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Abstract. We explore the use of PDE constrained nonlinear optimization techniques
to optimize and design electromagnetic crystals which exhibit frozen mode behavior.
This is characterized by the association with Van Hove singularities in the dispersion
relation, e.g., stationary reflection points and degenerate band edge points. Hence, the
optimization process modifies the dispersion relation by adjusting the geometries and
material parameters. The resulting algorithm is found to be capable of recovering all
known crystal configurations as well as many new configurations, some of which display
dramatically improved properties over previously used configuration. We investigate
both gyrotropic photonic crystals and degenerate band edge crystals as well as the
more complex case of the oblique incidence where we extend the investigation to the
three-dimensional case to identify the first three-dimensional crystal exhibiting frozen
mode behavior.

Key words: PDE constrained optimization, Method of Matched Asymptotics, Frozen mode,
Photonic crystal

1 Introduction

Controlling the flow of electromagnetic waves in materials has been the frontier of our
technologies in the last decade. Along with prohibiting wave propagation or localizing
wave in a certain area, slowing down wave at the significant rate has grabbed broad
attentions. Recent studies of periodic structures of several different anisotripic materials
shows that when a monochromatic wave with a certain frequency propagates in such
structures, it shows abnormal electromagnetic phenomena such as dramatic slow-down of
the wave, the significant increase of field amplitude and singularity of the trasmittance
rate, which are classified as the frozen mode. These unique features of the frozen mode
are attractive for numerous practical applications and recent studies [2] have confirmed
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the robustness of these phonomena. In the beginning, the frozen mode was regarded as
a distinctive phenomenon only related to stationary inflection points of the dispersion
relations ω(k) such as,

∂ω

∂k
= 0;

∂2ω

∂k2
= 0;

∂3ω

∂k3
!= 0 at ω = ω0

However, it is worth mentioning that these properties of the dispersion relation are special
cases of what is known as Van Hove singularities [7] as points where the first derivative of
the dispersion relation ω(k) vanishes, i.e.,

∂ω

∂k
= 0, at ω = ω0

This nomenclature is related to density of state(DOS), since it is well-known that DOS is
inversely proportional to ∂ω/∂k [8].

However, all previous studies have focused on the analysis of crystal configurations
found by a trial-and-error technique which tends to limit the number of parameters one
can freely vary. This limits the flexibility in the design of such crystals and leaves open the
question of whether it is generally possible to achieve the sought-after properties in the
dispersion relation, e.g., when given some specific materials, one can modify the geometric
properties of the crystal as needed.

To address this problem in a more systematic way, we consider the use of a PDE
constrained optimization approach where we use the dispersion relation, given by the
transfer matrix method or by solving the Maxwell eigenproblem, in combination with the
algorithm of Method of Moving Asymptote(MMA) [9–13] to recreate and optimize known
configurations as well as to design entire crystal arrangements.

In this study, we consider the optimization and the design of three different types
of crystals, all exhibiting the frozen mode phenomena. The first one is a gyrotropic
photonic crystal consisting of two misaligned anisotropic layers and one magnetic layer.
Its dispersion relation has a stationary inflection point ω0 on the 2nd band. The second
class of crystals consists of two misaligned anisotropic layers and vacuum between them.
Its dispersion relation has a degenerate band edge ωd in the first band. The final structure
consists of only one anisotropic layer with εxz != 0 and vacuum between them. However,
the frozen mode phenomenon only emerges when the incident wave propagates into this
layer at an oblique angle. This latter case is quite different from the previous two cases.
The dispersion relation where a stationary inflection point ω0 lies was originally computed
by a one-dimensional transfer matrix method using tangential consistency of wave vector.
To verify the existence of a stationary inflection point in general three dimensional setting
which was previously unascertained, we first solve the general Maxwell eigenproblem to get
the dispersion relation with initial parameter sets and apply the optimization techniques
to seek a stationary inflection point in the dispersion relation of three dimension.

The remaining part of the paper is organized as follows. In Sec. 2, we briefly recall the
physical model, Maxwell’s equations and how one recovers the dispersion relation from
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these equations. This sets the stage for Sec. 2 where we explain the implementation of the
optimization method based on Method of Moving Asymptote(MMA). In Secs 3 and 4, we
display the methods and results of optimizing the magnetic frozen mode and degenerate
band edge for known designs as well as new configurations, respectively. Section 5 is
devoted to the design of crystals for the oblique case and its modeling in the time domain.
We conclude with a few remarks and future works in Sec. 6.

