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Abstract. A framework for the construction of stable spectral methods on arbitrary domains
with unstructured grids is presented. Although most of the developments are of a general nature,
an emphasis is placed on schemes for the solution of partial differential equations defined on the
tetrahedron.

In the first part the question of well-behaved multivariate polynomial interpolation on the tetra-
hedron is addressed, and it is shown how to extend the electrostatic analogy of the Jacobi polynomials
to problems beyond the line. This allows for the identification of nodal sets suitable for polynomial
interpolation within the tetrahedron and, subsequently, for the formulation of stable spectral schemes
on such unstructured nodal sets. The second part of this work is devoted to a discussion of weakly
imposed boundary conditions, and energy-stable schemes are formulated for a wide class of problems,
exemplified by advection problems, advection-diffusion problems, and linear symmetric hyperbolic
systems.

Finally, in the third part, issues related to computational efficiency and implementation of the
schemes are discussed. The spectral accuracy of the approximation is confirmed through an example,
and factorization methods for the efficient computation of derivatives on the general nodal sets
within the d-simplex are developed, ensuring that the proposed schemes are competitive with tensor-
product-based methods. In this last part we also show that the advective operator results in an
O(n−2) restriction on the time-step, similar to that of spectral collocation methods employing a
tensor-product-based approximation. The performance of the proposed scheme is illustrated by
solving a wave problem on a triangulated domain, confirming the expected accuracy and stability.

Key words. spectral methods, asymptotic stability, penalty methods, tetrahedral elements

AMS subject classifications. 65L20, 65A70, 65A60, 41A10, 41A63

PII. S1064827598343723

1. Introduction. The formulation of pseudospectral methods for solving par-
tial differential equations has traditionally been confined to problems defined on very
simple domains that can be smoothly mapped onto the d-cube, with d signifying the
dimensionality of the cube. Choosing the one-dimensional Gauss quadrature points
as the nodal sets, with the multidimensional generalization appearing through a ten-
sor product, yields a highly efficient procedure for the construction of the multidi-
mensional interpolating polynomials and the introduction of differentiation matrices
in the spirit of classical pseudospectral methods. The need for geometric flexibil-
ity has traditionally been addressed by introducing a multidomain formulation, as
exemplified by the spectral element method [1] for the solution of the incompress-
ible Navier–Stokes equations and spectral multidomain methods for the solution of
the compressible Navier–Stokes equations; see, e.g., [2]. However, these methods all
suffer from the requirement of a conforming, or almost conforming, semistructured
discretization of the computational domain. Not only does that complicate the im-
plementation of such schemes, it also poses significant problems for the application of
automated grid-generation.
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Finite element or finite volume methods, on the other hand, traditionally employ
a low-order approximation on the d-simplex, hence allowing for highly efficient grid
discretization and automated unstructured mesh generation. However, the need for
high-order approximation methods has, in recent years, become increasingly apparent
and has lead to the development of high-order finite element methods, most notably
the h − p method [3] and the new spectral element methods [4, 5], which all ensure
the geometric flexibility by using triangles or tetrahedra as the basic building blocks
while maintaining the high spatial accuracy of traditional spectral methods.

The development of such methods hinges upon the application of more complex
basis functions, specifically tailored to the accurate approximation of smooth functions
defined on the d-simplex. Tensor-product-like methods based on Jacobi polynomials,
as devised in [6] by employing the polynomials of [7, 8], supply the basis utilized in
[4], while h− p methods classically employ multivariate Lagrange interpolation. The
former approach utilizes a special tensor-like combination of Jacobi polynomials to
construct the basis in such a way that a time-step restriction scaling as O(n−2) results.
Here n represents the order of the polynomial. Moreover, the existence of a tensor-
product structure of the approximation is advantageous as it can be exploited to
compute derivatives in O(n4) operations. A disadvantage of this approach, however,
is the lack of a corresponding nodal sets and, consequently, the need to perform all
computations in modal space.

On the other hand, utilizing multivariate Lagrange polynomials as the basis tool
of approximation, as is classically done in h − p methods, requires the identification
of collocation points on the d-simplex that ensures good behavior of the interpolating
polynomials. While the identification of such nodal sets remains open in the general
case, approximate optimal points for polynomial interpolation have recently been ob-
tained [9, 10, 11, 12], thereby allowing for the construction of well-behaved high-order
approximations of smooth functions defined on the d-simplex. Unfortunately, there is
no tensor-product structure associated with these nodal sets, and the computation of
derivatives scales asymptotically as O(n2d), which becomes prohibitive for large n.

It is the purpose of this paper to show that by combining a number of recent results
and techniques we can develop high-order, efficient nodal-based collocation methods
for the stable solution of partial differential equations on general domains with an
emphasis on the tetrahedron. The central parts of this construction comprise the
identification of nodal sets well suited for high-order interpolation and the construction
of stable high-order methods on such unstructured grids. To address the first problem
we shall further develop the ideas put forward in [11] relating the nodal sets to the
solution of a problem of electrostatics. The resolution of the second concern relies
on vast generalizations of ideas put forward in [13, 14] in which it is shown how to
impose boundary conditions in a way that ensures that the scheme maintains stability
irrespective of the choice of grid.

The theoretical developments of the scheme provides little information about the
actual performance of the complete framework, a concern to which we shall devote
considerable attention. In particular, we shall show how to exploit the delicate struc-
ture of the multivariate differentiation matrices to realize a sparse factorization that
results in a very considerable speed-up of the complete setting, hence making it very
competitive with schemes utilizing special polynomials on the d-simplex [4] and even
traditional purely tensor-product-based approximations on the d-cube.

The remaining part of the paper is organized as follows. In section 2 we introduce
the necessary notation and recall a few results on the treatment of curvilinear tetrahe-
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dra and multidimensional Lagrangian interpolation. These results are central to the
global multivariate approximations developed in section 3 by using an electrostatic
analogy and setting the stage for the developments in section 4, where we formulate
spectral schemes for the approximation of scalar conservation laws defined on the
tetrahedron. The schemes are shown to be L2-stable and generalizations to hyper-
bolic systems and higher-order problems are briefly discussed. Section 5 is devoted
to a detailed discussion of computational issues related to the proposed methods.
In particular we show how to exploit the symmetries of the nodal sets to effectively
factorize the differentiation matrices, hence resulting in a very competitive computa-
tionally framework. In this section we also discuss the discrete stability of the schemes
and the time-step restriction associated with explicit temporal integration. The per-
formance of the complete framework is illustrated through the solution of a linear
wave problem. Section 6 provides a brief summary and suggestions for future work
along the line of thinking introduced in this paper.

2. General concepts and notation. We shall consider the curvilinear tetra-
hedron, D ⊂ R3, illustrated in Figure 1. While it is not required that the faces of the
tetrahedron are planar, such an assumption will, as we shall see shortly, simplify the
scheme as well as the analysis considerably. Moreover, in a general computational
scenario the vast majority of the tetrahedral elements will be straight sided, thus
representing the most important special case.

We assume that there exists a diffeomorphism, Ψ : D → I, where I ⊂ R3 represents
the standard tetrahedron with the vertices

vI =




−1
0
0



 , vII =




1
0
0



 , vIII =




0√
3

0



 , vIV =
1√
3




0
1

2
√

2



 ,

forming four equilateral triangular faces as illustrated in Figure 1. The corresponding
vertices in D are named v1 − v4 with v1 being related to vI and so on. Moreover,
we shall refer to the four faces in I as well as in D as “a–d”, where no confusion is
possible. The faces are named such that face “a” has base-vertex vI in I and v1 in D
and correspondingly for the other three faces.

Finally, we shall term the coordinates, x ∈ D, as (x, y, z) while the coordinates,
ξ ∈ I, are named (ξ, η, ζ).

2.1. Curvilinear geometry and the tetrahedron. Let us initially assume
that the global map, Ψ : D → I, has been established in some form. Spatial derivatives
in D of a function, f(x), are then computed utilizing the curvilinear space with the
metric of the transformation, ∇ξ, ∇η, and ∇ζ given as

∂x

∂ξ

∂ξ

∂x
=




xξ xη xζ

yξ yη yζ
zξ zη zζ








ξx ξy ξz
ηx ηy ηz
ζx ζy ζz



 =




1 0 0
0 1 0
0 0 1



 .(1)

Within this new metric, the divergence of a vector field, F = (Fx, Fy, Fz), becomes

∇ · F =
1

J

[
∂

∂ξ
(JF ·∇ξ) +

∂

∂η
(JF ·∇η) +

∂

∂ζ
(JF ·∇ζ)

]
,

with the transformation Jacobian on the form

J =

∣∣∣∣
∂x

∂ξ

∣∣∣∣ =
1

∇ξ · (∇η ×∇ζ)
.
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(x,y,z)=Ψ-1(ξ,η,ζ)

(ξ,η,ζ)=Ψ(x,y,z)

x
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ξ η

ζ
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vII
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Fig. 1. Mapping between the curvilinear tetrahedral, D, and the standard tetrahedral, I, includ-
ing the numbering and notation introduced in the text.

