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We present a new fully first-order strongly hyperbolic representation of the Baumgarte-Shapiro-

Shibata-Nakamura formulation of Einstein’s equations with optional constraint damping terms. We

describe the characteristic fields of the system, discuss its hyperbolicity properties, and present two

numerical implementations and simulations: one using finite differences, adaptive mesh refinement, and,

in particular, binary black holes, and another one using the discontinuous Galerkin method in spherical

symmetry. The results of this paper constitute a first step in an effort to combine the robustness of

Baumgarte-Shapiro-Shibata-Nakamura evolutions with very high accuracy numerical techniques, such as

spectral collocation multidomain or discontinuous Galerkin methods.
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I. INTRODUCTION

Complete, long-term numerical simulations of the in-
spiral, merger, and ringdown of two black holes became
possible a few years ago [1–3] and are now carried out by
numerous groups; see [4–6] for recent reviews on the topic.
One of the motivations for studying the dynamics of these
inspiraling compact binaries is due to the fact that they are
among the most promising sources of gravitational waves
for the upcoming advanced network of earth-based laser
interferometric detectors [7]. Moreover, with (and only
with) modeling of enough accuracy, these detectors should
be able to extract from the waves physical data about these
sources such as the component masses and spins.

Until a few years ago, such simulations were plagued by
short-term instabilities. With full, long, and stable simula-
tions now being carried out systematically, development
efforts have focused on efficiency and accuracy, better
boundary conditions (see [8] for a review), and wave ex-
traction methods (see, for example, [9–12] and references
therein), all of which are especially important for many-
orbit evolutions, such as those needed to make comparisons
with post-Newtonian models, and calibration or fitting of
semianalytical or phenomenological models [13–33].
We consider here only solutions of the vacuum Einstein
equations, and intentionally ignore the much larger and

astrophysically probably even more interesting case where
matter, radiation, or electromagnetic fields are present.
Most, if not all, numerical simulations of binary black

holes currently use one of two formulations of the Einstein
equations. One of them is the generalized harmonic sys-
tem, which has been successfully implemented in binary
black holes simulations using finite difference adaptive
mesh refinement (AMR) [4], pseudospectral collocation
codes (see, for example, [34–38] and references therein),
and multidomain finite differences [39], in a first order in
time and second order in space formulation [40] in the
AMR case, and a fully first-order reduction [41] otherwise.
In either case, the key ingredient is a constraint damping
mechanism [42], originally proposed in [43] (in that refer-
ence referred to as !-systems because they were first
introduced as Lagrange multipliers). The other one is the
Baumgarte-Shapiro-Shibata-Nakamura (BSSN) system
[44,45], which has been implemented by many groups
using finite difference codes in a first order in time, second
order in space form (see [5] for a review)—we refer to this
as simply BSSN or second-order BSSN (as opposed to our
fully first-order reduction, to which we will refer as
FOBSSN). Some variant of the ‘‘standard gauge’’ condi-
tions for the BSSN formulation, consisting of 1þ log
slicing or generalizations thereof and the so-called
Gamma-driver shift [46] condition are, more often than
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not, used. The hyperbolicity of BSSN with a generalization
of these gauge conditions was studied in Refs. [47,48].

While the Einstein equations are fundamentally a
second-order system,many advanced numerical techniques
for hyperbolic systems—such as multidomain high-order
finite difference, spectral collocation, and discontinuous
Galerkin methods—are well developed for first-order hy-
perbolic systems. At the same time, the standard second
order in space BSSN system with the standard gauge con-
ditions has shown remarkably robust properties in a variety
of compact binary configurations. Onewonders, then, if it is
possible to combine some of the numerical techniques that
are often used for very high accuracy simulations of hyper-
bolic differential equations with the BSSN system.

One recent approach has been to adapt advanced tech-
niques for fully first-order systems to second order in space
ones [49–53]. Perhaps paradoxically, it appears to be more
difficult to guarantee stability for naturally second-order
systems than for first-order reductions of them, though
progress is being made on this front (see, for example,
[52,54,55]). Another approach is to rewrite the Einstein
equations as a fully first-order hyperbolic system. In this
paper, we explore the latter and we refer to our first-order
reduction of BSSN as FOBSSN.

