⌫r
x

v) is to be read as the diffusion ⌫ being applied to each component19

separately. The discontinuity sensor to be described below operates on the scalar component u. In20

DG discretizations of this equation, we again use a conventional upwind flux in a strong-form DG21

formulation. The diffusion terms are discretized in analogy to the preceding section.22
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3.3 Euler’s Equations of Gas Dynamics1

Lastly, the system of conservation laws that justifies the effort spent on this study, Euler’s equations
of gas dynamics, broadly applies to compressible, inviscid flow problems. As in Section 3.2, we are
again choosing to use a single artificial viscosity ⌫ that applies to all components, such that we get
the viscosity-endowed system

@
t

⇢ +r
x

· (⇢u) = r
x

· (⌫r
x

⇢), (3.2a)
@

t

(⇢u) +r
x

· (u⌦ (⇢u)) +r
x

p = r
x

· (⌫r
x

(⇢u)), (3.2b)
@

t

E +r
x

· (u(E + p)) = r
x

· (⌫r
x

E). (3.2c)

The discontinuity sensor to be described below operates on the component ⇢. In contrast to [46], we2

find that a Navier-Stokes-like physical viscosity provides insufficient control of oscillations in ⇢.3

In DG discretizations of this system, a local Lax-Friedrichs (or Rusanov) flux4

n̂ · F ⇤
N

:= n̂ · F (u+

) + F (u�)

2

� �max

2

(u+ � u�),

in weak-form DG is commonly used. The diffusion term is discretized as in Section 3.2. As above,5

a quadrature exact to degree 3N is used to integrate the nonlinearity.6

4 A Smoothness-Estimating Detector7

Detectors for the selective application of artificial viscosity have been built in a large variety of8

ways. The most popular, perhaps, is sensing on the L2 norm of the residual of the variational form9

[5, 33]. [30] employs a similar indicator that includes sensing of the primary orientation of the10

discontinuity and performs anisotropic mesh refinement based on this data.11

Other detectors in the literature employ information gathered not on the whole volume of the12

domain, but only on element faces [6]. Specializing further, some methods use the magnitude of the13

facial inter-element jumps as an indicator of how well-resolved the solution is and to what degree it14

has converged [4, 23]. A further approach to shock detection repurposes entropy pairs, objects from15

the solution theory for scalar conservation laws, for the purposes of shock detection [28].16

Our approach most directly traces its lineage to work by [46], which addresses one crucial17

shortcoming in much of the above work: scaling. Many of the quantities discussed clearly relate18

directly to how well-resolved (and smooth) the approximate solution of the system is. It is however19

rarely clear how large a value of the quantity in question indicates that a problem exists, and a20

variety of ad-hoc scaling choices are proposed, often by the maximum of the quantity found across21

the domain, or by the element-local norm, but without assigning an explicit meaning to the scaled22

quantity.23

The method by [46] also performs scaling by the element-local L2 norm kq
N

k
L

2
(Dk)

of the24

discretized value of the quantiy q
N

to be sensed on. On each element D
k

, it obtains a value25

S
k

:=

(q
N

, �
Np�1

)

2

L

2
(Dk)

kq
N

k2

L

2
(Dk)

, (4.1)
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where {�
n

}Np�1

n=0

is an orthonormal basis for the expansion space [see e.g. 20, 37] numbered from1

0. Simply put, S
k

reflects the (squared) fraction of q
N

’s mass contained in the highest mode of2

the expansion, relative to all mass present on the element. [46] then invoke an analogy to Fourier3

expansions, where a continuous function (roughly) can be recognized by having Fourier expansions4

in which the nth mode’s magnitude scales at most as 1/n2. In doing so, they have conveniently5

solved the issue of scaling–it is now understood what S
k

measures and what value it is supposed to6

take on for which degree of smoothness. Based on this analogy, they argue that S
k

should have a7

magnitude of 1/N4 for q
N

to be continuous, or, alternatively, that smoothing by artificial viscosity8

should activate if S
n

> 1/N4.9

They achieve this activation through a sequence of mapping steps. First, they take the logarithm10

s
k

:= log

10

S
k

to obtain a quantity that scales linearly with the decay exponent, which they put in relation to a11

quantity s
0

that they claim should scale as 1/N4. We believe this is a typographical error in their12

paper, because for proper comparability, s
0

should scale with the logarithm of 1/N4. Through the13

application of a mapping, they obtain the final per-element viscosity14

⌫
k

(s
k

) = ⌫
0

8
>><

>>:

0 s
k

< s
0

� ,
1

2

⇣
1 + sin

⇡(sk�s0)

