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Abstract. We present a high-order nodal Discontinuous Galerkin Finite Element
Method (DG-FEM) solution based on a set of highly accurate Boussinesq-type
equations for solving general water-wave problems in complex geometries. A nodal
DG-FEM is used for the spatial discretization to solve the Boussinesq equations in
complex and curvilinear geometries which amends the application range of previous
numerical models that have been based on structured Cartesian grids. The Boussi-
nesq method provides the basis for the accurate description of fully nonlinear and
dispersive water waves in both shallow and deep waters within the breaking limit.
To demonstrate the current applicability of the model both linear and nonlinear
test cases are considered where the water waves interact with bottom-mounted fully
reflecting structures. It is established that by simple symmetry considerations com-
bined with a mirror principle it is possible to impose weak slip boundary conditions
for both structured and general curvilinear wall boundaries while maintaining the ac-
curacy of the scheme. As is standard for current high-order Boussinesq-type models,
arbitrary waves can be generated and absorbed in the interior of the computational
domain using a flexible relaxation technique applied on the free surface variables.

Keywords: Discontinuous Galerkin finite element method, wave-structure interac-
tion, high-order Boussinesq-type equations, nonlinear and dispersive water waves,
unstructured and curvilinear grids, grid adaption.

1. Introduction

Boussinesq-type equations are in widespread use by coastal engineers
for the numerical simulation of nonlinear wave motion in near-shore re-
gions. Up to certain limits in dispersion these equations capture all the
important wave phenomena including diffraction, refraction, nonlinear
wave-wave interactions and interaction with bottom-mounted struc-
tures in regions where viscous and turbulence effects can be neglected.
The main idea behind these equations is to reduce the three dimensional
potential flow problem to a two dimensional problem by assuming a
polynomial variation in the vertical direction. Thus, Boussinesq-type
models have become an important engineering tool for the prediction
of a range of wave phenomena critical to the design of, e.g., offshore
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windmill foundations, harbours, and exposed loading facilities. A large
number of Boussinesq-type models are in use today, and a comprehen-
sive review of the history of Boussinesq theory can be found in Madsen
and Schäffer (1999).

Building upon the previous work of Fuhrman et al. (2005) and
Engsig-Karup et al. (2006), we focus here on the three-variable formu-
lation due to Madsen et al. (2002), which is one of the most accurate
formulations yet developed. In particular, we focus on the Padé (2,2)
enhanced version obtained by using the optimized coefficients deter-
mined by Jamois et al. (2006), which is accurate in dispersion out to
approximately kd = 10 (k the wave number and d the water depth) and
with an accurate description of the internal flow kinematics to approx-
imately kd = 4. These equations are thus appropriate for modelling a
broad range of water wave phenomena in near-coastal environments.
The accuracy and application range of this method exceeds most other
Boussinesq-type methods, however it comes at the price of additional
variables (degrees of freedom) and more complicated systems of linear
equations to solve; and this provides challenges for obtaining efficient
numerical solutions.

Many of these challenges have been successfully overcome using a
structured (uniformly-spaced, rectangular) grid finite difference solu-
tion as reported by Fuhrman et al. (2005) and previous publications
cited therein. This finite difference scheme is however at a fixed order
of accuracy; and it lacks geometric flexibility both in terms of local grid
refinement and the inclusion of other than piecewise rectangular struc-
tures. The goal of the present work is to provide a solution with both
geometric and order flexibility by means of an unstructured Dicontin-
uous Galerkin Finite Element Method. We note that the unstructured
grid is particularly attractive in terms of spatially resolving realistic
geometries and it allows the grid to be adapted to the physical scales
of the problem. The latter property can potentially lead to a significant
reduction in the computational effort.

Previously, some work has been done in terms of solving Boussinesq-
type equations in the framework of finite element methods. The un-
structured finite element method (FEM) has been applied to solve var-
ious two-variable Boussinesq-type formulations. The classical Boussi-
nesq equations of Peregrine (1967) were solved by Antunes Do Carmo
and Seabra Santos (1993), Ambrosi and Quartapelle (1998) and again
by Eskilsson and Sherwin (2004). A set of weakly dispersive Boussinesq-
type equations was solved and studied by Langtangen and Pedersen
(1998). Li et al. (1999) solved the improved Boussinesq equations by
Beji and Nadaoka (1996) . The extended Boussinesq equations by Mad-
sen and Sørensen (1992) were solved using a FEM model by Sørensen et
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al. (2004), while the equations of Nwogu (1993) were solved by Walkley
and Berzins (1999) and Walkley and Berzins (2002), and Eskilsson
and Sherwin, Eskilsson and Sherwin (2003). Recently, Eskilsson and
Sherwin (2002, 2005) solved the same set of extended equations using
a DG-FEM method.

In Engsig-Karup et al. (2006) it was shown that the high-order
Boussinesq equations can be solved to high accuracy in one horizontal
dimension and with support for unstructured grids using the DG-
FEM. As a continuation of this previous work, we concentrate here
on solutions in two horizontal dimensions. The DG-FEM can handle
higher derivatives in the equations and it is relatively easily imple-
mented despite the complexity of the equation system. By this choice
of numerical method, we alleviate the problems that are connected with
finding a continuous basis with support for higher derivatives and the
implications that might result.

