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Abstract. We propose certified reduced basis methods for the efficient and reliable evaluation
of a general output that is implicitly connected to a given parameterized input through the harmonic
Maxwell’s equations. The truth approximation and the development of the reduced basis through a
greedy approach is based on a discontinuous Galerkin approximation of the linear partial differential
equation. The formulation allows the use of different approximation spaces for solving the primal
and the dual truth approximation problems to respect the characteristics of both problem types,
leading to an overall reduction in the off-line computational effort. The main features of the method
are the following: (i) rapid convergence on the entire representative set of parameters, (ii) rigorous
a posteriori error estimators for the output, and (iii) a parameter independent off-line phase and
a computationally very efficient on-line phase to enable the rapid solution of many-query problems
arising in control, optimization, and design. The versatility and performance of this approach is
shown through a numerical experiment, illustrating the modeling of material variations and problems
with resonant behavior.
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1. Introduction. Many applications related to computational optimization,
control, and design require the ability to rapidly, perhaps even in real time, and
accurately predict some quantities of interest under the variation of a set of parame-
ters. A similar need is found in the development of large simulation based databases
or the development of efficient ways to quantify uncertainty and its impact.

In such cases, an output of interest, here denoted by se, is often provided by
a functional applied to the solution of a parameterized partial differential equation
(PDE) that describes the underlying problem. More precisely,

(1.1)

∣∣∣∣∣∣∣∣∣

For an input ν ∈ D ⊂ Rq the output is defined by

se(ν) := l(ue(ν); ν) ∈ C,
where ue(ν) ∈ Xe is the solution of the linear PDE

L(ν)ue(ν) = f(ν).

The q-dimensional set of parameters ν, here denoting the input, determines a par-
ticular configuration of the system. In practice, the parameters can be related to
the description of sources, materials, geometries, uncertainties, etc. We have an im-
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REDUCED BASIS METHODS FOR MAXWELL’S EQUATIONS 971

plicit relationship between the input and the output through the partial differential
equation.

Our primary goal is to develop a systematic approach to obtain an accurate and
reliable approximation of the output of interest at very low computational cost for
applications where many queries, i.e., solutions, are needed. We will explore the use of
a reduced basis method by recognizing, and implicitly assuming, that the parameter
dependent solution ue(ν) is not simply an arbitrary member of the infinite-dimensional
space associated with the partial differential equation, but rather that it evolves on
a lower-dimensional manifold induced by the parametric dependence. Under this
assumption we can expect that as ν (∈ D ⊂ Rq) varies, the set of all solutions ue(ν)
can be well approximated by a finite- and low-dimensional vector space. Hence, for a
well chosen set of N parameters νi, there exist coefficients ci = cNi (ν) for any ν ∈ D
such that

∑N
i=1 ci ue(νi) is very close to ue(ν) when measured in an appropriate

norm.
The reduced basis method was first introduced in the 1970s for nonlinear struc-

tural analysis [1, 27], and it was subsequently abstracted, analyzed [5, 32], and gener-
alized to other types of parameterized partial differential equations [12, 28]. Most of
these earlier works focus on arguments that are local in the parameter space. Expan-
sions to a low-dimensional manifold are typically defined around a particular point
of interest, and the associated a priori analysis relies on asymptotic arguments on
sufficiently small neighborhoods [8, 30]. In such cases, the computational improve-
ments are quite modest. In [3, 17] a global approximation space was built by using
solutions of the governing PDE at globally sampled points in the parameter space,
resulting in a vastly improved method. However, no a priori theory or a posteriori
error estimators were developed in this early work.

In recent years, a number of novel ideas and essential new features have been
presented [22, 21, 39, 31, 38, 4, 10, 37, 34]. In particular, global approximation
spaces have been introduced and uniform exponential convergence of the reduced basis
approximation has been numerically observed and confirmed in [23], where the first
theoretical a priori convergence result for a one-dimensional parametric space problem
is presented. The development of rigorous a posteriori error estimators have also been
presented, thereby transforming the reduced basis methods from an experimental
technique to a computational approach with a true predictive value.

Furthermore, in cases where the problem satisfies an affine assumption, that is,
the operators and the data can be written as a linear combination of functions with
separable dependence of the parameter and the spatial variation of the data, an off-
line/on-line computational strategy can be formulated. The off-line part of the algo-
rithm, consisting of the generation of the reduced basis space, is ν-independent and
can be done in preprocessing. The computational cost of the on-line part depends
solely on the dimension of the reduced basis space and the parametric complexity of
the problem, while the dependence on the complexity of the truth approximation has
been removed, resulting in a highly efficient approach.

When the data of the PDE are not affine, this computational strategy cannot be
directly applied anymore and the on-line computational cost of the algorithm may be
rather high. Recently, in [4], a procedure allowing the treatment of some of these non-
affine operators has been presented and shown to recover the off-line/on-line efficiency
of the original algorithm. This technique, which also provides asymptotic a posteriori
error estimators, has been successfully used in several applications [10, 9, 26, 36].D
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972 Y. CHEN, J.S. HESTHAVEN, Y. MADAY, AND J. RODRÍGUEZ

Following standard techniques, we will consider (1.1) in weak form as

(1.2)

∣∣∣∣∣∣∣∣∣

For an input ν ∈ D ⊂ Rp the output is defined by

se(ν) := l(ue(ν); ν) ∈ C,
where ue(ν) ∈ Xe is the exact solution of the linear PDE

a(ue(ν), v; ν) = f(v; ν) ∀v ∈ Xe.

In contrast to most previous work, we focus on electromagnetic wave propagation
problems. There are many applications demanding rapid and reliable solutions to
these problems, e.g., radar cross section prediction [20] and waveguide design [11]. We
remark that the reduced basis method (RBM) has been successfully applied to similar
noncoercive problems such as the Helmholtz equation for time-harmonic acoustics [36,
39]. It was also used to achieve fast optimization of electrostatic and magnetostatic
problems such as cogging torque minimization [19, 18].

It is useful to realize that the output se(ν) can also be obtained using adjoint
techniques. Consider the adjoint problem

(1.3)

∣∣∣∣∣
Seek ψe(ν) ∈ Xe such that

a(φ,ψe(ν); ν) = l(φ; ν) ∀φ ∈ Xe.

We will refer to (1.2) as the primal problem and to (1.3) as the dual problem. One
has

f(ψe(ν); ν) = a(ue(ν),ψe(ν); ν) = l(ue(ν); ν) = se(ν).

As we will discuss later (see also [29, 31] for more details), an efficient and accurate
way to compute the output needs to solve both problems, the nature of which might
be slightly different except in the simple self-adjoint case. For this reason we will allow
the use of different approximation spaces for solving these two problems. This yields
some additional flexibility and may reduce the off-line computational effort without
adversely impacting the accuracy.

To solve the primal and dual problems for specific parameter choices, we will
use a discontinuous Galerkin method [13]. These methods have developed rapidly
during the last decade and have proven themselves to be an efficient and accurate
way to solve general wave problems and Maxwell’s equations in particular. While the
analysis of the resulting reduced basis method is influenced somewhat by the choice
of the approximation technique for the primal/dual problems, the general framework
developed here can be expected to generalize to other techniques such as classic finite
element methods.

The paper is organized as follows. In section 2 we briefly outline the harmonic
Maxwell’s equations and discuss appropriate boundary conditions and solution spaces.
This sets the stage for section 3 which discusses the discontinuous Galerkin method
for discretizing Maxwell’s equations. Section 4 is the first main part of this work and
outlines in detail the development of the reduced basis technique, including a priori
theory and a posteriori error estimates. In section 5 we address the second main
topic related to the algorithmic aspects of the method, while section 6 is devoted
to illustrating the performance of the algorithm on a nontrivial test case. Section 7
contains a few concluding remarks and suggestions for future work.

2. The harmonic Maxwell’s equations. Let us consider the harmonic charge-
free Maxwell’s equations defined on x ∈ Ω ⊂ R3 with ∂Ω representing the boundary
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REDUCED BASIS METHODS FOR MAXWELL’S EQUATIONS 973

of the domain of interest.

iωεE = ∇×H + J , iωµH = −∇×E(2.1)

∇ · (εE) = 0, ∇ · (µH) = 0.