This paper is organized as follows. Section II reviews the
BSSN system in covariant form. The first-order reduction is
carried out in Sec. III, where we also show that FOBSSN is
strongly hyperbolic under suitable conditions on the gauge
parameters, and discuss the propagation of the constraints.
Section IV summarizes some of our results from numerical
simulations of binary black holes using FOBSSN and adap-
tive mesh refinement and finite differences, and a multi-
domain nodal discontinuous Galerkin scheme in spherical
symmetry. When appropriate, we compare results from
our FOBSSN simulations to simulations using BSSN in
its standard form. A preliminary look at turduckening
[56–58] for a polynomial/spectral Galerkin method is pre-
sented in the context of the spherically reduced FOBSSN
system. Appendices collect further details on the covariant
BSSN system as well as expressions for the fundamental
fields in terms of characteristic variables.

II. REVIEW OF THE BSSN SYSTEM

We briefly review the second-order form of BSSN
[44,45] with moving-puncture gauge conditions. Here,
we follow the approach of Ref. [59], which is spatially
covariant (but not fully space-time covariant). The spatial
metric and extrinsic curvature are denoted "ij and Kij,
respectively. These are replaced by the BSSN variables

# ¼ 1
12 lnð"="Þ; (1a)

K ¼ "ijKij; (1b)

~"ij ¼ e!4#"ij; (1c)

~Aij ¼ e!4#ðKij ! 1
3"ijKÞ; (1d)

where " is the determinant of "ij and " is a fiducial scalar
density of weight 2 which remains to be specified. Also,
K ¼ "ijKij is the trace of the extrinsic curvature. The
variable ~"ij is the conformal metric, # is the conformal

factor, and ~Aij is the conformally rescaled, trace-free part
of the extrinsic curvature. (In addition to this ‘‘#’’ variant
of BSSN, there exist also the W and $ variants where
the variable # is replaced by W ¼ ð"="Þ!1=6 or $ ¼
ð"="Þ!1=3, respectively.) These variables are restricted by
the algebraic conditions

~" ¼ "; ~"ij ~Aij ¼ 0; (2)

where ~" is the determinant of ~"ij.
1 The BSSN system also

includes the ‘‘conformal connection vector’’

~! i ¼ ~"jk"~#i
jk; (3)

as independent variables, and we have defined "~#i
jk &

~#i
jk ! #i

jk. Here, ~#
i
jk are the Christoffel symbols built

from the conformal metric and #i
jk is a fiducial connection.

In this covariant language, the BSSN variables are tensors
with no density weights. In particular, # is a scalar and ~!i

is a contravariant vector.
It is often convenient to consider the fiducial connection

#i
jk to be constructed from a ‘‘fiducial metric’’ "ij whose

determinant is ". We stress that the fiducial fields are not
dynamical variables. They are freely chosen functions,
required by covariance. Throughout the main body of the
paper, we assume that the fiducial connection is built from
a flat, time-independent metric "ij whose determinant is ".
If the coordinates are interpreted as Cartesian, then "ij ¼
diagð1; 1; 1Þ. In this case, " ¼ 1 and #i

jk ¼ 0. The vector
~!i then reduces to the conformal connection functions
~#i & ~#i

jk ~"
jk and Eqs. (4a)–(4e) below reduce to the usual

second-order BSSN system.
The evolution equations for the BSSN variables are

@?# ¼ 1
6Di%

i ! 1
6&K; (4a)

@? ~"ij ¼ !2
3~"ijDk%

k ! 2& ~Aij; (4b)

@?K ¼ &ð ~Aij
~Aij þ 1

3K
2Þ ! "ijDiDj&; (4c)

@? ~Aij ¼ !2
3
~AijDk%

k þ &ðK ~Aij ! 2 ~Aik
~Ak
jÞ

þ e!4#½&Rij !DiDj&(TF; (4d)

@? ~!i ¼ ~"k‘DkD‘%
i þ 2

3~"
jk"~#i

jkD‘%
‘

þ 1
3
~DiðDk%

kÞ ! 2 ~AikDk&þ 2& ~Ak‘"~#i
k‘

þ 12& ~AikDk#! 4
3&

~DiK; (4e)

where & is the lapse function and %i is the shift
vector. Also, the time derivative operator is defined by
@? & @t !L%, where L% is the Lie derivative with

