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Abstract—We propose a way of accounting for the lack
of detailed knowledge about material shapes in computational
time-domain electromagnetics. We use Legendre-Gauss-Lobatto,
Stroud-2 and Stroud-3 quadrature formulae to solve the resulting
stochastic equation and we show the efficiency of the proposed
method over statistical Monte-Carlo simulations. We also show
how the radar-cross-section in scattering is affected by the
uncertainty in shape of the objects and by the direction of the
incident field.

Index Terms—Maxwell’s equations, spectral methods, uncer-
tainty quantification.

I. INTRODUCTION

Most of the research effort in CEM has been in develop-
ing efficient numerical algorithms for different applications,
assuming ideal inputs, boundary conditions or computational
domains. While computational methods have become increas-
ingly accurate, their reliance on exact data (e.g. the geometry
of the objects, the material parameters, the sources terms,
etc.) is becoming a bottleneck in the modeling of complex
problems. A standard way to deal with this lack of knowledge
or uncertainty, is to assume that some of the parameters
are random and compute macroscopic quantities (e.g. means
and variances) through Monte-Carlo sampling. In that case,
one runs a deterministic code many times and computes
the statistics of interest from an ensemble of solutions. The
advantage of this approach is its simplicity, however the
rate of convergence of Monte-Carlo is quite slow since it is
proportional to where is the number of samples.
Therefore, designing more efficient numerical methods for
the solution of stochastic partial differential equations with
random inputs or random coefficients is meeting growing
interest.
When the randomness can be modelled by a relatively small

number of independent random variables (i.e. up to three
or four), a stochastic collocation method based on Lagrange
polynomials was shown to be as simple as a Monte-Carlo
simulation, but with higher rates of convergence [2][13]. In
the present paper, the uncertainty is modelled by a number
of independent random variables in , which precludes
from using this approach. Instead, we use a method based on
Stroud-2 and Stroud-3 quadrature rules, for the computation of
multiple integrals. To compute single integrals we will use the

Legendre-Gauss-Lobatto quadrature rule. Here again, it will
be shown to possess the simplicity of Monte-Carlo simulations
but with higher convergence rates.
This paper is organized as follows: in Section 2, we recall

the deterministic Maxwell’s equations in the time-domain and
we give some details of its spatial discretization using a high-
order discontinuous Galerkin method. In Section 3, we give
some details about the computation of the RCS. In Section 4,
we describe the modelling of a general object having a random
shape, and we explain how our problem can be reduced to
solving Maxwell’s equations on a fixed mesh but with random
coefficients. The second part of Section 4 is devoted to the
discretization of the random space based on Legendre-Gauss-
Lobatto, Stroud-2 and Stroud-3 quadrature rules. This sets the
stage for numerous examples in Section 5. In Section 6 and 7,
we conclude and offer some suggestions for continued research
in this direction.

II. MAXWELL’S EQUATIONS AND ITS NUMERICAL
APPROXIMATION

The time-dependent Maxwell’s equations in the scattered
field formulation are given as

(1)

(2)

where, and denote the scattered electric and magnetic
fields, and are the local permittivity and perme-
ability, is the conductivity of the media and and

are source terms. Here we have not explicitly written the
divergence constraints assuming that the initial conditions sat-
isfy these constraints. Taking the divergence of equations (1)-
(2) verifies that if the initial conditions satisfy the divergence
constraints then the solution to Maxwell’s equations (1)-(2)
will also satisfy the divergence constraints.
Let the incident field be a solution to Maxwell’s

equations in a media of permittivity, permeability, and
conductivity— , , , respectively. Along a per-
fect electric conductor (PEC), the boundary conditions on the
total electric field and the total magnetic field
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are

(3)
(4)

where is the outward pointing normal vector at the surface.
We now briefly describe the computational methods used

for solving Maxwell’s equations (1)-(2) in the physical space.
A discontinuous Galerkin method is used; which offers a
number of advantages over widely used alternative (see [6],
[7], [8], [9], for example) and we shall simply sketch its main
components. First, we rewrite Maxwell’s equations (1)–(2) in
conservation form