Here E(x) = (Ex, Ey, Ez) and H(x) = (Hx, Hy, Hz) represent the electric and mag-
netic vectors phasor fields, J(x) = (Jx, Jy, Jz) represents the current source, and
(ε(x), µ(x)) are the tensors of electric permittivity and magnetic permeability, respec-
tively. To simplify matters we assume isotropic materials in which case ε(x) = ε(x)I,
where ε(x) is a scalar and I the 3-identity matrix. We make a similar assumption for
the permeability. The parameter ω reflects the angular frequency of the electromag-
netic wave.

The boundary conditions on the electric field are imposed on the tangential com-
ponents, n × E, which must remain continuous across a material interface endowed
with the outward pointing normal vector, n. The tangential field vanishes along a
perfectly electrically conducting metallic wall. For the magnetic field, the tangential
components n×H likewise remain continuous across material interfaces, while at a
perfectly electrically conducting wall, n ·H vanishes.

The natural space for solutions to Maxwell’s equations with a vanishing tangential
component for the electric field is Xe = H0(curl;Ω), defined as

H0(curl;Ω) =
{
v ∈

(
L2(Ω)

)3 |∇× v ∈
(
L2(Ω)

)3
,n× v = 0 on ∂Ω

}
.

If we define the standard L2-inner product and norm as

(u,v)Ω =

∫

Ω
u · v∗ dx, ‖u‖2 = (u,u)Ω,

the natural norm associated with Maxwell’s equations is

‖v‖2H(curl) = ‖v‖2 + ‖∇× v‖2.

The problem can be further simplified to recover the second order curl-curl formulation

(2.2) ∇× µ(x)−1∇×E − ε(x)ω2E = iωJ = f , x ∈ Ω.

Naturally, an equivalent equation can be obtained for the magnetic field.
If we define the bilinear form a(u,v) : Xe ×Xe → C as

(2.3) a(u,v) =
(
µ−1∇× u,∇× v

)
Ω
− ω2 (εu,v)Ω ∀u,v ∈ Xe,

then the variational statement for the curl-curl equation is as follows: find E ∈ Xe

such that

(2.4) a(E,v) = f(v),

provided we consider the simple case of perfectly electrically conducting walls for
x ∈ ∂Ω. Here,

f(v) = (f ,v)Ω =

∫

Ω
f · v∗ dx ∀v ∈ Xe.

More general situations and the general question of well posedness of Maxwell’s equa-
tions are discussed at length in [25].

The dual problem for this case is as follows: find ψ ∈ Xe such that

a(φ,ψ) = '(φ) ∀φ ∈ Xe,

where

'(φ) = (φ, l)Ω.
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974 Y. CHEN, J.S. HESTHAVEN, Y. MADAY, AND J. RODRÍGUEZ

3. The discontinuous Galerkin approximation. To solve (2.2), we employ
a discontinuous Galerkin method [13]; see also [14, 15]. To get started, let {Dk : k =
1, . . . ,K} be a collection of disjoint elements that partition Ω. The triangulation needs
not be conforming. On each of these elements, we assume that we can approximate
the solution of (2.2), E ∈ Xe, by a pth order polynomial; that is, we assume

x ∈ Dk : E ) Ek
h ∈ [Pk

p(x)]
3,

where Pk
p is the space of pth order complex-valued polynomials defined on Dk. The

global space of solutions, Xe, is thus approximated by Xe
h = ⊕k[P

k
p(x)]

3, and we seek
(qh,Eh) that satisfy the following elementwise statement:

(3.1)
(qh,∇× vh)Dk − ω2 (εEh,vh)Dk + (n× q̂h,vh)∂Dk = (fh,vh)Dk ∀vh ∈ Xe

h,

(µqh,wh)Dk = (Eh,∇×wh)Dk +
(
n× Êh,wh

)

∂Dk
∀wh ∈ Xe

h,

where we denote the piecewise polynomial representation of f by fh and n is the
outward unit normal vector to the element Dk. In these last equations, we have
introduced the numerical fluxes q̂h and Êh, which enforce connectivity between the
elements and give stability of the discrete problem.

Next, we obtain discrete versions of the formulations given by (2.4) and (2.3) and
reduce the problem of finding Eh ∈ Xe

h to be that given as

(3.2) ah(Eh,vh) = fh(vh) ∀vh ∈ Xe
h.

To do so, let us introduce some notations. Fo denotes the set of all interior faces
e = ∂D+ ∩ ∂D− for some two elements D+ and D−, and F∂ the set of all boundary
faces e = ∂D ∩ ∂Ω for some element D. We set F = Fo

⋃
F∂ . For a given internal

face e = ∂D+ ∩ ∂D−, we define the outward unit normal vector to D+ (resp., D−)
by n+ (resp., n−). Let u be a vector field. With u± := u|∂D± , we define the average
and the tangential jump of u in the standard way:

{{u}} =






u− + u+

2
, on Fo,

u, on F∂ ,

[[u]]T =






n− × u− + n+ × u+, on Fo,

n× u, on F∂ .

We also introduce the L2-inner product on any set of faces F̃ ⊂ F by

(ϕ,ψ)F̃ =
∑

e∈F̃

∫

e
ϕ · ψ∗ dγ,

where ϕ and ψ are the average or tangential jump defined above. Adding (3.1) over
all the elements, we obtain the following global formulation (∇h× denotes the local
curl-operator):

(3.3)
(qh,∇h × vh)Ω − ω2 (εEh,vh)Ω − ({{q̂h}}, [[vh]]T )F +

([[q̂h]]T , {{vh}})Fo = (fh,vh)Ω ∀vh ∈ Xe
h,

(µqh,wh)Ω = (∇h ×Eh,wh)Ω −
(
{{Êh −Eh}}, [[wh]]T

)

Fo

+
(
[[Êh −Eh]]T , {{wh}}T

)

F
∀wh ∈ Xe

h,
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REDUCED BASIS METHODS FOR MAXWELL’S EQUATIONS 975

where we have first integrated by parts in the second equation in (3.1) and used the
identity

∑

k

(n× uh,vh)∂Dk = ([[uh]]T , {{vh}})F − ({{uh}}, [[vh]]T )Fo .(3.4)

Among several possibilities for the numerical fluxes, we use

(3.5) q̂h = {{qh}}− τ [[Eh]]T , on F , Êh =






{{Eh}}, on Fo,

0, on F∂ ,

where we have assumed a perfectly electrically conducting boundary condition on ∂Ω.
Inserting these expressions into (3.3), we obtain
(3.6)
(qh,∇h × vh)Ω − ω2 (εEh,vh)Ω − ({{qh}}, [[vh]]T )F +

(τ [[Eh]]T , [[vh]]T )F = (fh,vh)Dk ∀vh ∈ Xe
h,

(µqh,wh)Ω = (∇h ×Eh,wh)Ω − ([[Eh]]T , {{wh}}T )F ∀wh ∈ Xe
h.

We observe in the second equation of (3.6) that the additional unknown qh can be
computed locally and removed from the equations; i.e., expressing the problem as a
system is done merely for notation convenience. Indeed, introducing the lift operator
(see [2] for a similar development)

r : (L2(F))3 −→ Xh;

ϕ ,→ r(ϕ) such that (r(ϕ), η)Ω = (ϕ, {{η}})F ∀η ∈ Xh,

and assuming that µ is piecewise constant on each element, we have

qh = µ−1∇h ×Eh − µ−1r([[Eh]]T ).

Inserting this last equation into the first equation of (3.6) and using the lift operator
r(·), we recover

(3.7)

ah(uh,vh) :=
(
µ−1∇h × uh,∇h × vh

)
Ω
− ω2 (εuh,vh)Ω

−
(
[[uh]]T , {{µ−1∇h × vh}}

)
F −

(
{{µ−1∇h × uh}}, [[vh]]T

)
F

+
(
µ−1r([[uh]]T ), r([[vh]]T )

)
Ω
+ (τ [[uh]]T , [[vh]]T )F ,

fh(vh) := (fh,vh)Ω .