2 Physical Model

We consider Maxwell’s equations

∇× Ẽ = −dB̃
dt

, ∇× H̃ =
dD̃
dt

where Ẽ and H̃ is the electric field and magnetic field, respectively, D̃ and B̃ the displace-
ment field and the induction field. These fields are related by linear constitutive relations
as follows.

D̃(z) = ε̂(z)Ẽ(z), B̃(z) = µ̂(z)H̃(z)

where we have assumed that (ε̂, µ̂) are homogeneous in the (x, y)-plane. If we consider
harmonic solutions with frequency ω, we recover the Maxwell’s equations in the frequency
domain.

∇× Ẽ = iωµ̂(z)H̃ . ∇× H̃ = −iωε̂(z)Ẽ (2.1)

To simplify the above equations, we introduce the normalized quantities using

z =
z̃

L̃
, t =

t̃

L̃/c̃0

where, L̃ is a reference length and c̃0 = (ε̃0µ̃0)−
1
2 is the dimensional speed of light in

vacuum. Also, Ẽ and H̃ are normalized as

E =

√
ε̃0

µ̃0

Ẽ
H̃0

, H =
H̃
H̃0

where H̃0 is a dimensional reference magnetic field strength. By substituting these nor-
malized quantities into Eq.(2.1), we obtain the following non-dimensionalized equations

∇× E = iωµ̂(z)H . ∇× H = −iωε̂(z)E ,

where (ε̂, µ̂) now represent the relative permittivity and permeability, respectively.
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If we now assume that the solution is periodic and seek solutions of the form
[

$E($x)
$H($x)

]
=

[
$Ek
$Hk

]
exp(i$k · $x) , $k = wave number

we recover the modal equation

(∇ + i$k) × Ek = iωµ̂(z)Hk , (∇ + i$k) × Hk = −iωε̂(z)Ek ,

which simplifies as

(∇ + i$k) × 1
µ̂(z)

(∇ + i$k) × Ek = ω2ε̂(z)Ek

For a given value of the wave vector $k, this is recognized as an eigenvalue problem for
(ω2,Ek), from which we recover the dispersion relation ($k, ω($k)).

Hence, when optimizing the crystals, we must ensure that all considered solutions
satisfy the above eigenvalue problem which emerges as the constraints in the optimization
process.

The goal of the optimization is to identify one type of Van Hove singularities [7] in the
dispersion relation, leading to a very strong divergence of the density of states(DOS) near
the corresponding frequency. There are several types of singularities, but we are specially
interested in finding singularities where the first and second derivative are both zero, i.e.

∂ω

∂k
= 0,

∂2ω

∂k2
= 0, at ω = ω0

We state this equivalently as the following minimization problem.

minimize λ

∣∣∣∣
dω

dk
($x)

∣∣∣∣ +
∣∣∣∣
d2ω

dk2
($x)

∣∣∣∣ , at $k = $k0 (2.2)

xmin
j ≤ xj ≤ xmax

j , 1 ≤ j ≤ n

where, $x is a n-variable vector and λ is a weight constant. The objective function dω
dk ($x)

and d2ω
dk2 ($x) can be obtained directly from the dispersion relation with optimization vari-

able $x by solving the eigenvalue problem discussed in Sec. 2. Once the dispersion relation
is obtained, the derivatives of the objective functions can be computed easily. For exam-
ple, the fourth order approximation of its first and second derivatives are computed by
difference approximations such as,

∂

∂xj

(
dω

dk
($x)

)
=

1
12∆xj

(
−dωj+2

dk
+ 8

dωj+1

dk
− 8

dωj−1

dk
+

dωj−2

dk

)

∂2

∂x2
j

(
dω

dk
($x)

)
=

1
12∆x2

j

(
−dωj+2

dk
+ 16

dωj+1

dk
− 30

dωj

dk
+ 16

dωj−1

dk
− dωj−2

dk

)

,where
dωj

dk
=

dω

dk
($x + j∆$x), 1 ≤ j ≤ n
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In fact, this fourth order approximation is preferred in the computation of the derivatives
to increase the accuracy and to make the fast convergence. Furthermore, it is required
to obtain an initial guess $k0 or at least a group of possible candidates of $k0s. Identifying
suitable $k0 is one of most critical and significant factors of convergence of the optimization
solution. We have identified the following approach to work well.

1. Divide the dispersion relation into several sections such that each section contains
only one wave vector with |dωdk ($k)| < ε & 1.