Let us now return to the actual construction of the smooth and invertible mapping
function, Ψ : D → I, and consider the situation illustrated in Figure 1. We are primar-
ily interested in the important case where D is a general straight-sided tetrahedron
defined through the vertices, and we recall that any x ∈ D can be expressed as a
convex combination of the vertices

x =
4∑

i=1

vibi(ξ),
4∑

i=1

bi(ξ) = 1,(2)

where 0 ≤ bi(ξ) ≤ 1 for convexity. Within I, the barycentric coordinates, bi(ξ), are
recovered as

b1(ξ) =
1 − ξ

2
−

√
2η + ζ√

24
, b2(ξ) =

1 + ξ

2
−

√
2η + ζ√

24
,(3)

b3(ξ) =
η −

√
3ζ√

24
, b4(ξ) =

√
3

8
ζ.

A close inspection of (2) reveals that it is indeed exactly the mapping we are in search
of. Moreover, bi(ξ) is linear in ξ, hence the metric of the transformation between
any two straight-faced tetrahedra is constant. It is therefore sufficient to discuss the
development of schemes for some specific tetrahedron with plane faces as exemplified
by I, and the results for any D follow immediately.

The metric of the transformation, Ψ : D → I, also directly yields the outward
pointing vectors normal to the faces of D on the form

na = ∇ξ + ∇η +
1

2
∇ζ, nb = −∇ξ + ∇η +

1

2
∇ζ,(4)

nc = −∇η +
1√
8
∇ζ, nd = −∇ζ.
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We shall finally define the four surfaces, enclosing D and I, respectively, as

xa = x(b1(ξ) = 0), ξa = ξ(b1(ξ) = 0),

where we utilize that b1 = 0 at face “a.” In a similar fashion we define xb as the face
with b2 = 0 as for ξb and likewise for the remaining faces.

In the more general case where the faces of D are curved, the Jacobian as well as
the metric are functions of ξ and Ψ can be constructed using blending functions. We
shall not give the details here but refer to [15] for an account of this procedure.

2.2. Multivariate Lagrange interpolation. The general curvilinear coordi-
nates allow us to focus the attention on the problem of interpolation in the standard
tetrahedron, I.

We define the space of n-degree polynomials in three variables, P3
n, with the

dimension of the approximation space being

dim P3
n ≡ N3

n =

(
3 + n

3

)
=

(n + 1)(n + 2)(n + 3)

6
,

which is the minimum dimension of the space that allows P3
n to be complete. In other

words, dimP3
n ≡ N3

n is exactly the number of elements in the nth-order generalized
Pascal triangle [11]. Let us also introduce the nodal set, Π3

n = (ξ0, . . . , ξN ), where
the nodal points, or collocation points, are termed ξi ∈ I or, interchangeably, xi ∈ D.
Following the notation of the previous section we refer to ξa

i as those nodal points in
Π3

n that are placed on face “a” in I and, likewise, to xa
i as the corresponding nodal

points on face “a” in D. A similar notation will be used for the subsets of Π3
n being

placed entirely on the remaining faces of either D or I, and we refer to these subsets
as πa

n = (ξa
0, . . . , ξ

a
Na) and likewise for πb

n, πc
n, and πd

n. We shall use N = N3
n − 1 to

simplify the notation unless clarification is deemed necessary.
We moreover assume, although strictly speaking unnecessarily, that each of the

four faces have exactly

Na = Nb = N c = Nd =
(n + 1)(n + 2)

2

nodal points and that 3(n + 1) of these are distributed along the edges with the
vertices being included. This allows for the construction of uniquely defined one- and
two-dimensional polynomials along the edges and on the faces as discussed in [11]
from which we may also recover such nodal sets. Alternatives can be found in [9, 12].
However, we still have a total of

(n− 1)(n− 2)(n− 3)

6

nodal points to specify in the interior of the tetrahedron when the order of the poly-
nomial exceeds 3.

In this setting the natural polynomial space for the approximation of functions
defined on the tetrahedron is

P3
n = span{ξiηjζk; i, j, k ≥ 0; i + j + k ≤ n},

where n signifies the maximum polynomial order of the multivariate approximation.
Interpolation of a smooth function, f(ξ) : I → R, where f [I] ∈ C[I] and f ∈ H

is square integrable and belongs to the Hilbert space, H, can now be viewed as for
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a given nodal set, Π3
n. Find the polynomial, I3

nf ∈ P3
n, such that the interpolation

operator, I3
n[I] : H → P3

n, can be defined by the property

∀ξi ∈ I : I3
nf(ξi) = f(ξi);

i.e., we seek a polynomial approximation with the Lagrange interpolation property.
The actual construction of the interpolating polynomial relies on the introduction

of the complete polynomial basis, pi(ξ) ∈ P3
n, where P3

n = span{pi(ξ)}Ni=0. The
interpolation property implies that

∀i ∈ [0, . . . , N ] : f(ξi) =
N∑

j=0

ajpj(ξi),

leaving us with the problem of recovering the expansion coefficients, aj , as is accom-
plished through the solution of the linear problem




p0(ξ0) . . . pN (ξ0)

...
...

p0(ξN ) . . . pN (ξN )








a0
...

aN



 =




f(ξ0)

...
f(ξN )



 ,

or in short VDMa = f . Here the matrix VDM = VDM(ξ0, . . . , ξN ) is recognized as
the multidimensional version of the Vandermonde matrix if the polynomial basis is
taken as the basis of monomials pi(ξ) = ξiηjζk. An alternative and computationally
more appropriate choice of basis is the generalized version of the polynomials intro-
duced in [7], and more recently in [8, 6], as it dramatically improves the conditioning
of the VDM-matrix [12].

Existence and uniqueness of the interpolating polynomial is ensured if and only if
the Vandermonde determinant, |VDM|, is different from zero. For interpolation along
the line it is well known that we can guarantee that |VDM| ,= 0 provided only that
the nodal points are distinct. Unfortunately, no such simple results are known for
interpolation in I. Sufficient conditions for uniqueness of the interpolating polynomial
was obtained in [16] through a geometric characterization of the admissible nodal sets.
However the requirements are rather strict and by no means necessary.

In light of this theoretical shortcoming we shall subsequently assume that the
nodal set, Π3

n, is constructed to ensure that |VDM| ,= 0. This done, we may express
the unique polynomial approximation, I3

nf(ξ) ∈ P3
n, using Lagrange polynomials,

Li(ξ) ∈ P3
n, as

I3
nf(ξ) =

N∑

i=0

fiLi(ξ),(5)

where we recall that Li(ξj) = δij , and we have introduced fi = f(ξi) and the associ-
ated grid vector f = (f0, . . . , fN )T .

Equation (5) must hold for any smooth f(ξ) ∈ C[I], and in particular for the
polynomial basis, pi(ξ), itself. This observation allows us to recover the interpolating
Lagrange polynomials by solving the dual interpolation problem




p0(ξ0) . . . p0(ξN )

...
...

pN (ξ0) . . . pN (ξN )








L0(ξ)

...
LN (ξ)



 =




p0(ξ)

...
pN (ξ)



(6)
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through which, using Cramers rule, the expression for the interpolating Lagrange
polynomials appears directly as

Li(ξ) =
|VDM(ξ0, . . . , ξi−1, ξ, ξi+1, . . . , ξN )|

|VDM(ξ0, . . . , ξN )| .(7)

The explicit expressions for the Lagrange polynomials are known only for very specific
choices of nodal sets and the Lagrange polynomials must, in general, be generated
numerically, hence the concern of the conditioning of VDM discussed above.

In seeking approximate solutions to partial differential equations, we need to
evaluate spatial derivatives at the nodal points, ξi. If we assume that the function, f ,
is approximated using (5), approximations to spatial derivatives are obtained directly
through matrix-vector products as

I3
n
∂f

∂ξ
- ∂I3

nf

∂ξ
= Dξf , I3

n
∂f

∂η
- ∂I3

nf

∂η
= Dηf , I3

n
∂f

∂ζ
- ∂I3

nf

∂ζ
= Dζf ,

where the entries of the (N + 1) square differentiation matrices are given as

Dξ
ij =

∂Lj(ξi)

∂ξ
, Dη

ij =
∂Lj(ξi)

∂η
, Dζ

ij =
∂Lj(ξi)

∂ζ
.(8)

These can be computed directly through differentiation of the expression for the La-
grange polynomials given in (7). Indeed, if we choose pi(ξ) as the monomials in
(ξ, η, ζ), differentiation of Lj(ξ) at ξi is implemented directly through the derivative
of column j in the Vandermonde matrix prior to solving. Using the more complicated
polynomial basis of [7, 8, 6] involves the differentiation of Jacobi-polynomials but
results in a numerically much more stable procedure.