Note that the system is symmetric for real valued materials. The parameter τ is
introduced to control the large null space and is generally taken to be τ ∝ p2/h, with
h being a measure of the local grid spacing and p the order of the local approximation.
See [13] for more details and further references for this scheme. The extension to the
adjoint problem is straightforward.

Finally we emphasize that we can use different meshes for the primal and the
dual problems to respect their specific natures. As a result, the approximation spaces
(denoted by Xp

h and Xd
h) are not the same. Neither are the bilinear forms, denoted

by aph(·, ·) and adh(·, ·).
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4. The certified reduced basis method. In the following we discuss in some
detail the construction and analysis of the certified reduced basis method, combined
with the discontinuous Galerkin approximation, of the primal (1.2) and dual (1.3)
problems. The reliability of the formulation is secured via the construction of a
posteriori error estimators.

4.1. Some notation and basic assumptions. Let Xp
h (resp., Xd

h) be a dis-
continuous Galerkin approximation space well adapted to the primal problem (1.2)
(resp., to the dual problem (1.3)) and letXpd

h be a third approximation space satisfying

Xp
h ⊂ Xpd

h , Xd
h ⊂ Xpd

h . Associated with these spaces we introduce the corresponding
discrete norms and linear and bilinear forms

(4.1)

‖ · ‖Xm
h

: Xm
h −→ R+,

fm
h (·; ν) : Xm

h −→ C, lmh (·; ν) : Xm
h −→ C,

amh (·, ·; ν) : Xm
h ×Xm

h −→ C,

with m ∈ {p, d, pd}. We assume throughout that the approximations fm
h (·; ν) and

lmh (·; ν) are linear operators that are continuous for any ν ∈ D and that amh (·, ·; ν) are
bilinear operators continuous for any ν ∈ D; that is,

(4.2) γm(ν) := sup
vh∈Xm

h

sup
wh∈Xm

h

|amh (vh, wh; ν)|
‖v‖Xm

h
‖w‖Xm

h

< +∞ ∀ν ∈ D.

We furthermore assume that the discrete inf-sup parameters, defined as

(4.3)

∣∣∣∣∣∣∣∣∣

βp,m(ν) := inf
vh∈Xm

h

sup
wh∈Xm

h

|amh (vh, wh; ν)|
‖vh‖Xm

h
‖wh‖Xm

h

, m ∈ {p, pd},

βd,m(ν) := inf
ψh∈Xm

h

sup
φh∈Xm

h

|amh (φh,ψh; ν)|
‖φh‖Xm

h
‖ψh‖Xm

h

, m ∈ {d, pd},

are bounded away from zero
∣∣∣∣∣
0 < βp,m

0 ≤ βp,m(ν), ν ∈ D ∀m ∈ {p, pd},

0 < βd,m
0 ≤ βd,m(ν), ν ∈ D ∀m ∈ {d, pd}.

This suffices to guarantee existence and uniqueness of the solution to the discrete
problem. It is worth noting that for Maxwell’s equations, this assumption is violated
for certain parameters corresponding to pure resonances. As a result, the problem is
not well defined, let alone the applicability of the reduced basis method. Fortunately,
as we will show later, one can obtain an efficient lower bound of the inf-sup number
inexpensively and thus identify parameters that violate this inf-sup stability condition.
In fact, all the discussions in this paper should be understood with these parameters
excluded.

It will furthermore be assumed that for m ∈ {p, d} we have

(4.4)

∣∣∣∣∣∣∣∣∣∣∣

‖uh‖Xm
h

= ‖uh‖Xpd
h

∀uh ∈ Xm
h ,

amh (uh, vh; ν) = apdh (uh, vh; ν) ∀(uh, vh) ∈ Xm
h ×Xm

h ,

fm
h (uh; ν) = fpd

h (uh; ν) ∀uh ∈ Xm
h ,

lmh (uh; ν) = lpdh (uh; ν) ∀uh ∈ Xm
h .

Denote Nm = dim(Xm
h ),m ∈ {p, d, pd}; that is, Nm represents the total number of

degrees of freedom for the discrete approximation.
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4.1.1. The truth approximation. The approximate primal and dual problems
are defined as

(4.5)

∣∣∣∣∣
Find um

h (ν) ∈ Xm
h such that (m ∈ {p, pd})

amh (um
h (ν), vh; ν) = fm

h (vh; ν) ∀vh ∈ Xm
h ,

(4.6)

∣∣∣∣∣
Find ψm

h (ν) ∈ Xm
h such that (m ∈ {d, pd})

amh (φh,ψm
h (ν); ν) = lmh (φh; ν) ∀φh ∈ Xm

h .

We call um
h (ν) (resp., ψm

h (ν)) the primal (resp., dual) truth approximation computed
on Xm

h , m ∈ {p, pd} (resp., m ∈ {d, pd}).
The truth approximation of the output of interest is computed as

(4.7) spdh (ν) := lpdh (upd
h (ν); ν) = fpd

h (ψpd
h (ν); ν).

The approximation spaces are assumed to have been chosen such that ∀m ∈ {p, pd}
and ∀n ∈ {d, pd}
(4.8) ‖um

h − ue‖ ≤ ε, ‖ψn
h − ψe‖ ≤ ε ∀ν ∈ D.

This implies in general that Nm will have to be large, resulting in a significant com-
putational cost for problems where many instances of ν must be evaluated. One of
the goals of this work is to significantly reduce this cost.

We conclude this subsection with a remark on Xpd
h , upd

h , and ψpd
h . Different primal

and dual spaces, Xp
h and Xd

h, are introduced to respect the different natures of the
primal and dual solutions. A third (fine) space is introduced to include the two former
spaces, a necessary step for analysis. In practice, we do not solve the (larger) problem
in Xpd

h .

4.2. The reduced basis method. The primary goal here is to reduce the di-
mension of the approximation spaces to speed up the computations without impacting
the accuracy. To facilitate this we introduce two sets of samples

(4.9)

∣∣∣∣∣
Sp
N = {νpi ∈ D, 1 ≤ i ≤ N},

Sd
M = {νdj ∈ D, 1 ≤ j ≤ M},

and the associated reduced basis spaces

(4.10)

∣∣∣∣∣
Xp

N = span{up
h(ν

p
i ), 1 ≤ i ≤ N},

Xd
M = span{ψd

h(ν
d
j ), 1 ≤ j ≤ M}.

Solving the primal and dual reduced basis problems

(4.11)

∣∣∣∣∣
Find uN (ν) ∈ Xp

N such that

aph(uN (ν), vN ; ν) = fp
h(vN ; ν) ∀vN ∈ Xp

N ,

(4.12)

∣∣∣∣∣
Find ψM (ν) ∈ Xd

M such that

adh(φM ,ψM (ν); ν) = ldh(φM ; ν) ∀φM ∈ Xd
M ,

we define the reduced basis approximation of the output as [29]

(4.13) sN,M (ν) = lp(uN (ν); ν)− apd(uN (ν),ψM (ν); ν) + fd(ψM (ν); ν).

We will observe numerically that when the sets of samples, (4.9), are carefully chosen,
this reduced basis output converges toward the truth approximations of the output
at an exponential rate [23].
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4.3. The affine assumption and off-line/on-line strategies. One might
expect a reduction of the numerical cost as soon as the computation of uN(ν) (resp.,
ψM (ν)) involves the solution of an N × N (resp., M ×M) linear system. However,
the total computational cost still depends on Nm,m ∈ {p, d, pd} as for each ν, the
linear systems have to be assembled and (4.13) has to be evaluated. This bottleneck
can, however, be removed in many situations.