1Note that we use both ~" and " in our notation.
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respect to the shift. Next, Di, ~Di, and Di are the covariant
derivatives built from the physical metric, conformal met-
ric, and fiducial metric, respectively, and DiDj& ¼
DiDj&! "#k

ijDk&. Finally, in Eq. (4d), TF denotes the

trace-free part of the expression in brackets.
The Ricci tensor can be written as a sum of two terms,

Rij ¼ ~Rij þ R#
ij: (5)

The Ricci tensor for the conformal metric is

~Rij ¼ !1
2~"

k‘DkD‘ ~"ij þ ~"kðiDjÞ ~!
k þ ~"lm"~#k

lm"~#ðijÞk

þ ~"k‘½2"~#m
kði"

~#jÞm‘ þ "~#m
ik"~#mj‘(; (6)

and the term R#
ij is defined by

R#
ij¼!2 ~Di

~Dj#!2~"ij
~Dk ~Dk#

þ4 ~Di# ~Dj#!4~"ij
~Dl# ~Dl#: (7)

All tensors with a tilde have their indices raised and
lowered with the conformal metric ~"ij. Details of the
derivation of the equations of motion (4) are contained in
Appendix A.

In addition to the algebraic constraints, solutions to the
second-order BSSN system must satisfy a set of differen-
tial constraints stemming from the 3þ 1 decomposition
(Hamiltonian and momentum constraints) and definition of
the conformal connection vector. Expressed in terms of the
evolved variables, these are given by

H ¼ e!4#ð ~R! 8 ~Di ~Di#! 8 ~Di# ~Di#Þ þ 2
3K

2

! ~Aij
~Aij ¼ 0; (8a)

~Mi ¼ ~Dj
~Aij þ 6 ~Aij@j#! 2

3
~DiK ¼ 0; (8b)

Gi ¼ ~!i ! ~"jk"~#i
jk ¼ 0; (8c)

where ~R ¼ ~"ij ~Rij. Using the Bianchi identities and the
BSSN Eqs. (4a)–(4e), one can derive a closed homogene-
ous evolution system for the constraint fieldsH , ~Mi, and
Gi. This constraint evolution system can be written in first-
order symmetric hyperbolic form [47,58,60,61]. Therefore,
if the initial data satisfies the constraints, then the con-
straints will be preserved for all times as long as suitable
boundary conditions are provided. Constraint-preserving
boundary conditions for the BSSN system have been dis-
cussed in Refs. [60,61].

Black hole evolutions with the second-order BSSN sys-
tem are typically carried out using the moving-puncture
gauge conditions consisting of 1þ log slicing and
Gamma-driver shift. In this paper, we consider the general
Bona-Massó slicing condition [62], written in the form [47]

@?& ¼ !&2fð&;#ÞK þ S&; (9)

where fð&;#Þ is an arbitrary positive function of the lapse
& and the conformal factor #. The source term S& is a

function of the spatial coordinates. For 1þ log slicing,
fð&;#Þ ¼ 2=& and S& ¼ 0.
The shift condition considered in this paper is a general-

ization of the Gamma-driver shift, written as [47]

@0%
i ¼ &2Gð&;#ÞBi þ Si%; (10a)

@0B
i ¼ e!4#Hð&;#Þ@0 ~!i ! 'Bi þ SiB: (10b)

Here, Bi is an auxiliary field and the time derivative
operator is defined by @0 & @t ! %jDj. The functions G
and H depend on the lapse & and conformal factor #. The
source terms Si% and SiB are functions of the spatial coor-

dinates. The standard choices for the Gamma-driver shift
condition are Gð&;#Þ ¼ 3=ð4&2Þ, Hð&;#Þ ¼ e4#, Si% ¼
SiB ¼ 0, and ' ¼ 3=ð4MÞ, whereM is the Arnowitt-Deser-
Misner (ADM) mass of the system or another relevant
mass scale. (If different regions of the domain have differ-
ent mass scales, e.g. for binary black hole systems with a
large mass ratio, then ' may vary in space [63,64].)