(5)

where is the state vector given by

(6)

and the components of the tensor are defined by

(7)

where denotes the Cartesian unit vectors. On the right-
hand side of (5), is the source term, which
depends on the incident field, and the material matrix is
a diagonal matrix with values on its diagonal.
We assume that the computational domain, , is tessellated by
triangles in two spatial dimensions and tetrahedrons in three
spatial dimensions. Given an element of the tessellation,
the represent the local solution restricted to is given as

(8)

where reflects nodal values, defined on the element. The
function signifies an th order Lagrange polynomial
( for triangles and

for tetrahedrons), associated with grid points on
the reference element (see [6], [7], [8], [9] for details). The
discrete solution, , of Maxwell’s equations is required to
satisfy

(9)

In (9), denotes a numerical flux, whose expression can
be found in [6], and is an outward pointing unit vector
defined at the boundary of the element . Note that this
is an entirely local formulation, and relaxing the continuity
of the elements decouples the elements, resulting in a block-
diagonal global mass matrix which can be trivially inverted
in preprocessing. After discretization of the operators and
evaluation of the integrals appearing in (9), the problem can
be rewritten in matrix-vector form (see [7])

(10)

x

y
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M(x,y)

n(nx,ny)

Fig. 1. Illustration showing the scattering object and a possible contour
to compute the RCS.

The matrices , , and represent the local mass-, stiffness-,
and face-integration matrices, respectively, the exact entries of
which only depend on the metric of the triangle (see [6]). The
local nature of the scheme allows for the use of an explicit
solver for the time discretization of (10) and this is done using
an explicit fourth-order Runge–Kutta method.

III. COMPUTATION OF THE RADAR CROSS SECTION (RCS)
Given the importance of the RCS in this paper, we devote

this section to explaining how it is computed. For the sake
of simplicity, we will give details for the 2D transverse
magnetic case. We assume that the scattered fields

and are available at any point of
the computational domain and at any time . When a somewhat
established regime is reached, we assume that the electric field
can be written under the form

(11)

The two unknowns that need to be determined in the above
expression are and . They are computed by taking
two solutions and at time and
and by solving the system

(12)

Then, we define the phasor of the electric field to be the
complex-valued field defined at each point by

(13)

The same procedure can be applied to the magnetic field,
leading to the phasors

(14)

and
(15)
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We now take any contour that surrounds the scattering
object (see Figure 1). Although the RCS is independent of the
chosen contour , the computation of the RCS will be greatly
simplified by taking a contour that matches the finite element
mesh. To compute the RCS all we need is the phasor of the
electric field, the phasor of the magnetic field and the normal
unit vector on the contour . The RCS under the scattering
angle is a function of the following integral along

(16)

Since we have chosen a contour that matches the finite
element mesh, it is formed by (say) non-overlapping seg-
ment lines ( ) such that
Therefore the integral (16) becomes

(17)

or, after a simple change of variable

(18)

Then, the integral on the interval is computed using a
Legendre-Gauss-Lobatto quadrature rule to give

(19)

where are the quadrature weights and is the number
of collocation points on each sides of the triangles. Note that
the phasors and do not need to be interpolated
since each one is readily available at all collocations points (in
particular, at collocations points on the sides of the triangles).
Finally, the RCS under the scattering angle is given by

where is defined in equation (32). For the calculations,
no scaling is applied to the RCS, i.e. the plots of the RCS on
a scale are simply

For the plots of the RCS for scattering objects, a scaling
equal to is applied.
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Fig. 2. Points defining the boundary of an
object.