Let us assume that the operators fm
h (·; ·), lmh (·; ·), and amh (·, ·; ·), m ∈ {p, d, pd},

can be expressed as

(4.14)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

amh (uh, vh; ν) =
Qa∑

q=1

Θa
q(ν)a

m
q,h(uh, vh) ∀(uh, vh) ∈ Xm

h ×Xm
h ,

fm
h (uh; ν) =

Qf∑

q=1

Θf
q (ν)f

m
q,h(uh) ∀uh ∈ Xm

h ,

lmh (φh; ν) =
Ql∑

q=1

Θl
q(ν)l

m
q,h(φh) ∀φh ∈ Xm

h ,

where the amq,h(·, ·) (resp., fm
q,h(·) and lmq,h(·)) are ν-independent discrete operators

and the functions Θs
q(·), s ∈ {a, f, l} depend only on ν. We generally assume that

Qs, s ∈ {a, f, l} is small, although this is not an essential assumption.
Equation (4.14) is referred to as the affine assumptions for fm

h (·; ·), lmh (·; ·), and
amh (·, ·; ·), m ∈ {p, d, pd}; see [35]. The affine assumptions enable the development of
an attractive off-line/on-line strategy. The off-line part of the computation, being ν
independent, can be done entirely in a preprocessing stage. The computational cost
of the on-line part is Nm-independent and thus, very small.

To further emphasize this, we write the reduced basis solutions as linear combi-
nations of the elements of the reduced basis (see also [35] and the references therein):

(4.15) uN (ν) =
N∑

i=1

ui
N(ν)ξpi , ψN (ν) =

M∑

j=1

ψj
M (ν)ξdj .

Here we have introduced the basis elements, ξpi and ξdi , which, in the simplest case, are
ξpi = up

h(νi) and ξ
d
i = ψd

h(νi). However, as we will discuss shortly, it is computationally
advantageous to require the basis elements to be mutually orthogonal.

In this way, solving (4.11) and (4.12) reduces to

∣∣∣∣∣∣∣∣

Find uj
N(ν), j ∈ {1, . . . , N} such that

N∑

j=1

[
Qa∑

q=1

Θa
q(ν) a

p
q,h(ξ

p
j , ξ

p
i )

]
uj
N(ν) =

Qf∑

q=1

Θf
q (ν) f

p
q,h(ξ

p
i ) , i ∈ {1, . . . , N},

∣∣∣∣∣∣∣∣

Find ψj
M (ν), j ∈ {1, . . . ,M} such that

M∑

j=1

[
Qa∑

q=1

Θa
q(ν) a

d
q,h(ξ

d
i , ξ

d
j )

]
ψj
M (ν) =

Ql∑

q=1

Θl
q(ν) l

d
q,h(ξ

d
i ) , i ∈ {1, . . . ,M},

where we have invoked (4.14). The framed terms are all ν-independent and can
be precomputed off-line. Once these computations have been done, the number of
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operations to be performed in the on-line procedure is proportional to

N2Qa +M2Qa+ (assembling of the matrices)

NQf +MQl+ (assembling of the right-hand sides)

N3 +M3, (solving the full linear systems),

and it is therefore very fast as it does not depend on the dimension of the truth
approximation spaces, Nm.

Using the affine assumption, the reduced basis output can be expressed as

sN,M(ν) =
N∑

i=1

Ql∑

q=1

ui
N (ν)Θl

q(ν) l
p
q,h(ξ

p
i ) +

M∑

j=1

Qf∑

q=1

ψj
M (ν)Θf

q (ν) f
d
q,h(ξ

d
j )

−
N∑

i=1

M∑

j=1

Qa∑

q=1

ui
N (ν)ψj

M (ν)Θa
q(ν) a

pd
q,h(ξ

p
i , ξ

d
j ) .

The framed terms can again be computed in preprocessing as they are independent
of ν. The number of operations depending on ν is of order NQl + MQf + NMQa,
which is independent of Nm.

4.4. A priori estimates. In this section we discuss the stability of problems
(4.11) and (4.12) and the convergence of the reduced basis approximations toward the
truth approximations for increasing N and M .

We begin by pointing out that stability of the reduced basis problem is not implied
by the assumptions on (4.3).

Assuming that the discrete inf-sup parameters satisfy

(4.16)

∣∣∣∣∣∣∣∣∣

0 < β̃p
0 ≤ inf

vN∈Xp
N

sup
wN∈Xp

N

|aph(vN , wN ; ν)|
‖vN‖Xp

N
‖wN‖Xp

N

, (a)

0 < β̃d
0 ≤ inf

ψM∈Xd
M

sup
φM∈Xd

M

|adh(φM ,ψM ; ν)|
‖φM‖Xd

M
‖ψM‖Xd

M

, (b)
∀ν ∈ D,

we have
• Solvability and stability of (4.11) and (4.12): (4.11) and (4.12) are uniquely
solvable and the solutions depend continuously on the data and uniformly on
ν.

• A priori primal and dual estimates:

(4.17)∣∣∣∣∣∣∣

‖um
h (ν)− uN(ν)‖Xm

h
≤ Cp,m(ν) inf

vN∈Xp
N

‖um
h (ν)− vN‖Xm

h
, m ∈ {p, pd},

‖ψm
h (ν) − ψM (ν)‖Xm

h
≤ Cd,m(ν) inf

φM∈Xd
M

‖ψm
h (ν)− φM‖Xm

h
, m ∈ {d, pd},

where Cn,m(ν) = 1 +
γm(ν)

β̃n
0

, n ∈ {p, d},m ∈ {p, d, pd}.

• A priori estimate on the output with respect to spdh (ν):

|spdh (ν)− sN,M (ν)| ≤ γpd(ν)Cp,pd(ν)Cd,pd(ν)

× inf
vN∈Xp

N

‖upd
h (ν) − vN‖Xpd

h
inf

φM∈Xd
M

‖ψpd
h (ν) − φM‖Xpd

h
,(4.18)
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(4.19)

|spdh (ν)− sN,M (ν)| ≤ γpd(ν)

×
[
‖upd

h (ν)− up
h(ν)‖Xpd

h
+ Cp,p(ν) inf

vN∈Xp
N

‖up
h(ν)− vN‖Xp

N

]

×
[
‖ψpd

h (ν)− ψd
h(ν)‖Xpd

h
+ Cd,d(ν) inf

φM∈Xd
M

‖ψd
h(ν)− φM‖Xd

M

]
.

See, e.g., [35, 26] for these results. The novelty of the estimates in this paper is
that the primal and dual truth approximations are obtained by different discretizations
respecting the distinct natures of the problems. One direct consequence is that the
continuity and stability constants are potentially sharper.

We note that the proof of the last item follows easily from the first two and the
following identity:

(4.20) spdh (ν)− sN,M (ν) = apdh (upd
h (ν)− uN (ν),ψpd

h (ν) − ψM (ν); ν).

This identity is true due to (4.5)–(4.7) and linearity.

4.5. A posteriori estimates. We are now in a position to provide a posteriori
error estimators that certify the reduced basis approximation with respect to the
truth approximation. The evaluation of these estimators will be done following an
off-line/on-line strategy similar to the one discussed in section 4.3.

We start by introducing some helpful notation. For each wN ∈ Xp
N (resp., ψM ∈

Xd
M ), we define the residual for the primal (resp., dual) problem as

(4.21)

∣∣∣∣∣
Rp

h(vh, wN ; ν) = fpd
h (vh; ν) − apdh (wN , vh; ν) ∀vh ∈ Xpd

h ,

Rd
h(φh,ψM ; ν) = lpdh (φh; ν) − apdh (φh,ψM ; ν) ∀φh ∈ Xpd

h .

Let us also introduce their dual norms on the spaces (Xm
h )′,m ∈ {p, d, pd} as

(4.22)

∣∣∣∣∣∣∣∣∣

εp,mN (ν) := ‖Rp
h(·, uN (ν); ν)‖(Xm

h )′ = sup
vh∈Xm

h

|Rp
h(vh, uN(ν); ν)|

‖vh‖Xm
h

,

εd,mM (ν) := ‖Rd
h(·,ψM (ν); ν)‖(Xm

h )′ = sup
φh∈Xm

h

|Rd
h(φh,ψM (ν); ν)|

‖φh‖Xm
h

.

Note that εp,mN (ν) also depends on uN and εd,mM (ν) on ψM , but we have left out this
explicit relationship to simplify the notation.