III. FIRST-ORDER BSSN

A. Evolution system

The BSSN system as described above contains second-
order derivatives in space acting on the variables &, %i, #,
and ~"ij. To write the system in fully first-order form, we
introduce the new variables

&i ¼ Di&; (11a)

%i
j ¼ Di%

j; (11b)

#i ¼ Di#; (11c)

~"kij ¼ Dk ~"ij: (11d)

These definitions yield the associated constraints

Ai & &i !Di& ¼ 0; (12a)

Bi
j & %i

j !Di%
j ¼ 0; (12b)

Ci & #i !Di# ¼ 0; (12c)

Dkij & ~"kij !Dk ~"ij ¼ 0: (12d)

Observe that the derivative Dk applied to the algebraic
constraint ~" ¼ " yields the condition

~" ij ~"kij ¼ 0: (13)

This is a new algebraic constraint that the first-order BSSN
variables must satisfy, along with the algebraic constraints
(2) inherited from second-order BSSN.
The evolution equations for the new variables are ob-

tained by computing their time derivatives using the
second-order BSSN Eqs. (4a) and (4b) and gauge condi-
tions (9) and (10a). In carrying out these calculations, we
continue to assume that the fiducial metric is flat and time
independent. The complete system of first-order equations,
the FOBSSN system, can be conveniently split into gauge
and nongauge sectors. The gauge sector is
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@0& ¼ !&2fK þ S&; (14a)

@0&i ¼ !&2f@iK ! 2f&&iK ! &2½f&&i þ f##i(K
þ %i

j&j þDiS& ! (&Ai; (14b)

@0%
j ¼ &2GBj þ Sj%; (14c)

@0B
j ¼ e!4#H@0 ~!

j ! 'Bj þ SjB; (14d)

@0%i
j ¼ &2GDiB

j þ 2G&&iB
j þ &2½G&&i þG##i(Bj

þ %i
k%k

j þDiS
j
% ! (%Bj

i ; (14e)

@0K ¼ !e!4# ~"ij½ ~Di&j þ 2#i&j( þ &ð ~Aij ~Aij þ 1
3K

2Þ:
(14f)

Here, subscripts & and # on the functions f and G denote
partial derivatives. Note that terms proportional to the
constraints Ai and Bi

j have been added to the right-
hand sides of the evolution equations for &i and %i

j. The
corresponding proportionality constants are (& and (%.
These terms can be used as a damping mechanism for
any numerical violation of the constraints Ai ¼ 0 and
Bi

j ¼ 0.
The remaining evolution equations, which comprise the

nongauge sector, are

@0#¼!&

6
Kþ1

6
%k

k; (15a)

@0#i¼!1
6&DiKþ 1

6Di%k
k! 1

6&iKþ%i
j#j!(#Ci;

(15b)

@0 ~"ij¼!2& ~Aijþ2~"kði%jÞ
k! 2

3~"ij%k
k; (15c)

@0 ~Aij¼e!4#½& ~Rij!2&Dði#jÞþ4&#i#j

!Dði&jÞ þ"~#k
ijð2&#kþ&kÞþ4&ði#jÞ(TF

þ&K ~Aij!2& ~Aik
~Ak

jþ2 ~Akði%jÞ
k! 2

3
~Aij%k

k;

(15d)

@0 ~"kij¼!2&Dk
~Aijþ2ðDk%ði

‘Þ~"jÞ‘! 2
3~"ijDk%‘

‘

!2&k
~Aijþ%k

‘ ~"‘ijþ2~"k‘ði%jÞ
‘

! 2
3~"kij%‘

‘!("Dkij; (15e)

@0 ~!
i¼ ~"k‘Dk%‘

iþ 1
3
~Di%k

kþ)~"ijðDj%k
k!Dk%j

kÞ
! 4

3&
~DiK!"~#‘

jk ~"
jk%‘

iþ 2
3"

~#i
jk ~"

jk%‘
‘

!2 ~Aij&jþ2&ð"~#i
k‘
~Ak‘þ6 ~Aij#jÞ: (15f)