IV. ACCOUNTING FOR UNCERTAINTY

A. Modelling of a random surface

We consider an object whose shape can vary in a random
fashion. As an example, Figure 2 shows a disc which is mod-
elled by line segments from a finite
element mesh. Those line segments are defined by the points of
polar coordinates . We now
assume that the point can be moved randomly by a quantity

to take a new position
. We

further assume that two points (say and ) with polar
angles and close to each other should have a random
height close to . This is done by introducing the
covariance matrix such that:

(20)

where

(21)

In the definition of we have to separate the cases
and to ensure that two points on the random

surface, one with a polar angle close to and the other one
with a polar angle close to , be strongly correlated. In the
relation (20), is a parameter which can control how correlated
two points and can be and is another parameter which
controls the roughness of the surface (the magnitude of
for is directly proportional to ). Furthermore, is
the standard deviation of each component of .
To generate a random surface, the problem can be

formulated as follows: find a random vector
with a given covariance matrix that

will generate the new random surface
. This procedure is illus-

trated in Figure 3, where a triangle having one
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Fig. 3. Illustration showing how the points on the boundary of an object are
moved randomly.

side sitting on the boundary of the object is distorted
into a new triangle which side

will compose the new shape of
the object. From a practical point of view, this can be easily
done by first generating a vector ,
where are random independent variables follow-
ing (for example) a uniform law on the interval . Since
is symmetric definite positive, it can be decomposed as

, where is a diagonal matrix with positive
eigenvalues on its diagonal. Then, it can be shown that the
vector given by will be a random vector
with covariance matrix . In terms of implementation, one
generates independents pseudo-random numbers
with a uniform law on the interval , then the vector
is given by the matrix-vector product (the matrix

can be pre-computed and stored once for all). The
coordinates of the points of the new random surface will be

for . The procedure described here
for a disc can be easily adapted to objects with more general
shapes, as will be shown in the numerical experiments section.
As an example, we have considered a somewhat simplified

rocket in Figure 4. Figure 5 shows a zoom of its front part for
the original (non-distorted) rocket and a typical sample mesh,
when the procedure described above has been applied (here,
we take and in equation (20)). It should
be noted that with this procedure, one just needs to generate
a single mesh for the problem to be solved (the mesh of the
object with its original shape, i.e. the mesh of Figure 4, for
example). One needs to be careful that once the points defining
the original object have been moved randomly, the triangles
sitting on the object do not distort the mesh too much. This
can be easily controlled by the parameter in equation (20)
which is directly linked to the amplitude that can take. The
coordinates of the points which define the finite element mesh
only occur in the matrices , , and of equation (10) and
those quantities are constant element by element. Since those
matrices appear as multiplicative coefficients into Maxwell’s

Fig. 4. Original mesh for the rocket problem.

Fig. 5. One sample of a mesh for the rocket with a random shape together
with its original shape.

equations we have transformed a problem with an object
having a random shape (which usually requires the generation
of a new mesh for each sample) into an equivalent stochastic
problem having a fixed mesh but with random coefficients.

B. Monte-Carlo simulation
A Monte-Carlo simulation is therefore quite simple:

one simply need to generate (say) random vectors
as described above. Each set of random num-

bers will give a new random surface from which we can
compute solutions of Maxwell’s equations. Those solu-
tions of Maxwell’s equations, will give radar cross section

from which we can compute averages as
follows:

(22)
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And for the variance, we have

(23)

It should be noted that the advantage of the Monte-Carlo
approach is its simplicity (it only requires repetitive runs of
an existing deterministic solver), but it is hard to get accurate
solutions due to its slow rate of convergence . In
the next subsection, we will introduce a stochastic collocation
method which has the simplicity of the Monte-Carlo approach
but with better rates of convergence.

C. Stochastic collocation method based on Stroud’s points

About fifty years ago, Stroud [11] constructed a set of
cubature points to compute integrals of the form

(24)

This set of cubature points based on points is exact for
polynomials of degree two, and the approximation is written
as

(25)

where the cubature points are
given by

(26)

for and if is odd, .
The weights in (25) are all equal to . Similarly, we
have the Stroud-3 method based on points which is exact
for polynomials of degree three :

(27)

where the cubature points are now
defined by

(28)

for and if is odd, similarly we have,
. The weights in (27) are all equal to .