The remainder of this paper is organized as follows. Section 2 presents
the governing equations of the Boussinesq-type formulation. In Section
3 we consider how to handle wall boundary conditions in a finite com-
putational domain. Section 4 describes the numerical methods chosen
for discretizing the governing equations in two horizontal dimensions.
In Section 5 we carry out some numerical convergence tests, and finally
Section 6 provides some numerical results that have been obtained using
the proposed methodology that demonstrate the current applicability
of the model.

2. Governing equations

A Cartesian coordinate system is adopted with the horizontal xy-plane
located at the still water level (SWL) and the z-axis pointing upwards.
The still water depth d(x), where x = (x, y)T , is measured from the
still water level. The fluid domain is everywhere bounded by the sea
bed at z = −d(x) and the free surface at z = η(x, t). The gravitational
acceleration g is assumed constant throughout the work and is set equal
to 9.81 m2/s.

The set of Boussinesq equations employed here are derived in the
original work of Madsen et al. (2002,2003) and the resulting equations
are given here without derivation details.

The evolution of the flow is governed by the exact nonlinear kine-
matic and dynamic free surface conditions

∂tη = w̃ − ∇η ·
(

Ũ − w̃∇η
)

, (1)
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∂tŨ = −∇

(

gη +
1

2

(

Ũ · Ũ − w̃2(1 + ∇η · ∇η)
)

)

, (2)

with Ũ ≡ ũ+ w̃∇η and having introduced the two-dimensional Carte-
sian gradient operator ∇ = (∂x, ∂y)

T . The solution of the (truncated)
Laplace problem for the fluid in the interior along with a kinematic
condition at the sea bed wb = −∇d · ub is solved in two steps for
obtaining the vertical free surface velocity w̃ from






Ũ

Ṽ
0






=





A11 − ∂xη · B11 A2 − ∂xη · B12 B11 + ∂xη · A1

A2 − ∂yη · B11 A22 − ∂yη · B12 B12 + ∂yη · A1

A01 + S01 A02 + S02 B0 + S03









û∗

v̂∗

ŵ∗



 ,

(3)

and then determine w̃ from the solution of one of above using

w̃ = −B11û
∗ − B12v̂

∗ + A1ŵ
∗. (4)

It is noted that the set of auxiliary variables (û∗,v̂∗,ŵ∗) has been in-
troduced in connection with the employment of Padé approximants
to enhance the accuracy of the method. The continuous differential
operators characterized by the subscripted letters A, B, and S are for
brevity all given in Appendix A for the Padé (2,2) formulation, which
retains up to third order differential operators.

3. Boundary conditions

To close the system of equations given in the former section, we need
to impose appropriate boundary conditions at the outer boundaries ∂Ω
of a finite computational domain. At all outer lateral boundaries it is
convenient to assume that the computational domain is surrounded by
bottom-mounted vertical surface-piercing and fully reflecting walls. By
this choice, the wall normal vectors will everywhere be confined to the
horizontal plane at the free surface level.

The high-order Boussinesq formulations have been derived from
an exact potential flow solution that satisfies the Laplace equation
in the interior domain. Characteristic for potential flows are that the
streamlines have to be everywhere parallel to the flow and tangential
to any solid wall surface. This can be stated by the local slip boundary
condition for any fluid particle given as

n · u = nxu + nyv = 0, ∀x ∈ ∂Ω, (5)

where n = (nx, ny)
T is an outward pointing normal vector, and u ≡ ∇φ

(φ the scalar velocity potential) is a velocity vector in the horizontal
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plane for a fluid particle moving along the wall surface. It is noted that
the generalization of this condition to higher order is straightforward
as it by standard symmetry considerations is seen to correspond to
the homogeneous boundary conditions n · ∇2m−1φ = 0, ∀m = 1, 2, ....
Assuming that the wall boundary is a streamline and that there is an
imaginary flow, a so-called ”ghost” flow, on the outside of the wall, we
can restate the condition Eq. (5) as a no net flux condition

n · (u + ug) = 0, (6)

where ug is a ghost-flow velocity vector for the imaginary flow. Fur-
ther, we enforce the constraint for the flow in the normal direction by
the condition in Eq. (6) and invoke a continuity constraint along the
tangential direction by requiring continuity in the size of tangential
components

t · u = t · ug, (7)

where t = (−ny, nx)T is a local tangent to the wall. From Eq. (6)
and Eq. (7) we obtain the general conditions for arbitrary wall normal
vectors which then defines the external ghost flow

ug =
−n2

xu + n2
yu − 2nxnyv

n2
x + n2

y

, vg =
−2nxnyu + n2

xv − n2
yv

n2
x + n2

y

. (8)

Thus, for general physical boundaries the external ghost flow can be
expressed by the internal velocity vector and are therefore coupled to
the internal flow field. For the free surface we require that the free sur-
face gradient at the walls is everywhere orthogonal to the wall normal
vectors, i.e.

n · ∇η = 0. (9)

Due to the high-order differential operators in the Boussinesq formu-
lation, we need to impose sufficient high-order conditions for a formu-
lation where third-order derivatives are retained to obtain a consistent
linear system to solve. It is noted that the same wall conditions for
the velocity field found above apply to the auxiliary variables of the
Padé-enhanced equation system in Eq. (3).