2. For each section, find one wave vector $k0 such that

D12($k0) = min
i

|
i+2∑

"=i−2

dω

dk
($k")|, i ∈ section I

Note that the function inside the bars is a way of indicating the amount of the first
and the second derivative at the same time

3. Optimize the objective function at $k0.

Since the objective function is generally not convex, we use the algorithm of Method
of Moving Asymptote(MMA). The application of MMA to find singularity points of dis-
persion relation can be stated briefly as follows. First, Eq.(2.2) can be changed into the
following equivalent problem.

minimize f0(x) = z +
4∑

i=1

ciyi (2.3)

subject to f1(x) = λ
dω

dk
($x) − y1 ≤ 0, f2(x) =

d2ω

dk2
($x) − y2 ≤ 0

f3(x) = −λ
dω

dk
($x) − y3 ≤ 0, f4(x) = −d2ω

dk2
($x) − y4 ≤ 0

z ≥ 0, yi ≥ 0, 1 ≤ i ≤ 4,
xmin

j ≤ xj ≤ xmax
j , 1 ≤ j ≤ n

where, y1, · · · , yn and z are artificial optimization variables. Note that at the optimized
solution $x, z is zero and yi is given as the maximum of each constraint function. Now, we
have the non-linear optimization problem with several constraints. For these fi($x)s, let’s
define gi(x) in the following way,

gi(x) = ri +
n∑

j=1

(
pij

Uj − xj
+

qij

xj − Lj
) (2.4)

pij = max{0, (Uj − xj)2
∂fi

∂xj
}, qij = max{0,−(xj − Lj)2

∂fi

∂xj
}

ri = fi(x) −
n∑

j=1

(
pij

Uj − xj
+

qij

xj − Lj
), 1 ≤ i ≤ 4, 1 ≤ j ≤ n
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The parameters Lj and Uj(known as moving asymptotes) are chosen as Lj < xj < Uj and
play a critical role in the convergence of the optimization scheme. In fact, Lj and Uj are
adjusted for each iteration according to the convergence of the solution. Note that the
second derivatives of gi are given as

∂2gi

∂xjx"
= δj"

(
2pij

(Uj − xj)3
+

2qij

(xj − Lj)3

)
, 1 ≤ j, ' ≤ n

Since pij ≥ 0, qij ≥ 0, gi is a convex function. In fact, as long as Lj and Uj are finite,
gi is strictly convex in all variables except for ∂gi

∂xj
(x) = 0, 1 ≤ j ≤ n. With gis as in the

Eq.(2.4), we have the following subproblem.

P : minimize
n∑

j=1

(
pij

Uj − xj
+

qij

xj − Lj

)
+ r0 (2.5)

subject to
(

pij

Uj − xj
+

qij

xj − Lj

)
+ ri ≤ fi, 1 ≤ i ≤ 4

xmin
j ≤ xj ≤ xmax

j , 1 ≤ j ≤ n

Then, the Lagrangian function corresponding to this problem is given by

W (x, y) = $r0 − $yT$r +
n∑

j=1

(
p0j + $yT $pj

Uj − xj($y)
+

q0j + $yT $qj

xj($y) − Lj

)

In fact, W (x, y) is differentiable, smooth and concave. Finally, the Lagrangian dual prob-
lem with this Lagrangian function is as follows.

D : maximize W (x, y) = $r0 − $yT$r +
n∑

j=1

(
p0j + $yT $pj

Uj − xj($y)
+

q0j + $yT $qj

xj($y) − Lj

)

subject to y ≥ 0

This yields a nice convex optimization problem and it can be solved by a primal-dual
Newton method. The details for this primal-dual method are given in [13]

3 Optimization and Design of Magnetic Crystals

The frozen mode in the gyrotropic crystal occurs when a monochromatic wave with fre-
quency ω0 propagates into a periodic array consisting of two misaligned anisotropic layers
and one magnetic layer(Fig. 1). In the dispersion relation, this ω0 is a stationary inflection
point with the following properties

∂ω

∂k
= 0,

∂2ω

∂k2
= 0,

∂3ω

∂k3
!= 0, at ω = ω0 (3.1)
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As shown in [4], one set of parameters parameters resulting in an inflection point at ω0 is

For A layer : ε̂ =
[

13.61 + 12.40 cos(2φ) 12.40 sin(2φ)
12.40 sin(2φ) 13.61 − 12.40 cos(2φ)

]
, µ̂ = I

For F layer : ε̂ =
[

5.0 0.0
0.0 5.0

]
, µ̂ =

[
60.0 i37.0

−i37.0 60.0

]

φ1 = 0, φ2 = −π/4, LF = 0.0047454, LA = 0.5(1.0 − LF)
k0 = 2.6329, ω0 = 0.607676756(c/L)

where φ1, φ2 is the misalignment angle of the first and second anisotropic layer. Also LF

is the thickness of F layer and LA1, LA2 are those of the first and second anisotropic layer,
respectively.