It can be shown [10] that Stroud-2 and Stroud-3 methods
employ the minimal number of points for their corresponding
integration accuracy. Since Stroud-2 and Stroud-3 methods
appeared, many other cubature formulae have been estab-
lished to compute various high-dimensional integrals. In the

70’s, Stroud published a book [12] containing most cubature
formulae known at that time. This extensive work was then
continued by Cools in a series of two papers [3][4]. The idea
of the stochastic collocation method is based on polynomial
interpolations in the multi-dimensional random space. We
assume that Lagrange polynomials based on Stroud’s cubature
points exist, and we express the RCS using the Lagrange
interpolation polynomials, which gives (for Stroud-2 cubature
points)

(29)

where are -variate Lagrange polynomials
based on points of the cubature formula (25). We
note that by construction of Lagrange polynomials, we have

and therefore . The radar
cross sections can be easily computed as follows:

for each cubature point generate a new surface with
and

compute the corresponding solution of Maxwell’s equa-
tions
compute the corresponding radar cross section

The expression of the RCS is now available under the form
(29) and we will show that statistical quantities, e.g. mean
and variance, can easily be computed. By taking the average
of equation (29) and evaluating the multi-dimensional integral
with Stroud-2 cubature formula (25), we get

Similarly, for the variance, we have

(30)

The same procedure can be used with Stroud-3 cubature, and
in that case, realizations of the RCS corresponding to the
cubature points of equation (27) will have to be computed.

When the random space is one-dimensional this procedure can
also be repeated for the Legendre-Gauss-Lobatto quadrature.
Alternatively, we could have used orthogonal polynomials to

express the RCS, i.e. equation (29) would have to be replaced
by

(31)
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where are orthogonal polynomial on . The
expression (31) is usually referred as “polynomial chaos
expansion” and was used in a number of mechanical problems
by Ghanem [5]. The problem of this approach lies in the
difficulty to compute in an efficient way the coefficients .

D. Reduced random space

For the stochastic collocation method, we have seen that
there is a close relation between the size of the random space
and the number of calls to the deterministic Maxwell solver

(i.e. we need calls for Stroud-2 and calls for Stroud-
3). A way of reducing the CPU cost of the method would be to
reduce the size of the random space . This is possible, up to a
certain extent, depending on the covariance matrix defined
by equation (20). Let us consider the two extreme cases:
First, we assume that and in equation (20);

in this case, is the identity matrix and .
In other words we will need independent and identically
distributed random variables to describe the process since all
points of the object are uncorrelated.
Now we assume that and in equation

(20); in this case, all variables are fully correlated. We
have for ; and

for . Thus, all points of the sample
are moved with the same

amplitude, i.e. . This means that
would suffice to describe the problem. In practice, we are
between those two extreme cases and the size of the random
space can be given by the number of significant eigenvalues of
denoted by with . Then, the modified algorithm

proceeds as follows:
Compute the eigenvalues of the matrix

and select the most significant ones satisfying
, where is some small number. The

integer will be the size of the random space needed to
move the points of the objects randomly.
We denote by and the matrices of size
constructed from the restriction of the matrices and
where we have only kept the most significant eigenvalues
and their associated eigenvectors.
Since the dimension of the random space is reduced
to , the collocation points are -dimensional
vectors based on quadrature points for the computation of
-dimensional integrals. For Stroud-2, we have

points and for Stroud-3, it is .
The vector used to move the mesh is now given by

, where .
In the next section, we will study three different problems

with three different kind of meshes: a cylinder (simple smooth
mesh), a square (simple non-smooth mesh) and a rocket
(general non-smooth mesh). Table I gives typical values of
for those three problems for different values of the parameter
of equation (20). The threshold value for the most significant
eigenvalues was taken equal to (ratio of the
smallest eigenvalues to the largest ones). We can see that the
size reduction of the random space can increase from a factor

of two (when ) up to a factor of approximately five
(when ).

1 5 10
cylinder problem 21 16 9
square problem 22 16 9
rocket problem 22 14 10

TABLE I
SIZE OF THE REDUCED RANDOM SPACE FOR THREE PROBLEMS AND

THREE DIFFERENT VALUES OF THE PARAMETER OF EQUATION (20).