Assume that we can construct a lower bound for the inf-sup parameters (4.3)

denoted by β
p,m

(ν),m ∈ {p, pd} and β
d,m

(ν),m ∈ {d, pd} such that

∣∣∣∣∣
0 < β

p,m
0 ≤ β

p,m
(ν) ≤ βp,m(ν) ∀ν ∈ D ∀m ∈ {p, pd},

0 < β
d,m
0 ≤ β

d,m
(ν) ≤ βd,m(ν) ∀ν ∈ D ∀m ∈ {d, pd}.

These lower bounds are assumed to be computable at a low on-line computational
cost independent of the dimension of the truth approximation spaces. We explain in
section 5.3 one technique to effectively compute this quantity, but for now we simply
assume that it is available.
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4.5.1. A posteriori estimators for the reduced basis solutions. The pri-
mal and dual estimators are defined by

(4.23)

∣∣∣∣∣∣∣∣∣

∆p,m
N (ν) :=

εp,mN (ν)

β
p,m

(ν)
, m ∈ {p, pd},

∆d,m
M (ν) :=

εd,mM (ν)

β
d,m

(ν)
, m ∈ {d, pd}.

The following result concerning their efficiency quickly follows; see, e.g., [35, 26].
Theorem 4.1. The efficiency of the primal estimators, m ∈ {p, pd},

(4.24) ηp,mN (ν) :=
∆p,m

N (ν)

‖uN(ν)− um
h (ν)‖Xm

h

,

satisfies, m ∈ {p, pd},

(4.25) 1 ≤ ηp,mN (ν) ≤ γm(ν)

β
p,m

(ν)
∀ν ∈ D.

We have a similar result for the dual estimator.

4.5.2. A posteriori estimator for the reduced basis output. Recall that
our goal is to estimate the output s(u) rather than the solution of the problem. Using
(4.20) we obtain

spdh (ν)− sN,M (ν) = Rd
h(u

pd
h (ν)− uN (ν),ψM (ν); ν)(4.26)

= Rd
h(u

p
h(ν)− uN (ν),ψM (ν); ν)(4.27)

+ apdh (upd
h (ν)− up

h(ν),ψ
pd
h (ν)− ψM (ν); ν),

which is useful for constructing the estimators. We have the following result.
Theorem 4.2 (estimator for sN,M (ν) with respect to spdh (ν)). The following

inequalities are satisfied:

(4.28) |spdh − sN,M | ≤ εp,pdN (ν)εd,pdM (ν)

β
p,pd

(ν)
,

(4.29) |spdh − sN,M | ≤ εp,pN (ν)εd,pM (ν)

β
p,p

(ν)
+ εd,pdM (ν)‖upd

h (ν)− up
h(ν)‖Xpd

h
,

(4.30)

|spdh − sN,M | ≤ εp,pN (ν)εd,pM (ν)

β
p,p

(ν)
+ γpd(ν)‖upd

h (ν)− up
h(ν)‖Xpd

h

×
[
εd,dM (ν)

β
d,d

(ν)
+ ‖ψpd

h (ν)− ψd
h(ν)‖Xpd

h

]
.

Proof. We use (4.26) to write

|spdh (ν)− sN,M (ν)| = |Rd
h(u

pd
h (ν) − uN(ν),ψM (ν); ν)|

≤ εd,pdM (ν)‖upd
h (ν)− uN(ν)‖Xpd

h
.
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We obtain (4.28) using (4.25) with m = pd.
To recover (4.29) we use (4.27) to obtain

|spdh (ν)− sN,M (ν)| ≤ |Rd
h(u

p
h(ν)− uN (ν),ψM (ν); ν)|

+ |Rd
h(u

pd
h (ν) − up

h(ν),ψM (ν); ν)|

≤ εd,pM (ν)‖up
h(ν) − uN(ν)‖Xpd

h

+ εd,pdM (ν)‖upd
h (ν) − up

h(ν)‖Xpd
h
.

We conclude with the same argument as above with m = p.
To prove (4.30), combine (4.27) with the continuity of the operator apdh (·, ·; ν),

|spdh (ν)− sN,M (ν)| ≤ εd,pM (ν)‖up
h(ν)− uN (ν)‖Xpd

h

+ γpd(ν)‖upd
h (ν) − up

h(ν)‖Xpd
h
‖ψpd

h (ν)− ψM (ν)‖Xpd
h
,

and employ the triangle inequality and (4.25) to obtain

‖ψpd
h (ν) − ψM (ν)‖Xpd

h
≤ εd,dM (ν)

β
d,d

(ν)
+ ‖ψpd

h (ν)− ψd
h(ν)‖Xpd

h
.

We remark again that these estimators take into account that the primal and
dual solutions are obtained through different discretizations. The quantity on the
right-hand side of (4.28) can be used as a rigorous upper bound of the actual error
on the output and can be computed using an off-line/on-line strategy. However, the
off-line part of the computations involves the solution of linear systems and eigen-
value problems based on the larger space Xpd

h , and may, thus, become unnecessarily
expensive.

On the right-hand side of (4.29) and (4.30) there are some terms that are not
easily computable (for example, γpd(ν)). For the other terms, we can use a crude
estimation

‖upd
h (ν)− up

h(ν)‖Xpd
h

≤ 2ε, ‖ψpd
h (ν)− ψd

h(ν)‖Xpd
h

≤ 2ε,

to provide a rigorous upper bound of the error. Here ε estimates the approxima-
tion error associated with the truth approximation. However, both quantities are in
practice very small, and it is reasonable to use

(4.31) ∆s
N,M :=

εp,pN (ν)εd,pM (ν)

β
p,p

(ν)

as an estimator of the error. In this case, the off-line part of the algorithm involves
only the solution of linear systems and eigenvalue problems based on Xp

h which is

likely more affordable compared to an approach based on Xpd
h .

5. Computational aspects. In the discussions so far, we have laid out the
analysis of the reduced basis method, but we have paid limited attention to the
implementation of the method. In the following we address this central issue in more
detail.
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5.1. Construction of the reduced basis. An essential point in the construc-
tion of the reduced basis spaces is the selection of the sets of samples (4.9). All
well-posedness and convergence properties depend on this choice. Below, for com-
pleteness, we present the algorithm for the construction of the primal and the dual
reduced basis sets that generally provide good results; see also [35] and the references
therein. The method is based on a greedy approach in which we build a mesh S of the
set of parameters D and recursively choose the parameters νmj ∈ S and m ∈ {p, d}
such that a distance between the reduced basis approximation and the truth approxi-
mation is minimized. The two reduced basis spaces Xp

N and Xd
M are built separately

with both constructions being similar. We present the one for the primal problem:
• Choose a q-dimensional mesh S of the set of parameters D.
• Choose the first parameter νp1 among the elements of the mesh S (randomly,
for example).

• Compute up
h(ν

p
1 ).

• Initialize the reduced basis space Xp
1 = span{up

h(ν
p
1 )}.

• For j = 2, . . . , N
– Choose the next sample as

(5.1) νpj := argmax
ν∈S

∆p,p
j−1(ν),

where ∆p,p
j−1(ν) is defined in (4.23).

– Compute up
h(ν

p
j ).

– Update the reduced basis space: Xp
j = span{up

h(ν
p
i ), i ∈ {1, . . . , j}}.

The dimension of the updated reduced basis is j.
Let us make a few remarks.
Remark 5.1. In criteria (5.1), we seek to add those values of the parameters, νpj ,

for which the error between up
h(ν) and uN (ν) is maximized. This means choosing

ν̃pj := argmax
ν∈S

‖up
h(ν)− uN (ν)‖Xp

h
.

To accomplish this, it appears we would need to compute the primal truth approx-
imation for all ν ∈ S, leading to an expensive procedure. However, as soon as the
estimator ∆p,p

j−1(ν) is accurate, it enables a rigorous upper bound of the actual error
with a low evaluation cost, and we use it as

‖up
h(ν)− uN (ν)‖Xp

h
≤ ∆p,p

j−1(ν).

In this way, the primal truth approximation is computed only for the N selected
parameters. As a consequence, the numerical method is much cheaper while, as we
have numerically observed, the basis quality is comparable.