The first test is to recover this set of parameters by the aforementioned optimization
technique and, subsequently, seek sets of parameters if possible. Since the periodicity is
along z direction only, the dispersion relation of the magnetic frozen mode can be obtained
by the transfer matrix method rather than solving the full Maxwell eigenvalue problem.

The transfer matrix method is a way of finding the dispersion relation from Bloch
solutions of Maxwell’s equations in planar structures. The transfer matrix(TL(ω)) can be
obtained with bases of tangential components of electrical and magnetic fields. Then, it
is used for Bloch solutions of the Maxwell’s equations in a periodic media such as

qk(z + L) = eikLqk(z), qk = [Ex Eu Hx Hy]Tk

Using the property of transfer matrix TL(ω)qk(z) = qk(z + L), we get the following char-
icteristic equation.

(TL(ω) − eikL)qk(L) = 0 =⇒ det(TL(ω) − eikL) = 0

0 1 2 3 4 5 6
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0.1
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0.3

0.4

0.5

0.6

0.7

0.8

w0

Figure 1: Periodic structure of gyrotropic photonic crystals consisting of two different anisotropic materials with
one magnetic layer(left) and its dispersion relation(right).
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Figure 2: Scenes frm optimization process with one variable LF (left to right). LF =0.0244(left), 0.009453(cen-

ter), 0.00474(right) after 6 iterations, dω
dx = 3.97d-13, d2ω

dx2 = 0.007907 with λ = 10000.

which yields the dispersion relation between ω and the wave vector k. The transfer matrix
of an anisotropic layer with misalignment angle φ (TA) and a magnetic layer (TF ) are
given as

TA(φ,LA) = W (φ,LA)W−1(φ, 0), TF (LF ) = W (LF )W−1(0)

W (φ,LA) =





(cos φ)ein1a (cos φ)e−in1a −(sinφ)ein2a −(sinφ)e−in2a

(sin φ)ein1a (sinφ)e−in1a (cos φ)ein2a (cos φ)e−in2a

−η1(sinφ)ein1a η1(sinφ)e−in1a −η2(cos φ)ein2a η2(cos φ)e−in2a

η1(cos φ)ein1a −η1(cos φ)e−in1a −η2(sinφ)ein2a η2(sinφ)e−in2a





W (LF ) =





ein1f e−in1f −iein2f −ie−in2f

−iein1f −ie−in1f ein2f e−in2f

iη1ein1f −iηe−in1f −η2ein2f η2e−in2f

η1ein1f −ηe−in1f −iη2ein2f iη2e−in2f





where, a = ω
c LA and f = ω

c LF . Then, the transfer matrix of three-cell layer is

TL(φ1, φ2, LA1, LA2, LF ) = TF (LF )TA(φ2, LA2)TA(φ1, LA1)

and the dispersion relation of this layer is obtained by solving

det(TL − ξI) = 0, ξ = eikL, L = LA1 + LA2 + LF .

The left hand side is a fourth order polynomial and we can compute the roots of it by
simple root-finding.

As for choosing wave vector k0 corresponding to ω0, we first find the wave vector kb

corresponding to a band edge ωb(the highest peak such that dω
dk |ω=ωb = 0) and seek k less

than kb where the minimum of D12 occurs as discussed above. However, this may still miss
the true candidates of wave vector k0 for optimized solution ω0. To address this issue, we
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Set1 Set2 Set3 Set4
Input n 1 2 2 4

variables LF , (LA1 = LA2) LF , LA1 LF , LA1 LF , LA1, εA, δA

φ2 −π/4 −π/4 −π/3 −π/4
Solution LF 0.00474 0.00480 0.00490 0.00470

LA1 0.49763 0.44555 0.22056 0.45001
εA 5.1 5.1 5.1 5.0
δA 1.1 1.1 1.1 1.18189
ω0 0.60769 0.60950 0.67177 0.62171
k0 2.63894 2.63894 2.70177 2.63894

dω
dk |ω=ω0 3.9666d-13 2.41590d-16 6.5758d-16 1.80310d-12
d2ω
dk2 |ω=ω0 0.007907 0.00898 0.00917 0.00191
TR rate 0.3388 0.4081 0.7786 0.3109

Table 1: Optimized solutions with different number of variables or different initial values for magnetic frozen
mode. φ2=misalignment angle of second anisotropic layer(we let φ1 = 0). LF = thickness of magnetic layer,
LA1=thickness of the first anisotropic layer. εA and δA are used in the permittivity of anisotropic layer as
follows.