To be able to simulates waves in generic cases, we would be limiting
our scope of possible applications if we were not able to impose radia-
tion boundary conditions. Such boundary conditions are conveniently
imposed by the flexible relaxation method due to Larsen and Dancy
(1983) in user-defined regions in the interior computational domain. It
was shown by Engsig-Karup et al. (2006) that it is an applicable and
suitable method for use with unstructured grids.
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4. Numerical methods

The governing equations are discretized using a method of lines ap-
proach applied to the semi-discrete equation system. A nodal discon-
tinuous Galerkin finite element method (DG-FEM) is used for approx-
imating spatial derivatives. An explicit low-storage 2N -RK4 method
due to Carpenter and Kennedy (1994) has been used for the temporal
integration favoring low storage requirements and a large absolute sta-
bility region for testing purposes rather than efficiency, e.g., the classical
RK4 method is in general a better choice in terms of efficiency.

For the application of the DG-FEM in arbitrary spatial geometries,
the computational domain Ω is subdivided into K non-overlapping
(triangular) elements Ωk, ∀k = 1, ..., K, such that Ω = ∪kΩ

k. Further,
on each element the solution is approximated by a polynomial of at
most order P , which is constructed using the orthogonal polynomial
basis functions originally due to Proriol (1957) defined in a collapsed
coordinate system on a standard triangle. By uniqueness of the interpo-
lating polynomials these can be represented using an equivalent nodal
Lagrangian basis. Further, by a unique map from physical coordinates
to the coordinates of a standard element a quadrature-free implemen-
tation is used, see Hesthaven and Warburton (2002). Thus, on each
element the solution is approximated by a finite series expansion of the
form

uk(x) =
N

∑

n=1

uk
nln(x), uk(x) ∈ L2(Ωk), (10)

where the nodal Lagrangian basis functions ln(xn) ≡ 1 and lm(xn) ≡ 0,
∀m 6= n, are defined on the optimal (electro-static) nodal distribution
due to Hesthaven (1998) and N is the (fixed) number of nodes within
each element.

The method due to Bassi and Rebay (1997) represents a straight-
forward central discretization method, and is therefore used as a con-
venient and practical first choice for representing all spatial differential
operators discretely. By this approach high-order spatial operators are
decoupled into a set of coupled first order equations and then after
employing a DG-FEM discretization procedure, they are subsequently
reduced to single operators by local elimination of the introduced aux-
iliary variables.

Applying the same general discretization procedure used by Engsig-
Karup et al. (2006), the free surface equations Eq.’s (1)-(2) are restated
for each element Ωk using a strong DG-FEM procedure defined on a
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Cartesian grid as follows
∫

Ωk

v(x)∂tηdxk =

∫

Ωk

v(x)Q(x)dxk, (11)

∫

Ωk

v(x)∂tŨdxk = −

∫

Ωk

v(x)∇F (x)dxk

+

∮

∂Ωk

v(x)n(F (x) − F ∗(x))dSk, (12)

having introduced the auxiliary functions

Q(x) = w̃ − ∇η · (Ũ − w̃∇η), (13)

F (x) = gη +
Ũ · Ũ

2
−

w̃2

2
(1 + ∇η · ∇η). (14)

Here n = (nx, ny)
T is an outward pointing (spatially varying) normal

vector along the faces of the k’th element, v(x) is a test function
chosen from the same function space used for the approximation of
the solution, and Sk ∈ ∂Ωk is the boundary of the k’th element. The
auxiliary functions are evaluated by direct products of the interpolant
functions at interpolating nodes in the grid. This can lead to aliasing
errors, which makes it necessary to adopt a suitable de-aliasing strategy,
see Section 4.1.

For the discretization of Eq. (12) the numerical Lax-Friedrichs fluxes
are chosen

n · F ∗(x−, x+) = n ·
F (x−) + F (x+)

2
− 0.5|s|(Ũ

+
− Ũ

−

), (15)

to be able to introduce a small amount of numerical dissipation into
the scheme for stabilization purposes. Discarding the last term in Eq.
(15), i.e. setting s = 0, results in simple central fluxes, which are used
for the approximation of all spatial operators in the following.

The two-step procedure for the Boussinesq system Eq.’s (3)-(4) can
be stated in the general form

f = Aû∗,

w̃ = Bû∗, (16)

with the left hand-side f = (Ũ , Ṽ , 0)T and the right hand-side vector
û∗ = (û∗, v̂∗, ŵ∗)T . The definitions for the global A and B operators
follow from Eq.’s (3)-(4). These global Boussinesq block system opera-
tors can be assembled using the discretization method of Bassi-Rebay.
To optimize efficiency and simplify the implementation, we choose to
apply a collocation approach where the DG-FEM is only used for de-
termining spatial derivatives, and therefore only a small set of global
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discrete differential operators has to be determined for use with the
nodal DG-FEM setup.

