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Abstract. This paper develops a family of preconditioners for pseudospectral approximations
of pth-order linear differential operators subject to various types of boundary conditions. The ap-
proximations are based on ultraspherical polynomials with special attention being paid to Legendre
and Chebyshev polynomial methods based on Gauss–Lobatto quadrature points.

The eigenvalue spectrum of the preconditioned operators are obtained in closed analytic form
and the weakly enforced boundary conditions are shown to result in a rank 2p perturbation of
the identity operator, i.e., the majority of the preconditioned eigenvalues are unity. The spectrum
of the preconditioned advective operator is shown to be bounded independent of the order of the
approximation, N . However, the preconditioned diffusive operator is, in general, indefinite with four
real eigenvalues. For Dirichlet boundary conditions the spectral radius grows as

√
N , while it scales

as N for the case of Neumann boundary conditions. These results are shown to be asymptotically
optimal within the present framework. Generalizations to higher-order differential operators, general
boundary conditions, and arbitrary polynomial basis and quadrature nodes are discussed.
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1. Introduction. In recent decades, pseudospectral methods have proven effi-
cient for obtaining accurate solutions to partial differential equations, the basic idea
being to replace the exact derivatives with derivatives of interpolating polynomials at
the collocation points [1, 2]. For boundary value problems, this approach involves the
solution of very ill-conditioned linear systems of equations, e.g., the condition number
of the pseudospectral first-order operator grows like N2, while the condition number
for the second-order operator typically scales like N4. Thus, to apply iterative meth-
ods like GMRES, see, e.g., [3], for solving such systems, it becomes crucial to develop
efficient preconditioners.

Previous work on preconditioners for pseudospectral operators includes the use
of finite difference preconditioners for the advective operator [4] as well as for the
diffusive operator [5]. More recently, the use of finite element preconditioners has
been advocated [6] and applied with significant success to a large variety of operators.
However, a general property of previously proposed preconditioners is their reliance
on a low-order approximation of the inverse operator. In this work we take a different
route and develop a family of preconditioners of the same order as the polynomial
approximation itself. This results in the preconditioners being full matrices which,
however, is only a natural consequence of using global methods. On the other hand,
utilizing the properties of the polynomial basis itself allows for the development of
efficient preconditioners for approximations based on any of the classical orthogonal
polynomials and for general pth order linear one-dimensional differential operators.
Moreover, the general framework applies directly to pseudospectral methods based on
any of the Gauss quadrature points.
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The pseudospectral preconditioners presented here are closely related to previ-
ous work on preconditioning of spectral differentiation operators as they appear in
spectral τ -methods [7, 8]. However, the extension to pseudospectral methods requires
renewed attention to the boundary conditions and how these affect the efficiency of the
preconditioners. We propose to enforce the boundary conditions only weakly, using a
penalty term [9, 10]. This allows for a fairly complete analysis of the preconditioned
operators and we can, in most cases, obtain the complete eigenvalue spectrum of the
preconditioned operator in analytic form. Moreover, enforcing the boundary condi-
tions through the penalty term allows for a direct generalization to situations with
arbitrary boundary conditions.

The remaining part of this paper is organized as follows. In section 2 we introduce
the ultraspherical polynomials and discuss their properties, with special attention be-
ing given to the Legendre and Chebyshev polynomials. We continue by introducing
spectral as well as pseudospectral methods, as the connection between these two ap-
proaches lies at the heart of the motivation leading to the integration preconditioners,
being developed in section 3. Section 4 addresses the performance of the precondi-
tioners for the advective operator, with special attention being given to the effect of
the boundary conditions. The analysis is carried out in detail for Gauss–Lobatto–
Legendre and –Chebyshev pseudospectral methods. In section 5 we present a similar
analysis for the diffusion operator, i.e., the Poisson equation, subject to Dirichlet as
well as Neumann boundary conditions. Section 6 contains a few concluding remarks
and discusses generalizations to problems involving general boundary conditions and
methods based on general orthogonal polynomials as well as general Gauss quadrature
nodal sets.

2. Ultraspherical polynomials and spectral methods. In this section we
review several topics central to the subsequent analysis. In particular, we introduce
the ultraspherical polynomials and discuss in some detail the theory underlying spec-
tral as well as pseudospectral methods for the solution of partial differential equations.

2.1. Ultraspherical polynomials. The ultraspherical polynomials, P (α)
n (x),

appear as eigensolutions to the singular Sturm–Liouville problem in the finite domain
x ∈ [−1, 1] [11, 12], with the first two being

P (α)
0 (x) = 1, P (α)

1 (x) = (2α + 1)x,

while the remaining polynomials are given through the recursion formula

xP (α)
n (x) = an−1,nP

(α)
n−1(x) + an+1,nP

(α)
n+1(x),(1)

with the recurrence coefficients

an−1,n =
n + 2α

2n + 2α + 1
, an+1,n =

n + 1

2n + 2α + 1
.(2)

The polynomials, P (α)
n (x), are normalized such that

P (α)
n (±1) = (±1)n

(
n + 2α

n

)
,(3)

dP (α)
n (±1)

dx
= (2α + 1)(±1)n+1

(
n + 2α + 1

n− 1

)
.(4)
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To simplify the subsequent notation, the recursion, (1)–(2), is written as

xP = PA,

where

A =





0 a0,1 0 0 0 · · ·
a1,0 0 a1,2 0 0 · · ·
0 a2,1 0 a2,3 0 · · ·
0 0 a3,2 0 a3,4 · · ·
...

...
...

. . .
. . .

. . .




,

while the row vector, P , is

P =
[
P (α)

0 (x), . . . , P (α)
N (x)

]
.

A relation between the polynomials and their derivatives appears on the form

P (α)
n (x) = b(1)n−1,n

dP (α)
n−1(x)

dx
+ b(1)n+1,n

dP (α)
n+1(x)

dx
,(5)

with the coefficients

b(1)n−1,n = − 1

2n + 2α + 1
, b(1)n+1,n =

1

2n + 2α + 1
.(6)

Equations (5)–(6) may likewise be expressed in matrix form as

P = P xB(−1),

where

B(−1) =





0 0 0 0 0 · · ·

b(1)1,0 0 b(1)1,2 0 0 · · ·

0 b(1)2,1 0 b(1)2,3 0 · · ·

0 0 b(1)3,2 0 b(1)3,4 · · ·
...

...
...

. . .
. . .

. . .