It shall prove central for the construction of the stable schemes to recall that the
Lagrange polynomials, La

i = La
i (ξ

a), based solely on the nodal point-set, πa
n, have the

property

Na∑

i=0

f(ξa
i )L

a
i (ξ

a) =
N∑

i=0

f(ξi)Li(ξ
a),(9)

as a consequence of the uniqueness of the Lagrange polynomials in the tetrahedron as
well as on the face, as also La

i is complete due to the previously imposed conditions
on the structure of the nodal sets. An alternative way of interpreting the restrictions
put on the nodal set is that we require that the Lagrange polynomials attain their
maximum order along the faces and edges of the tetrahedral. In fact, provided only
this latter statement is true, (9) remains valid also for an incomplete polynomial
basis or even an overspecified basis. As we shall find, the construction of the stable
schemes also remains valid for such more exotic cases, provided the nodal set ensures
uniqueness of the interpolating polynomials. Nevertheless, we consider only the case
of a complete and unique polynomial basis as this is the most frequently appearing
situation. In such a situation, statements similar to that of (9) are valid also for the
approximations along the three other faces and we shall refer to the corresponding
Lagrange polynomials as Lb

i , L
c
i , and Ld

i corresponding to the nodal sets πb
n, πc

n, and
πd
n, respectively.

Let us finally define a number of different inner products. Consider the two
smooth functions f [D] ∈ C[D] and g[D] ∈ C[D] for which f(x) : D → R and g(x) :
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D → R. The global inner product, the associated L2-norm, and the inner product
over the surface of D are defined as

(f, g)D =

∫

D
f(x)g(x) dx, (f, f)D = ‖f‖2

D, (f, g)δD =

∮

δD
f(x)g(x) dx.

Along the faces of the tetrahedron, we define the face-based norm as

[f, g]a =

∫

a
f(xa)g(xa) dxa, [f, f ]a = ‖f‖2

a.

A similar notation will be used for the inner products of functions defined on the three
remaining faces as named in Figure 1.

3. Multivariate nodal sets through electrostatics. While we have put a
number of restrictions on the nodal sets on the faces of the tetrahedron we have yet
to specify the positions of the nodes on the faces as well as in the interior of the
tetrahedron.

Before we continue with the actual specification of the nodal sets, let us introduce
a measure that shall allow us to quantitatively judge between several alternative nodal
sets. If we term the best approximating polynomial, p∗(ξ), we have

∣∣f(ξ) − I3
nf(ξ)

∣∣ ≤ (1 + Λn(Πn)) |f(ξ) − p∗(ξ)| ,(10)

provided only that f(ξ) is continuous. Here we have introduced the constant

Λn(Πn) = max
ξ∈I

N∑

i=0

|Li(ξ)| ,

known as the Lebesgue constant. Hence, the interpolation is bounded by the best
approximation up to the size of the Lebesgue constant. It is noteworthy that the
value of Λn(Πn) depends solely on the specification of the nodal set. Moreover, from
(10) it is clear that we shall strive to devise nodal sets with as small a Lebesgue
constant as possible or, rather, as slow a growth with n as possible.

Having identified the Lebesgue constant as a convenient measure, let us return
to the actual specification of the nodal sets. Utilizing the barycentric coordinates, a
natural first attempt to specify the nodal sets is the equidistant nodal being defined
as

ΠEq
n =

{
xi|(b1, b2, b3, b4) =

(i, j, k, l)

n
, 0 ≤ i, j, k, l , i + j + k + l = n

}
.

However, following [17], the Lebesgue constant can be bounded as

Λn(ΠEq
n ) ≤

(
2n− 1

n

)
,

where n represents the order of the polynomial approximation. Although this estimate
is conservative it clearly illustrates that the equidistant nodal set is inappropriate for
high-order interpolation, essentially reflecting the appearance of a multidimensional
Runge-phenomenon.

As is well known, one way of overcoming the Runge-phenomenon for interpolation
on the finite interval involves the use of some family of quadrature points associated
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with the classical orthogonal polynomials, e.g., Legendre or Chebyshev polynomials.
It is not clear, however, how to extend this approach to the multidimensional case, as
no equivalent of the Gauss quadrature is known. One could, among other things, seek
inspiration in the expression of the Lagrange polynomials, (7), and choose to use the
nodal sets that maximize the Vandermonde determinant as is done in [9, 12] for the
triangle and in [10] for the tetrahedron. While this choice results in the Legendre–
Gauss–Lobatto quadrature points in the one-dimensional case, no such general results
are known for the multidimensional simplex, although the bound

Λn(ΠVDM
n ) ≤

(
n + 3
n

)

has been derived in [17], where solutions for n ≤ 4 are also given.
In [10] a different approach was considered to derive nodal sets with a slowly

growing Lebesgue constant. The ultimate approach would seem to involve seeking
through the whole state-space of nodal sets with the aim of identifying the global
minimum of the Lebesgue constant, if it exists. For high-order polynomials this is
not feasible and the approach taken in [10] is to assume that the Lebesgue constant
behaves in a way similar to the L2-norm of the Lagrange polynomials. The advantage
of this approach lies in the ease by which the L2-norm can be computed using high-
order cubature. As found in [10] this procedure does indeed result in nodal sets,
computed to degree n = 9, that are as good as any that were previously published,
although, as we shall see shortly, they do not represent the optimal nodal sets in the
sense of a minimum Lebesgue constant.

We shall rely on [11] in which the remarkable connection between problems of
electrostatics and zeros of the Jacobi polynomials [18], some of which are known to
provide excellent nodal sets, is extended to include the computation of nodal sets in
the triangle. Inspired by the one-dimensional analogy, the triangle nodal sets are com-
puted by interpreting the edges of the triangle as line charges, providing an exterior
force-field within the triangle in which we seek steady state solutions to the N -body
problem of a number of freely moving charges. If only the electrostatic potential was
properly defined it was shown that the steady state solution to the two-dimensional
electrostatic problem provides nodal sets with the corresponding Lebesgue constant
being as good and, in many cases, better than all previously known sets. Moreover, the
nodal sets were designed specifically such that the nodal distribution along the edges
takes the form of either the Legendre– or the Chebyshev–Gauss–Lobatto quadrature
points. These specific choices were made to facilitate the use of the triangular elements
in a hybrid element setting, where the efficient interfacing with elements employing a
tensor-product-based approximation becomes crucial.

To extend the electrostatic procedure to the tetrahedron we begin by assuming
that we may use the nodal sets computed in [11] on the four faces of the tetrahedron.
These nodal sets do indeed fulfill all of the requirements put forward in section 2.2;
e.g., they include the vertices and allow for completeness of the polynomial basis on
the faces alone. Hence, we are left with the problem of specifying the nodal sets in
the interior of the tetrahedron. To address that problem, we turn to the electrostatic
interpretation and assume that a number, Np, of unit mass charges, ρp, are allowed to
move freely inside the tetrahedron, I, mutually interacting according to the potential

φ(ξi, ξj) =
ρ2
p

|ξi − ξj |2
.(11)
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These freely moving charges are held trapped in an exterior potential field. In the
spirit of [11] we choose to use

φExt(ξi) =
4∑

j=1

∫

Face j

ρfρp
|ξ − ξi|2

dξ,(12)

where ρf represents the continuous charge density of the face which we shall later use
to optimize the quality of the nodal sets. The expression for the exterior potential
field can be expressed on closed, albeit quite complex, form.

While the general electrostatic analogy is the key inspiration, there is certainly
a great deal of freedom in choosing the potential laws. Supported by the one-
dimensional analysis [18], the two-dimensional computational results [11], and nu-
merous three-dimensional studies, it is clear that to arrive at good nodal sets for
interpolation, the exterior potential should be of a logarithmic character. This has
guided us in the formulation of (11) as those results in (12) having a significant
logarithmic component. It remains unknown, however, whether this is the best gen-
eralization of the one-dimensional electrostatic analogy. Here, as in [11], we choose to
compose the exterior field from that of finite line/face segments. However, prelimi-
nary results indicate that by constructing the exterior fields as the sum over infinitely
large lines/faces, in which case the exterior potential simply depends logarithmicly on
the normal distance to the particle at ξi, does one obtain nodal sets at least as good
as those reported here. The advantage of this approach is its simplicity and hence its
potential for analytic investigation. We hope to report on such developments in the
future.

The actual computation of the nodal sets now involves seeking steady state solu-
tions to an N -body problem evolving according to Newton’s second law as

ξ̈i = −



∇φExt(ξi) +

Np∑

j=1
j %=i

∇φ(ξi, ξj)



− εξ̇i,

where Np signifies the number of freely moving charges and the last term, ξ̇i, repre-
sents a small friction added to make the problem slightly dissipative. This is done to
ensure that a steady state be found and, due to the enclosed computational domain, ξ̇i
must vanish in this state, hence recovering the solution to the original problem. The
equation is advanced in time using a 7(6) embedded Nyström–Runge–Kutta scheme
with error control [19]. In all cases the charges are assumed to be unit charges.