2

⌘
s
0

�   s
k

 s
0

+ ,

1 s
0

+  < s
k

,

(4.2)

where ⌫
0

is the maximum viscosity, which [46] suggest to scale with h/N and  is the width of the15

activation “ramp”.16

The focus of the remainder of this article is to identify a number of issues and make a number17

of improvements to this method of finding an artificial viscosity.18

4.1 Estimating Solution Smoothness19

Before we begin our discussion of the refinements to the method, let us set the stage by discussing20

the type of numerical method at which the to-be-designed detector is aimed. As was already21

discussed, for methods of low approximation order (and polynomial degrees N / 2), the flux22

limiting literature provides plenty of alternatives for shock capturing, and therefore will not be the23

main target area for our work. Since our method, like the work of [46], will try to extract smoothness24

information from the modal expansion of the solution, it is our hope that the expansion at these25

degrees already contains enough smoothness information to be viable as a basis for an artificial26

viscosity. Lastly, at degrees N ' 5, there is guaranteed to be sufficient smoothness information,27

though the time step restriction (2.1) may make these approximations somewhat impractical.28

We begin our deconstruction and rebuild of the Peraire-Persson estimator by examining the29

assumption that, like for Fourier series, smoothness can be estimated by modal decay. In Fourier30

series, this can be justified by viewing what happens if a derivative of an expanded function is31

taken (and hence smoothness is reduced)–the nth coefficient’s magnitude gets multiplied by n. This32
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results in the identity1

����
d

dx
einx

����
L

p
((�⇡,⇡))

= n
��einx

��
L

p
((�⇡,⇡))

for p 2 [1,1]. (4.3)

A polynomial analog for (4.3) is provided by Bernstein’s inequality [9, 59]2

����
d

dx
P (x)

���� 
np

1� x2

kP (x)k
L

1
([�1,1])

for P 2 P n

([�1, 1]), x 2 [�1, 1]. (4.4)

While it conveniently exhibits the same scaling as its Fourier counterpart, unfortunately, this estimate3

breaks down near the domain boundaries. Markov’s inequality ibid.4

����
d

dx
P (x)

����
L

1
([�1,1])

 n2 kP (x)k
L

1
([�1,1])

for P 2 P n

([�1, 1]). (4.5)

extends the estimate out to the domain boundary, at the expense of a larger scaling. Further, it may5

be argued that if one wants to transfer the knowledge gained from (4.5) to a modal setting, L1 is6

the wrong norm, and one should consider the L2 norm instead to be able to benefit from Parseval’s7

identity. Fortunately, an L2 analog of (4.5) is available [59, and references therein]8

����
d

dx
P (x)

����
L

2
([�1,1])


p

3n2 kP (x)k
L

2
([�1,1])

for P 2 P n

([�1, 1]), (4.6)

known as an inverse inequality. Taking into account (4.4) and (4.6), the polynomial analogy to the9

Fourier case is therefore expected to carry over well for non-smoothness occurring on the interior of10

each finite element, whereas for non-smoothness at the domain boundary, the smoothness measure11

will likely differ.12

Having examined the viability of modal decay as an estimator for smoothness, we seek to make13

the notion of modal decay more precise than (4.1). We presume that, for the modal coefficients14

{q̂
n

}Np�1

n=0

of a member q
N

of the L2-orthonormal approximation space spanned by {�
n

}Np�1

n=0

, modal15

decay is approximately representable as16

|q̂
n

| ⇠ cn�s. (4.7)

Taking the logarithm of the relationship (4.7) yields17

log |q̂
n

| ⇠ log(c)� s log(n),

an affine relationship whose coefficients s and log(c) may be found through least-squares fitting,18

satisfying19

Np�1X

n=1

|log |q̂
n

|� (log(c)� s log(n))|2 ! min! (4.8)

Observe that the decay rate of (4.7) has rather little to do with the presumed magnitude of the20

remainder term of an expansion, on which most a-priori error estimates for finite element solutions21

65



A. Klöckner et al. Viscous Shock Capturing in a Time-Explicit DG Method

(a) (b)

Figure 2: Modal portrait for an approximant of a (discontinuous) Heaviside jump function. Subfig-
ure (a) shows the nodal data and its unique polynomial interpolant. Subfigure (b) shows the modal
coefficients of a Legendre expansion of the function in (a), the processing of these coefficients, and
the unprocessed and postprocessed smoothness estimates.

are based–these start with an assumption of sufficient smoothness. There is a connection, however.1

[45], in the context of mesh adaptation, has used a similar least-squares fit to the modal decay,2

defining a continuous function q̂(n) through the found fit. She then proceeds to estimate the3

remainder term of the expansion as4

kq � q
N

k2

L

2
(Dk

)

⇡
 

q̂2

N

2N+1

2

+

Z 1

N+1

q̂(n)

2

2n+1

2

dn

!
.

In a similar vein, Houston and Süli in [32] use an l2 fit like (4.8) as a criterion for hp-adaptive5

refinement. They obtain the approach from a discussion of results in approximation theory [17].6

The least-squares procedure (4.8) yields an estimate s of the decay exponent. If the analogy7

with Fourier modal decay holds up, one would then expect s ⇡ 1 for a discontinuous q, s ⇡ 2 for8

q 2 C0 \ C1, s ⇡ 3 for q 2 C1 \ C2, and so forth. Figure 2 shows a first attempt at determining9

whether this is really the case by examining an interpolant of a Heaviside jump function H as shown10

in Figure 2(a). Figure 2(b) shows the magnitudes of the first ten modal coefficients along with the11

fitted curve (the dashed red line). The obtained decay exponent s, shown in the legend next to the12

dashed red line, matches the expectation well, giving a value of exactly 1.13

Continuing this line of experimentation, we would like to move on to an interpolant of a “kink”14

function q(x) := xH(x). The same observations as for the Heaviside function are shown in Figure15