,

while P x refers to the derivative of the row vector, P . We have chosen the notation
B(−1) since this matrix operator essentially plays the role of integration of the poly-

nomial basis. Observe that since P (α)
0 (x) = 1, its first derivative vanishes and the

entries of the first row of B(−1) can be set to zero, thus reflecting its singular nature.
We shall also need the less well-known recurrence formula

P (α)
n (x) = b(2)n−2,n

d2P (α)
n−2(x)

dx2
+ b(2)n,n

d2P (α)
n (x)

dx2
+ b(2)n+2,n

d2P (α)
n+2(x)

dx2
,(7)

with the coefficients

b(2)n−2,n =
1

(2n + 2α + 1)(2n + 2α− 1)
, b(2)n+2,n =

1

(2n + 2α + 1)(2n + 2α + 3)
,(8)
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b(2)n,n = − 2

(2n + 2α− 1)(2n + 2α + 3)
.

In matrix form this yields

P = P xxB(−2),

with

B(−2) =





0 0 0 0 0 0 · · ·
0 0 0 0 0 0 · · ·

b(2)2,0 0 b(2)2,2 0 b(2)2,4 0 · · ·

0 b(2)3,1 0 b(2)3,3 0 b(2)3,5 · · ·
...

...
. . .

. . .
. . .

. . .
. . .





.

As for B(−1), we take the two first rows of the second-order integration operator, B(−2),
to be zero since the two first elements of P xx are identically zero. Recurrence relations
for higher-order derivatives may likewise be obtained by repeatedly combining the
relations, (5)–(8).

The general part of the subsequent analysis will be concerned with methods
based on the ultraspherical polynomials, although we shall pay particular attention to
schemes based on Legendre polynomials, Ln(x), and Chebyshev polynomials, Tn(x).
We shall, therefore, briefly recall the most important properties of these two families
of polynomials.

2.1.1. Legendre polynomials. The Legendre polynomials, Ln(x), relate to the
ultraspherical polynomial as

Ln(x) = P (0)
n (x),

such that

L0(x) = 1, L1(x) = x,

while the subsequent polynomials appear from (1) with

an−1,n =
n

2n + 1
, an+1,n =

n + 1

2n + 1
.

The boundary values are given as

Ln(±1) = (±1)n,
dLn(±1)

dx
=

1

2
(±1)n+1n(n + 1).(9)

The recurrence coefficients of (5), providing the entries of B(−1), become

b(1)n−1,n = − 1

2n + 1
, b(1)n+1,n =

1

2n + 1
,(10)

while the entries of B(−2), being the coefficients of (7), are

b(2)n−2,n =
1

(2n + 1)(2n− 1)
, b(2)n+2,n =

1

(2n + 1)(2n + 3)
,(11)

b(2)n,n = − 2

(2n− 1)(2n + 3)
.

Further details on Legendre polynomials can be found in, e.g., [11, 12].
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2.1.2. Chebyshev polynomials. The Chebyshev polynomials, Tn(x), appear
as the special case of the ultraspherical polynomials with

Tn(x) = n lim
α→− 1

2

Γ(2α + 1)P (α)
n (x) = cos(n arccosx).

Here Γ(x) is the gamma function and the limit is taken since Γ(2α + 1) has a simple
pole for α = −1/2. However, the limit exists and the Chebyshev polynomials are
recovered [11].

Although there exists a closed form expression for the Chebyshev polynomials, it
remains illustrative to recall that

T0(x) = 1, T1(x) = x,

while the higher-order Chebyshev polynomials are recovered from (1) with

an−1,n =
1

2
, an+1,n =

cn
2
,

where c0 = 2 and cn = 1 otherwise. The Chebyshev polynomials take the values

Tn(±1) = (±1)n,
dTn(±1)

dx
= (±1)n+1n2,(12)

and the entries of B(−1), establishing a connection between Tn(x) and its derivatives,
become

b(1)n−1,n = − 1

2(n− 1)
, b(1)n+1,n =

cn
2(n + 1)

.(13)

The recurrence coefficients for (7), providing the entries of B(−2), are

b(2)n−2,n =
1

4(n− 1)(n− 2)
, b(2)n+2,n =

cn
4(n + 1)(n + 2)

.(14)

b(2)n,n = − 1

2(n2 − 1)
,

Much more on the properties of Chebyshev polynomials can be found in, e.g., [11, 12].

2.2. Spectral methods. When applying spectral methods for the solution of
partial differential equations, one seeks polynomial solutions

PNu(x) ∈ QN
0 , QN

0 = span
{
P (α)
n

}N

n=0

of the form

PNu(x) =
N∑

n=0

ûnP
(α)
n (x),(15)

where ûn represents the continuous expansion coefficients. Utilizing the orthogonality
of the ultraspherical polynomials in L2

w[−1, 1], we have

γnδnm =

∫ 1

−1
P (α)
n (x)P (α)

m (x)(1 − x2)α dx,
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where the continuous normalization factor, γn, is

γn = 22α+1 Γ2(α + 1)Γ(n + 2α + 1)

n!(2n + 2α + 1)Γ2(2α + 1)
,(16)

and the continuous expansion coefficients appear as

ûn =
1

γn

∫ 1

−1
u(x)P (α)

n (x)(1 − x2)α dx.

The exact evaluation of this integral naturally poses a problem in most situations and
approximations of the expansion coefficients are computed using a Gauss quadrature.
For boundary value problems the Gauss–Lobatto quadrature appear as the natural
choice as it involves the grid

{xi}Ni=0 =

{
x ∈ [−1, 1]

∣∣∣ (1 − x2)
dP (α)

N (x)

dx
= 0

}
,

assumed ordered as

−1 = x0 < x1 < · · · < xN−1 < xN = 1.

Using this grid we obtain the discrete expansion coefficients, ũn, through the sum

ũn =
1

γ̃n

N∑

i=0

u(xi)P
(α)
n (xi)wi,

where the discrete normalization, γ̃n = γn, for n < N , while

γ̃N = 22α+1 Γ2(α + 1)Γ(N + 2α + 1)

NN !Γ2(2α + 1)
.(17)

The Gauss–Lobatto weights, wi, are

wi =






22α+1 (N − 1)!Γ(α + 1)Γ(α + 2)

Γ(N + 2α + 2)
i = 0, N,

−22α+1 Γ2(α + 1)Γ(N + 2α + 1)

N !(N + 2α + 1)Γ2(2α + 1)

[
P (α)
N (xi)

d

dx
P (α)
N−1(xi)

]−1

i ∈ [1, N − 1].