The most important remaining issue is the specification of the initial conditions.
As we are interested in solutions suitable for polynomial interpolation, we restrict the
attention to steady state solutions possessing a high degree of symmetry. Furthermore,
in [11] we found, by considering a number of different symmetry patterns, that a
specific family appears as the most favorable both in terms of approximation and also
as the energy minimizing configuration in accordance with the electrostatic approach.
This specific family was characterized by the interior distribution of the nodal set
for an order n approximation being very similar in terms of symmetries to the full
nodal distribution for the n−3 solution. This is very fortunate as the latter are easily
computed and hence provide a very good set of initial conditions for the computation
at the higher n. In the tetrahedron we utilize the same approach to construct the
initial conditions, keeping in mind that the initial conditions for the nth-order problem
use the solution for order n− 4.
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Table 1
Lebesgue constants for various choices of nodal sets in the tetrahedron. Listed are the Lebesgue

constants, Λn, for the nodal set computed using the electrostatic approach. For comparison, we also
give the Lebesgue constants, ΛOpt

n , for the nodal sets presented in [10], and the Lebesgue constants,

ΛEq
n , for the equidistant nodal set, ΠEq

n .

n N3
n Λn ΛOpt

n ΛEq
n

1 4 1.0000 1.0000 1.0000
2 10 2.0000 2.0000 2.0000
3 20 2.9328 2.9339 3.0000
4 35 4.0774 4.1120 4.8801
5 56 5.3470 5.6158 8.0937
6 84 7.3391 7.3632 13.659
7 120 9.7588 9.3659 23.379
8 165 13.626 12.311 40.546
9 220 18.901 15.659 71.152

10 286 27.190 - -

X
Y

Z

a) b)

Fig. 2. Example of nodal set for an order 5 interpolation as computed using the electrostatic
analogy. In (a) we show a three-dimensional view of the nodes within the tetrahedron, while (b)
gives a top view hence emphasizing the high degree of symmetry associated with the nodal sets.

Following the approach outlined in the above, and utilizing the nodal distributions
computed in [11] along the four faces and Legendre–Gauss–Lobatto nodes along the
edges, we have computed nodal sets within the tetrahedron. The charge density, ρf , of
the faces has been used to optimize the nodal sets in terms of the Lebesgue constants
which are given in Table 1 for polynomial order up to 10. Numerical evidence suggests
that ρf ∼ 0.75n results in very good nodal sets. In Figure 2, we illustrate the
computed nodal set for n = 5 corresponding to 56 nodes. In the appendix we give
the barycentric coordinates for the computed nodal sets for n ∈ [2, 10].

From Table 1 we see that the nodal sets computed using the generalized electro-
static analogy results in interpolations that are at least as good as those based on the
nodal sets in [10], obtained by minimizing the L2-norm of the Lagrange polynomials
rather than the actual L1-based Lebesgue constant, and significantly better than an
interpolation based on the equidistant nodes.

We emphasize that the nodal sets in the tetrahedron contain a significant degree
of symmetry (see the appendix) as do those presented in [9, 11] for the 2-simplex. As
we shall see in section 5, this is important not only for the quality of the interpolation
but also for the construction of efficient differentiation schemes which actively exploit
the delicate structure of the associated differentiation matrices; see (8).
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4. Stable spectral methods on a tetrahedron. The identification of multi-
dimensional nodal sets suitable for the construction of high-order interpolants in the
tetrahedron provides the first step in the development of stable high-order methods
for problems on such domains. However, approximation of functions is very different
from solving partial differential equations in that the latter requires attention to the
way in which the equation is satisfied and the introduction of boundary conditions. It
is well known that imposing boundary conditions is one of the many difficulties asso-
ciated with traditional high-order/spectral methods, and we shall focus our attention
on this particular concern.

4.1. A stable scheme for the scalar problem. Let us begin by considering
the three-dimensional scalar conservation law

∂u

∂t
+ ∇ · F = 0,(13)

where we have u(x, t) : D × R+ → R and F = F (u) = (Fx, Fy, Fz) in general. In
what follows, we assume that u(x, t) ∈ C[D] at all times and restrict the attention to
the case of constant coefficients F = [axu, ayu, azu]T , with V = (ax, ay, az) being the
constant advective velocity.

The boundary operator is given in the form [2]

∀x ∈ δD : α(x)u(x, t) = 0,

with

∀x ∈ δD : α(x) =

{
|V · n| if V · n ≤ 0,
0 if V · n > 0,

(14)

where n = |n|n̂ is the outward pointing normal vector associated with every point of
the boundary. In other words, boundary conditions are specified at all point of inflow
on the surface of the tetrahedron.

In our quest to solve (13) let us now seek solutions of the form

I3
nu(x, t) =

N∑

i=0

ui(t)Li(x),(15)

where ui(t) = u(xi, t) represents the grid-function at the nodal points, xi = x(ξi).
The grid-vector is named as u = (u0, . . . , uN )T . The interpolating Lagrange polyno-
mials, Li(x(ξ)), is based on the nodal set, Π3

n, with ξi ∈ I and, as discussed previously,
we assume that Π3

n ensures existence and uniqueness of Li(x).
To arrive at a stable scheme, we choose to enforce the boundary conditions in a

weak form by requiring that the equation be satisfied in a Galerkin-like way as

∀j ∈ [0, . . . , N ] :

(
∂u

∂t
+ ∇ · F (u), Lj(x)

)

D
= −TjjAjj(uj − g(xj , t)).

We have introduced the two diagonal (N + 1)2-matrices, T and A, which are respon-
sible for enforcing the boundary conditions and have the entries

Tii =

{
Tii xi ∈ δD,
0 xi ∈ D/δD,

Aii =

{
α(xi) xi ∈ δD,
0 xi ∈ D/δD;
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i.e., while the nonzero entries of T will be specified later, the entries of A are simply
given such as to enforce the boundary operator; see (14).

Introducing the mass-matrix, M, and the stiffness-matrix, S, as

Mij = (Lj(x), Li(x))D , Sij = (V ·∇Li(x), Lj(x))D ,(16)

we recover the short form of the scheme

Mu̇ + Su = −TA(u− g(x, t)).(17)

Let us now analyze the properties of the operators with the aim of specifying the
entries of Tii to ensure L2-stability of the scheme.

We first of all note that the mass-matrix, M, is symmetric and positive definite,
and consequently its inverse, M−1, exists. Moreover, the action of M is given exactly
as

uTMu =

∫

D
u2(x) dx = ‖u‖2

D;

i.e., the vector space norm, uTMu, plays the role of the usual unweighted L2-norm.
The properties of the stiffness matrix, S, are a little more subtle, but understand-

ing these is at the heart of the construction. Let us first of all introduce the four
face-based subsets of the grid vector u as

u(a,b,c,d) = {u(xi)|xi ∈ x(a,b,c,d)};

i.e., they consist of the nodal values of u(x, t) at the four faces of D. Moreover, let us
define the four mass-matrices based on the nodal sets on the faces only as

M(a,b,c,d)
ij =

[
L(a,b,c,d)
i (x), L(a,b,c,d)

j (x)
]

(a,b,c,d)
,

where the face-based polynomials, L(a,b,c,d)
i , are defined in (9). To proceed, we need

to recall the assumption of uniqueness of the polynomial basis combined with the
restriction that the polynomials take their maximum order along the faces of the
tetrahedron as discussed in section 2.2. The important consequence of this restriction
is the validity of

Sij = (V ·∇Lj(x), Li(x))D(18)

= (V · nLj(x), Li(x))δD − (Lj(x),V ·∇Li(x))D ,

provided V , as assumed, is constant. In other words

Sij + Sji = (V · nLj(x), Li(x))δD ;

i.e., the stiffness-matrix is almost skew-symmetric. It is in the telescoping to the
boundary of D that the uniqueness of Li(x) is required. For the present case of the
tetrahedron, as illustrated in Figure 1, we hence have

uTSu =
1

2

[
V · na(ua)TMaua + V · nb(ub)TMbub(19)

+ V · nc(uc)TMcuc + V · nd(ud)TMdud
]
,
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where the normals, n, are given in (4).
We are now in a position to state the following basic result on the stability of the

scheme, (17), for D being a general straight-sided tetrahedron.
Theorem 4.1. Assume that u(x, t) represents a solution to the scalar conserva-

tion law defined on the tetrahedral domain, D, and that there exists a diffeomorphism,
Ψ : D → I, that maps D onto the standard tetrahedron, I. Assume also that a nodal
set, Π3

n, for interpolation is given in I and that this nodal set ensures unique Lagrange
interpolation.

Then (17) can always be made stable by properly choosing the elements of the
matrix, T , and the growth of the solution is bounded as

1

2

d

dt
uTMu ≤ 0,

where the vector, u, has the entries ui(t) = u(xi, t).
Proof. Multiplying (17) from the left with uT and utilizing (19) we obtain, as-

suming homogeneous boundary conditions, that

1

2

d

dt
uTMu =−1

2

[
V · na(ua)TMaua + V · nb(ub)TMbub

+ V · nc(uc)TMcuc + V · nd(ud)TMdud
]
− uTTAu,

where we have used the usual notation for the face vectors of u. We recall that T as
well as A are diagonal matrices with nonzero elements in those rows corresponding to
boundary nodes only. Hence, we may express the product uTTAu as

uTTAu = (ua)TTaAaua + (ub)TTbAbub + (uc)TTcAcuc + (ud)TTdAdud,

where

T(a,b,c,d)
ii = {Tii(xi)|xi ∈ x(a,b,c,d)}

represents those parts of the T matrix that relate to each of the four faces. In a similar
fashion, the entries of A(a,b,c,d) are simply those parts of the boundary operator that
relate to each of the faces. A minor detail is that the elements in either A(a,b,c,d)

or T(a,b,c,d) related to the edges must be divided by a factor of two while those
corresponding to the vertices must be divided by four to account for the nodes shared
among the faces and edges. Following the interpretation of [2] this corresponds to
defining normal vectors along the edges and vertices as being composed of the simple
sums of the two or four normal face-vectors.