3. Unfortunately, the figure reveals a rather powerful shortcoming of the modal fit method as16

developed so far. An odd-even effect draws the coefficients for the odd modes of number three17

and greater to zero, leading to machine zeros (⇡ 10

�15) in those approximate coefficient numbers.18

These “fully converged” coefficients fool the estimator into an anomalous estimate of far more19

smoothness than is actually present, leading to an estimated decay exponent of about seven–far too20

high.21
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(a) (b)

Figure 3: Modal portrait for an approximant of a C0 non-differentiable “kink” function.

It is unfortunate that the fit can be misled that easily, but a close look at Figure 3(b) will have1

already revealed to the attentive reader that this is an easily recoverable issue. Realize that the fit2

tries to model modal decay, i.e. the shrinking of modal coefficient magnitudes |q̂
n

| as n increases.3

The model (4.7) that is fitted to the decay only generates monotone modal decays. Figure 3(b) is4

characterized by a strongly non-monotone mode profile, and this is precisely what is misleading5

the estimator. Consider this: Given a mode n with a small coefficient |q̂
n

|, if there exists another6

coefficient with m > n and |q̂
m

|� |q̂
n

|, then the small coefficient |q̂
n

| was likely spurious, just like7

the near-zero coefficients in Figure 3(b) were spurious. These spurious coefficients should hence be8

eliminated from the fit, and this is what a new procedure, termed skyline pessimization, achieves.9

From the modal coefficient magnitudes {|q̂
n

|}Np�1

n=0

, it generates a new set of modal coefficients by10

q̄
n

:= max

i2{min(n,Np�2),...,Np�1}
|q̂

i

| for n 2 {1, 2, . . . , N
p

� 1}. (4.9)

The effect of the procedure is that each modal coefficient is raised up to the largest higher-numbered11

modal coefficient, eliminating non-monotone decay. Since odd-even effects in modal portraits12

(such as the one of Figure 3(b) are a common phenomenon, there is a slight modification in (4.9)13

accounting for the last mode, which is forced to also be larger than the second-to-last mode. This14

would become an issue if, for example, only the first nine modes of Figure 3(b) were used, in which15

case the smallness of the last coefficient would again cause an artificially high smoothness exponent.16

Once skyline pessimization has been performed, decay estimation (4.8) is applied to them in the17

same fashion as above, yielding a corrected decay estimate.18

The effect of skyline pessimization is shown in the modal portrait of Figure 3(b) as a zig-zagged19

blue line that appears to “truncate” the bars representing modal coefficients at the level of the20

largest higher-numbered coefficient. Further, the fitted decay curve is shown in green, along with21

the resulting estimated decay exponent, labeled as “SL”. With skyline pessimization in place, the22

estimated smoothness exponent for the “kink” example becomes 1.67–reasonably close to the23

expected value of 2.24
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(a) (b)

Figure 4: Modal portrait for a function consisting of only the highest representable Legendre mode
�

Np�1

in an expansion of length 10.

The next-smoothest test of the estimator we consider is a truncated polynomial q(x) := x2H(x).1

Obviously, q 2 C1 \ C2. As in the “kink” case, the modal decay exhibits a pronounced odd-even2

discrepancy (not shown), that leads to spuriously high “raw” smoothness exponent estimate of about3

13. After skyline pessimization, the estimate assumes nearly exactly the expected value, three. The4

three artificial tests conducted so far confirm the premise on which the estimator is built, namely5

that the smoothness of a function represented by a Legendre expansion can be accurately estimated6

solely by examining its coefficients.7

By presenting a number of further tests, we hope to clarify the behavior of the estimator as8

designed so far. A particularly interesting case is shown in Figure 4, which shows the estimator9

applied to the highest mode present in the Legendre expansions of length 10 which we have been10

considering. In a sense, this is the most oscillatory, and thereby the least smooth, function that the11

expansion can express. After skyline pessimization, this function is assigned a smoothness exponent12

of zero–which in a Fourier setting would correspond to white noise.13

The next two tests are concerned with very smooth functions (cos(3 + sin(1.3x)) and sin(⇡x))14

and confirm that the estimator recognizes them as such. While the smoothness values (both around15

four) assigned to them are not as meaningful as the results in the low-smoothness examples, this16

is not necessarily a problem. As long as the estimator can sharply pick up non-smoothness on a17

reliable scale (and keep the smooth examples clear of this area), it is performing satisfactorily for18

its purpose.19

The second-to-last test highlights a behavior of the detector that could be considered a failure20

mode. Consider a constant function perturbed by white noise of a much smaller scale. As discussed21

above, the detector ignores the constant and only ‘sees’ white noise, yielding a smoothness value22

of about zero. This behavior is undesirable, as the detected smoothness value may depend on23

the presence or absence of mere floating point noise. One root of this problem is the removal of24

constant-mode information from the estimation process, causing the estimator to not have a “sense25
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(a) (b)

Figure 5: Modal portrait for an approximant of a (discontinuous) jump function, offset from the
center of the element.

of scale”, i.e. keeping it from noticing that the noise is “small” compared to the remainder of the1

solution. In the following, we present one way to re-add this “sense of scale” by distributing energy2

according to a “perfect modal decay”3

|ˆb
n

| ⇠ 1qP
Np�1

i=1

1

n

2N

1

nN

(4.10)

for N the polynomial degree of the method, where the normalizing factor ensures that4

Np�1X

n=1

|ˆb
n

|2 = 1.