Remark 5.2. It is important to choose a suitable basis for the representation
of the space Xp

N to avoid stability issues. If we use the native basis given as
{up

h(ν
p
1 ), . . . , u

p
h(ν

p
N )}, the condition number of the matrix associated with problem

(4.11) grows exponentially with N . However, this is easily overcome by using an or-
thogonalization process such as the Gram–Schmidt method. After this, the condition
number of the reduced basis problem inherits the properties of the matrix associated
with the truth approximation (4.5). For the discussion on the inf-sup condition of the
final reduced system (4.11), the readers are referred to [33].

Remark 5.3. Note that we can build the two basis sets simultaneously by directly
minimizing the error on the output rather than the errors in the primal and dual
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solutions. We could therefore expect a reduction in the dimension of the reduced
basis spaces in order to obtain a prescribed accuracy on the output. This method is
outlined as follows:

• Choose a q-dimensional mesh S of the set of parameters D.
• Choose νp1 = νd1 among the elements of the mesh S (randomly, for example).
• Compute up

h(ν
p
1 ) and ψ

d
h(ν

d
1 ).

• Initialize the reduced basis spaces

Xp
1 = span{up

h(ν
p
1 )} and Xd

1 = span{ψd
h(ν

d
1 )}.

• For j = 2, . . . , N
– Choose the next sample as

(5.2) νpj = νdj := argmax
ν∈S

∆s
j−1,j−1(ν),

where ∆s
j−1,j−1(ν) is defined by (4.31).

– Compute up
h(ν

p
j ) and ψ

d
h(ν

d
j ).

– Update the reduced basis spaces:

Xp
j = span{up

h(ν
p
i ), i ∈ {1, . . . , j}},

Xd
j = span{ψd

h(ν
d
i ), i ∈ {1, . . . , j}}.

The dimension of the updated reduced basis is j.
Although our current numerical experiments indicate no major benefits of using

this output-oriented algorithm, we believe it is essential and should make a difference
in cases such as when the primal/dual solutions have oscillations and the output
functional involves averaging.

5.2. Computing εp,mN (ν),m ∈ {p, d, pd}. In this section we discuss how
to compute εp,mN following an off-line/on-line strategy. Recall that these quantities,
introduced in (4.22), are nothing but the dual norms of the primal residual on the
space Xm

h . Using the Riesz theorem we know that

(5.3) ∃χXm
h

Rp
h(·,uN (ν);ν) ∈ Xm

h such that εp,mN = ‖χXm
h

Rp
h(·,uN (ν);ν)‖Xm

h
,

where χX
f(·) ∈ X denotes the Riesz representation of any continuous linear form f(·)

defined on X . Moreover, χ
Xm

h

Rp
h(·,uN (ν);ν)

is characterized by

(5.4)
(
χ
Xm

h

Rp
h(·,uN (ν);ν)

, vN
)

Xm
h

= Rp
h(vN , uN(ν); ν) ∀vN ∈ Xm

h .

Inserting (4.15) into (4.21) and using the affine assumption (4.14), we obtain

(
χ
Xm

h

Rp
h(·,uN (ν);ν), vN

)

Xm
h

=

Qf∑

q=1

Θf
q (ν)f

pd
q,h(vN )−

N∑

j=1

Qa∑

q=1

uj
N(ν)Θa

q (ν)a
pd
q,h(ξ

p
j , vN ).

Using the Riesz representations of fpd
q,h(·) and apdq,h(ξ

p
j , ·), we recover

(5.5) χ
Xm

h

Rp
h(·,uN (ν);ν)

=

Qf∑

q=1

Θf
q (ν) χ

Xm
h

fpd
q,h(·)

−
N∑

j=1

Qa∑

q=1

uj
N (ν)Θa

q(ν) χ
Xm

h

apd
q,h(ξ

p
j ,·)

.
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Clearly, the terms boxed can be computed off-line. Each Riesz representation element
needs the solution of a linear system of size Nm. Finally

(5.6)

(εp,mN (ν))2 =

Qf∑

q=1

Qf∑

q̃=1

Θf
q (ν)Θ

f
q̃ (ν) (χ

Xm
h

fpd
q,h(·)

,χ
Xm

h

fpd
q̃,h(·)

)Xm
h

+
Qa∑

q=1

N∑

k=1

Qa∑

q̃=1

N∑

k̃=1

uk
N (ν)Θa

q(ν)u
k̃
N (ν)Θa

q̃(ν) (χ
Xm

h

apd
q,h(ξ

p
k,·)

,χ
Xm

h

apd
q̃,h(ξ

p

k̃
,·)
)Xm

h

− 2

Qf∑

q=1

Qa∑

q̃=1

N∑

k=1

1
[
Θf

q (ν)u
k̃
N (ν)Θa

q̃(ν) (χ
Xm

h

fpd
q,h(·)

,χ
Xm

h

apd
q̃,h(ξ

p

k̃
,·)
)Xm

h

]
.

Here 1 [·] denotes the real part of a complex number. The quantities in the rectangles
can be precomputed in the off-line part, once and for all. The number of operations
in the on-line part is independent of the dimension Nm of the truth approximation
spaces and is of order Q2

f + Q2
aN

2 + QfQaN . The computation of εd,mM (ν) can be
completed in a similar way.

5.3. Computing β
p,m

(ν),m ∈ {p, pd}. The off-line construction of the lower
bound of the inf-sup parameter remains the most expensive part of the algorithm,
particularly for noncoercive problems with resonances such as Maxwell’s equations.
There are several algorithms to achieve this goal, and we refer the readers to [16, 6]
for the successive constraint method (SCM). It finds, through a greedy algorithm, K
points ν1, . . . , νK in the parameter domain D. The exact inf-sup numbers at these K
points are found by solving the corresponding eigenvalue problems. Then, a rigorous
lower bound β

p,m
(ν) for any ν ∈ D is obtained by solving a local linear program. This

on-line procedure is independent of the dimension of the truth approximation spaces
ensuring a low computational cost for evaluating β

p,m
(ν). In the following, for the

completeness of this paper, we describe SCM following [7] for a general affine bilinear
form denoted by

aN (w, v; ν) ≡
Q∑

q=1

Θq(ν) aNq (w, v) ∀w, v ∈ XN .

The methodology is defined for the coercive and then the noncoercive cases.

5.3.1. Coercive case. The coercivity constant is

αN (ν) ≡ inf
w∈XN

aN (w,w; ν)

‖w‖2XN
= inf

w∈XN

Q∑

q=1

Θq(ν)
aNq (w,w)

‖w‖2XN
= inf

w∈XN

Q∑

q=1

Θq(ν)yq(w).

Here, we set yq(w) =
aN
q (w,w)

‖w‖2
XN

. Obviously, (y1(w), . . . , yQ(w)) belongs to the following

set:

Y ≡
{
y = (y1, . . . , yQ) ∈ RQ | ∃ w ∈ XN such that yq = yq(w), 1 ≤ q ≤ Q

}
.

Having defined the set Y, our coercivity constant can be found by solving the
following minimization problem:

(5.7) αN (ν) = inf
y ∈Y

J (ν; y),
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where the objective function J : D × RQ → R is defined as

J (ν; y) =
Q∑

q=1

Θq(ν)yq.

Problem (5.7) appears like a minimization problem of a linear functional over a com-
pact subset of RQ.

We need to characterize only the set Y now. The idea of SCM is to build two
sets YLB and YUB over which the minimization of J is feasible and which satisfies
YUB ⊂ Y ⊂ YLB. Therefore, we can perform the minimization on these two sets to
obtain an upper bound and a lower bound for αN (ν). For this purpose, we define

σ−
q ≡ inf

w∈XN
yq(w), σ+

q ≡ sup
w∈XN

yq(w), 1 ≤ q ≤ Q,

and let BQ ≡ ΠQ
q=1[σ

−
q ,σ+

q ] ⊂ RQ. Obviously, Y ⊂ BQ.
To properly define YLB and YUB , we introduce two parameter sets Ξ ≡ {ν1 ∈

D, . . . , νJ ∈ D} and CK ≡ {ν1 ∈ D, . . . , νK ∈ D}. Ξ is a (rather large) sample set of
grid points in the parameter domain (e.g., defined from a mesh) and CK is any subset
of Ξ. Let PM (ν;E) denote the M points closest to ν in E with E being Ξ or CK .