V. NUMERICAL EXPERIMENTS
The ideas described above are tested on three different

problems in two spatial dimensions and two different problems
in three spatial dimensions. We consider a transverse magnetic
plane wave scattering by an object of boundary and in all the
two-dimensional cases considered here, the source term of
equation (1) is due to a transverse magnetic plane wave and
takes the form :

(32)

where the wave vector is taken equal to and the
frequency is taken equal to (or for the high frequency
cases). For all cases with two spatial dimensions a PML is used
to truncate the domain (see [1] for details) and the solution in
the physical space is obtained with degree four (or six when

) Lagrange polynomials in each spectral element (see
equation (8)). For the cases with three spatial dimensions a
sponge layer is used for the absorbing boundary condition to
truncate the domain.

A. Smooth shape
We first consider a 2D circular cylinder with a radius of .

Here ie the wavelength of the incident plane wave. The mesh
consists of 852 elements (see Figure 6) and the dimension of
the full random space is 42, i.e. the cylinder is formed by 42
points of the finite element mesh. The parameters and
in equation (20) are taken equal to and , respectively.
This choice of corresponds to the radial randomness having a
standard deviation of about . According to table I, it is
possible to reduce the size of the random space to . In
order to justify the choice of as a threshold value
for the most significant eigenvalues, we have represented the
variance of the RCS for three different values ( ,

and ) as well as the variance of
the RCS for the full random space when Stroud-3 method is
used (see Figure 7). We see that for (in that
case, the size of the random space is reduced to ),
the variance of the RCS is far from its expected value. When

(which corresponds to ), the variance
of the RCS gets close to the one with a full random space
and when , they are indistinguishable. For the
average of the RCS the four curves match exactly and therefore
they are not shown.



JOURNAL OF LATEX CLASS FILES 7

Fig. 6. Original mesh for the cylinder problem.
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Fig. 8. Comparison of the average of the RCS for Stroud-2, Stroud-3 and
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Fig. 9. Comparison of the variance of the RCS for the cylinder problem
using Stroud-2, Stroud-3 and Monte-Carlo methods.
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Fig. 10. Comparison of the variance of the RCS for the cylinder problem
using Stroud-3 method and Monte-Carlo method with 42, 120 and 250
samples.

Figures 8 and 9 show the average and the variance of
the RCS for the Stroud-2, the Stroud-3 and the Monte-Carlo
method using 250 samples. We see that for the average, all
methods have converged. For the variance, the Stroud-2 and
Stroud-3 have converged to the same RCS but the Monte-Carlo
method give slightly different results. Figure 10 shows that as
we increase the number of samples of the Monte-Carlo method
from 42 to 250, the variance of the RCS converges to the
solution of the Stroud-3 method. Therefore, it can be expected
that a Monte-Carlo simulation with more samples would give
results closer to the Stroud results. Note that the CPU cost of
the Monte-Carlo method with 42 samples is exactly the same
as the one of Stroud-3 method and when 250 samples are
used, it is about six times more CPU expensive than Stroud-3
(the cost is proportional to the number of samples solutions
computed, i.e. for Stroud-2 it is ; for Stroud-3, it is
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Fig. 11. RCS for the cylinder problem. Results are shown with the mean
RCS as well as one standard deviation (shown results are for Stroud-3).

and for the most accurate Monte-Carlo simulation,
it is 250 samples). Finally, Figure 11 shows the average of
the RCS and the possible variations around its average value
when Stroud-3 method is used. It can be noted that for this
test case the uncertainty in shape affects the RCS mostly in
the sidebands.