ε̂ =
[

εA + δA cos(2φ) δA sin(2φ)
δA sin(2φ) εA − δA cos(2φ)

]
, TR rate = Transmittance rate

change the initial values if the converged solution in the sense of ‖x− xold‖ < ε0 does not
satisfy

dω

dk
< ε1,

d2ω

dk2
< ε2 .

In general, we shall allow the thickness of the magnetic layer(LF ), the thickness of the
first anisotropic layer (LA1) and material constants of the anisotropic layer(εA, δA) to vary
during the optimization, although this could be extended as needed. In Fig. 2, we show
the sequence of convergence of the dispersion relation for a stationary inflection point
using optimization with just one variable, LF .

We note that the optimized solution for LF is accurate up to 5.0e-06 with the ana-
lytically derived LF [4] and the difference is negligible in the sense of sensitivity. Other
optimized solutions with different number of variables(n) are shown in Table 1. We ob-
serve that the thickness of F layer is approximately the same for all sets, but the thickness
of A layer varies depending on the misalignment angle or the material constants. The
absolute values of the first and second derivative at each ω0 are sufficiently close to zero,
so all sets show every characteristics of the frozen mode.

However, the closer to zero the first derivative is, the slower the group velocity(velocity
of energy transfer) of the wave is. Also, the intensity of the field amplitude inside the layer
and the amount of energy density stacked inside the layer indicated by energy density flux
difference(EDFD) [2] are closely related to the transmittance rate. If a larger amount of
energy enters into layer, the growth of the field amplitude gets higher and energy density
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Figure 3: Maximum of the field amplitude(left) and the Energy Density flux difference(ef of the first cell - ef

of the last cell, ef=energy density flux) (right) for set 1(solid line), set 2(dashed line), set 3(dot-dashed line)
and set 4(dotted line) of Table 1. Number of cell = 16. E‖x polarization.

inside the layer gets stronger (Fig. 3).

4 Optimization and Design of Degenerate Band Edge Crys-
tals

Different from the stationary inflection points in the gyrotropic crystals, the third deriva-
tive of the dispersion relation also needs to be zero in the degenerate band edge crystals,
i.e.

∂ω

∂k
= 0,

∂2ω

∂k2
= 0,

∂3ω

∂k3
= 0 at ω = ω0

According to the paper [17], the following set of parameters generate a degenerate band
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0.2
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0.6

0.8

1

1.2

w0

Figure 4: Periodic crystal structure allowing a degenerate band edge. The crystal consists of two misaligned
anisotropic layers with vacuum between them(left) and its dispersion relation(right)
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edge point at k0 = π.

For A layer : ε̂ =
[

13.61 + 12.40 cos(2φ) 12.40 sin(2φ)
12.40 sin(2φ) 13.61 − 12.40 cos(2φ)

]
, µ̂ = I

φ1 = 0, φ2 = π/4, LV = 0.45891, LA = 0.5(1.0 − LV)
k0 = π, ω0 = 1.0094052895(c/L)

,where LA and LV are the thiness of anisotropic layer and vacuum, respectively. One of
main advantages of this configuration is the lack of a magnetic components which are both
complicated and difficult to manufacture with a sufficiently low loss. As shown in Fig. 4,
the dispersion relation is indeed flat at the degenerate band edge point and it increases
the speed of convergence when minimizing

J = λ

∣∣∣∣
dω

dk

∣∣∣∣ +
∣∣∣∣
d2ω

dk2

∣∣∣∣

As for the magnetic case, the one-dimensional nature of the problem enables the use of
the transfer matrix method, which is expressed as for the three cells.

TL(φ1, φ2, LA1, LA2, LV ) = TA(φ2, LA2)TV (LV )TA(φ1, LA1)

where

TV (LV ) = W (LV )W−1(0), W (LV ) =





eiv e−iv −eivf −e−iv

eiv e−iv eiv e−iv

−eiv e−iv −eiv e−iv

eiv −e−iv −eiv e−iv





and v = ω
c LV . The structure of the periodic array shown in Fig. 4 always displays a

degenerate band edge at k0 = π independent of input parameters, so we don’t need to find
another candidates sets of k0. As for the parameters of optimization, similar to magnetic
frozen mode, we consider the thickness of the vacuum layer (LV ), the thickness of the first
anisotropic layer(LA1) and the material constants of the anisotropic layer(εA, δA).

Figure 5 shows the sequence of convergence of the dispersion relation for a degenerate
band edge point for optimization using one variable LV to recover the known solution,
confirming the robustness of the method and the computed solution.