We are now ready to define YLB and YUB : For a given CK (andMα ∈ N, M+ ∈ N,
and Ξ), we define

YLB(ν;CK) ≡
{
y ∈ BQ

∣∣∣∣∣

Q∑

q=1

Θq(ν′)yq ≥ αN (ν′) ∀ν′ ∈ PMα(ν;CK);

Q∑

q=1

Θq(ν′)yq ≥ αLB(ν
′, CK−1) ∀ν′ ∈ PM+(ν;Ξ\CK)

}
,(5.8)

and YUB(CK) ≡ {y∗(νk), 1 ≤ k ≤ K} for y∗(ν) ≡ argminy∈YJ (ν; y). Define

(5.9) αLB(ν, C0) ≡ 0; αLB(ν;CK) = inf
y∈YLB(ν;CK)

J (ν; y) for K > 0,

and

(5.10) αUB(ν;CK) = inf
y∈YUB(CK)

J (ν; y).

One can prove [7] that, for given CK (and Mα ∈ N, M+ ∈ N, and Ξ),
αLB(ν;CK) ≤ αN (ν) ≤ αUB(ν;CK) ∀ν ∈ D; and, for any ν ∈ Ξ, αLB(ν, CK) is

nondecreasing, αUB(ν, CK) nonincreasing, and αUB(ν,CK)−αLB(ν,CK)
αUB(ν,CK) nonincreasing as

K increases.
Note that (5.8), (5.9) is, in fact, a linear program (LP). LP (5.9) contains Q

design variables and 2Q+Mα+M+ (one-sided) inequality constraints: the operation
count for the on-line stage ν → αLB(ν) is independent of N .

It remains only to determine CK . It is constructed by an off-line “greedy” al-
gorithm. Given Mα ∈ N, M+ ∈ N, Ξ, and a tolerance εα ∈ [0, 1], the algorithm
reads:

(1) Set K = 1 and choose C1 = {ν1} arbitrarily.

(2) Find νK+1 = argmaxν∈Ξ
αUB(ν;CK)−αLB(ν;CK)

αUB(ν;CK) .

(3) Update CK+1 = CK ∪ {νK+1}.
(4) Repeat (2) and (3) until maxν∈Ξ

αUB(ν;CKmax )−αLB(ν;CKmax )
αUB(ν;CKmax )

≤ εα.
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5.3.2. Noncoercive case. For the noncoercive case, we need to find a lower
bound of the inf-sup constant,

βN (ν) ≡ inf
ω∈XN

sup
v∈XN

|aN (ω, v; ν)|
‖ω‖XN ‖v‖XN

.

If we define an operator T ν : XN → XN as (T νw, v)XN = aN (w, v; ν) ∀v ∈ XN , it
follows that

βN (ν) = inf
w∈XN

‖T νw‖XN

‖w‖XN
,

such that

(βN (ν))2 = inf
w∈XN

(T νw, T νw)XN

‖w‖2XN
.

To expand it, we must define operators T q : XN → XN as

(T qw, v)XN = aNq (w, v) ∀v ∈ XN , 1 ≤ q ≤ Q.

Realizing T νw ≡
∑Q

q=1 Θ
q(ν)T qw, we can expand (βN (ν))2 as

(βN (ν))2 = inf
w∈XN

Q∑

q′=1

Q∑

q′′=1

Zq′

q′′(ν)
(T q′w, T q′′w)XN

‖w‖2XN

= inf
w∈XN

Q∑

q′=1

Q∑

q′′=q′

Zq′

q′′(ν)

1 + δq′q′′
(T q′w, T q′′w)XN + (T q′′w, T q′w)XN

‖w‖2XN
.

(5.11)

Here, Zq′

q′′(ν) = Θq′(ν)Θq′′ (ν) and δq′q′′ is the Kronecker delta. Next, we identify

Zq′

q′′(ν)

1 + δq′q′′
, 1 ≤ q′ ≤ q′′ ≤ Q ,−→ Θ̂q(ν), 1 ≤ q ≤ Q̂ ≡ Q(Q+ 1)

2
,

(T q′w, T q′′w)XN + (T q′′w, T q′w)XN , 1 ≤ q′ ≤ q′′ ≤ Q ,−→ âNq (w, v), 1 ≤ q ≤ Q̂,

and obtain

(5.12) (βN (ν))2 ≡ inf
w∈XN

Q̂∑

q=1

Θ̂q(ν)
âNq (w,w)

‖w‖2XN
.

Hence (βN (ν))2 can be interpreted as the coercivity constant for the bilinear form

α̂N (ν) ≡ inf
w∈XN

Q̂∑

q=1

Θ̂q(ν)
âNq (w,w)

‖w‖2XN
.

We may then directly apply the SCM procedure defined above to (5.12).
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Before extending this to the complex case, we interpret the expansion above in
terms of matrices: if we let w denote the vector of degrees of freedom for w ∈ XN

and MT q′ ,T q′′ denote the matrix corresponding to (T q′w, T q′′w)XN , we rewrite (5.11)
as

(βN (ν))2 =
Q∑

q′=1

Q∑

q′′=q′

Zq′

q′′(ν)

1 + δq′q′′

wT
(
MT q′ ,T q′′ +MT q′′ ,T q′

)
w

‖w‖2XN
.

When Θq(ν) is complex, we have

(βN (ν))2 = inf
w∈XN

Q∑

q′=1

Q∑

q′′=1

Zq′

q′′(ν)
wHMT q′ ,T q′′w

‖w‖2XN

= inf
w∈XN

Q∑

q=1

Zq
q (ν)

wHMT q,T qw

‖w‖2XN

+
Q∑

q′=1

Q∑

q′′=q′+1

Zq′

q′′(ν)w
HMT q′ ,T q′′w + Zq′′

q′ (ν)w
HMT q′′ ,T q′w

‖w‖2XN

= inf
w∈XN

Q∑

q=1

Zq
q (ν)

wHMT q,T qw

‖w‖2XN

+
Q∑

q′=1

Q∑

q′′=q′+1

wH
(
Zq′

q′′(ν)MT q′ ,T q′′ + Zq′′

q′ (ν)MT q′ ,T q′′
T
)
w

‖w‖2XN
.

Here, Zq′

q′′(ν) = Θq′(ν)Θ̄q′′ (ν) = Z̄q′′

q′ (ν).
Note that, when z is a complex number, X a complex vector, and A a real matrix,

we have

XH
(
z A+ z̄ AT

)
X = 21z

(
1XT5XT

)( A 0
0 A

)(
1X
5X

)

+25z
(
1XT5XT

)( 0 −A
A 0

)(
1X
5X

)

= 21z
(
1XT5XT

)
(

A+AT

2 0

0 A+AT

2

)(
1X
5X

)

+25z
(
1XT5XT

)
(

0 AT−A
2

A−AT

2 0

)(
1X
5X

)
.

Here, 1 and 5 indicate real and imaginary parts, respectively, ·H means conjugate
transpose and ·T transpose. This allows us to obtain an expansion as in the real
case.

6. Numerical examples. After having laid out the theoretical foundation and
the computational implications of the proposed methods, we now demonstrate the
validity and efficiency on the following cavity problem associated with the solution
of Maxwell’s equations. We consider the two-dimensional Maxwell’s equations on
the TE-form; that is, we assume in (2.1) that E(x, y) = (Ex, Ey, 0) and H(x, y) =
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0 0.25 0.5 1
0

0.3

0.7

1
Ω

1
Ω

2

Γ
i

Fig. 6.1. Sketch of the geometry of the electromagnetic cavity problem.

(0, 0, Hz). We seek the solution to this problem in the closed geometry, illustrated
in Figure 6.1 where we assume all exterior boundaries to be perfectly electrically
conducting with vanishing tangential electric fields. The cavity is loaded with two
materials, each occupying half of the cavity. For simplicity we assume that Ω1 of the
cavity is vacuum filled, in which case ε1 = µ1 = 1 while the material parameters in
Ω2 are the parameters of the problem, that is, ν = (ε2, µ2).