Stability is consequently established by requiring that

1

2

d

dt
uTMu =−(ua)T

[
V · na

2
Ma + TaAa

]
ua − (ub)T

[
V · nb

2
Mb + TbAb

]
ub

−(uc)T
[
V · nc

2
Mc + TcAc

]
uc − (ud)T

[
V · nd

2
Md + TdAd

]
ud.

We observe that all four terms in the stability condition are quadratic forms. Let us
consider the condition along edge “d” for which we have nd = −∇ζ (cf. (4)). In this
case stability is achieved provided the matrix

V ·∇ζ

2
Md − TdAd = V ·∇ζ

(
1

2
Md − αdTd

)
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is negative semidefinite. Here we have introduced the definition of A such that αd = 1
if the face is an inflow and zero otherwise. If we first consider the outflow case, we
have αd = 0 and V · ∇ζ < 0. Since Md is positive definite, stability in the outflow
case follows. For the inflow case, we have αd = 1 and V · ∇ζ ≥ 0, leaving only the
requirement that

1

2
Md − Td

be negative definite by properly choosing the entries of Td. However, since Td is
diagonal and Md is symmetric positive definite, this is clearly always possible. This
establishes stability of the scheme along face “d.” The exact same procedure can be
applied to prove stability along the remaining three faces.

It should be noted that the form of the penalty-term in (17) is nonunique, and
alternatives are discussed in [14]. One should also note that the stability proof,
irrespective of the actual formulation of the penalty-term, is strictly valid only in
the case of a straight-sided tetrahedron due to loss of uniqueness of the polynomials
for more general situations. This is, however, not a severe restriction. When using
tetrahedra as building blocks for unstructured multidomain methods, the majority of
the tetrahedra are straight sided. Moreover, more conventional multidomain spectral
methods, based on a tensor-product formulation in a d-cube, can likewise be proven
stable only in the cases where the Jacobian is constant [2]. Nevertheless, it is generally
found that the schemes maintain their properties also for nonconstant Jacobians,
although at present we are not aware of any proofs to substantiate such claims.

4.2. Generalizations. Let us now briefly consider extensions of the proposed
approach to allow for the construction of stable schemes for problems beyond the
scalar wave-equation.

We shall begin by considering the formulation of schemes for the solution of
symmetric hyperbolic systems defined on a tetrahedral domain. We consider the
hyperbolic system

∂u

∂t
+ Ax

∂u

∂x
+ Ay

∂u

∂y
+ Az

∂u

∂z
= 0,

defined on D, where u(x, t) now represents a vector field with k elements and Ax,
Ay, and Az are constant k-by-k matrices, which may not be symmetric but can
be symmetrized simultaneously through a similarity transform. Examples of such
problems include the homogeneous Maxwell’s equations and the equations of acoustics
in a uniform flow.

Expressing the system in general coordinates we obtain

∂u

∂t
+ A∇ξ

∂u

∂ξ
+ A∇η

∂u

∂η
+ A∇ζ

∂u

∂ζ
= 0,

where we have the transformed matrices

An = n1Ax + n2Ay + n3Az,

with n = (n1, n2, n3) being a vector. If we consider the similarity transform of An as
Λn = (Vn)−1AnVn, the elements of the diagonal matrix, Λn, contains the wave-speed
of the characteristic variables, (Vn)−1u, along n; i.e., they take the exact same role
as V · n in the scalar problem.
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The construction of stable schemes for systems using the penalty method is dis-
cussed in great detail in [2], and we follow the approach developed in that work.
Combining this with the results arrived at for the scalar case we propose to consider
a scheme on the form

Mu̇ + Su = −TVnA(Vn)−1(u− g(x, t)),

with the only difference from the scalar case being that M, S, and T now are block
forms of the mass- and stiffness-matrix, respectively, due to the k variables, while T
remains purely diagonal. The effect of the specific construction of the penalty-term
is to enforce the boundary conditions in characteristic form. In the system case, the
matrix A has k block entries of a form similar to that for the scalar problem such that
for Λn being negative, corresponding to an inflow situation, the entry is nonzero while
it is zero in case of an outflow face. The stability of this scheme follows immediately
by transforming the problem into characteristic variables and establishing stability
of the characteristic form. We refer to [2] for a detailed discussion of this approach
within a general curvilinear setting.

Let us also briefly consider the formulation of schemes for the solution of linear
advection-diffusion problems

∂u

∂t
+ ∇ · F = ε∇ · F ε,

where F = V u, while F ε = ∇u represents the gradient of the velocity field. Following
[2] the boundary operator takes the form

∀x ∈ δD : α(x)u(x, t) + εF ε · n = 0,

where α(x) is defined as in (14) and n signifies the outward pointing normal vector
at x ∈ δD.

A stable scheme takes the form

∂u

∂t
+ ∇ · F = ε∇ · F ε − T [A (u− g(t)) + εn · (F ε − h(t))] ,

where g(t) and h(t) represents the Dirichlet and Neumann-type boundary conditions,
respectively. With this formulation, stability follows from the realization that

Sij + Sji = (V ·∇Lj(x) − ε∇ ·∇Lj(x), Li(x))D
= (V · nLj(x), Li(x))δD

−ε
[
(∇Lj(x) · n, Li(x))δD + (Lj(x),∇Li(x) · n)δD

]

+2ε (∇Lj(x),∇Li(x))D .

As was the case for (18), the validity of the integration by parts argument hinges
entirely on the assumption of uniqueness of the polynomials. However, once this form
of S is realized, stability is straightforwardly established in a manner similar to the
above.

5. Computational issues. The stable schemes developed in the previous sec-
tion are general in nature, and, while the emphasis has been on tetrahedral domains,
very general domains can be considered provided only that well-behaved nodal sets
for polynomial interpolation are known in such domains. Nevertheless, to make these
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schemes interesting from a computational point of view we must address a number of
additional issues related to computational accuracy and efficiency.

We shall again, for simplicity, restrict the attention to the linear wave equation

du

dt
+ M−1Su = −M−1TA (u− g(x, t))

solved on a tetrahedral domain using the scheme of (17).
Let us first claim that

M−1S = V ·
[
∇ξDξ + ∇ηDη + ∇ζDζ

]
,(20)

where the differentiation matrices are given in (8). Hence, the computation is reduced
to matrix-vector multiplications similar to the approach in conventional collocation
methods. To recover (20) we introduce the expansion

∇Lj(x) =
N∑

k=0

∇Lj(xk)Lk(x),

which is valid under the assumption of uniqueness of the Lagrange polynomials, and
continue by considering

Sij = (V ·∇Lj(x), Li(x))D =

∫

D
Li(x)

N∑

k=0

V ·∇Lj(xk)Lk(x) dx

=
N∑

k=0

(Li(x), Lk(x))D V ·∇Lj(xk) =
N∑

k=0

MikV ·∇Lj(xk),

from which (20) immediately follows by introducing the differentiation matrices in (8).
The same approach can be exploited to identify high-order differentiation matrices
when considering, e.g., an advection-diffusion problem.

This now leaves us with issues related to the formulation

du

dt
+ V ·

[
∇ξDξ + ∇ηDη + ∇ζDζ

]
u = −M−1TA (u− g(x, t)) ,(21)

for which a number of questions begs the attention. However, before we attend to these
matters, let us first assess the accuracy of the scheme through a simple computation
of the derivative of the function

f(x) = exp
(
−(x + y + z)2−α

)
, x ∈ I,(22)

using the differentiation matrices of (8) based on the nodal sets given in the appendix.
The parameter, α, controls the smoothness of the test-function and models, at least
to some extent, the effect of refining the grid by introducing more tetrahedra in the
approximation.

In Figure 3 we plot the maximum pointwise error of the x-derivative for different
values of α and n. The computation of the interpolating Lagrange polynomials and
the differentiation matrices are all done in extended precision (32 digits) to avoid
effects of ill-conditioning for increasing n. Alternatively, the more complicated basis
of [7, 8, 6] could be exploited to avoid the need for extended precision in the pre-
processing stage. The results, however, would be identical for all practical purposes
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Fig. 3. Maximum error in the x-derivative as computed using the differentiation matrices of
order n defined on the tetrahedron. Increasing α implies differentiation of an increasingly smooth
function.

and, as shown in Figure 3, confirm the expected spectral accuracy on the unstructured
grids for increasing order, n, of the polynomial.