B. Non-smooth shape
We now consider a square of width whose mesh

consists of 840 elements. Again, is the wavelength of the
incident plane wave. The dimension of the full random space
is 44, which means that the square is formed by 44 points of
the finite element mesh. The parameters and in equation
(20) are taken equal to and , respectively. This choice
of corresponds to the radial randomness having a standard
deviation of about . By choosing , the covariance
matrix defined by (20) is more diagonal dominant than
it was in the previous example, and the number of most
significant eigenvalues is reduced to . Due to the
geometrical singularities in the corners of the square, this is a
much harder problem to solve than the cylinder problem. This
is illustrated on Figure 12 and 13, where we show the mean
and the variance of the RCS for the Stroud-2, the Stroud-3
and the Monte-Carlo methods using 250 samples. We can see
on Figure 12 that the mean converges to the same values for
the three methods. However, for the variance, the Stroud-3 and
the Monte-Carlo methods give similar results but the Stroud-
2 method gives results which have not converged, especially
in the sidebands. This is because Stroud-2 can only integrate
exactly multi-variate polynomials of degree two at most,
and the exact solution of this example cannot be accurately
represented by such polynomials. On the other hand, Stroud-
3 which can integrate exactly multi-variate polynomials of
degree three at most does a better job. In order to emphasize
the cost saving of Stroud-3 method over Monte-Carlo method,
we have represented the variance of the RCS for Stroud-3,
Monte-Carlo with 32 samples (which has the same CPU-cost

polar angle

R
C
S
av
er
ag
e
(in

dB
)

0 100 200 300

-5

0

5

10

#

Stroud-2
Stroud-3
Monte-Carlo

Fig. 12. Comparison of the average of the RCS for the square problem for
Stroud-2, Stroud-3 and Monte-Carlo methods.
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Fig. 13. Comparison of the variance of the RCS for the square problem
using Stroud-2, Stroud-3 and Monte-Carlo methods.

as the Stroud-3 method) and Monte-Carlo with 250 samples
in Figure 14. We see that as we increase the number of
samples, the Monte-Carlo solution converges slowly to the
Stroud-3 solution. Figure 15 shows the average of the RCS
and the possible variations around its average value obtained
with Stroud-3 cubature. We can see that like for the cylinder
problem, the uncertainty in shape affects the RCS mostly in
the sidebands.

C. General shape
As a last shape, we consider the (simple) rocket shown

in Figure 4 which is long and the body is wide.
The mesh consists of 1465 elements and the dimension of
the full random space is 45 (i.e. the rocket is formed by 45
points of the finite element mesh). As for the square problem,
the parameters and in equation (20) are taken equal to
and , respectively and the size of the random space
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Fig. 14. Comparison of the variance of the RCS for the square problem
using Stroud-3 method and Monte-Carlo method with 32 and 250 samples.
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Fig. 15. RCS for the square problem. Results are shown with the mean RCS
as well as one standard deviation.

can be reduced to . This choice of corresponds to
the radial randomness having a standard deviation of about

. Similarly to the square problem, good convergence
of the average RCS is obtained both for Stroud-2, Stroud-3
and Monte-Carlo simulations. However for the variance of the
RCS, only Stroud-3 and Monte-Carlo with enough samples
(i.e. more than 250) give good results. Figure 16 shows the
average of the RCS and the possible variations around its
average value obtained with Stroud-3 cubature. For this case,
the uncertainty in shape affects the RCS both in the middle
part and in the sidebands.

D. Higher frequency cases
As a last numerical experiment in two spatial dimensions,

we increase the frequency of the source term (32) up to
. This causes the radius of the cylinder to increase to and
the size of the rocket to increase to long and wide in
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Fig. 16. RCS for the rocket problem. Results are shown with the mean RCS
as well as one standard deviation.

the body. For these cases the radial randomness has a standard
deviation of about . For all the previous numerical
experiments, we have used 4th order elements in each triangle
of the finite element grid. Due to the higher frequency, all
the results shown in this section are obtained with 6th order
elements to get converged results in the physical space (i.e.
the value of defined below equation (8) is increased to

). Figures 17 and 18 show the average of the RCS and
the possible variations around its average value obtained with
Stroud-3 cubature for the cylinder and the rocket problem,
respectively. The form of the uncertainty remains the same as
in the previous numerical examples, the only difference being
the frequency of the source term. By comparing Figure 11
with Figure 17 and Figure 16 with Figure 18, we see that
as we increase the frequency, the regions where the RCS has
the greatest variance remains more or less the same. In this
numerical experiment, convergence of the average of the RCS
and the variance of the RCS is good for the cylinder problem,
for both Stroud and Monte-Carlo methods. However, for the
rocket problem only Stroud-3 and Monte-Carlo with enough
samples give converged results for the variance.