The idea is to consider the coefficients5

|q̃
n

|2 := |q̂
n

|2 + kq
N

k2

L

2
(Dk)

|ˆb
n

|2 for n 2 {1, . . . , N
p

� 1} (4.11)

as input to skyline pessimization instead of the “raw” coefficients |q̂
n

|2. This amounts to adding6

baseline modal decay scaled by the element-wise norm that will ‘drown out’ the floating point7

noise.8

For the sake of exposition, baseline decay was not introduced initially. The reader may convince9

himself that its introduction does not unduly modify experimental results so far by examining the10

estimated decay exponents given as “BD+SL” in the past graphs and comparing to the pure-skyline11

values given as “SL”.12

This completes the discussion of the design of the detector. Now might also be a good time to13

point out a known shortcoming in its design that was already anticipated in the motivating discussion.14

The issue relates to the discussion of mode scaling with decreasing smoothness initiated earlier in15

this section. Consider Figure 5, which shows decay estimation data for the same Heaviside jump16

69



A. Klöckner et al. Viscous Shock Capturing in a Time-Explicit DG Method

function as Figure 2, but shifted to the element’s edge. The data in the figure confirms the earlier1

conjecture that a function with a sharply localized non-smoothness might result in modal decay2

exponents that differ by up to a factor of two, depending on where the non-smoothness is located3

inside the element–the measured smoothness exponent for the shifted Heaviside function is only4

0.57, compared to 1.05 after all corrections above. Additional confirmation comes from the fact5

that the final smoothness estimates for boundary-shifted versions of the kink and the C1 spline are6

s = 1.19 and s = 2.24 respectively (not shown). This relates in striking ways to the scaling of the7

DG CFL condition (2.1), and like in its case, an entirely practical remedy for this issue is not yet8

known.9

Based on the shown examples, it should be clear that even the unassisted decay fit is a more10

robust smoothness estimator than the single-mode indicator (4.1), if only for the simple reason11

that it considers a much broader set of modal data. But we have shown that even this fairly robust12

indicator can give poor results in surprisingly common cases. We feel that this strongly supports13

the statement that the decay fit indicator with skyline pessimization and added baseline decay14

represents a more practical–if slightly more expensive–way of obtaining smoothness information15

on a numerical solution.16

5 From Smoothness to Viscosity17

5.1 Scaling the Viscosity18

This section assumes that the output of the indicator is an estimated decay exponent s, approximating19

the decay of the solution’s modal coefficients as |û
n

| ⇠ n�s. We are seeking to design an activation20

function ⌫(s) whose value is the viscosity coefficient.21

For the interpretation of the decay exponent s, recall the targeted scaling of the smoothness22

exponent s, where (roughly) s = 1 would indicate a discontinuous solution, s = 2 would indicate a23

C0 solution, s = 3 a C1 solution, and so forth. Among the chief nuisances of polynomial approxi-24

mations that this work seeks to remedy is the Gibbs phenomenon, which occurs for discontinuous25

solutions (s = 1). We therefore expect to have ⌫(1) = ⌫
0

, where ⌫
0

is the maximum value of ⌫ and26

dictates its scaling. Merely continuous functions still pose somewhat of a problem for polynomial27

approximation, so we arbitrarily fix ⌫(2) = ⌫
0

/2, and finally we fix ⌫(3) = 0, as we prefer that C1

28

solutions should not be modified by viscosity.29

Given the activation map ⌫
k

(s
k

) of (4.2) with the fixed values s
0

= 2, the map ⌫(s) := 1�⌫
k

(s
k

)30

with the fixed values s
0

= 2 and  = 1 provides such a ramp. (Observe that in (4.2), decreasing31

values indicate more smoothness, while this work uses the opposite convention.) Because of the32

close attention paid to precise scaling of the smoothness s, we were able to fix values for the ramp33

location and width parameters  and s
0

.34

To find an appropriate value ⌫
0

, the behavior of the diffusion term needs to be investigated. To35

this end, we examine the fundamental solution of the diffusion equation u
t

= ⌫4u, the heat kernel.36

Adopting the probabilistic standard deviation � as a measure of width, the heat kernel after time t37

has a width of � =

p
2⌫t. Considering some unit t of time, the conservation law will propagate38

information to a distance of �, where � is some local characteristic velocity. Observe that viscosity39
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propagates the bulk of its mass at a non-linear square-root pace, while the conservation law observes1

a linear speed. One therefore needs to pick a reference time scale t as well as a reference distance at2

which the two propagation distances are to coincide.3

Choosing � = h/N after t = (N/2)�t, and approximating �t ⇡ h/(�N2

), one obtains4

⌫
0

=

�2

2t
= �

h

N
. (5.1)