Having confirmed that the evaluation of derivatives can be accomplished with
the expected accuracy, we can now turn the attention toward issues related to com-
putational cost and discrete stability of the proposed scheme. Understanding these
issues is central to the application of the proposed framework, and we shall devote the
remainder of this section to the development of efficient factorization methods for the
computation of derivatives and an analysis of the behavior of the eigenvalue spectra
of the advective operators. The latter plays a central role in regards to temporal
integration using explicit schemes.

5.1. Efficient computation of derivatives. Returning to the scheme given in
(21), it is clear that the most time- as well as memory-consuming element lies in the
computation of the derivatives through matrix-vector products and the need to store
these large matrices. Compared to schemes utilizing tensor-based approximations,
resulting in an O(n4) complexity, the computation of derivatives through the matrix-
vector operations yields an O(n6) complexity which clearly is prohibitive for n being
large.

From a practical point of view, however, it is less interesting to discuss the be-
havior of the algorithm for asymptotically large values n. Nodal sets are, on one
hand, only known for moderate values of n, i.e., presently, only to the order of 16
in the triangle and to the order of 10 in the tetrahedron. Moreover, the use of high-
order methods implies that there is a trade-off in computational efficiency between
the order of the scheme and the size of the element to achieve a given formal accu-
racy in an optimal, i.e., minimal, time. While the work associated with increasing
the order of the scheme grows nonlinearly in n, the work grows only linearly when
increasing the number of elements. Not only can such ideas be brought out in a
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n=2
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Fig. 4. Example of nodal sets for polynomial interpolation of order n within the triangle. The
symmetries of points is emphasized by n1 + 3n3 + 6n6 = N2

n, where n1, n3, and n6 signify the
number of one, three, and six symmetries, respectively.

more quantitative manner (see [20, 2] and references therein) but it is noteworthy
that it remains true for practical large scale applications. Hence, for the vast ma-
jority of problems it will be computationally inefficient to increase the order of the
scheme beyond 10–12 for schemes employing triangles and even lower in the case of
the tetrahedron.

It is consequently worthwhile to seek and identify properties that can be exploited
to make the unstructured grid methods competitive with tensor-product based meth-
ods for low to moderate order of the approximation. As we shall see shortly, ac-
tively exploiting a few central observations can lead to a very significant decrease
in computer-time as compared to simple matrix-vector multiplication and render the
computation of derivatives on the d-simplex faster than on the d-cube for all practical
orders of the polynomial approximation.

To understand the basic idea of the fast scheme for multiplication with the dif-
ferentiation matrices, let us briefly recall the properties underlying a few known fast
matrix-vector algorithms. In the case of the celebrated FFT, requiring an N = 2p

equidistant grid, it is the existence of exactly p folding symmetries that results in
the binary-tree structure of the O(N logN)-scheme rather than the straightforward
O(N2) matrix-vector algorithm. Moreover, in [21] it was observed that the differen-
tiation matrices resulting from approximations based on the symmetric Jacobi poly-
nomials all share an even-odd symmetry, hence allowing for the formulation of an
O(N2/2) algorithm for the computation of derivatives. The appearance of the even-
odd symmetry can be attributed to the single folding symmetry of the symmetric
Jacobi–Gauss–Lobatto grid points. Hence, it is apparent that symmetries in the
nodal sets implies a certain amount of structure in the differentiation matrices and,
by exploiting this structure, one can compute the action of the differentiation matrix
at a reduced computational cost.

Let us first exploit the applicability of these ideas to the computation of derivatives
on triangular domains. In Figure 4 we illustrate the distribution of the nodes as
obtained from [11]. We first of all note that the nodal sets possess a significant
degree of symmetry as given through the numbers n3 and n6 signifying 3- and 6-
symmetries, respectively, within the nodal sets. The question remains how to exploit
these symmetries.

Let us assume that we wish to compute

du

dx
=

(
ξxDξ + ηxDη

)
u.
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Inspecting the nodes in Figure 4 it is clear that the symmetries are of a rotational
character. Hence, it seems natural to consider the computation of the derivatives of
the form

du

dx
=

(
rxDr +

θx
r

Dθ

)
u,

where the polar coordinate system (r, θ) has its origin at the center of the triangle
and we can form the new differentiation matrices directly as

Dr = ξrD
ξ + ηrD

η, Dθ = ξθD
ξ + ηθD

η,(23)

where the metric of the transformation (ξ, η) → (r, θ) is nothing else than the usual
polar transformation. However, to realize the structure in these new differentiation
matrices we need to carefully order the nodes, a problem special to the multidimen-
sional algorithm. It seems, at least as a first step, only natural to order the nodes
in the groups of three nodes that have a constant r and are equidistant in θ. Upon
doing so, one observes that Dr as well as Dθ take on a block form consisting of (N/3)2

3-by-3 circulant blocks as a consequence of the circular symmetries inherent in the
nodal sets. The realization of the block-circulant form has a number of consequences.
First of all, we need only store one column of each block, hence decreasing the mem-
ory requirement to 1/3 of the original approach. Moreover, since multiplication by a
circulant matrix is nothing more that the discrete equivalent of convolution it is clear
that the right evaluation of the 3-by-3 matrix-vector products is in Fourier space
where the circulant matrix is diagonal. In other words, the differentiation matrices
on polar form can be factorized as (n = 2)

Dr,θ =

[
FT 0
0 FT

] [
D̃r,θ

11 D̃r,θ
12

D̃r,θ
21 D̃r,θ

22

] [
F 0
0 F

]
,

where F represent the 3-by-3 Fourier matrix and Dr,θ
ij are all 3-by-3 diagonal, complex

matrices. This latter complication can be avoided by assuming that the entries of
Dr,θ are all real.

Hence, provided only that the nodal sets are appropriately ordered, the resulting
block circulant forms of Dr and Dθ can be precomputed and stored in a compact
form in Fourier-space. The computation of an x-derivatives then involves N/3 length
3 Fourier transforms of u, followed by multiplication with the two Fourier-space block-
diagonal forms of Dr and Dθ, and finally 2 N/3 length 3 Fourier transforms to recover
the r and θ derivatives of u at the grid points. The x-derivative is recovered upon
multiplication with the metric.

It is easy to see that the factorization of the differentiation matrices results in
a dramatic reduction in the memory usage, requiring only 1/3 of the memory of
the straightforward approach. Moreover, a 5/9-reduction in execution time can be
expected as a result of a reduced number of arithmetic operations. These simple esti-
mates are confirmed in Figure 5(a), where we show the measured speed-up compared
to an optimized matrix-vector computation. Indeed, for increasing values of n we find
more than a factor of 2 speed-up and closer to a factor of 3 for n approaching 16.
This latter improvement cannot be attributed solely to a lower number of operations
but rather to the lower memory requirement and, hence, a more efficient usage of
the cache—a property that becomes increasing important for contemporary machines
with deep memory hierarchies. We note that for n = 3, 6, 9, 12, 15 we have a single
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Fig. 5. Speed-up achieved by exploiting the 3-symmetry of the nodal sets. The execution
times for the applications of the differentiation matrix is compared to straightforward matrix-
multiplication. In (a) we show the results for the nodal sets within a triangle, while (b) illustrates the
corresponding results for the tetrahedron. For large values of n the more efficient memory utilization
is seen to play a very significant role.

node at r = 0, the n1-symmetry in Figure 4, which has to be dealt with separately as a
vector-vector product. This is a situation very similar to that in [21] for the even-odd
decomposition with an even order approximation for which the x = 0, i.e., the point
of symmetry, is contained in the nodal set. However, as observed in Figure 5, this
special procedure has no effect on the performance of the scheme for increasing n.

It should be noted that while we have exploited the 3-symmetry of the nodal
set, a similar technique could be implemented to take advantage of the 6-symmetry
inherent in subsets of the nodal sets. This would result in even further reductions
in the operations and memory requirements, in particular, for increasing n as the
number of 6-symmetries increases for increasing n [11].

Let us now consider the question of how to generalize this approach to the fast
computation of derivatives

du

dx
=

(
ξxDξ + ηxDη + ζxDζ

)
u

within the tetrahedron. In the spirit of the approach developed for the triangle, we
shall look for symmetries in the nodal sets and rewrite the process of differentiation
accordingly. As discussed in the appendix the nodal sets within the tetrahedron
possess a number of symmetries, the nature of which suggests considering the problem
of differentiation either on cylindrical or spherical form. While the latter may seem the
most natural generalization of the polar formulation within triangle, the cylindrical
formulation

du

dx
=

(
rxDr +

θx
r

Dθ + zxDz

)
u

has a number of advantages. Here the center of the (r, θ, z)-system is at the center
of the tetrahedron with the z-axis passing through vIV and being aligned with the
ζ-axis (see Figure 1 for notation). The new differentiation matrices can be recovered
in a way similar to (23), where the metric of the transformation (ξ, η, ζ) → (r, θ, z) is
the usual cylindrical transformation.
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Returning to Figure 2, we realize that for a constant value of z, the problem in
the plane is equivalent to that of the triangle. Moreover, for constant z, entries in Dz

form circulant blocks in a fashion similar to that for constant r. Hence, the immediate
advantage of using the cylindrical formulation is the knowledge that all matrices re-
cover the block-circulant form from the triangle, provided only that the nodal sets are
sorted in groups of three for constant (r, z) and equidistant in θ. At first it may seem
tempting to exploit the 4-symmetry of the nodal sets. These, however, are associated
with the vertices and center of the faces, one of which requires special treatment as
r = 0 along the z axis. A similar problem occurs in the spherical formulation for
θ = 0, hence making the 3-symmetry the natural lowest order symmetry to exploit.
Similar to the scheme on the triangle, all nodes along the z-axis must be dealt with
separately through a few vector-vector products.