Here, we have defined

"~#i
k‘ ¼ 1

2~"
ijð~"k‘j þ ~"‘kj ! ~"jk‘Þ;

~Rij ¼ !1
2~"

k‘Dk ~"‘ij þ ~"kðiDjÞ ~!
k þ ~"‘m"~#k

‘m"~#ðijÞk

þ ~"k‘½2"~#m
kði"

~#jÞm‘ þ"~#m
ik"~#mj‘(;

which follow from the definition of the Christoffel symbols
and the identity (6) for the Ricci tensor. In the evolution
equations for #i and ~"kij, the constraints Ci and Dkij are
subtracted with constants (# and (". These terms are

included as damping mechanisms for these constraints, in
analogy with (& and (%. The term proportional to the
constant ) in the evolution equation for ~!i, Eq. (15f), is
equal to the constraint 2~"ijD½jBk

k( ¼ 0. This term is

needed to make the evolution system strongly hyperbolic,
as discussed below.

B. Constraint propagation

The FOBSSN system is subject to the algebraic
constraints ~"! " ¼ 0, ~Ai

i ¼ ~"ij ~Aij ¼ 0, and ~"ki
i ¼

~"ij ~"kij ¼ 0. As discussed in the next section, our numeri-
cal codes enforce some but not all of these constraints.
If the algebraic constraints are not enforced, but free
to evolve, the first-order BSSN evolution equations
(15c)–(15e) imply

@0 lnð~"="Þ ¼ !2& ~Ai
i; (16a)

@0 ~A
i
i ¼ &K ~Ai

i; (16b)

@0 ~"ki
i ¼ !2&Dk

~Ai
i ! 2&k

~Ai
i þ %k

l ~"‘i
i

þ 2& ~AijDkij ! (" ~"ijDkij: (16c)

It follows from Eq. (16b) that ~Ai
i is zero along an integral

curve c of @0 ¼ @t ! %jDj if it is zero at some point on this
curve. Therefore, if all integral curves c intersect the initial
surface, it is sufficient to require ~Ai

i ¼ 0 on this surface in
order to guarantee that the algebraic constraint ~Ai

i ¼ 0
holds at every time and everywhere on the computational
domain. On the other hand, if c intersects the boundary
surface and at the intersection the shift vector is outward
pointing, then ~Ai

i ¼ 0 needs to be enforced as a boundary
condition in order to guarantee the satisfaction of the
algebraic constraint ~Ai

i ¼ 0. If this constraint holds, it
follows by a similar argument from Eq. (16a) that the
determinant constraint ~" ¼ " holds if it is satisfied initially
and suitable boundary conditions are specified in case%k is
outward pointing at the boundary. Equations (16a) and
(16b) also show that it is consistent to enforce the algebraic
constraints ~" ¼ " and ~Ai

i ¼ 0 throughout evolution, as is
the case for the second-order BSSN system.
On the other hand, it does not follow immediately from

Eq. (16c) and suitable initial and boundary conditions that
the trace constraint ~"ki

i ¼ 0 holds, unless the term ~AijDkij

is zero.2 This means that the propagation of the algebraic
trace constraint ~"ki

i ¼ 0 is coupled to those of the con-
straints Ai ¼ 0, Bi

j ¼ 0, Ci ¼ 0, and Dkij ¼ 0, and one
cannot consistently enforce ~"ki

i ¼ 0 along with the other

algebraic constraints unless ~AijDkij ¼ 0.
Alternatively, it is possible to decouple the algebraic

constraints from the remaining ones by adding the term

2Notice that ~"ijDkij ¼ ~"ki
i !Dk lnð~"="Þ so this term can be

expressed in terms of the algebraic constraints.
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! 2&

3
~"ij

~AlmDklm þ ("

3
~"ij ~"

lmDklm (17)

to the right-hand side of Eq. (15e), which has the same
effect as the replacements

Dk
~Aij!Dk

~Aij! 1
3~"ij ~"

lmDk
~Almþ 1

3~"ij½Dkð ~Am
mÞþ ~Akm ~"klm(

and

D kij ! Dkij ! 1
3~"ij ~"

lmDklm

in that equation. With this, the last two terms on the right-
hand side of Eq. (16c) drop, and one obtains a closed,
homogeneous evolution system for the algebraic con-
straints. Therefore, it is consistent to set the algebraic
constraints to zero even if Dkij ! 0.