For a finite domain with two horizontal dimensions, all high-order
differential operators can be constructed from the discrete representa-
tion of the first order differential operators DD

x , DN
x , DD

y and DN
y . For

example, the second order differential operators

DD
xx = DN

x DD
x , DN

yy = DD
y DN

y , (17)

where boundary conditions have been imposed and the superscripts in-
dicate that either homogenous Dirichlet (D) or Neumann (N) boundary
conditions have been imposed along the indicated Cartesian direction
at the outer boundaries. For example, consider the approximation of
the spatial operator in the normal direction derived for the k’th element
as

∫

Ωk

v(x)fdx =

∫

Ωk

v(x)∂nudx +

∮

∂Ωk

v(x)n · (u∗ − u−)dS. (18)

This standard discretization result in a discrete scheme of the form
given in compact notation using discrete operators as

|J k|Mfk = (Sn + Bn)uk. (19)

or simply

fk =
1

|J k|
M−1(Sn + Bn)uk = DD/N

n uk. (20)

Note that the superscript letters also indicate the symmetry of the
variable they should be applied on. By this approach, the high-order
differential block operators can be constructed. For example, the 2D
operator A11 (which works on the odd-symmetric variable û∗) can be
approximated by a discrete operator as

AD
11 = I − α2 · D

N
x DD

x , (21)

where I is the identity matrix of size DoF x DoF , with DoF the total
number of grid nodes, and α2 is a diagonal matrix holding the spatial
coefficients at every grid node. However, although this construction
procedure is straightforward, we need to be careful.

Using DG-FEM the discrete differential operators do not commute,
i.e. DxDy 6= DyDx. Hence, we have to be careful in the choice of dis-
cretization for the cross-differential terms. For example, In Eq. (3) the
block operator A2 appears symmetrically about the diagonal of the A
operator. Hence, respectively above (U) and below (L) the diagonal of
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A we mimic the symmetry by the following orders of differentiation

AD
2,U = −α2 · D

N
x DD

y , (22)

AD
2,L = −α2 · D

N
y DD

x . (23)

There might be other suitable choices of discretization, however, the
above has been found to work well with the Padé (2,2) version of the
rotational velocity formulation.

Since we are solving potential flow problems, boundary conditions
can be imposed as described in Section 3 using a mirror principle. This
is convenient, since all of these operators can be constructed a priori

to the actual simulations, and thereby save computational resources
during simulations in time. To implement any discrete version in a finite
domain of a Boussinesq formulation involving high-order differential
operators, requires a careful implementation which takes into account
the symmetry properties of the solution near the outer boundaries.
As we only consider wall boundary conditions in the present work, we
have to make sure that we impose the correct boundary conditions on
each of the differential operators, which are dependent on the solution
variable it is applied on. For example, the discrete approximation of
the spatial operator B11 should be implemented in two different ways;
If it is applied to the auxiliary variable û∗ it should have the same outer
boundary conditions imposed as the physical free surface velocity field
component ũ, in which case it can be discretized as

BD,x
11 = β1 · (D

D
x ) − β3(D

D
x )(DN

x DD
x + DD

y DN
y ), (24)

and if it is applied to ŵ∗ then as

BN,x
11 = β1 · (D

N
x ) − β3(D

N
x )(DD

x DN
x + DD

y DN
y ). (25)

Nonlinear terms are likewise approximated using direct products at the
collocation points. For example, the approximation of a nonlinear term
can be done as

∂xη · B11 ≈ ηx · BD,x
11 , (26)

where ηx is a diagonal matrix which contains the discrete nodal values of
∂xη. This approach can potentially suffer from aliasing errors. However,
it allows for a fast, efficient and uncomplicated way of reconstructing
the operators, which is convenient for the fully nonlinear simulations
in terms of efficiency.

The current strategy for solving the linear system in Eq. (3) every
stage of the time integration is an unrestarted GMRES method due to
Saad and Schultz (1986) suitable for unsymmetric systems. To improve
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efficiency we currently use a full LU factorization of the linearized sys-
tem matrix as a preconditioner combined with the Symmetric Reverse
Cuthill-McKee reordering for reducing the fill-in. This solution strategy
has been found to scale within O(n1.5) (n the number of equations in the
linear system) and hence only represents a robust algorithmic choice
sufficient for demonstrating the applicability of the chosen method.
Optimizing the efficiency for scalability of the model in the DG-FEM
framework is the subject of ongoing research.

The numerical model has been implemented using the DG-FEM
software package Sledge++, see Wilcox (2006).

4.1. De-aliasing

It is well-known that nonlinear PDEs can result in alias-driven errors
and possibly instabilities. Therefore to remedy these potential prob-
lems, we have employed a local de-aliasing technique which works on
the modal coefficients of the Proriol basis of the expansion given in Eq.
(10) such that the filtered local solutions are of the form

uk(x) =
N

∑

n=1

σ(n, Nc, α, s)ûk
nφn(x), (27)

where the exponential low-pass cut-off filter is defined as

σ(i, Nc, α, s) =

{

1 , 0 ≤ i < Nc

exp
(

− α
(

i−Nc

P+1−Nc

)s)

, Nc ≤ i ≤ P
, (28)

where i is polynomial order of the expansion mode, Nc is the cut-off
frequency, and s is the order of the filter. By adjusting the parameters
appropriately, it is possible with this filter to obtain similar damping
profiles as alternative filters and it can therefore conveniently be used
for de-aliasing purposes generically.