(18)
To simplify the notation we introduce the two vectors

u = (u(−1), u(x1), . . . , u(xN−1), u(1))T , ũ = (ũ0, . . . , ũN )T ,

being related through the transformations

u = T−1ũ, ũ = Tu,

where the entries of the (N + 1) × (N + 1) matrices, T−1 and T, are given as

T−1
ij = P (α)

j (xi), Tij =
1

γ̃i
P (α)
i (xj)wj .
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We observe that T−1 and T are real orthogonal matrices since T−1T = I and, with
appropriate normalization being possible since γ̃n and wj are strictly positive, we have
that TT = T−1. Hence, T−1 and T provide a similarity transform.

We shall devote the subsequent analysis to schemes based on the discrete ex-
pansion coefficients, ũn, as this in practice is the only feasible approach. The error
incurred by this choice, recognized as the aliasing error, is discussed in, e.g., [1, 2].

Solving partial differential equations involves the need for computing derivatives.
Hence, given the approximation

u = T−1ũ,

we need to compute the vector of expansion coefficients, ũ(1), such that

d

dx
u = T−1ũ(1).

Utilizing the properties of the polynomials, this relation is obtained as

d

dx
u = T−1ũ(1) = T−1

x B(−1)ũ(1) = T−1
x ũ,

by using equations (5)–(6), such that

ũ = B(−1)ũ(1),

where ũ(1) is computed directly by backward recursion, with the exception of ũ(1)
N

which must, however, take the value zero for any finite order expansion. We note that
B(−1) plays the role of integration since one recovers ũ up to a constant only.

To directly obtain ũ(1) from ũ we need to invert B(−1), which, however, requires
some care since B(−1) is singular. Nevertheless, by realizing that

B(−1) : QN−1
0 → QN

1 ,

the inverse of B(−1), which we shall denote by B(1), is given uniquely in the restricted
space as

B(1) : QN
1 → QN−1

0 ,

implying that the first column and the last row of B(1) must be identically zero. It is
well known that B(1) takes the form of a strictly upper triangular matrix when con-
sidering expansions based on ultraspherical polynomials and that B(1) has a condition
number that grows like N2 [1, 13].

Likewise, we obtain

ũ = B(−2)ũ(2),

where ũ(2) refers to the vector of expansions coefficients for the second-order derivative
of u at the collocation points. The inverse relation involves

B(2) : QN
2 → QN−2

0 ,

i.e., the first two columns and the last two rows of B(2) must be identically zero.
We recall that such second-order spectral differentiation matrices are strictly upper
triangular with a condition number proportional to N4 [1, 13].

Although we only consider first- and second-order operators, the same sequence
of arguments can be applied to derive spectral differentiation operators of arbitrary
order utilizing (5)–(8).
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2.3. Pseudospectral methods. Let us now turn our attention towards the
issue of pseudospectral methods and their relation to the spectral methods based on
the use of the discrete expansion coefficients. If we introduce the projection

INu(x) =
N∑

n=0

ũnP
(α)
n (x),

the key observation is that

∀xi : INu(xi) = u(xi),

where xi represents the Gauss–Lobatto quadrature points used to compute the discrete
expansion coefficients, ũn. Thus, the discrete projection is exact at the collocation
points, and, therefore, INu(x) is identical to the interpolating polynomial based on
these nodal points. This result appears by using the Christoffel–Darboux identity [11]
for orthogonal polynomials together with (3)–(4) and the expression for the Gauss–
Lobatto weights, wi, given in (18). We may express the approximating polynomial
as

INu(x) =
N∑

n=0

ũnP
(α)
n (x) =

N∑

i=0

u(xi)li(x),

where the interpolating Lagrange polynomials, li(x), take the form

li(x) = wi

N∑

n=0

1

γ̃n
P (α)
n (xi)P

(α)
n (x).

Note that we need only consider the grid point values of the approximated function,
while the discrete expansion coefficients, so vital in the spectral formulation, never
appear.

Let us again return to the computation of derivatives of the approximation. In-
deed, since INu(x) is nothing else than a polynomial, we may simply differentiate
these polynomials so that

u(1) = D(1)u

yields the derivative of u(x) at the grid points with

u(1) = (u(1)(x0), . . . , u
(1)(xN ))T , u = (u(x0), . . . , u(xN ))T ,

and the entries of the differentiation matrix, D(1), become

D(1)
ij =

dlj(xi)

dx
= wj

N∑

n=0

1

γ̃n
P (α)
n (xj)

dP (α)
n (xi)

dx
.(19)

It is well known that D(1) is a centro-antisymmetric full matrix [14] with a condition
number proportional to N2, much like the spectral first-order differentiation operator,
B(1).

Likewise, we obtain the second-order derivatives of u(x) at the grid points as

u(2) = D(2)u,
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with the entries of the second-order differentiation matrix, D(2), being

D(2)
ij =

d2lj(xi)

dx2
= wj

N∑

n=0

1

γ̃n
P (α)
n (xj)

d2P (α)
n (xi)

dx2
.(20)

The second-order differentiation matrix is known to be a full centro-symmetric matrix
[14] with a condition number proportional to N4, as for the second-order spectral
differentiation operator, B(2).

3. Integration preconditioning. The development of the integration precon-
ditioners for the pseudospectral differentiation matrices is centered around the follow-
ing result.

Theorem 3.1. Given the spectral differentiation matrices, B(1) and B(2), the
similarity transformation, T and T−1, and the pseudospectral differentiation matrices,
D(1) and D(2), the following relation holds

D(1) = T−1B(1)T, D(2) = T−1B(2)T.

Proof. The theorem is established by expressing the pseudospectral differentiation
matrices, (19) and (20), as

D(1) = T−1
x T, D(2) = T−1

xxT,

where the entries of the two matrices, T−1
x and T−1

xx , are given as

(
T−1

x

)
ij

=
dP (α)

j (xi)

dx
,
(
T−1

xx

)
ij

=
d2P (α)

j (xi)

dx2
.

However, since

T−1 = T−1
x B(−1), T−1 = T−1

xxB(−2),

the result follows.

Theorem 3.1 suggests using

P̃(−1) = T−1B(−1)T, P̃(−2) = T−1B(−2)T,(21)

for preconditioning of the first- and second-order pseudospectral differentiation ma-
trices, respectively, since we immediately obtain

P̃(−1)D(1) = IN1 , P̃(−2)D(2) = IN2 .(22)

Here Iba denotes the matrix with unity along the diagonal for i ∈ [a, b], while the
remaining elements are identically zero, e.g., IN0 equals the identity matrix.

However, the preconditioners defined in (21) are singular. Fortunately, we may
overcome this problem while maintaining the essence of (22). Indeed, if we define the
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modified spectral integration operator, B̃(−1), as

B̃(−1) =





0 0 0 0 0 · · · 0 α(1)
1

b(1)1,0 0 b(1)1,2 0 0 · · · 0 0

0 b(1)2,1 0 b(1)2,3 0 · · · 0 0

0 0 b(1)3,2 0 b(1)3,4

. . . 0 0

0 0 0
. . .