The equivalent equation in second order form, (2.2), is solved using the discon-
tinuous Galerkin method discussed in section 3 and the spaces Xm

h (m ∈ {p, d, pd})
containing piecewise polynomial of degree 4 on the meshes shown in Figure 6.2.

As a source, we consider a simple dipole antenna, modeled as a current,

Jx = 0, (Jy, v) =

∫

Γi

cos

(
ω

(
y − 1

2

))
vds,

where Γi reflects the antenna. We use ω = 5π/2. Without any special significance,
we choose the functional of interest as s(E) =

∫
Ω2

Ex + Ey dx.

Fig. 6.2. The three grids used in the computational example, defining Xp
h, Xd

h, and Xpd
h ,

respectively.

We consider numerical results for ε2 ∈ [2, 6] and µ2 ∈ [1.0, 1.2], and use a Cartesian
grid of 512 × 33 as the set S. With settings the same as the two-parameter case in [7],
we note that, in addition to the primal problem considered there, we are performing
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Fig. 6.3. Contour plot of log10 β
p,p

(ν)2 computed by the SCM.

a comprehensive test of RBM on a challenging noncoercive problem with resonance
features. The tests include primal and dual problems and an output employing both
of them. Moreover, we use different meshes for the two problems which respect their
distinct natures and save computational resources.

The lower bound β
p,p

(ν) is captured by the SCM; see Figure 6.3. Recall that
we assume that the inf-sup numbers (4.3) are uniformly bounded away from zero for
the problems to be well defined. However, in Figure 6.3, there are 12 visible bands
in which the lower bound is below 10−6. As discussed earlier in section 4.1, this
indicates that the assumption on the inf-sup number is violated for these parameters.
We see that, through this lower bound computation by SCM, we can identify such
parameters and exclude them from our reduced basis calculations.

We take N = M = 50 and build Xp
N and Xd

M . See Figure 6.4 for the sets
Sp
N = {νp1 , . . . , ν

p
50} and Sd

M = {νd1 , . . . , νd50} chosen by the greedy algorithm.

2 3 4 5 6
1

1.1

1.2

ε

2 3 4 5 6
1

1.1

1.2

ε

µ

Fig. 6.4. The points selected by the RBM to build the bases for the primal (top) and dual
(bottom) problems using the error estimate for the solutions.

We use these two spaces to compute the reduced basis solution for any parameter
in [2, 6]× [1, 1.2]. See Figure 6.5 for sample (purely imaginary) primal and (real) dual
solutions at (ε2, µ2) = (2, 1). We observe discontinuity and strong singularity in the
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!Ex !Ey

"Ex "Ey

Fig. 6.5. Sample truth approximations: The first row shows the (purely imaginary) solution to
the primal problem, and on the second row is the (real) solution to the dual problem. This essential
difference highlights the value of having different meshes for the primal and dual problems.

Table 6.1
The error (the H(curl) difference from the truth approximation) and time (the on-line compu-

tation time relative to that of the truth approximation) for RB calculation with respect to number
of bases.

Primal Problem Dual Problem

N Error Time

10 9.5e-1 2.1e-4
20 3.2e-2 4.2e-4
30 2.6e-5 6.4e-4

M Error Time

10 1.2e-1 2.1e-4
20 4.0e-3 4.2e-4
30 5.0e-5 6.4e-4

primal and dual solutions. These make it challenging for the RBM to perform well.
However, as we will show later, our method can provide an accurate reduced basis
solution that is converging exponentially. In Table 6.1, we show the H(curl) error
and relative computation time of the RB solutions with the dimension of the RBM
spaces being 10, 20, and 30. We observe that, as we increase the dimension of the
RBM space, the RB solution converges to the truth approximation in the H(curl)
norm. We also see that, in the last column, the relative CPU time to obtain these RB
approximations is essentially negligible compared to that of the truth approximation.

Next, we test our error estimate on a set of 1300 points away from the resonance
lines in the parameter domain; see Figure 6.6 for the set, Ξt,1 ⊂ S\

(
Sp
N

⋃
Sd
M

)
. We

compute, for any ν ∈ Ξt,1, the truth approximation and the reduced basis primal/dual
solutions for N = 10, . . . , 30 and evaluate the H(curl) norms of the errors up

h(ν) −
uN(ν) and ψd

h(ν) − ψM (ν), the error estimates ∆p,p
N and ∆d,d

M . In the first two rows
of Figure 6.7, we plot the maximum, median, and minimum of these values over Ξt,1

and observe that all basically decrease exponentially with respect to N .
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Fig. 6.6. Ξt,1 contains 1300 points.
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Fig. 6.7. Results for the primal (left column) and dual (right column) problems on Ξt,1: Plotted
on the first row are the dimensions of the reduced basis space versus the H(curl) norm of the errors
of the solution. The second row is the dimensions of the reduced basis space versus the H(curl)
error estimate. The last row is the size of the test set versus the maximum effectivity index of the
error estimates.
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Fig. 6.8. Ξt,2 contains 1000 points.
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Fig. 6.9. Results for the primal (left column) and dual (right column) problems on Ξt,2: Plotted
on the first row are the dimensions of the reduced basis space versus the H(curl) norm of the errors
of the solution. The second row is the dimensions of the reduced basis space versus the H(curl)
error estimate. The last row is the size of the test set versus the maximum effectivity index of the
error estimates.
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Finally, we sort Ξt,1 according to the corresponding lower bound and let Ξk
t,1 be

the set of the first k points in Ξt,1 for k = 1, . . . , 1300. The last row of Figure 6.7
represents the maximum effectivity indices over Ξk

t,1 versus k for reduced basis spaces
of dimension 10, 15, 20, and 25. We see that the error estimate is in general sharp and
particularly sharp when k is small, that is, when the parameter stays far away from
the resonances. The error estimates deteriorate as we get closer to the resonances,
but they are still legitimate convergence indicators. It is interesting, however, to
note that the effectivity indices are essentially independent of the size of the reduced
basis that is used for the computation. That is, the effectivity indices remain of the
same magnitude when the errors become many magnitudes smaller as we increase
the dimension of the reduced basis space. To show that our result above is not a
coincidence of the fact Ξt,1 ⊂ S, we perform the same test on a set, Ξt,2, that
contains 1000 centers of the rectangle cells of S. See Figure 6.8 for Ξt,2. Note that,
for Ξt,2, we exclude more points in the neighborhood of the resonance lines. This is
a consequence of the SCM, which provides more conservative lower bound for ν /∈ S
than for ν ∈ S. Thus, more points are considered to be “too close” to resonance
and excluded from the computation. Addressing this shortfall of SCM is one of our
ongoing works. Figure 6.9 shows that our method performs equally well on the set
Ξt,2. We conclude that the method provides a reliable a posteriori estimator for both
primal and dual problems.
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Fig. 6.10. Comparison of histories of convergence for the two ways to compute the output.

Recall that the quantity of our interest is the output. There are two ways to
compute the output. One is done similarly to (4.7) where only the primal or dual
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solution is used, that is, SN (ν) = lpdh (uN (ν)). The other is by (4.13) where both the
primal and dual solutions are included. Figure 6.10 shows the histories of convergence.
We see that the latter converges much faster. In fact, the rate is quadratic with respect
to that of the error of the solutions [22].

7. Concluding remarks. Certified reduced basis methods for the harmonic
Maxwell’s equations are developed. We examine several essential ingredients such as
the a posteriori error estimates for the solution and output, the off-line/on-line com-
putation procedure, and the greedy algorithm to build the reduced basis spaces. We
have applied the method to a challenging electromagnetic cavity problem. The rigor
and high efficiency of the method are confirmed by the numerical results. Exponential
convergence of the reduced basis approximation to the truth finite element approxi-
mation is observed. The reduced basis output also converges exponentially. Future
work includes efficient extension to many-parameter problems and investigation of the
reduced basis element method [24] for electromagnetics.

Acknowledgments. The authors would like to thank the anonymous referees
for many constructive comments that led to a better presentation of the paper.
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