Nevertheless, the basic algorithm for the 3-symmetry in planes of z remains the
same as that developed for the triangle, resulting in a similar theoretical reduction
in memory usage and execution time. The resulting block circulant forms of Dr, Dθ,
and Dz can be precomputed and stored in a compact form in Fourier-space. The
computation of derivatives then consists of N/3 length 3 Fourier transforms of u,
followed by multiplication with the three Fourier-space block-diagonal forms of the
differentiation matrices and finally 3 N/3 length 3 Fourier transforms to recover the
r, θ, and z derivatives of u at the grid points.

In Figure 5(b) we show the average speed-up achieved by applying the fast tech-
nique for the computation of 1000 derivatives on the tetrahedron as compared to the
time for a similar computation using a matrix-multiplication technique. As for the
triangle, we find a speed-up between 2 and 3 in accordance with the reduction of
operations. However, the effect of the reduced memory requirement is very dramatic
for n > 8 for the tetrahedron, yielding a close to 10-fold speed-up, which can only be
attributed to the difference between in-cache and out-of-cache memory references.

While the algorithm on the triangle has some room for improvement through the
use of the 6-symmetry, there is very significant potential for further improvements
for the tetrahedron by exploiting not only the 6-symmetry but also the 12-symmetry
which plays an increasingly important role for increasing n as shown in the appendix.
The basic idea, however, remains the same as the one utilized here and we have left
it for the future to further improve on the scheme through the active use of these
symmetries.

Let us finally return to the issue discussed in the beginning of this section and
compare the performance of the efficient factorization methods with the computation
of derivatives on domains that allow for tensor-product-based approximations. Recall
that the question is not what happens for asymptotically large n but rather how the
two different approaches compare for low to moderate values of n. In Figure 6 we
show a direct comparison in execution times (averaged over 10000 computations) for
the evaluation of a spatial derivative on the quadrilateral/triangle and the hexahe-
dron/tetrahedron, respectively, for increasing order of the approximation.

With a single exception, n = 10 in the tetrahedron, the fast schemes on the
d-simplex are consistently faster than employing the tensor-product approximation.
On the triangle we find an average of a 2/3 reduction in execution time compared to
the quadrilateral, while the computation of derivatives on the tetrahedron tends to
be twice as fast as on the hexahedron. Keeping in mind, however, that it takes two
triangles to cover the area of a quadrilateral and six tetrahedra to fill the volume of a
hexahedron, there is still a need for some improvement. These improvements, on the
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Fig. 6. Comparison between the average execution time for the evaluation of a spatial deriva-
tives using the unstructured fast methods based on the 3-symmetry on the n-simplex and a tensor-
product approximation on the n-cube. In (a) we show the comparison between the quadrilateral and
the triangle for increasing order of approximation n, while (b) shows a similar comparison for the
hexahedron and the tetrahedron.

other hand, are readily available by exploiting the higher degrees of symmetry inherent
in the nodal sets as discussed above. Such an implementation could conceivably
provide the computational kernel for the computation of derivatives at a speed equal to
that achieved for tensor-product-based approximations, hence supplying the building
blocks for a balanced scheme using simplices and cubes in a polymorphic high-order
element setting.

5.2. Spectrum of the advective operator. Solving unsteady advection prob-
lems one often employs an explicit method for advancing the solution in time; i.e.,
a restriction, being connected to the eigenvalue spectrum of the advection operator,
on the time-step is introduced. Understanding the eigenvalue spectrum of the to-
tal advection operator, including the boundary terms, is therefore important, as it
provides if not a sufficient condition as the operator is strongly nonnormal, then a
necessary condition for stability of the fully discrete scheme. Moreover, using the
notion of generalized stability, as introduced in [22], for the advection problem and
applying a locally stable method for advancing in time, e.g., a third- or fourth-order
Runge–Kutta method, sufficient conditions for stability are also intimately related
to the eigenvalue spectrum of the discrete operator as it needs to be bounded by a
semicircle inscribed inside the stability region rather than the stability region of the
time integration scheme as in the von Neumann stability.

Let us recall the semidiscrete form of the advection problem

du

dt
+ V ·

[
∇ξDξ + ∇ηDη + ∇ζDζ

]
u = −M−1TAu,(24)

where we assume homogeneous boundary conditions and, as usual, restrict the at-
tention to the constant coefficient case on a straight-faced tetrahedron. Here TA
represents a diagonal N + 1 matrix with only the entries on the inflow parts of the
faces being nonzero. The entries of T must be chosen to ensure stability following
the result of Theorem 4.1, i.e., a sufficient condition for stability is that the entries
of Tii ≥ λmax(M)/2. Here λmax(M) represents the maximum eigenvalue of any of the
four face-based mass-matrices, i.e., a constant that depends solely on the nodal sets
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Fig. 7. Magnitude of the maximum eigenvalue of the advective operator approximated on the
tetrahedron.

and hence can be precomputed. It should be noted that this procedure yields suffi-
cient but often conservative conditions, resulting in unnecessarily large entries in T
which again has a negative effect on the eigenvalue spectrum as discussed in [23, 14].
We have found that using the three parameters

τFace =
16

5n2
, τEdge =

2

5n2
, τVertex =

1

15n2

in T for entries corresponding to nodes on the faces, τFace, the edges, τEdge, and
the vertices, τVertex, results in well-behaved eigenvalue spectra. To make this more
quantitative, we consider the situation where the advective velocity is given as

V = [sin θ cosφ, sin θ sinφ, cos θ]T

in the spherical coordinate system with the origin at the center of the tetrahedron.
The maximum eigenvalue appears for four combinations of (θ,φ) corresponding to
the flow being perpendicular to one of the faces. However, more importantly, as
shown in Figure 7, we have that λmax ∼ O(n2), similar to the optimal behavior of a
tensor-product-based approximation.

We recall that the specification of the penalty term as well as the entries used in
the above do not necessarily reflect an optimal combination but rather serve as an
example of the discrete stability and behavior that can be expected from the types
of schemes proposed here. In particular, the O(n−2) restriction on the time-step is
critical and compares well with the bounds reported in [4] for a similar problem but
using the basis proposed in [7, 8, 6] for the approximation of the operators. A more
quantitative comparison is difficult due to significant differences in the schemes being
considered.
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Fig. 8. Maximum pointwise error at t = 1.0 when solving the linear wave-equation using K
triangles, each employing an nth-order multivariate polynomial approximation.

5.3. A final example. To illustrate the performance of the proposed framework,
let us, for simplicity, consider the solution of the two-dimensional wave-equation

∂u

∂t
+

∂u

∂x
+

∂u

∂y
= 0,

where x ∈ [−1, 1]2 and the initial and boundary conditions are obtained from the
exact solution

u(x, y, t) = sin(π(x + y − t)).

While this problem is two-dimensional rather than three-dimensional, as has been the
emphasis for most of the discussions in this work, all the elements of the scheme are
contained in this simpler problem which illustrates well the performance of the overall
framework.

To solve (22), we triangulate the computational domain using K equal-sized tri-
angles. In Figure 8 we show the L∞ error at t = 1.0 for solving the linear wave
equation using K triangles, each employing an nth-order multivariate polynomial ap-
proximation. We observe in particular that the spectral convergence is achieved and
that the scheme exhibits convergence through h- as well as p-refinement.

6. Concluding remarks. The development of spectral methods for problems
defined on domains different from the d-cube remains important for several reasons.
First, it expands the applicability of spectral methods to general domains. Second,
when considering the d-simplex, as we have done here, it allows for the development of
high-order spectral element methods which can effectively utilize existing algorithms
for automated unstructured mesh generation. Third, it facilitates the development
and implementation of spectral methods employing general polymorphic elements
thereby allowing for a very efficient tiling of complex computational domains as they
often appear in industrial settings.
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In this paper we have addressed a number of issues central to the formulation
of such schemes. One must, on one hand, ensure that the polynomial approxima-
tion/interpolation possesses qualities that allow for the formulation of high-order
schemes. We have shown how to extend the electrostatic analogy to problems within
the d-simplex but a similar approach could certainly be attempted to compute nodal
sets in any convex volume although the general quality of such nodal sets remains
unknown. However, the approach developed in section 4 is not specific to the nodal
sets given here.