. . .
. . .

. . .
...

...
...

...
. . .

. . .
. . .

. . . 0

0 0 0 · · · 0 b(1)N−1,N−2 0 b(1)N−1,N

0 0 0 · · · · · · 0 b(1)N,N−1 0





,

we maintain that B̃(−1)B(1) = IN1 since B(1) : QN
1 → QN−1

0 , while B̃(−1) is made

nonsingular by properly choosing the parameter, α(1)
1 , a choice that allows for opti-

mizing the preconditioner. Hence, the pseudospectral integration preconditioner for
the first-order pseudospectral differentiation matrix becomes

P(−1) = T−1B̃(−1)T,(23)

while we return to the exact specification of α(1)
1 shortly.

Similarly, we define the modified spectral second-order integration operator, B̃(−2),
as

B̃(−2) =





0 0 0 0 0 0 · · · α(2)
11 α(2)

12

0 0 0 0 0 0 · · · α(2)
21 α(2)

22

b(2)2,0 0 b(2)2,2 0 b(2)2,4 0 · · · 0 0

0 b(2)3,1 0 b(2)3,3 0 b(2)3,5 · · · 0 0

0 0 b(2)4,2 0 b(2)4,4 0
. . . 0 0

0 0 0
. . .

. . .
. . .

. . .
. . .

...

...
...

...
. . .

. . .
. . .

. . . 0 b(2)N−2,N

0 0 0 · · · 0
. . . 0 b(2)N−1,N−1 0

0 0 0 · · · · · · 0 b(2)N,N−2 0 b(2)N,N





,

where we introduce the four parameters, α(2)
11 , α(2)

12 , α(2)
21 , and α(2)

22 to avoid the singu-
larity of B(−2) and define the pseudospectral integration preconditioner as

P(−2) = T−1B̃(−2)T.(24)

As a direct consequence of (23)–(24) the eigenvalue spectrum of the preconditioned
differentiation matrices,

P(−1)D(1) = T−1IN1 T, P(−2)D(2) = T−1IN2 T,
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are known in explicit form as are the pseudospectral integration preconditioners them-
selves.

Enforcing boundary conditions in pseudospectral methods is traditionally done by
directly modifying the differentiation matrices, e.g., by deleting the appropriate rows
and columns in the matrices in case of Dirichlet boundary conditions [1, 2]. Unfortu-
nately, this procedure destroys the delicate symmetries leading to Theorem 3.1, i.e.,
the development of the pseudospectral integration preconditioners fails. In [9], Funaro
and Gottlieb introduced a penalty method which enforces the boundary condition only
weakly through a boundary correction rather than modifying the matrix operators.
Such penalty methods have been studied thoroughly for a number of problems in [10]
and we shall rely heavily on these results in the subsequent analysis.

4. Preconditioning of the advective operator. Let us consider the first-
order problem

du(x)

dx
= f(x), u(1) = 0,(25)

and seek solutions of polynomial form using the discrete approximation

D(1)u = f , u(1) = 0.(26)

Here u and f refer to the grid vectors of the two functions, u(x) and f(x), at the

Gauss–Lobatto collocation points associated with the polynomial basis, P (α)
n (x).

Imposing the boundary conditions strongly would amount to deleting the last row
and column and solving the resulting matrix problem. However, since the condition
number of D(1) is proportional to N2, this may well be nontrivial for N large. Un-
fortunately, since we have destroyed the structure of D(1), we can no longer rely on
P(−1) for preconditioning.

To proceed, we, therefore, propose to impose the boundary conditions weakly as
[
D(1) − τ INN

]
u = f ,(27)

following the development of the penalty method in [9, 10]. The penalty parameter,
τ , is chosen such that

D(1) − τ INN ,

is nonpositive definite. Such choices are discussed in depth in [10] for specific choices
of the polynomial basis, and we shall return to this issue shortly. For now, we sim-
ply assume that τ is given and consider preconditioning of (27). Since D(1) is now
unaltered, it seems only natural to use P(−1) for preconditioning

[
T−1IN1 T − τP(−1)INN

]
u = P(−1)f .

Estimating the spectral radius of the preconditioned operator

T−1IN1 T − τP(−1)INN = T−1
[
IN1 − τ B̃(−1)TINNT−1

]
T

thus becomes the crucial point. Since T and T−1 are orthogonal and the eigenvalues
of IN1 are obvious, we shall focus on the contribution appearing from the penalty term.
The operator, R+ = TINNT−1, has the entries

R+
ij =

1

γ̃i
P (α)
i (1)P (α)

j (1)ωN ,(28)
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and the entries of S = B̃(−1)R+ become

Sij =






α(1)
1 R+

N,j i = 0,

b(1)i,i−1R
+
i−1,j + b(1)i,i+1R

+
i+1,j i ∈ [1, N − 1],

b(1)N,N−1R
+
N−1,j i = N.

To continue beyond this point of the analysis we shall rely on the remarkable symme-
tries of the polynomial expansions. Indeed, for i ∈ [1, N − 2], we utilize that

i ∈ [1, N − 2] : b(1)i,i−1R
+
i−1,j + b(1)i,i+1R

+
i+1,j = 0,

which appears as a result of the identity

b(1)i,i−1

1

γi−1
P (α)
i−1(±1) + b(1)i,i+1

1

γi+1
P (α)
i+1(±1) = 0,(29)

as derived by combining (3), (6), and (16). Since, γ̃N &= γN (equation (17)), we obtain
a special row for i = N − 1 as

Sij =






α(1)
1 R+

N,j i = 0,

0 i ∈ [1, N − 1],

b(1)N−1,N−2R
+
N−2,j + b(1)N−1,NR+

N,j i = N − 1,

b(1)N,N−1R
+
N−1,j i = N.

Considering the eigenvalues of the operator, IN1 − τS, it is clear that at least N − 2 of
the N + 1 eigenvalues are unity irrespective of the actual ultraspherical polynomial
basis. Moreover, using a permutation matrix, the remaining three eigenvalues are
recovered as the eigenvalues of a 3 × 3 matrix, W(1), with the entries

W(1) =




−τS0,0 −τS0,N−1 −τS0,N

−τSN−1,0 1 − τSN−1,N−1 −τSN−1,N

−τSN,0 −τSN,N−1 1 − τSN,N



 .(30)

To arrive at a more complete understanding of these remaining three eigenvalues, let
us consider the shifted operator, W(1)− I, which is singular since the last two rows are
linearly dependent as seen by introducing (28). Moreover, after bringing W(1)− I into
block form using a similarity transform that eliminates row 3, the final two complex
conjugate eigenvalues appear from a 2 × 2 matrix, W̃(1), the determinant of which is
given as

|W̃(1)| = τ(α + 1)

[
1

(N + 2α)(2N + 2α + 1)
+

1

N(N + 2α + 1)

]
.