This reproduces the value of [4] and simultaneously provides some more detailed insight into its5

meaning. We would like to note that � = h/N is probably too ambitious a goal, as this would only6

smooth discontinuities to a with of about the distance between two nodal points–likely too little as7

Figure 2 shows. A choice of � = 3h/N has proven to be more realistic.8

For a system of conservation laws, there remains the question of which characteristic velocity9

should be chosen for �. This choice has important implications as, e.g. in the Euler system, contact10

discontinuities propagate with stream velocity, whereas shocks propagate at sonic speeds. In a11

one-dimensional setting, [49] convincingly argues that the best course of action is to perform12

smoothing in characteristic variables, so that each wave receives the amount of smoothing specified13

by the scheme, e.g. as given in (5.1). Observe that doing may work well in one-dimension and for14

low-order multi-D finite volume schemes, but it is less clear how it might be applied in a genuinely15

multidimensional situation. A simple and functional strategy is to choose � to be the maximum16

characteristic velocity �max. The simplicity of this strategy comes at a price, however: returning to17

the example of the Euler equations, contact discontinuities have their ⌫
0

set higher than would be18

necessary from this analysis, and our numerical experiments will reflect this.19

Thus the �
max

-based scaling is not perfect. It works, in the sense that all test examples run20

successfully using it, but some can benefit from an additional ‘fudge factor’. For example, while21

problems involving Burgers’ equation (not shown) work well with an unmodified scaling in a22

’picture norm’ sense (little oscillation, least smoothing), most subsonic Euler problems benefit from23

the application of an additional factor of 1/2. This is not entirely unexpected, given the above24

discussion.25

5.2 Smoothing the Viscosity26

The artificial viscosity ⌫(x) obtained so far is a per-element quantity, with no guarantees on how it27

might vary across the domain. In particular, since the viscosity is constant on each element, it will28

invariably be discontinuous.29

Now observe how the viscosity is employed in the equations of Section 3. In particular, observe30

that in order to maintain conservativity, the viscosity occurs inside a derivative. Great care is31

required in the correct numerical solution of a diffusion equation with discontinuous viscosities32

using discontinuous Galerkin methods. [22, 44, 47] describe various precautions that need to be33

taken to avoid non-conservativity and non-consistency.34

[23] also notice the issues caused by localized, discontinuous viscosities and propose an adapted35

flux term to “strengthen the influence of neighbouring elements and [improve] the behaviour of36

the method”. [4], through numerical experiment, also arrive at the conclusion that a discontinuous37
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viscosity causes issues and show a marked decrease in H1 error for smooth viscosities. Since one is1

at considerable liberty to choose the viscosity ⌫(x), we agree that it is best to choose a ⌫ that does2

not include discontinuities, to avoid this entire complex of issues.3

Therefore, given that the detection infrastructure built up so far works in an element-by-element4

fashion, one needs to introduce a post-processing step that somehow smoothes out generated ⌫.5

In doing so, one again has a wide array of choices. [4] propose a diffusion equation (effectively6

“diffusing the diffusivity”) with time-relaxation to obtain a viscosity that is smooth in both time and7

space. Unfortunately, this choice is unsuitable given the design choices for explicit time stepping8

laid out in Section 2–to achieve sufficient smoothing of the viscosity, one needs to choose a large9

diffusivity for it, which results in a very stiff system of ODEs.10

One important question in the design of a successful smoothing method is, precisely how smooth11

must the result of the smoothing be? In computational experiments relating to artificial viscosity, we12

have found that there does not seem to be an advantage to having the viscosity ⌫ 2 Ck for k > 0.13

Based on these considerations, the method employed in the experiments in the next section14

proceeds as follows:15

1. At each vertex, collect the maximum viscosity occurring in each of the adjacent elements.16

2. Propagate the resulting maxima back to each element adjoining the vertex.17

3. Use a linear (P 1) interpolant to extend the values at the vertices into a viscosity on the entire18

element.19

In our experience, this method is cheap, reasonably straightforward to implement even on GPUs,20

and it satisfies the design requirements set forth above.21

6 Experience with and Evaluation of the Scheme22

6.1 Advection: Basic Functionality, Interaction with Time Discretization23

The first set of results we would like to discuss relates to the advection equation (Section 3.1).24

The examples in this section examine the advection of the function u(x) := 1
[0,5)

over an interval25

(0, 10).26

[40] suggest that the advection equation is particularly suited to testing shock capturing schemes27

for two reasons: First, because it is the simplest PDE that can sustain a discontinuous solution, so28

that the behavior of the method can be observed in a well-understood setting, isolated from other29

characteristics and nonlinear effects. Second, because discontinuities in it are not self-steepening,30

in analogy to contact discontinuities in the Euler equations, it makes a challenging example to be31

treated with artificial viscosity: Once a discontinuity is unduly smeared by viscosity, nothing will32

return it to its former, sharp shape.33

Figure 6(a) displays the behavior of the unmodified discontinuous Galerkin method as described34

in Section 3.1. As expected, a strong Gibbs-type overshoot is observed, although it is worth noting35

that the used upwind fluxes already provide enough dissipation of high-frequency modes to prevent36
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(a) Solution of the advection equation without
artificial viscosity.