E. Sphere

For the first experiment with three spatial dimensions we
consider the scattering of a transverse magnetic plane wave
from a PEC sphere. We assume the sphere has a uniform
random radius in the interval , where is the
wavelength of the incident field. The use of one random
variable is not a limitation of the method but is done for
logistical reasons to have reasonable computation times. Since
this experiment has only one random dimension, a sixth order
Legendre-Gauss-Lobatto quadrature is used for collocation in
the random space. For the spatial discretization we use fourth
order elements and a sample mesh is presented in Figure 19
which is restricted to the surface of the sphere. Figure 20
shows the average of the RCS and the possible variations
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Fig. 17. RCS for the cylinder problem at higher frequency. Results are shown
with the mean RCS as well as one standard deviation.
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Fig. 18. RCS for the rocket problem at higher frequency. Results are shown
with the mean RCS as well as one standard deviation.

around its average value. The uncertainty in the radius of the
sphere affects the RCS mainly in the sideband.

F. Three-dimensional rocket
For the second experiment with three spatial dimensions we

consider the scattering of a transverse magnetic plane wave
from a PEC rocket. The orientation of the scattering plane
and the scattering angle is is given in Figure 21 along with
a geometric description of the rocket. The scattering angle
of the incident field is assumed to be random with uniform
distribution in the interval . As in the case for the
sphere, the use of one random variable is not a limitation of the
method but is done for logistical reasons to have reasonable
computation times. A fourth Legendre-Gauss-Lobatto is used
for collocation in the one-dimensional random space. For this
calculation the physical space is discretized with degree five
polynomials in each element. Figure 22 shows the mesh used

Fig. 19. One sample of a surface mesh for the sphere with a random radius.
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Fig. 20. RCS for the sphere problem. Results are shown with the mean RCS
as well as one standard deviation.

restricted to the surface of the rocket and Figure 23 shows
the average of the RCS and the possible variations around
its average value. The uncertainty in the direction of the
incident field affects the RCS mainly near the local maxima
and minima points of the RCS.

VI. POSSIBLE EXTENSIONS TO OTHER TYPES OF
UNCERTAINTIES

For convenience the numerical examples presented in three
spacial dimensions only use one random dimension unlike
the two-dimension examples which used multi-dimensional
random spaces. This restriction to one random dimension
was done only to keep the total computational time tractable.
The method presented for applying the randomness in two
spacial dimension should generalize to three dimensions with
an appropriate choice of the correlation between neighboring
points in three dimensions.
So far, we only have discussed PEC objects with random

shapes and uncertainties in the incident field, however the
approach described above can equally be used for other
types of uncertainties. For example, instead of being purely



JOURNAL OF LATEX CLASS FILES 11

9
2λ7

8λ

3
4λ

3
4λ

Fins are 18λ thick

Side View

3
4λ Diameter

End View
(b)

θ

Top ViewEnd View
(a)

45◦

Scattering plane

Fig. 21. The orientation of the rocket with respect to the scattering plane is
given in (a). Here is the scattering angle. The top view presents a projection
of the rocket onto the scattering plane. The geometric description of the three-
dimensional rocket is given in (b). Here is the wavelength of the incident
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Fig. 22. The surface mesh for the three-dimensional rocket.
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Fig. 23. RCS for the three-dimension rocket problem. Results are shown
with the mean RCS as well as one standard deviation.

reflective, the object can be material with a random shape. In
that case, it is necessary to mesh the entire domain and define
a permittivity that will takes some value inside the object
and another value outside. For material objects, the shape of
the objects can be moved randomly in the same way as a
PEC object. In [2], the uncertainty in shape of a material
object was studied and the approach used was limiting the
uncertainty to be modeled by a single random variable. Other
types of uncertainties were also studied (randomness of the
source term to mimic a slight variation in the frequency of the
source, randomness of the permittivity), however the method
used was only efficient for random spaces of small dimension.
The approach presented in this paper is more general since it
allows efficient simulations, even when the size of the random
space is large.