The first thing to note is that the unknown factor, α(1)
1 , does not appear in the

determinant which we recall is equivalent to the product of the eigenvalues. Also,
provided τ scales as N2, the determinant is asymptotically bounded and, consequently,
the spectrum might also be bounded. Naturally, the actual value of the bound depends
on the choice of τ and thus on the particular scheme, but the possibility of boundedness
of the spectrum is a general result.
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Making the quite reasonable choice of a purely real spectrum, we obtain that

λ1,2(W̃
(1)) = ±

√
|W̃(1)|,

while the actual value of α(1)
1 is obtained by using the trace of W̃(1) as

α(1)
1 = − γ̃N

τP (α)
N (1)ωN

(
|W̃(1)|2 + 1 ± 2

√
|W̃(1)|

)
,

hence completing the specification of the preconditioner for the advective operator.
Due to their extensive use, let us consider the results of the general analysis for

the case of Legendre- and Chebyshev-based approximations.

4.1. Analysis of the Legendre method. We first consider the Legendre–
Gauss–Lobatto approximation, i.e., the weights at the endpoints, ω0 and ωN , are

ω0 = ωN =
2

N(N + 1)
, γ̃i =






2

2i + 1
i < N,

2

N
i = N,

(31)

while γ̃i refers to the discrete normalization factor, equation (17).
Following [10], we take

τ =
1

2ωN
=

N(N + 1)

4

for stability and note that τ does indeed scale like N2, i.e., there is a possibility that
the spectrum of the preconditioned advective operator is bounded in N .

Utilizing the general results derived above in the special case of α = 0, yields a
spectrum with N − 1 unit eigenvalues while the remaining two take the value of

λ1,2 = 1 +

√
3N + 2

4(2N + 1)
,(32)

assuming that the free parameter, α(1)
1 , in the preconditioner is specified as

α(1)
1 = − 1

N(2N + 1)

[
11N + 6 +

√
16(2N + 1)(3N + 2)

]
.

The spectral radius is uniformly bounded as

lim
N→1

λ1,2 = 1 +

√
5

12
, lim

N→∞
λ1,2 = 1 +

√
3

8

and decays monotonically in N . Thus, the spectrum of the preconditioned operator
is uniformly bounded as

λ
(
P(−1)

[
D(1) − τ INN

])
∈
[
1, 1 +

√
5

12

]
.

Moreover, N−1 of the N+1 eigenvalues are unity while the remaining two eigenvalues
are real, equal, and given by (32).



1584 J. S. HESTHAVEN

4.2. Analysis of the Chebyshev method. The analysis for the Chebyshev–
Gauss–Lobatto approximation follow the same route as the aforementioned. The
weights at the endpoints, ω0 and ωN , and the normalizing constant, γ̃i, are given by

ω0 = ωN =
π

2N
, γ̃i = ci

π

2
,(33)

where c0 = cN = 2 and ci = 1, otherwise.
Following [10], the penalty parameter is taken as

τ =
N2

2
,

for stability, implying that the spectrum contains N − 1 unit eigenvalues while the
remaining two eigenvalues are

λ1,2 = 1 +

√
3N − 2

8(N − 1)
,(34)

provided only that the free parameter, α(1)
1 , in the preconditioner is taken to be

α(1)
1 = − 1

2N(N − 1)

[
11N − 10 +

√
32(N − 1)(3N − 2)

]
.

Note that these expressions are only valid for N > 1, the reason being that the entries
of W(1) would be slightly changed for N = 1 as a result of (13). However, the case of
N = 1 hardly deserves a special analysis as no preconditioning is needed in this case.

Indeed, we recover a spectrum with asymptotic bounds as in the case of Legendre
methods since

lim
N→2

λ1,2 = 1 +
1√
2
, lim

N→∞
λ1,2 = 1 +

√
3

8
.

Hence, the spectrum of the preconditioned operator is uniformly bounded as

λ
(
P(−1)

[
D(1) − τ INN

])
∈
[
1, 1 +

1√
2

]
,

with N − 1 of the N + 1 eigenvalues being unity while the remaining two eigenvalues
are equal, real and given by (34).

5. Preconditioning of the diffusive operator. Contrary to the situation for
the advective operator, we shall need to discuss the effect of a number of different
types of boundary conditions, e.g., Dirichlet, Neumann, or combinations thereof, when
considering preconditioning of the second-order operator. We shall, however, restrict
the subsequent analysis to Dirichlet and Neumann boundary conditions only as they
represent the most frequently appearing cases. The general framework may likewise
be applied to develop and analyze integration preconditioners for problems involving
Robin boundary conditions.

5.1. The Dirichlet problem. Let us consider the homogeneous elliptic problem

d2u(x)

dx2
= f(x), u(±1) = 0,(35)
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and seek solutions of polynomial form leading to a discrete form of (35) as

D(2)u = f , u(±1) = 0,(36)

where u and f refer to the vectors of u(x) and f(x) at the Gauss–Lobatto quadrature
points.

Following the development of the preconditioner for the advection operator, we
impose boundary conditions weakly through a penalty term as

[
D(2) − τ−I00 − τ+INN

]
u = f ,(37)

where τ− and τ+ refer to the penalty parameters at −1 and 1, respectively, and are
chosen such that the resulting operator is negative definite [10].

Applying the preconditioner, P(−2), yields

[
T−1IN2 T − τ−P(−2)I00 − τ+P(−2)INN

]
u = P(−2)f ,

implying that the spectrum of the preconditioned operator is similar to that of

IN2 − τ−B̃(−2)TI00T
−1 − τ+B̃(−2)TINNT−1 = IN2 − τ−B̃(−2)R− − τ+B̃(−2)R+.