We now consider the constraints Ai ¼ 0, Bi
j ¼ 0,

Ci¼0, andDkij ¼ 0 that were introduced in the reduction
of BSSN to first order. The evolution equations imply that
the constraint fields Ai, Bi

j, Ci, and Dkij satisfy the
following linear, homogeneous system of equations:

@0Ai ¼ !2&fKAi ! &2K½f&Ai þ f#Ci(
þ ðDi%

jÞAj þ &jBi
j ! (&Ai; (18a)

@0Bi
j ¼ 2&GBjAi þ &2Bj½G&Ai þG#Ci(

þ ðDi%
kÞBk

j þ %k
jBi

k ! (%Bi
j; (18b)

@0Ci ¼ !K

6
Ai þ ðDi%

jÞCj þ#jBi
j ! (#Ci; (18c)

@0Dkij ¼ !2 ~AijAk þ ðDk%
‘ÞD‘ij þ ~"‘ijBk

‘

þ 2Dk‘ði%jÞ
‘ ! 2

3Dkij%‘
‘ ! ("Dkij: (18d)

[The term in Eq. (17) has to be added to the right-hand side
of the last equation in case Eq. (15e) is modified in the way
described above.]

Here, we have set the source terms S&, S
i
%, and SiB to

zero for simplicity but without loss of generality with
respect to the main conclusions. If the shift is not outward
pointing at the boundaries, and the initial data is chosen
such that Ai ¼ 0, Bi

j ¼ 0, Ci ¼ 0, and Dkij ¼ 0, then
these results show that a solution to the first-order BSSN
evolution equations will automatically satisfy these con-
straints for all times. It follows that such a solution will
also satisfy the original second-order BSSN system. If the
shift is outward pointing at a boundary, additional bound-
ary conditions need to be specified in order to ensure
that these constraints propagate, see the discussion below
Eq. (16).

On the other hand, numerical errors can trigger small
violations of the constraints and these violations might
grow in time. We can use the parameters ( to help insure
that the constraints are damped. As we show in the next
subsection, (# ¼ 0 is required for strong hyperbolicity, so
let us consider (# ¼ 0 here as well. Now, observe that
with the standard gauge conditions the functions f and G
are independent of #. In this case, the first two equations,

Eqs. (18a) and (18b), decouple from the last two. With (&

and (% sufficiently large, Ai and Bi
j should be damped.

Next, observe that the fourth equation, Eq. (18d), is inde-
pendent of Ci. Assuming Ai and Bi

j are damped, the
constraint Dijk should remain damped for sufficiently
large constant (".
Finally, consider Eq. (18c) with (# ¼ 0. With the con-

straints Ai and Bi
j vanishing, this equation reduces to

@tCi ¼ L%Ci, whereL% is the Lie derivative along the shift
vector. It follows that the time evolution for Ci is simply a
spatial diffeomorphism defined by the shift %i. If initially
the tensor components Ci are given small nonzero values
due to numerical error, these errors should stay small as long
as the spatial coordinates remain well behaved.

C. Hyperbolicity

The evolution equations (14) and (15) form a quasilinear
first-order system,

@tu ¼ AðuÞi@iuþ FðuÞ; (19)

where the matrices A1, A2, A3, and F depend smoothly on
the state vector u ¼ ð&;&i;%

j; Bj;%i
j; K;#;#i; ~"ij; ~Aij;

~"kij; ~!
iÞ. Such systems possess a local in time well-posed

Cauchy problem if they are strongly hyperbolic, meaning
that for each constant state vector u

)
in an appropriate open

neighborhood and each normalized covector ni there exists
a symmetric, positive definite matrix Hðu); nÞ, depending
smoothly on u

)
and ni, such that Hðu); nÞAðu)Þini is symmet-

ric. The motivation for this definition stems from the
principle of frozen coefficients [65] in which the system
(19) is first linearized about some smooth solution u, and
then its coefficients are frozen at a specific point p of the
space-time manifold. Denoting by u