In Table 2 we show other solutions found by using different parameters(n) for optimiza-
tions. We observe that the thickness of vacuum is approximately the same for all sets, but
the thickness of anisotropic layer varies. The first derivative and the second derivative of
all sets are less than 1.0e-10, which is sufficiently small to make the phenomena distinctive
in the time domain.

However, one big difference is that the transmittance rate in set 4 is significantly larger
than those for the other sets in some contrast to the widely held belief that total reflectance
or negligible amount of transmittance rate at degenerate band edge is inevitable. When
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Figure 5: Scenes from pptimization process with one variable Vw(left to right). Vw=0.3029(left), 0.3994(cen-

ter), 0.4589 (right) after 6 iterations, dω
dx = 2.6258e-015, d2ω

dx2 = 1.3466e-013 with λ = 100.

it was believed so, as one of way to increase the transmittance rate, Figotin and Vitebsky
suggested to use Fabry-Pérot peak cavity resonance in the paper [17]. In other words,
instead of sending a monochromatic wave with the exact degenerate band edge frequency
ω0, we send a monochromatic wave with ω1 which is slightly less than ω0, but with a
transmittance rate which is significantly higher because of the finiteness of the slab.

One of optimized solutions shows a transmittance rate of 0.3474 approximately, which
is more than 50 times larger than those of the other sets. This result seems to be encour-
aging, since we don’t need to blur the distinctive features of the frozen mode by using ω1

different from ω0. Fig. 6 and 7 show the field amplitude at T=300.0 and the increase
of the maximum field amplitude with set 1 and set 4, respectively. These figures clearly
display the significance of large transmittance rate at the degenerate band edge.
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Figure 6: Field amplitude(left) and Maximum of field amplitude (right) of Degenerate band edge with set 1.
Number of unit cell=32. Number of grid points per each domain=12. One unit cell = A1+V+A2 as shown in
Figure 4, A1, V and A2 constitute each domain. E‖x polarization.
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Figure 7: Field amplitude(left) and maximum of field amplitude (right) of degenerate band edge with parameter
set 4. Number of unit cell=32. One unit cell = A1+V+A2 as shown in Figure 4, A1, V and A2 constitute each
domain. Number of grid points per each domain=12. E‖x polarization.

Set1 Set2 Set3 Set4
Input n 1 2 2 4

variables LV , LA1 = LA2 LV , LA1 LV , LA1 LV , LA1, εA, δA

φ2 π/4 π/4 π/3 π/4
Solution LV 0.45890 0.46000 0.45005 0.45005

LA1 0.27055 0.29190 0.43633 0.45050
εA 5.1 5.1 5.1 7.0
δA 1.1 1.1 1.1 3.92
ω0 1.00940 1.01331 1.11726 0.88645
k0 π π π π

dω
dk |ω=ω0 2.9175d-16 2.9063d-16 0* 4.3189d-15
d2ω
dk2 |ω=ω0 6.0364d-14 1.3414d-13 1.5102e-013 3.8326d-10
TR rate 0.0064 0.0070 0.0440 0.3474

Table 2: Optimized solutions with different number of variables or different initial values for degenerate band
edge. φ2=misalignment angle of second anisotropic layer(we let φ1 = 0). LV = thickness of vacuum,
LA1=thickness of the first anisotropic layer. εA and δA are used in the permittivity of anisotropic layer as
follows. * = the value is less than machine accuracy.

ε̂ =
[

εA + δA cos(2φ) δA sin(2φ)
δA sin(2φ) εA − δA cos(2φ)

]
. TR rate = Transmittance rate
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5 Optimization and Design of Oblique Frozen Mode Crys-
tals

As proposed by Figotin and Vitebsky [5,6], stationary inflection points can be also gener-
ated without magnetic layers and with structures even simpler as the degenerate band gap
structures. To achieve this goal, one needs to break the symmetry and consider incident
waves at oblique angles. When an oblique incident waves propagates into a periodic layer
consisting of one anisotropic layer with εxz != 0 and vacuum, we can observe similar, but
weaker frozen mode inside the layer as compared to the gyrotropic crystal.

However, the crystal parameters in [5, 6] were computed by one dimensional transfer
matrix method based on the following tangential consistency of the wave to eliminate the
derivatives along x, y directions, i.e.,

dÊ

dx
= ikx,yÊ =

(
kx,y

ω

)
iωÊ =

(
kx,y

ω

)(
−dÊ

dt

)

The frozen mode was shown to exist by Chun and Hesthaven [2], after applying the above
consistency into Maxwell’s equations. However, the existence of the oblique frozen mode
in real three dimension remains in question since the above condition is artificial. To
model this general case where the transfer matrix method is not applicable, we must solve
the full Maxwell eigenvalue problems for the dispersion relation.