Here we have introduced the matrix R− = TI00T
−1 with the entries

R−
ij =

1

γ̃i
P (α)
i (−1)P (α)

j (−1)ω0,(38)

while R+ is defined in equation (28).
Let us now for simplicity take τ− = τ+ = τ , which is indeed a valid assumption

as we shall see shortly, and introduce the operator S = B̃(−2)(R− + R+) = B̃(−2)R,
having the entries

Sij =






α(2)
11 RN−1,j + α(2)

12 RN,j i = 0,

α(2)
21 RN−1,j + α(2)

22 RN,j i = 1,

0 i ∈ [2, N − 3],

b(2)i,i−2Ri−2,j + b(2)i,i Ri,j + b(2)i,i+2Ri+2,j i = N − 2,

b(2)i,i−2Ri−2,j + b(2)i,i R−i,j i = N − 1, N,

(39)

where

Rij =
1

γ̃i
P (α)
i (1)P (α)

j (1)ω ×
{

2 i + j even,

0 i + j odd,
(40)

with ω = ω0 = ωN in (18). The remarkable reduction in S follows from utilizing the
definition of R along with (8), (3), and (16).

The spectrum of the preconditioned matrix,

IN2 − τS,(41)
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consequently consists of at least N − 4 eigenvalues taking the exact value of unity.
However, as for the advective operator we can rearrange the rows and columns of (41)
to arrive at a 5 × 5 matrix of the form

W(2) =





−τS0,0 −τS0,1 −τS0,N−2 −τS0,N−1 −τS0,N

−τS1,0 −τS1,1 −τS1,N−2 −τS1,N−1 −τS1,N

−τSN−2,0 −τSN−2,1 1 − τSN−2,N−2 0 −τSN−2,N

−τSN−1,0 −τSN−1,1 0 1 − τSN−1,N−1 0

−τSN,0 −τSN,1 −τSN,N−2 0 1 − τSN,N




,

the eigenvalues of which determine the remaining five eigenvalues. We note that due
to the definition of R, equation (40), the details of the analysis depends on whether
N is even or odd.

As for the advective operator we continue the analysis by shifting the spectrum
as W(2) − I and find that the third and fifth rows are linearly dependent, i.e., N − 3
of the N + 1 eigenvalues are unity, while the remaining four eigenvalues appear as
the spectrum of the 4 × 4 matrix, W̃(2), appearing as the upper block of the block-
diagonalized operator W(2) − I.

Computing the determinant, |W̃(2)|, yields

4τ2(α + 1)2[N2(N − 1) − 2α(2α + 3)(2N + 2α + 1)]

N(N + 2α)2(N + 2α + 1)2(N + 2α− 1)(2N + 2α + 1)2(2N + 2α + 3)
,(42)

with the asymptotic behavior

lim
N→∞

|W̃(2)| = τ2 (α + 1)2

2N6
.

Hence, only for τ scaling at most like N3, can we hope to have a bounded spectrum.
Note that this result is entirely independent of the choices of the free parameters,

α(2)
ij , that enter the specification of the preconditioner, equation (24).

Let us consider the details of the eigenvalue spectrum for a few special choices of
α, e.g., for Legendre- and Chebyshev-based schemes.

5.1.1. Analysis of the Legendre method. First consider the Legendre–Gauss–
Lobatto approximation for which we recover that

S0,j =
2

N(N + 1)

[
α(2)

11

γ̃N−1

(
1 − (−1)N+j

)
+

α(2)
12

γ̃N

(
1 + (−1)N+j

)
]
,(43)

using (39), (31), and (9). Hence, the effect of α(2)
11 and α(2)

12 are decoupled and their
individual action depends on whether N is even or odd. The same holds for S1,j since

S1,j =
2

N(N + 1)

[
α(2)

21

γ̃N−1

(
1 − (−1)N+j

)
+

α(2)
22

γ̃N

(
1 + (−1)N+j

)
]
.(44)

We shall exploit this decoupling of the unknown coefficients, α(2)
ij , by always taking

two of the four coefficients to be zero. Indeed, we shall assume that α(2)
11 = α(2)

22 = 0

for N , even while we take α(2)
21 = α(2)

12 = 0 for N odd. The reason for this particular



PSEUDOSPECTRAL INTEGRATION PRECONDITIONING I 1587

choice lies in the ease by which we may obtain the eigenvalues of W(2) in analytic

form. With this particular choice of α(2)
ij , W(2) reduces to a sparse matrix with a

checkerboard structure. This allows for restructuring, using permutation operators,
into block-diagonal form, consisting of a 3 × 3 block and a 2 × 2 block, a scenario
that can be dealt with in a simple fashion. While the assumption that two of the

four parameters, α(2)
ij , take the value zero may seem restrictive, it does not pose any

restrictions on the performance of the preconditioners as we shall see shortly.
Following [10] we choose the penalty parameter, τ = τ+ = τ−, as

τ =
1

4cω2
=

N2(N + 1)2

16c
,

where c > 0 is a constant. According to [10] we should use c = 1. However, extensive
computational results showed that c = 4 guarantees that the spectrum remains in the
negative half-plane. The actual value, however, is less important at this point of the
analysis.

Let us now analyze the spectrum of the preconditioned operator for N even, i.e.,

we seek α(2)
12 and α(2)

21 such as to minimize the spectral radius of W̃(2) and, hence,
(41). The spectrum of W̃(2) consists of two pairs of complex conjugate eigenvalues,

λ1,2(W̃(2)) and λ3,4(W̃(2)), where the former is a function of α(2)
21 only, while the latter

depends on α(2)
12 only.

If we attempt to identify α(2)
21 and α(2)

12 such that λ1,2(W̃(2)) and λ3,4(W̃(2)) cluster
pairwise, we find

α(2)
12 =

N3 − (32c− 1)N2 − 8c(8N + 3)

N2(N + 1)(2N + 1)(2N + 3)
± i

√
32c

N2(N + 1)(2N + 1)(2N + 3)
,

and

α(2)
21 =

N2 − (16c− 1)N − 8c

N(N + 1)(2N + 1)(2N − 1)
± i

√
32c(2N + 1)

N(N + 1)(4N2 − 1)2
.

At first, this seems a rather discouraging result as the optimal values of both param-
eters are complex, i.e., the preconditioner, P(−2), becomes complex, which certainly
is undesirable. To avoid this complication we rely on the observation that the imagi-

nary part of α(2)
ij is about

√
N smaller than the real part, i.e., using only the real part

yields a good asymptotic approximation. Thus, for N even we choose the parameters
in P(−2) as

α(2)
11 = 0, α(2)

12 =
1

(2N + 1)(2N + 3)
− 8c

N2(N + 1)
,

α(2)
21 =

1

(2N − 1)(2N + 1)
− 8c

N(N + 1)(2N − 1)
, α(2)

22 = 0.