The local filtering technique has been found to be sufficient for
mildly nonlinear cases. However, for extreme nonlinear cases where the
simulations may be more prone to aliasing errors, we need alternative
stabilization means, and this is a subject of ongoing research.

5. Convergence tests

5.1. Small-amplitude standing waves

We seek to test the numerical scheme proposed in the former section.
In particular, we seek to demonstrate that the correct slip boundary
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Figure 1. Convergence test for a linear standing wave in a circular basin for different
boundary type approximations. Boundary approximation using piece-wise linear
(full lines) or curvilinear (dotted) element face approximations.

conditions are imposed along the domain wall boundaries. For this
purpose we simulate waves in a curvilinear geometry to both test and
demonstrate the generality of the chosen discretization.

An analytical solution for linear standing waves in a circular basin
of radius a is given at the free surface in polar coordinates as (e.g. see
Mei (1989))

φ(r, θ, t) = −
H

2
c coth(kmd)J1(kr) sin(nθ) sin(ωt), z = 0,

η(r, θ, t) =
H

2
J1(kmr) sin(nθ) cos(ωt), (29)

where the mode wave number km is defined from the m’th zero of
J ′

1(r)|r=kma = 0 with J1 the Bessel function, H is the maximum wave
height of the oscillation, c is the wave speed given by the linear disper-
sion relation. The polar coordinates can be transformed to Cartesian
coordinates using x = r cos(θ) and y = r sin(θ).

A linear accuracy test is carried out using the rotational velocity
Padé (2,2) model using the curvilinear grid shown in Figure 1 a),
and the results are presented in b) for a standing wave defined by
(k3a, k3d, n) = (5.33, 2π, 1). The accuracy test demonstrates spectral
convergence for simulating the chosen mode after one wave period of
time using the curvilinear mesh and having used a sufficiently small
time step ∆t for the spatial errors to dominate. However, if the domain
boundary is represented by piece-wise linear boundary approximations
then as expected the model fails to converge to the exact solution due
to the O(h) errors made in the geometric representation.
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12 A. P. Engsig-Karup

Figure 2. Breakwater gap diffraction of waves. Diffraction function shown for all of
the domain including the relaxation regions.

6. Numerical examples

We conclude with some numerical examples that demonstrate some of
the current capabilities of the model based on the proposed methodol-
ogy.

6.1. Breakwater gap diffraction

The diffraction of water waves near structures is an important phe-
nomenon, and in particular in complex geometries. For example, in
connection with the design of harbors or other areas where breakwaters
shelter moored ships, serve as coastal protection strategies, etc. In such
cases we are interested in predicting calm areas (little energy focusing)
or areas which are exposed to significant wave motion due to penetra-
tion of waves into such areas of interest. The result of diffraction is
that wave fronts ”bend” about corners and it is primarily a linear wave
phenomenon. Thus, as a step toward modelling water-waves in complex
geometries, a classical rigid breakwater gap diffraction test is carried
out. Often numerical results are compared to the experimental results
from the study by Pos (1984). In this study a generalized breakwater
gap configuration was used with splitting plates connected from the
wave paddle and extending to the breakwater tips in order to effec-
tively reduce reflections and other secondary effects introduced on the
seaward side of the breakwater from the backward side. Experimental
and numerical results from a FEM model were later presented by Pos
and Kilner (1987).

In numerical studies, linear breakwater gap diffraction problems
have been considered using a number of different numerical models
based on different model equations in the past. A survey of previous
published numerical results, e.g., Panchang and Kopriva (1989), Skot-
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Figure 3. Relaxation zone setup for gap diffraction test.

ner and Apelt (1999), Walkley and Berzins (2002), and Fuhrman et
al. (2005) to mention some, observe (often minor) unwanted oscillatory
effects in the diffraction solution they obtained. These oscillatory effects
are in general attributed to the presence of the (singular) corner point of
the breakwater and may also be due to radiation boundary conditions
which are not fully absorbing. To remedy numerical instabilities caused
by the singular corner, some authors found it necessary to introduce
some artificial viscosity in the vicinity of the corner to dampen any
unwanted spurious oscillations. The (combined) effects that can be
attributed to the breakwater corner point, the reflected waves and the
introduction of artificial viscosity seem to be less clear.

In the present study we pursue a slightly different path; we seek
to resolve the exact geometry used in the solutions by Penny and
Price (1952) as this allows for a direct comparison with the analytical
results, and we aim at introducing no artificial damping at all near the
breakwater tip.