The solution of this more complicated problem can be computed with a freely available
frequency-domain solver [14]. In addition to choosing a wave vector k0, for the stationary
inflection point ω0, we need to choose a band containing ω0. For example, ω0 exists on the
second band and the first band for the magnetic frozen mode and degenerate band edge
respectively, but for the oblique frozen mode, no such information is known in advance.
To identify the band where ω0 exist, we search whole bands for a wave vector k0 such as

D12(k0) = min

∣∣∣∣∣∣

i+p∑

j=i−p

dω

dk
(kj)

∣∣∣∣∣∣
< ε, p ≥ 1, ε = small number

Figure 8: Array of crystals allowing an oblique frozen mode. The periodic structure consists of one anisotropic
layer with εxz #= 0 and vacuum between them. The incident waves need to propagate into the layer at an
oblique angle.
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Figure 9: Dispersion relation for the three-dimensional Maxwell problem with material parameters from paper [6]
(left), and with the optimized solution for the 8th band(right). A stationary inflection point ω0 is observed in
the dispersion relation only with the optimized solution

To increase the speed of the search process, we choose several bands in advance which
seem to have k0 satisfying the above inequality. As for parameters for optimization, we
use the oblique angle of incident wave(kx = ky), the thickness of vacuum(LV ) and material
constants of anisotropic layer(ε11 , ε33) with which material constant matrix is given as

ε̂A =




ε11 cos θ2 + ε33 sin θ2 0 (ε11 − ε33) cos θ sin θ

0 ε22 0
(ε11 − ε33) cos θ sin θ 0 ε33 cos θ2 + ε11 sin θ2



 ,

Among several stationary inflection points found by optimization, one of them with the
lowest frequency ω0 is given as follows(also see Fig. 9):

θ = π/4
ε11 = ε22 = 4.66812966, ε33 = 3.9656, LV = 0.5711535
$k = (−0.4800309,−0.4800309,−0.008982), ω0 = 1.295439
dω

dk ω=ω0

= 4.82793e − 4,
d2ω

dk2
|ω=ω0 = 0.004393

The dispersion relation resulting from the new parameters clearly show the correct prop-
erties for the three-dimensional crystal.

5.1 Time-Domain Modeling of the 3D Crystal

To observe the phenomena in three dimension, the new set of optimized parameters is
solved in a time-domain wave propagation model with periodic boundary condition along
x, y direction [20]. The periodic boundaries are x and y sides and absorbing boundary
condition(ABC) is added at the end of z-direction to truncate unnecessary reflection of
the outgoing waves(Fig. 10). Let only εxz be non-zero off-diagonal element for material
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Figure 10: Wave propagation problem with periodic boundary condition along x and y direction with ABC at
the end of z direction. The incident wave propagates into the layer with an oblique angle

constant matrix.





∂Ẽz
∂y − ∂Ẽy

∂z
∂Ẽx
∂z − ∂Ẽz

∂x
∂Ẽy

∂x − ∂Ẽx
∂y



 = − ∂

∂t




H̃x

H̃y

H̃z



 ,





∂H̃z
∂y − ∂H̃y

∂z
∂H̃x
∂z − ∂H̃z

∂x
∂H̃y

∂x − ∂H̃x
∂y



 =




εxx 0 εxz

0 εyy 0
εxz 0 εzz



 ∂

∂t




Ẽx

Ẽy

Ẽz





Assuming periodicity along x, y direction, we can express Ẽ, H̃ as two dimensional Fourier
series as follows.

Ẽ(x, y, z, t) = {
Ny/2∑

my=Ny/2

Nx/2∑

mx=Nx/2

E(mx,my, z, t)eimx
2π
Lx

xe
imy

2π
Ly

y}

H̃(x, y, z, t) = {
Ny/2∑

my=Ny/2

Nx/2∑

mx=Nx/2

H(mx,my, z, t)eimx
2π
Lx

xe
imy

2π
Ly

y}

where, Nx, Ny are number of points along each x and y direction and Lx, Ly are length of
domain along x and y direction, respectively. Note that Lx and Ly depend on the angle
of incidence of plane wave. By substituting these expansions into the above Maxwell’s
equations after implementing ABC, we have




(imy)Ez − ∂Ey

∂z
∂Ex
∂z − (imx)Ez

(imx)Ey − (imy)Ex



 = iω




sz 0 0
0 sz 0
0 0 1/sz








Hx

Hy

Hz








(imy)Hz − ∂Hy

∂z
∂Hx
∂z − (imx)Hz

(imx)Hy − (imy)Hx



 = −iω




εxx 0 εxz

0 εyy 0
εxz 0 εzz








sz 0 0
0 sz 0
0 0 1/sz








Ex

Ey

Ez





where ω stands for the frequency of the incident plane wave.
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Figure 11: Results of testing the code for 3D time domain modeling with periodicity along x, y direction.
Transmittance rate vs. incidence angle(left), transmittance angle vs. incidence angle(right). Solid line indicates
the exact value and circles indicate computed values.