This yields the remaining four purely real eigenvalues of (41) on the form

λ1,2 = 1 ±

√
N(N + 1)

8c(2N + 1)
, λ3,4 = 1 ±

√
N2(N + 1)

8c(2N + 1)(2N + 3)
.(45)

We observe that the spectrum no longer remains bounded in N , as we saw in section 4,
but grows with

√
N and becomes indefinite for some value of N depending on the
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actual value of c, e.g., for c = 4 the maximum eigenvalue crosses 0 for N ( 64. One

could naturally speculate whether the particular pattern of α(2)
ij chosen here is at fault

and if a more general analysis would yield a bounded spectrum. However, computing

|W̃(2)| =
N3(N + 1)2

64c2(2N + 1)2(2N + 3)

helps us settle this point. We find that the determinant scales as N2, i.e., the optimal
asymptotic behavior of the spectrum we can hope for is indeed

√
N . Moreover, the

optimal behavior within the present framework appears for a spectrum scaling as

lim
N→∞

λ = 1 ± 1

4

√
N√
2c

,

which is very close to the behavior of λ1,2 and confirms the asymptotic optimality of
the preconditioners.

For N odd we recover the exact same spectrum, (45), when α(2)
ij is given as

α(2)
11 =

1

(2N − 1)(2N + 1)
− 8c

N(N + 1)(2N − 1)
, α(2)

12 = 0,(46)

α(2)
21 = 0, α(2)

22 =
1

(2N + 1)(2N + 3)
− 8c

N2(N + 1)
.(47)

5.1.2. Analysis of the Chebyshev method. Let us also consider the be-
havior of the preconditioned second-order differentiation matrix, (41), based on the
Chebyshev–Gauss–Lobatto grid. Using (39), (33), and (12), we realize that the entries
of S0,j and S1,j share the properties discussed in regard to equations (43)–(44).

Following [10] we choose the penalty parameter, τ = τ+ = τ−, as

τ =
N4

4c
,

where c > 0 is a constant. According to [10] we should use c = 1. However, extensive
computational results have shown that even for c = 12.5 does the spectrum remain
in the negative half-plane. The actual value, however, is less important at this point
of the analysis.

As was the case for the Legendre-based approximation, choosing α(2)
ij in order to

minimize the spectral radius results in generally complex results, however, with an
imaginary part that is

√
N smaller that the real part. Thus, neglecting the imaginary

part yields a purely real preconditioner.

Hence, for N even the parameters, α(2)
ij , entering P(−2) should be

α(2)
11 = 0, α(2)

12 =
N2 −N + 4

4N(N2 − 1)(N − 2)
− 4c

N3
,

α(2)
21 =

1

4N(N − 1)
− 2c

N3
, α(2)

22 = 0.

This yields the remaining four real eigenvalues of the preconditioned operators as

λ1,2 = 1 ±

√
N2

8c(N − 1)
, λ3,4 = 1 ±

√
N2(N2 −N + 4)

16c(N + 1)(N − 1)(N − 2)
.



PSEUDOSPECTRAL INTEGRATION PRECONDITIONING I 1589

As for the preconditioned Legendre operator, the spectral radius grows like
√
N ,

at some point making the preconditioned operator indefinite, e.g., for c = 12.5 as
advocated in [10] the matrix becomes indefinite for N ( 100. However, from (42) we
obtain

|W̃(2)| =
N4(N2 −N + 4)

128c2(N + 1)(N − 1)2(N − 2)
,

confirming that the
√
N -behavior is the best asymptotic behavior we can hope for

within the present framework.

For N odd, we recover the same spectrum by choosing α(2)
ij as

α(2)
11 =

1

4N(N − 1)
− 2c

N3
, α(2)

12 = 0,

α(2)
21 = 0, α(2)

22 =
N2 −N + 4

4N(N2 − 1)(N − 2)
− 4c

N3
.

5.2. The Neumann problem. Consider finally the problem of preconditioning
of the Poisson problem subject to Neumann conditions as

d2u(x)

dx2
= f(x),

du

dx

∣∣∣∣
±1

= 0.(48)

We seek solutions of polynomial form as

D(2)u = f , D(1)u(±1) = 0,(49)

where u and f represent the vectors of u(x) and f(x) at the Gauss–Lobatto points.
Enforcing the boundary conditions only weakly yields

[
D(2) + τ−I00D

(1) − τ+INND(1)
]
u = f ,(50)

where τ− and τ+ refer to the penalty parameters at −1 and 1, respectively, and are
chosen to ensure that the discrete operator is negative semidefinite [10]. Note the
sign difference in the penalty term as compared to the case of Dirichlet boundary
conditions, equation (37). For simplicity we shall assume that τ− = τ+ = τ in the
subsequent analysis. As we shall see shortly, this is a reasonable choice.

Applying the preconditioner, P(−2), we obtain

[
T−1IN2 T − τP(−2)

(
−I00 + INN

)
D(1)

]
u = P(−2)f ,

with a spectrum being similar to that of

IN2 − τ B̃(−2)R̃ = IN2 − τ S̃.(51)

Here we have introduced R̃ = T
(
−I00 + INN

)
D(1)T−1 with the entries

R̃ij =
1

γ̃i
P (α)
i (1)

dP (α)
j (1)

dx
ω ×

{
2 i + j even,

0 i + j odd,
(52)
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where ω = ω0 = ωN in (18). These simple expressions appear as a result of

(
D(1)T−1

)

ij
=

N∑

k=0

(
D(1)

)

ik

(
T−1

)
kj

=
N∑

k=0

P (α)
j (xk)ωk

N∑

n=0

1

γ̃n
P (α)
n (xk)

dP (α)
n (xi)

dx

=
N∑

n=0

dP (α)
k (xi)

dx

(
1

γ̃n

N∑

k=0

P (α)
j (xk)P

(α)
n (xk)ωk

)

=
N∑

n=0

dP (α)
n (xi)

dx
δjn =

dP (α)
j (xi)

dx
,

as quadrature is exact for the orthogonal polynomials.
Consequently, the definition of S̃ is exactly as given in equation (39) with R

being replaced with R̃ and we immediately recover that the preconditioned Neumann
problem has N−3 of the N+1 eigenvalues being exact unity. Moreover, since R̃i0 = 0,
the first column of S̃ is zero, thereby introducing a zero eigenvalue. This, however, is
only natural as Neumann boundary conditions leave a constant undetermined when
solving the Poisson equation. This zero column also implies that the value of the

parameters α(2)
1j has no influence on the spectrum and can be taken to be unity.

As in the previous cases the remaining three eigenvalues appear from W̃(2), the
determinant of which is

|W̃(2)| = τ2 (N − 1)(N2 − 4N − 2αN − 2(α + 1)(2α + 3))

(N + 2α)(N + 2α + 1)(2N + 2α + 1)2(2N + 2α + 3)
.(53)

Hence, to hope for a bounded spectrum, we must have that τ scales as N . Unfortu-
nately, this is, in general, not the case as we shall see in the following analysis.