For the evaluation of the computed results we use the analytical
diffraction solutions based on linear theory as described in Penny and
Price (1952), which are based on the original work by Sommerfeld
(1896). These analytical solutions are based on the assumptions that
the monochromatic waves are normally incident on the (infinitely thin)
breakwater, where they are completely reflected, the sea bed is uni-
formly flat and of arbitrary depth, and that the domain is infinitely
large to allow the waves to radiate to infinity. Further, it is noted
that the break water gap diffraction solution by Penny and Price used
for comparison, is a reasonable approximation for relative gap sizes of
b/L > 1, although as noted in Pos and Kilner (1987), it is only strictly
accurate for b/L > 2 due to the approximate boundary conditions for
the case of two rigid barriers of the breakwater gap when the gap is
small.

As shown in Figure 3, relaxation zones are used to generate and
absorb waves in the region Z1 and Z2 at the western boundary each
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zone one wave length in width. Absorbing sponge layers are introduced
on the sea side of the breakwater at both the eastern and southern
boundaries to fully absorb any outgoing waves over two wave lengths.
In the south-east corner the sponge layers overlap, to generate a smooth
relaxation down to the corner as well as the domain boundaries. The
grid in Figure 4 is generated using DistMesh due to Persson and Strang
(2004), and for the infinitely thin wall to be a domain boundary, it was
necessary to post-process the generated grid in order to decouple all
elements belonging to this internal wall boundary.

Linear sinusoidal incident waves with wave period T = 0.59 s, wave-
length L = 0.495 m, wave height H = 0.055 m are generated. The
angular wave frequency is determined using the linear dispersion rela-
tions for the Boussinesq equations. The still-water depth throughout
the domain is d = 0.125 m (corresponding to a dimensionless depth
kd = 1.3). These waves propagate from the inside of a break water
gap of width b = 0.99 m into the basin. Thus, the breakwater gap to
wave length ratio is b/L = 2 for this case. The waves are generated
until t = 25 s, and a time increment of ∆t = 0.03 s is used. The
computed linear diffraction diagram, determined as the ratio between
the computed wave height and the incident wave height Hc/H, is seen
in Figure 5 for a locally adapted grid using local polynomial orders of
P = 6. There is excellent agreement on both sides of the breakwater,
however, minor discrepancies are seen in the shadow zone on the sea-
ward side. Local refinement has been used to ensure sufficient spatial
resolution to resolve sharp gradients near the breakwater tip, which was
found to be a requirement for obtaining an accurate solution. Without
local refinement, a number of tests showed a trend where the wave
heights were slightly over-estimated near the wall in the shadow zone.
As we have introduced no damping such trends can be explained by
the numerics of the scheme, possible reflections from relaxation zones
and in particular the geometric subdivision of the spatial geometry. In
any test carried out, the singular point in the solution at the corner
has not been found to be the cause of numerical instability, and this
is believed to be a result of the chosen discretization which resembles
the analytical properties of the linearized system of equations closely,
see Engsig-Karup et al. (2006). However, as seen in Figure 6 the flow
vectors at each of the nodes positioned at the connecting corner point
have some directional spreading and much larger relative magnitude in
comparison with the immediate surrounding flow field. The flow field
has been automatically scaled up almost 40 times for the visualization.
Fortunately, based on the computed results we conclude that the effect
remains local and is caused by the non-unique local normal vectors at
the singular nodal point.
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Figure 4. Grid. 599 elements. Vertice nodes belonging to the domain boundary
shown with large (red) dots. b/L = 2.
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Figure 5. Comparison between exact (gray) and computed (black) linear diffraction
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Figure 6. Snapshot of flow field about the singular corner point. b/L = 2.

6.2. Scattering of linear waves about a vertical cylinder

in open water
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Figure 7. Scattering of waves about a cylinder in open water. Diffraction function
shown for all of the domain (relaxation regions also shown).

There are only a few geometries in the theory of water-wave diffrac-
tion where exact analytical solutions have been found. For the scatter-
ing of a plane incident field of water waves about a vertical cylinder
in open water with a flat sea bed, we can use the analytical solution
due to McCamy and Fuchs (1954) for finite-depth cases for comparison
with our numerical results. Based on the result for the standing wave
test in Section 5.1, we choose to approximate the circular cylinder
boundary using curvilinear elements since the alternative polygonal
representation can result in inaccurate solutions.
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Figure 8. Grid.

As the problem is symmetric about the horizontal axis, we generate
a grid that only represents the upper portion of the plane, to reduce
the problem size, see Figure 8. As most of the scattering effects are seen
in the near-field of the cylinder, we only seek to resolve the immediate
region of the cylinder and allow all scattered waves or the incident
waves to be fully absorbed to resemble radiation boundary conditions.

At the Western and Northern boundaries we both generate and ab-
sorb waves simultaneously and at the Eastern region we setup a sponge
layer for wave absorption. As the total wave field can be considered as
a superposition of the incident wave field and a scattered wave field
throughout the domain, we generate waves matching the incident wave
field at both the Western and Northern boundaries in order to resemble
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Figure 9. Relaxation zone setup for test of scattering about a cylinder in open water.

the analytical far-field solution as close as possible. See Figure 9. We
focus on a single test case to investigate more closely the performance
of the model for the case of wave scattering about a cylinder with radius
a = 0.5 m. Waves of length L = 1.0 m are generated over a flat sea bed
of still water depth d = 1/(2π) m such that the dimensionless depth is
kd = 1.0 everywhere in the domain.