VII. CONCLUSION
In this paper, we have proposed a way to model the un-

certainty in shape for different objects and study its influence
on the RCS, computed from the solution of the time-domain
Maxwell’s equations. It was shown that the modeling of
the object with a random shape could be rewritten into a
problem with a fixed shape but with Maxwell’s equations
having random coefficients. We have proposed an efficient way
of solving this stochastic equation based on Stroud’s cubature
formulae. The proposed approach has a number of significant
advantages: it is as simple as a Monte-Carlo simulation and
for a given level of accuracy, it requires less outcomes to be
computed. We have shown that for non-smooth objects (like
the square), it was preferable to use the Stroud-3 method
instead of the Stroud-2 one. For all the examples with two
spatial dimensions treated here, the number of independent
random variables used to generate the random surface was
between 14 and 21, showing the efficiency of the proposed
method for a relatively high dimension of the random space.
We have also presented results for simulations in three spatial
dimensions with a single random variable.

ACKNOWLEDGEMENT
The last two authors appreciate the partial support of

AFOSR under grant FA9550-04-1-0072.

REFERENCES
[1] S. Abarbanel, D. Gottlieb, and J. S. Hesthaven, Long time behavior of

the perfectly matched layer equations in computational electromagnetics,
J. Sci. Comput., 17 (2002), pp. 405-422.

[2] C. Chauvière, J. S. Hesthaven and L. Lurati, Computational modeling
of uncertainty in time-domain electromagnetics, SIAM J. Sci. Comput.,
28 (2006), pp. 751-775

[3] R. Cools and P. Rabinowitz, Monomial cubature rules since ‘Stroud’: A
compilation, J. Comput. Appl. Math. 48 (1993), pp. 309-326

[4] R. Cools, Monomial cubature rules since ‘Stroud’: A compilation –part
2, J. Comput. Appl. Math. 112 (1999), pp. 21-27

[5] R. Ghanem and P. Spanos, Stochastic Finite Elements: a Spectral
Approach, Springer-Verlag (1991).

[6] J. S. Hesthaven and T. Warburton, High-order nodal methods on unstruc-
tured grids. I. Time-domain solution of Maxwell’s equations, J. Comput.
Phys., 181 (2002), pp. 1-34.

[7] J. S. Hesthaven and T. Warburton, High-order accurate methods for time-
domain electromagnetics, CMES–Computer Modeling in Engineering
and Sciences, 5 (2004), pp. 395-408.



JOURNAL OF LATEX CLASS FILES 12

[8] J. S. Hesthaven and T. Warburton, High-order nodal discontinuous
Galerkin methods for the Maxwell eigenvalue problem, Philos. Trans.
R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 362 (2004), pp. 493-524.

[9] J. S. Hesthaven and T. Warburton, Discontinuous Galerkin methods for
the time-domain Maxwell’s equations: An introduction, ACES Newslet-
ter, 19 (2004), pp. 10-29.

[10] I. Mysovskih, Proof of the minimality of the number of nodes in the
cubature formula for a hypersphere, USSR Comput. Math. and Math.
Phys., 6 (1966), pp15-27.

[11] A. Stroud, Remarks on the disposition of points in numerical integration
formulas, Math. Comput., 11 (1957), pp. 257-261.

[12] A. Stroud, Approximate Calculation of Multiple Integrals, Prentice-Hall,
Englewood Cliffs, NJ, (1971).

[13] D. Xiu and J. S. Hesthaven, High order collocation methods for
differential equations with random inputs, SIAM J. Sci. Comput., 27
(2005), pp. 1118-1139