(b) Solution of the advection equation with artifi-
cial viscosity, after short amounts of time.

Figure 6: Spatial shock capturing behavior of the artificial viscosity scheme on an advection
equation.

the solution from becoming useless. This example, and all examples that follow in this subsection,1

were run at polynomial degree N = 10 on a discretization using K = 20 elements.2

Next, Figure 6(b) displays the result of the same calculation once the artificial viscosity ma-3

chinery as described above is enabled. Discontinuities are resolved within eight points, i.e. within4

less than one element (containing N
p

= 11 points) and have no visible overshoots. (Note that as an5

expected consequence of the clustering of the nodes towards element edges, points appear spaced6

closer together where the discontinuity touches an element boundary.) Element boundaries are7

shown as dashed lines for orientation. Figure 6(b) displays the solution after only a brief amount of8

simulation time has passed. It turns out that the solution–at least visually–settles into its final form9

and does not change much even after a large number of round-trips. The steepness of the solution is10

retained as in Figure 6(b), and the number of points that are required to resolve the discontinuity11

remains stable.12

Figure 7(a) sheds a new light on this “settling” observation and the observed increased sensitivity13

of the detector near element boundaries that was discussed above. It shows the maximum viscosity14

k⌫k
L

1 found anywhere on the domain, graphed versus simulation time. If the observation of15

“brief-settling-then-steady-state” were entirely true, then one would observe no sensor activations16

whatsoever after “settling” has occurred. This is not what is observed here. Instead, one sees a slowly17

decaying train of viscosity activation spikes. It turns out that each of these spikes coincides with a18

discontinuity crossing an element boundary. This again confirms the observation that the detection19

scheme is inhomogeneous in space, i.e. it judges solution smoothness differently depending on20

whether a discontinuity is located in the interior of an element or at its boundary. Since the sensor is21

only exposed to the non-smoothness for very short periods at a time, according to Figure 7(a) it22

takes considerable time (t ' 12 in the example) and a number of viscosity “spikes” until a profile is23

achieved that does not trip even the overly sensitive version of the detector. It is to be expected that24

the final profile is twice smoother than would be required if the oversensitivity did not exist.25

As a last observation on the behavior of the method on this exceedingly simple problem, we26
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(a) Artificial viscosity activations vs. time, in a
discontinuous advection calculation.

(b) Adaptively found time step vs. step number,
in a discontinuous advection calculation.

Figure 7: Interaction of the shock-capturing artificial viscosity with the time discretization.

would like to examine its interaction with the adaptive time stepper. The examples were computed1

using the well-known embedded Runge-Kutta method of third order by [8] (“ode23” in Matlab).2

7(b) shows the adaptively-chosen time step �t as a function of the step number. The stable advective3

time step is clearly visible, as is the initial “settling” period discussed above, along with a variety4

of time step reductions occurring along the way. Some of these coincide with element transitions5

of discontinuities, but the situation is more ambiguous (and noisier) than in the case of viscosity6

activations. The figure does make one thing amply clear, however: an artificial-viscosity-based7

shock capturing scheme using explicit time stepping must use time step adaptivity, or it will not be8

competitive.9

6.2 Waves: Shock Spreading and Spurious Coupling10

The next, more complicated problem for which we examine the behavior of the proposed artificial11

viscosity is the wave equation, described in Section 3.2.12

We would like to set the stage for our experimental results by considering the context of recent13

work by [12], who show (under a number of additional assumptions) that for a DG computation of14

a linear advection equation at second order using a second-order total-variation-diminishing (TVD)15

time discretization, pollution of the numerical solution by the shock by time T stays localized to an16

area of size O(

p
hT ) ahead of and an area of size O(

3
p

Th2

) behind the discontinuity. Although17

they only show this for a scalar advection equation, the wave equation (3.1) and its discretization18

may be transformed into two decoupled advection equations, and hence the result applies in this19

case as well.20

We will study the pollution of the solution by examining its pointwise empirical order of21

convergence to the known analytic solution in space and time, starting from the initial condition22

u(x, 0) = 2 + cos(5⇡x) + 4 · 1
[�0.3,0.3]

(x), v(x, 0) = 0,
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(a) EOC for the wave equation with a discontinu-
ous initial condition without artificial viscosity.

(b) EOC for the wave equation with a discontinu-
ous initial condition with artificial viscosity.