In Figure 11 we have shown the computed diffraction diagrams for
both the exact linear solution and the computed solution for the case of
a curvilinear boundary representation of the solid cylinder surface. The
computed results are determined from data obtained at the end of the
simulation over (the last) one wave period of time. Final time was t = 25
s, and the time increment was ∆t = 0.03 s. A local approximation order
of P = 4 is used.

A qualitative comparison of the results can be made by inspecting
Figure 11. The computed results obtained using curvilinear elements
locally results in a good agreement with the analytical results. However,
some discrepancies caused primarily by reflections from the relaxation
zones exists. These discrepancies at the cylinder surface are found to
be less than 5% in the computational domain and less than 1.5% at the
cylinder surface. Thus, they are within ”engineering accuracy”. Further
in Figure 10 a snapshot at time t = 25s for the computed wave fields
in the two cases considered. The wave fields have been scaled to fit the
figure window. From these figures, it is seen how the local symmetry
boundary conditions result in tangential flow to the solid wall faces.
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Figure 10. Snapshot of computed wave field in the near-region of the solid
surface-piercing cylinder. The cylinder surface is represented using curvilinear
approximations.
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Figure 11. a) Exact, and b) relative errors in percent in computed solution for
diffraction and maximum wave run up diagrams for a cylinder in an open water
with curvilinear boundary approximations.

6.3. Regular waves over a semicircular shoal

In a final set of tests, we consider how well the numerical model is able
to predict shoaling waves. A linear case if first checked, after which
we compare with the experiments carried out by Whalin (1971). It is
noted that this test case was also considered in a DG-FEM setting by
Eskilsson and Sherwin (2005).
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Following Dingemans (1997) a linear solution of the wave envelope of
the refracted wave field can be obtained by introducing a parabolic ap-
proximation to the dispersive and non-dissipative mild slope equations
resulting in the following equation system accounting for variations in
the local wave amplitudes A(x)

cg = 1 +
2kd

sinh(2kd)
,

∂xA − i(k − k0)A +
A

2cg
∂xcg −

i

2ωcg
∂y(ccg∂yA) = 0, (30)

where the incoming wave field is given in terms of the scalar potential
φ = A(x)eik0x. Here k0 is a reference wave number, k the local wave
number, and cg the group velocity. This parabolic equation can be
solved using a standard Crank-Nicolson finite difference method, e.g.
as described in Press et al. (1992).

In the experiments, a wave tank was used containing a semi-circular
shoal connecting the deep part of the basin with the the shallow part.
The shoal is defined according to (scale in meters)

d(x) =







0.4572 , x ≤ 10.67 − Λ(y)
dshoal(x) , 10.67 − Λ(y) < x < 18.29 − Λ(y)
0.1524 , x ≥ 18.29 − Λ(y)

,

dshoal(x) = 0.4572 + 0.04(10.67 − Λ(y) − x)

Λ(y) =

{
√

6.096y − y2 , y ≥ y0
√

6.096y0 − y2
0 , 0 ≤ y < y0

, (31)

where we have introduced a parameter y0 to be able to exercise some
control over the magnitude of the ∂yd(x) near y = 0m as very large
values in the derivative were found to cause numerical instability at
the outer boundaries. Thus, by the minor modification introduced in
the shoal definition, we can control the upper limit of the magnitude
of the gradient and ensure that it vanishes at the outer boundaries. In
the original experiment by Whalin the shoal definition corresponds to
the one given with y0 = 0m. Thus, we define y0 = 0.01m and hence
only the southern domain boundary nodes are affected. This allow us
to resemble the original experiments closely. The depth contours of the
semicircular shoal are shown in Figure 12. Combined wave generation
and absorption zones are introduced near the western boundary and
have a total length of one and a half wave lengths. At the interface
between the relaxation region and the numerical wave tank (x ≈ 5.9
m) the triangle edges coincide with the interfaces of the relaxation zone
to obtain a smooth generation, see Figure 13. At the eastern boundary
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Figure 12. Depth contours of symmetric half of semicircular shoal.
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Figure 13. Grid representation of half-sized symmetric part of domain containing
588 elements each of characteristic length approximately 0.6m. Domain bounding
box x ∈ [0, 35m]x[0, 3.048m].

we absorb outgoing waves over two wave lengths. We conduct a test
similar to the original experiment by Whalin (1971) where waves of
period T = 2 s and wave height H = 0.0150 m are generated in the
deep part of the basin. For the linear test we generate a monochromatic
progressive wave (L = 3.9095m) and for a comparison with experimen-
tal data we determine a stream function solution (L = 3.91049m) to
avoid harmonic generation due to inconsistent boundary conditions.

In Figure 14 a snapshot of the free surface elevation at t = 50 s
is shown in a linear simulation where y0 = 0.01 m. Note, that the
solution has been reflected symmetrically about y = 3.048 m as only
half of the domain is used due to the symmetry of the experiment.
In the computation a time increment of ∆t = 0.03 s was used and
a total of 1667 time steps. The spatial domain was subdivided by 588
elements of order P = 4. The solution method for the linear system was
GMRES combined with LU preconditioning of the linearized system.
A comparison between the exact and the computed curve of the wave
envelope along the centerline y = 3.048 m is shown in Figure 15 a).