With the theoretical foundation for the schemes in place we continued by consid-
ering a number of issues central to the computational efficiency of the schemes. In
particular we showed how to factorize the differentiation matrices in a way that sig-
nificantly reduce the computational cost as well as the memory usage. Computational
evidence suggests that the cost associated with the efficient evaluation of a derivative
is 50%–66% of that for the pure tensor-product-based approximation on the d-cube,
which is a performance very similar to that of schemes employing a tensor-product-
based polynomial expansion on the d-simplex [24]. However, one should recall that
this performance is achieved by exploiting only the most basic factorization with a
number of additional symmetries in the d-simplex that have the potential to further
reduce the computational cost. It is noteworthy that the identification of the factor-
ization methods relies entirely on the symmetries inherent in the nodal sets and a
careful ordering of the nodes. Indeed, the exact same approach is applicable to other
nodal sets given in [9, 10, 12]. We finally considered the issue of discrete stability,
making the important observation that the penalty parameters, ensuring semidiscrete
stability, can be chosen such that the time-step is restricted only as O(n−2). The per-
formance of the scheme was illustrated by solving a linear wave equations, confirming
the expected accuracy and stability.

With the formulation of high-order methods for the solution of conservation laws
and hyperbolic systems on tetrahedral domains we have developed a scheme, geomet-
rically flexible and computationally efficient enough to handle problems of industrial
complexity, yet highly accurate and long-time stable, hence providing the ideal setting
for accurate and reliable modeling of large transient problems. Examples of suitable
problems can be found in electromagnetics and aeroacoustics, among others, and we
hope to report on such advanced applications in the near future.

Appendix A. Below is a table with the barycentric coordinates (b1, b2, b3, b4)
for the nodal sets within a tetrahedron as computed using the electrostatic approach
discussed in section 3.

The physical coordinates, (x, y, z) ∈ D, can be recovered through (3). More-
over, to emphasize the significant symmetry of the nodal sets we have introduced the
notation

n1 + 4n4 + 6n6 + 12n12 + 24n24 = N3
n =

(n + 1)(n + 2)(n + 3)

6
,

representing the number of 1(n1), 4(n4), 6(n6), 12(n12), and 24(n24) symmetries
within the nodal set for each order of the polynomial. As discussed in section 5, the
symmetries play an integral role in the formulation of the factorization methods for
the efficient computation of derivatives. Finally, we recall that the nodal sets on the
faces are taken from [11] and the nodes along each edge are Legendre–Gauss–Lobatto
distributed.
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n n1 n4 n6 n12 n24 b1 b2 b3 b4
1 1 1.0000000000 0.0000000000 0.0000000000 0.0000000000
2 1 1.0000000000 0.0000000000 0.0000000000 0.0000000000

1 0.5000000000 0.5000000000 0.0000000000 0.0000000000
3 2 1.0000000000 0.0000000000 0.0000000000 0.0000000000

0.3333333333 0.3333333333 0.3333333333 0.0000000000
1 0.7236067977 0.2763932023 0.0000000000 0.0000000000

4 1 0.2500000000 0.2500000000 0.2500000000 0.2500000000
1 1.0000000000 0.0000000000 0.0000000000 0.0000000000

1 0.5000000000 0.5000000000 0.0000000000 0.0000000000
2 0.8273268354 0.1726731646 0.0000000000 0.0000000000

0.2371200168 0.2371200168 0.5257599664 0.0000000000
5 2 1.0000000000 0.0000000000 0.0000000000 0.0000000000

0.1834903473 0.1834903473 0.1834903473 0.4495289581
4 0.8825276620 0.1174723380 0.0000000000 0.0000000000

0.6426157582 0.3573842418 0.0000000000 0.0000000000
0.1575181512 0.1575181512 0.6849636976 0.0000000000
0.4105151510 0.4105151510 0.1789696980 0.0000000000

6 3 1.0000000000 0.0000000000 0.0000000000 0.0000000000
0.3333333333 0.3333333333 0.3333333333 0.0000000000
0.1402705801 0.1402705801 0.1402705801 0.5791882597

2 0.5000000000 0.5000000000 0.0000000000 0.0000000000
0.3542052583 0.3542052583 0.1457947417 0.1457947417

3 0.9151119481 0.0848880519 0.0000000000 0.0000000000
0.7344243967 0.2655756033 0.0000000000 0.0000000000
0.1061169285 0.1061169285 0.7877661430 0.0000000000

1 0.3097982151 0.5569099204 0.1332918645 0.0000000000
7 3 1.0000000000 0.0000000000 0.0000000000 0.0000000000

0.1144606542 0.1144606542 0.1144606542 0.6566180374
0.2917002822 0.2917002822 0.2917002822 0.1248991534

7 0.9358700743 0.0641299257 0.0000000000 0.0000000000
0.7958500907 0.2041499093 0.0000000000 0.0000000000
0.6046496090 0.3953503910 0.0000000000 0.0000000000
0.0660520784 0.0660520784 0.8678958432 0.0000000000
0.4477725053 0.4477725053 0.1044549894 0.0000000000
0.2604038024 0.2604038024 0.4791923952 0.0000000000
0.1208429970 0.1208429970 0.4770203357 0.0000000000

1 0.2325524777 0.6759625951 0.0914849272 0.0000000000
8 1 0.2500000000 0.2500000000 0.2500000000 0.2500000000

2 1.0000000000 0.0000000000 0.0000000000 0.0000000000
0.0991203900 0.0991203900 0.0991203900 0.7026388300

2 0.5000000000 0.5000000000 0.0000000000 0.0000000000
0.3920531037 0.3920531037 0.1079468963 0.1079468963

8 0.9498789977 0.0501210023 0.0000000000 0.0000000000
0.8385931398 0.1614068602 0.0000000000 0.0000000000
0.6815587319 0.3184412681 0.0000000000 0.0000000000
0.0660520784 0.0660520784 0.8678958432 0.0000000000
0.2033467796 0.2033467796 0.5933064408 0.0000000000
0.3905496216 0.3905496216 0.2189007568 0.0000000000
0.1047451941 0.1047451941 0.5581946462 0.2323149656
0.2419418605 0.2419418605 0.4062097450 0.1099065340

2 0.3617970895 0.5541643672 0.0840385433 0.0000000000
0.1801396087 0.7519065566 0.0679538347 0.0000000000
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n n1 n4 n6 n12 n24 b1 b2 b3 b4
9 4 1.0000000000 0.0000000000 0.0000000000 0.0000000000

0.3333333333 0.3333333333 0.3333333333 0.0000000000
0.0823287303 0.0823287303 0.0823287303 0.7530138091
0.2123055477 0.2123055477 0.2123055477 0.3630833569

11 0.9597669541 0.0402330459 0.0000000000 0.0000000000
0.8693869326 0.1306130674 0.0000000000 0.0000000000
0.7389624749 0.2610375251 0.0000000000 0.0000000000
0.5826394788 0.4173605212 0.0000000000 0.0000000000
0.0355775717 0.0355775717 0.9288448566 0.0000000000
0.4640303025 0.4640303025 0.0719393950 0.0000000000
0.1633923069 0.1633923069 0.6732153862 0.0000000000
0.0873980781 0.0873980781 0.6297057875 0.1954980564
0.0916714679 0.0916714679 0.4819523024 0.3347047619
0.2040338880 0.2040338880 0.4996292993 0.0923029247
0.3483881173 0.3483881173 0.2075502723 0.0956734931

3 0.2966333890 0.6349633653 0.0684032457 0.0000000000
0.1439089974 0.8031490682 0.0529419344 0.0000000000
0.3225890045 0.4968009397 0.1806100558 0.0000000000

10 4 1.0000000000 0.0000000000 0.0000000000 0.0000000000
0.0678316144 0.0678316144 0.0678316144 0.7965051568
0.1805746957 0.1805746957 0.1805746957 0.4582759129
0.3051527124 0.3051527124 0.3051527124 0.0845418628

3 0.5000000000 0.5000000000 0.0000000000 0.0000000000
0.3164336236 0.3164336236 0.1835663764 0.1835663764
0.4219543801 0.4219543801 0.0780456199 0.0780456199

11 0.9670007152 0.0329992848 0.0000000000 0.0000000000
0.8922417368 0.1077582632 0.0000000000 0.0000000000
0.7826176635 0.2173823365 0.0000000000 0.0000000000
0.6478790678 0.3521209322 0.0000000000 0.0000000000
0.0265250690 0.0265250690 0.9469498620 0.0000000000
0.1330857076 0.1330857076 0.7338285848 0.0000000000
0.4232062312 0.4232062312 0.1535875376 0.0000000000
0.2833924371 0.2833924371 0.4332151258 0.0000000000
0.1734555313 0.1734555313 0.5762731177 0.0768158196
0.0724033935 0.0724033935 0.6893564961 0.1658367169
0.0768451848 0.0768451848 0.5573732958 0.2889363346

5 0.3934913008 0.5472380443 0.0592706549 0.0000000000
0.2462883939 0.6991456238 0.0545659823 0.0000000000
0.1163195334 0.8427538829 0.0409265838 0.0000000000
0.2707097521 0.5811217960 0.1481684519 0.0000000000
0.3019928872 0.4393774966 0.1776946096 0.0809350066
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