Figure 8: Empirical order of convergence for the wave equation with discontinuous initial conditions.

subject to Neumann boundary conditions, on a domain ⌦ = (�1, 1) up to a final time T = 0.6, with1

a wave speed c = 1.2

Figure 8 shows the resulting convergence plots, obtained with and without artificial viscosity. As3

expected through the work of [12], the inviscid DG scheme of Figure 8(a) achieves full convergence4

away from the discontinuities, but also shows a slowly-growing zone of non-convergence near the5

discontinuities, again matching predictions.6

Unfortunately, results are not as favorable once artificial viscosity starts to act on the scheme.7

Outside the region that interacts with the discontinuities, convergence is roughly as before. However8

inside the interacting regions, convergence does improve again away from the discontinuity, but it9

does not recover the full order of the scheme. This reduction in order is in line with results obtained10

for finite-difference solutions downstream of a slightly viscous shock by [21] (see also [38]). The11

observation further underscores the importance of the wave equation as a test example for shock12

capturing schemes. Once the PDE is rewritten in as a system of first-order conservation laws, the13

single added viscosity of (3.1) induces a cross-coupling that appears to destroy accuracy.14

Note that such behavior cannot be observed in the advection equation, or, generally, any purely15

scalar conservation law, since these equations have only one characteristic wave, and hence the16

pollution caused by the artificial viscosity cannot spread, but propagates along with the solution.17

This might lead one to suggest an obvious “fix” for the issue: The first-order system (i.e. the18

left-hand side of 3.1) can easily be transformed into characteristic variables, where it takes the form19

of two advection equations that only couple at the boundary, such that the issue disappears [49]. As20

we have already discussed, proposing this is as a general remedy is however a bit disingenuous, as21

it cannot work properly in multiple dimensions. Another idea that one might have to try and avoid22

the reduction in accuracy is to use separate viscosities for each of the variables. According to our23

experiments, this does not help, as the cross-coupling of the system persists.24

Next, it seems unlikely that this problem is specific to the artificial viscosity constructed in this25

article, or to discontinuous Galerkin methods, for that matter. It should be investigated whether all26
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(a) L2-projected exact and approximate numer-
ical solutions of Sod’s problem for polynomial
degree N = 5 in K = 80 elements.

(b) Space-time diagram of the empirical order of
convergence for Sod’s problem, computed with
artificial viscosity.

Figure 9: Sod’s problem with artificial viscosity: solution and x-t convergence.

artificial viscosity schemes proposed so far in the literature suffer from this shortcoming.1

6.3 Euler’s Equations2

In this section, we will carefully examine the behavior of the artificial viscosity method introduced3

above on Euler’s equations of gas dynamics, starting with the classical exact solution of the Riemann4

problem given by [53] as the first example.5

Figure 9(a) shows computational results, again at polynomial degree N = 5 on K = 806

elements, in direct comparison with the (L2 projection of) the exact solution, for the density ⇢ and7

the pressure p, at the final time T = 0.25 of the computation.8

While the figure above gives an impression of the desired solution and a first impression of9

the performance of the method, it is perhaps more enlightening to examine an analog to the the10

convergence in space and time of Figure 8 in the gas dynamics setting. Figure 9(b) provides this. As11

above, the computation was carried out at polynomial degree N = 5, at a variety of mesh resolutions12

ranging from K = 20 to 320 elements across the domain. Like in the linear case, convergence away13

from the shock region is good, while in the central, shock-interacting ‘fan’, it hardly exceeds order14

1. In particular, it is worth noting that convergence along the profile of the smooth rarefaction wave15

is also no better than order 1. Given the results obtained for the wave equation, this is not very16

surprising, and it confirms that the issues observed on linear problems persist in the nonlinear case.17

A closer look at the numerical solutions in the poorly-converged region of 9(b) offers a revealing18

insight, shown in Figure 10 for a high-resolution case (N = 7, K = 641) and a low-resolution case19

(N = 5, K = 81). On the constant parts of the solution to the Riemann problem, we observe small20

“wrinkles”. Figure 10(a) provides a sense of scale, while the extreme close-up of Figure 10(b) shows21

the phenomenon in detail. In both the high- and the low-resolution case, the oscillation’s wave22

length roughly agrees with the size of an element. Further, it is remarkable that the magnitude of the23

oscillation appears to grow, rather than shrink, with increased resolution, which seems to indicate24
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(a) Close-up view of the contact discontinuity in
Figure 9(a) at low and high numerical resolutions.
Interpolation nodes for the low-resolution case
are shown as dots.

(b) Extreme close-up view of the tip of the con-
tact discontinuity in Figure 10(a), at low and high
numerical resolutions.

Figure 10: Element-scale oscillation exhibited by the artificial viscosity scheme.

N = 4 N = 5 N = 7 N = 9 EOC
h/1 9.982 · 10

�3

7.934 · 10

�3

6.522 · 10

�3

5.567 · 10

�3 0.70
h/2 5.442 · 10

�3

4.231 · 10

�3

3.395 · 10

�3

2.921 · 10

�3 0.75
h/4 2.945 · 10

�3

2.219 · 10

�3

1.778 · 10

�3

1.568 · 10

�3 0.76
h/8 1.548 · 10

�3

1.166 · 10

�3

9.488 · 10

�4

8.329 · 10

�4 0.74
h/16 8.087 · 10

�4

6.006 · 10

�4

5.121 · 10

�4

4.598 · 10

�4 0.66
h/32 4.207 · 10

�4

3.111 · 10

�4

2.806 · 10

�4 — 0.69
EOC 0.93 0.95 0.92 0.92

Table 1: L1 error and convergence data for the Sod problem of the Euler equations of gas dynamics.
“EOC” stands for the empirical order of convergence, obtained as a least-squares fit to the data.