In a fully nonlinear simulation we apply a mild exponential cut-off
filter with parameters (Nc, α, s)=(0,12,25) for stabilization. A com-
parison with the experimental data is shown in Figure 15 b). The
harmonic analysis shows that the amplitudes of the time harmonics
are overestimated compared to the experimental data. Further, as a
result of some minor Gibbs oscillations in the computation there are
noticeable oscillatory patterns in the harmonics. These inaccuracies are
unphysical in the sense that they are believed to have been caused by
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Figure 14. Snapshot at t = 50 s of free surface in linear refraction test of plane
waves over semicircular shoal. Free surface elevation exaggerated 5 times. Padé (2,2)
rotational velocity formulation.
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Figure 15. Computed linear and nonlinear solutions.

the discontinuous gradients of the depth function d(x), which has been
computed exactly.

7. Summary & concluding remarks

By the proposed methodology it has been demonstrated by examples
in two horizontal dimensions that fundamental and important wave-
structure problems can be solved accurately in complex wall domains
of arbitrary shapes. Further, the methodology has been kept practical
by employing a spatial discretization using a nodal DG-FEM based on
the method of Bassi-Rebay. External boundary conditions in a finite
domain surrounded by vertical bottom-mounted and surface-piercing
walls are straightforwardly imposed using a ”ghost”-flow technique
combined with simple symmetry considerations. The outcome is a prac-
tical method which is suitable for solving a broad range of different
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water wave problems. Current limitations are the efficiency of the model
and robustness for nonlinear waves due to aliasing-driven instabilities.
These limitations are therefore subject of ongoing research.

Appendix

A. Differential operators

A number of differential operators arise as a result of the derivation
procedure for the high-order Boussinesq formulation. The definitions of
these continuous differential operators for use with either of the three
different formulations in two horizontal dimensions are given here for
the Padé (2,2) version. The continuous operators are determined using
the power rules of ∇ as described in the original work by Madsen
et al. (2002). All coefficients and variables used in the definitions are
introduced below for the near-optimal choice for the expansion level
mid-depth σ = 0.5.

The differential operators for the full rotational velocity formulation
are given as

A01 = λ∂x + γ3λ
3(∂xxx + ∂xyy), A02 = λ∂y + γ3λ

3(∂xxy + ∂yyy),
A1 = 1 − α2(∂xx + ∂yy), A11 = 1 − α2(∂xx),
A2 = −α2(∂xy), A22 = 1 − α2(∂yy),
B0 = 1 + γ2λ

2(∂xx + ∂yy), B11 = β1∂x − β3(∂xxx + ∂xyy),
B12 = β1∂y − β3(∂xxy + ∂yyy),

with the following operators for handling a mildly varying sea bed

S01 = ∂xd · C11 + ∂yd · C2, S02 = ∂xd · C2 + ∂yd · C22,
S03 = −∂xd · C13 − ∂yd · C23,

where

C11 = 1 − c2λ
2(∂xx), C2 = −c2λ

2(∂xy),
C13 = λ∂x − s3λ

3(∂xxx + ∂xyy), C22 = 1 − c2λ
2(∂yy),

C23 = λ∂y − s3λ
3(∂xxy + ∂yyy).

The local height of the water column from the sea bed to the chosen
expansion level is defined as λ ≡ d+ẑ. The spatially varying coefficients
are defined as

β1 ≡ z − ẑ, β3 ≡ (z−ẑ)3

6 − ẑ2(z−ẑ)
10 α2 ≡ (z−ẑ)

2 − ẑ2

10 ,
γ2 ≡ −2

5 , γ3 ≡ − 1
15 .
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The free parameter coefficients in the terms responsible for a varying
sea bed has been determined for the choice of σ = 0.5 for the Padé
(2,2) version in Jamois et al. (2006) to be

c2 = 0.242027, s3 = 0.00106481,

minimizing the shoaling errors in the application range kd ∈ [0, 10].
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Sørensen, O. R., Schäffer, H. A., and Sørensen, L. S. Boussinesq-type modelling using
an unstructured finite element technique. Coastal Engineering, 50, 181-198, 2004.

Walkley, M. A., and Berzins, M. A finite element method for the one-dimensional
extended Boussinesq equations. Int. J. Numer. Meth. Fluids., 29, 143-157, 1999.

Walkley, M. A., and Berzins, M. A finite element method for the two-dimensional
extended Boussinesq equations. Int. J. Numer. Meth. Fluids., 39, 865-885, 2002.

Whalin, R. W. The limit of applicability of linear wave refraction theory in a
convergence zone. Research report H-71-3, U.S. Army Corps of Engineers, WES,
Vicksburg, Mi, Res. Rep.

Wilcox, L. High-order accurate methods for solving the time-harmonic Maxwell’s
equations. Ph.D. thesis, Division of Applied Mathematics, Brown University,
USA, 2006.

paper.tex; 15/12/2006; 9:52; p.25



paper.tex; 15/12/2006; 9:52; p.26