5.2.1. Analysis of the Legendre method. Following [10] we choose τ as

τ− = τ+ =
N(N + 1)

2c
,

where c may take values in the interval [1 − 4].
Contrary to the case of Dirichlet boundary conditions, the details of the analysis

are different depending on whether N is even or odd, although the general picture

remains the same. For N even we find an optimal value for α(2)
21 as

α(2)
21 =

N(N − 1)

2(4N2 − 1)
− c

2N + 1

4N2 − 1
± i

√
2cN(N − 1)(2N + 1)

(4N2 − 1)2
,

while α(2)
22 has no effect on the spectrum due to the structure of W̃(2) and can be

taken to be zero. As in the case of Dirichlet boundary conditions the optimal value
is complex. However, since the imaginary part is significantly smaller than the real

part, we use the latter as the value of α(2)
21 to be included in P(−2). The final three

eigenvalues of the preconditioned Neumann operator appear as

λ1 = 1 +
(N + 1)(N2 − 4N − 6)

2c(2N + 1)(2N + 3)
, λ2,3 = 1 ±

√
N(N − 1)

2c(2N + 1)
.
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Hence, N − 3 of the N + 1 eigenvalues are exactly unity, and two eigenvalues, λ2,3,
grow like

√
N , one eigenvalue takes the value of zero while the spectral radius of the

preconditioned operator, at least asymptotically, is dominated by one eigenvalue, λ1,
growing like N . However, for moderate values of N , the three unbounded eigenvalues
are of comparable value.

Computing the determinant, (53), as

|W̃(2)| =
N(N2 − 1)(N2 − 4N − 6)

8c2(2N + 1)2(2N + 3)
∼ N2

64c2
,

confirms that we cannot expect to have a bounded spectrum. Moreover, since λ1 is

unaffected by the choice of α(2)
21 , the spectrum given above is asymptotically optimal.

The situation for N odd is slightly more complicated, this being an effect of
γN &= γ̃N . Nevertheless, proceeding as previously stated we obtain a value

α(2)
22 =

(N + 1)(2N + 1)(2N + 3)

2N(2N + 1)(2N + 3)
− c

N
,

while α(2)
21 has no effect on the spectrum and is set to zero. This results in the

remaining three eigenvalues being

λ1 = 1 +
N(N − 1)

2c(2N + 1)
, λ2,3 = 1 ±

√
(N + 1)(N2 − 4N − 6)

2c(2N + 1)(2N + 3)
,

i.e., a spectrum which shares the characteristics of the one obtained for N being even.

5.2.2. Analysis for the Chebyshev method. Let us finally consider the de-
tails of the preconditioner in the case of a Chebyshev–Gauss–Lobatto approximation
of the Poisson equation subject to Neumann conditions. From [10] we recover that τ
should be

τ− = τ+ =
N2

c
,

where c may take values in the interval [1 − 12.5].

Following the above analysis we obtain for N even that the proper choice of α(2)
21

is given as

α(2)
21 =

N − 1

4N
− c

2N
,

when neglecting the imaginary part, while α(2)
22 = 0. This yields the remaining three

eigenvalues as

λ1 = 1 +
N(N2 − 3N − 2)

4c(N2 − 1)
, λ2,3 = 1 ±

√
N − 1

2c
,

i.e., a spectrum with characteristics very similar to Legendre–Gauss–Lobatto approx-
imation. Also, computing the determinant, (53), confirms the asymptotic optimality
of the preconditioner.

In the case of N odd, we find the optimal value of α(2)
22 to be

α(2)
22 =

N2 − 3N − 2

4(N2 − 1)
− c

N
,
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and α(2)
21 = 0, completing the specification of the spectrum as

λ1 = 1 +
N − 1

2c
, λ2,3 = 1 ±

√
N(N2 − 3N − 2)

4c(N2 − 1)
.

6. Concluding remarks and generalizations. The pseudospectral integra-
tion preconditioners presented in this paper are different from previously developed
preconditioners for the pseudospectral differentiation operators in a number of ways.
Rather than approximating the process of integration by inverting a low-order
approximation to the operator, the integration operators are based on the proper-
ties of the polynomial basis itself. This generally makes the preconditioners full,
which, however, is only natural as we are considering global methods. Moreover,
imposing the boundary conditions weakly through a penalty term allows for a
complete analysis of the preconditioner, revealing a highly clustered eigenvalue
spectrum appearing from a very low rank modification of the identity operator.
We were also able to show the asymptotic optimality of the proposed family of
preconditioners.

The most appealing feature of the basic approach, however, is its degree of
generality. Our framework relies on the use of ultraspherical polynomials, including
such prominent members as the Legendre and Chebyshev polynomials, for construct-
ing the approximate solutions at the Gauss–Lobatto quadrature points.

The general framework, however, remains valid within a much wider context.
Recall that the integration preconditioners are a consequence of the three-term recur-
rence relations, (5). Hence, integration preconditioners may be defined for any of the
classical orthogonal polynomials, e.g., Jacobi, Laguerre, and Hermite polynomials.
Moreover, the choice of Gauss–Lobatto quadrature points may be relaxed to include
approximations based on Gauss or Gauss–Radau quadrature points. If we again re-
turn to the heart of the development of the preconditioner, (5), and the second-order
recurrence, (7), it is clear that similar recurrence formulas, e.g., the relation between
the polynomials and their fourth-order derivatives, can be established to arrive at the
integration preconditioner for the bi-harmonic operator. Certainly, this process can
be repeated for any order operator under consideration. Also, the spectrum of the
preconditioned pth-order operator appears as a rank 2p perturbation of the identity
operator, independent of N and irrespective of the type of boundary condition, which
can be of arbitrary form as the enforcement through the penalty term is straightfor-
ward.

Nevertheless, several important issues require further study in order to establish
the usefulness of the pseudospectral integration preconditioners within a more general
context. Issues like the analysis and performance of the integration preconditioners
for mixed operators, e.g., the advection-diffusion operator, and time-dependent prob-
lems leading to preconditioning of the Helmholtz-operator, remains open. However,
based on the results quoted in [7] for the spectral case, we expect that the develop-
ment of integration preconditioners can be successfully extended to deal with these
important cases also. The same can be said for multidimensional extensions where
the combination of a tensor product formulation with the penalty method supplies
the proper framework in which one can expect the one-dimensional results to carry
over. We hope to pursue these important questions in the very near future.
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