that convergence below the margin provided for by the oscillation might not occur. (Convergence1

will be examined in some detail below.) The phenomenon is observed on all constant areas that2

are inside the fan of characteristics emanating from the shock at time t = 0. So far, we do not3

understand the cause of this phenomenon, nor is it known whether there is a connection between4

these wrinkles and the reduced convergence observed in Section 6.2. One might speculate that,5

again, the detector’s spatial inhomogeneity is to blame. While we are as yet unsure of the source6

of the phenomenon, we would like to note that post-shock oscillations of this nature have been7

observed and studied even in schemes that do not use element-based decompositions [2].8

Beyond the spot testing conducted so far, we have also carried out a more comprehensive9

convergence study on the Euler equations applied to the Sod problem. The raw L1 error data as10

well as empirical convergence order results obtained from least-squares fits are shown in Table11

1. The data was gathered at a variety of polynomial degrees N and with K = 20 elements at the12

coarsest level, with uniform refinements thereafter. The data seems to support about a full order13

of convergence in h = 1/K. No improvement in convergence occurs as the order is increased.14

Further, the data supports less than a full order of convergence in N , indicating that an addition15
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(a) Approximate numerical solution for density
and pressure of Lax’s problem for polynomial
degree N = 5 in K = 80 elements.

(b) Approximate numerical solution for density
and pressure of a shock-wave interaction prob-
lem for polynomial degree N = 5 in K = 80
elements.

Figure 11: Solutions of classical test problems for the Euler equations using the artificial viscosity
scheme.

of elemental resolution at present is a more effective way of getting a more accurate solution than1

increasing the size of the local approximation spaces, especially considering that the computational2

complexity grows superlinearly in N . At the resolutions examined, the influence of the oscillations3

(“wrinkles”) observed above does not appear to have contributed a significant part of the error–given4

their observed behavior in response to resolution changes, they would likely have represented a5

“bottom” to convergence at some fixed error magnitude. That issue aside, the observed convergence6

data appears to be as good as one might reasonably expect. While convergence of higher order7

would of course be desirable, the method as it presently stands is not designed to be able to achieve8

this. Through some experiments on polynomials, we have reason to believe that convergence of9

order one in N is achievable and thereby a goal for future research.10

In addition to the problem of [53], which has furnished the basis for all tests so far, we have11

also conducted tests using other available solutions for the Euler equations. One such solution12

that is rather similar to the Sod problem is that of [42] in that it also originates from a Riemann13

problem. Figure 11(a) demonstrates that the scheme can successfully compute a correct solution14

to the problem. Lax’s problem prominently features a contact discontinuity, which is prone to15

smearing, as was discussed above. The contact discontinuity in the figure appears somewhat more16

smeared than the Sod contact discontinuity at a similar scale.17

A further basic benchmark test for the method applied to the one-dimensional Euler equations18

was proposed by [50, Example 8] to highlight the need for high-order methods in properly capturing19

the interaction of shocks with smooth wave-like features. Considering the gathered convergence20

data, we cannot claim that the method is of high order away from discontinuities once such areas21

enter the domain of influence of a location where artificial viscosity was applied. Nonetheless, it is22

still instructive to see that the method is capable of keeping the computation stable and delivering23

a correct result at least in the “picture norm”, as evidenced by Figure 11(b). This example is24
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commonly considered challenging, and it is encouraging that the method is able to stabilize the1

computation and give a meaningful result without excessive smearing.2

As a final validation of the detector’s design on the Euler equations, it is important to examine3

whether it will recognize smooth solutions and leave them untouched, preserving high-order4

accuracy. We have tested this using the smooth isentropic vortex test case of [64] with the result5

that as soon as sufficient resolution is available, the detector does not activate anywhere at any time6

during the solution process.7

7 Conclusions and Future Work8

What sets the shock detection method of this article apart is its focus on reliable scaling, with a9

further emphasis on explicit, local, GPU-suited calculation in the context of discontinuous Galerkin10

methods. Despite a focus on remaining issues, we contend that in this niche the method is reasonably11

successful. Its construction introduces several new concepts, such as a more precise interpretation12

of the correspondence between polynomial decay and smoothness, as well as methods like skyline13

pessimization, baseline decay, and P 1 viscosity smoothing.14

The study of the method’s behavior on simple problems (such as linear waves and transport)15

was–in our opinion–quite revealing, and it should be investigated in how far other shock capturing16

methods are susceptible to the same problems.17

On more complicated nonlinear problems, results were, in our estimation, encouraging. For18

example, the method manages to stabilize the computation of the shock-wave-interaction example19

and other important benchmarks, without introducing excessive smoothness. Further investigation,20

using the rich pool of tests available in the shock capturing literature [3, 52, 54, 61] will doubtlessly21

give further insight into the method’s strengths and weaknesses as well as help to further improve it.22

In addition, we have been exploring the necessities and pitfalls involved in generalizing the method23

to multiple dimensions. Initial tests showed promising results, which we will report in a future24

article.25
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