Then, by substituting sz = 1 + σz/(iω), we have the following Maxwell equation in
time domain( ∀ mx ≤ |Nx/2|, ∀ my ≤ |Ny/2|, Dε = εxxεzz − ε2

xz)

∂Hx

∂t
=

∂Ey

∂z
− (imy)Ez − σzHx

∂Hy

∂t
= −∂Ex

∂z
+ (imx)Ez − σzHy

∂Bz

∂t
= −(imx)Ey + (imy)Ex

∂Hz

∂t
=

∂Bz

∂t
+ σzBz

Dε
∂Ex

∂t
= −εzz{

∂Hy

∂z
− (imy)Hz} + εxz{(imy)Hx − (imx)Hy} − σzEx

εyy
∂Ey

∂t
=

∂Hx

∂z
− (imx)Hz − σzEy

Dε
∂Dz

∂t
= εxz{

∂Hy

∂z
− (imy)Hz} − εxx{(imy)Hx − (imx)Hy}

∂Ez

∂t
=

∂Dz

dt
+ σzDz

A Discontinuous Galerkin Method is used for differentiation along z-direction as in the
paper [18, 19]. As for time marching, we use an implicit scheme for the linear deriva-
tives along z and an explicit scheme for what remains [15, 16]. To validate the code, the
transmittance rate and transmittance angle are computed when a plane incident wave
propagating from vacuum to a dielectric material with various oblique angles. As shown
in Fig. 11, it demonstrates the excellent performance of the scheme

In Fig. 12, we show the energy density flux and the field amplitude with the optimized
parameter values and observe several features of the frozen mode. In behalf of analysis,
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let’s define energy density flux difference(EDFD) as shown in [2]

EDFD =
∫

S
ef · nds =

∫

V
∇efdV , ef = energy density flux

note that this EDFD indicates the amount of energy density stacked inside the layer per
unit time. Then, we observe that there are significant amounts of EDFD along the z di-
rection between the first cell and the last cell. This leads to an increased field amplitude,
compresses the energy density and the slow-down of waves. However, each of these phe-
nomena are weaker than that of magnetic frozen mode as expected [2]. The maximum of
the field amplitude is increasing very slowly and the average velocity of the energy transfer
is approximately 0.4c. Fig. 13 compares EDFD for all directions for the crystals based
on the original values and the optimized values. With the optimized values, we observe
that the EDFD along x, y direction are almost zero, but EDFD along the z direction re-
mains significantly large even after a long time. With original values, EDFD along the
x, y direction remains nontrivial.
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6 Conclusion

We have explored the use of PDE constrained optimization along with design and op-
timization of photonic crystals exhibiting frozen mode behavior. This phenomenon is
related to the existence of Van Hove singularities in the dispersion relation. We have
demonstrated the ability to recover known solutions as well as computed several new sets
of parameters by optimizing the geometry and/or the materials of the crystals. For both of
the magnetic frozen mode and degenerate band edge, each sets of parameters obtained by
optimization with different number of variables show the generally similar phenomena, but
some features are different. Above all, the transmittance rate varies significantly, which
is a crucial element for energy density and field amplitude inside the layer. In particular
one set for the degenerate band edge displays a transmittance rate around 0.3475, which
is more than 50 times larger than those of the others.

For the case with the frozen mode requiring an oblique illumination, we succeed in
finding a stationary inflection point in three dimensions with parameters’ sets derived by
nonlinear optimization. The existence of the frozen mode in three dimension is shown
for the first time, but the phenomena themselves are not as distinctive as the previous
two instances. One of the reason can be the intrinsic property of the oblique array which
makes wave vector k0 too close to zero.

The current computational design tool allows one to specify materials and/or geome-
tries, then seek to design crystals with the sought-after properties, if they exist. The
computations shown here illustrate, however, that the Van Hove singularities are found
broadly in the dispersion relations, indicating that many configurations often exist. Fu-
ture works may include finding stationary inflection points or degenerate band edge points
showing strong frozen mode in 2 or 3 dimensional structures. We also believe that using a
more complex geometry, but employing simpler materials, can be a candidate for exploring
similar behavior.
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