) ¼ uðpÞ the constant
field that is obtained by freezing u at p, and by v the
linearization of u, the system (19) is then replaced by the
linear, constant coefficient problem

@tv ¼ Aðu)Þi@ivþF ; (20)

with F some constant vector. When F ¼ 0, this system
describes the evolution of small-amplitude, high-frequency
perturbations of the quasilinear system (19). Therefore, it
is clear that a necessary condition for the well-posedness of
the Cauchy problem for Eq. (19) is that the principal
parts of all frozen coefficient problems, i.e. Eq. (20) with
F ¼ 0, lead to well-posed Cauchy problems. This
turns out to be the case if and only if there exists a
symmetric, positive definite matrix Hðu); nÞ such that
Hðu); nÞAðu)Þini is symmetric [65]. Provided Hðu); nÞ de-
pends smoothly on u

)
and n, the principle of frozen coef-

ficients asserts that this is also a sufficient condition for the
local in time well-posedness of the quasilinear problem
[65,66].
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The existence of the ‘‘symmetrizer’’ matrix Hðu); nÞ
implies, in particular, that the principal symbol Aðu); nÞ :¼
Aðu)Þini is diagonalizable and has a real spectrum for each

u
)
and n. Once this necessary condition has been verified,

the symmetrizer Hðu); nÞ can be constructed by diagonal-

izing Aðu); nÞ ¼ Sðu); nÞ!ðu); nÞSðu); nÞ!1 with !ðu); nÞ a

real, diagonal matrix, and then setting Hðu); nÞ :¼
ðSðu); nÞ!1ÞTSðu); nÞ!1. If Sðu); nÞ!1 depends smoothly on

u
)
and n, this yields the required symmetrizer. The rows of

Sðu); nÞ!1u are the characteristic fields of the system (19),

and the diagonal entries of !ðu); nÞ are the corresponding
characteristic speeds.

In our system (14) and (15), the principle part naturally
splits into two blocks, one of them, the ‘‘gauge block,’’
comes from the evolution equations (14) for the 20 inde-
pendent variables &, &i, %

j, Bj, %i
j, and K, and the other

block, the ‘‘nongauge block,’’ comes from the evolution
equations (15) for the remaining variables. We first analyze
the gauge block which is decoupled from the remaining
block. Let us choose ) ¼ 1. Through the replacements
@t ! * and @i ! ni, we find that the eigenvalue problem
*v ¼ Aðu); nÞv for this block reads

ð*!%
)

nÞ&¼0; (21a)

ð*!%
)

nÞ&i¼!&
)2f

)
niKþ(&ni&; (21b)

ð*!%
)

nÞ%j¼0; (21c)

ð*!%
)

nÞBj¼H
)
!
%nj!%jnþ

4

3
nj%k

k!4&
)

3
njK

"
; (21d)

ð*!%
)

nÞ%ij¼&
)2G

)
niBjþ(%ni%j; (21e)

ð*!%
)

nÞK¼!&n: (21f)

Here and in the following, the quantities &
)
, %

) i,#
)
, "

)
ij refer

to the frozen lapse, shift, conformal factor, and physical

metric, respectively. Also, f
)
¼ fð&) ;#

)
Þ with similar defi-

nitions for G
)
and H

)
. We assume that f

)
, G

)
, and H

)
are

all positive. The covector ni is normalized such that
"
)ijninj¼1. An index n refers to contraction with ni ¼
"
)ijnj; for example, &n ¼ ni&i. We have also used the

frozen physical metric to lower indices: %i ¼ "
)
ij%

j and

%ij ¼ %i
k"

)
kj.

The characteristic fields and speeds for the gauge block
are

%AB;&A;%A;%An;&;%n; * ¼ %
)

n; (22a)

Gð*Þ
A & BA þ

(%

&
)2G

) %A * 1

&
)

ffiffiffiffiffi
H
)

G
)

vuut ð%nA ! %AnÞ; * ¼ %
)

n * &
)

ffiffiffiffiffiffiffiffiffi
G
)
H
)

q
; (22b)

Gð&;*Þ & K ! (&

&
)2f

)&+ 1

&
)

ffiffiffi
f
)

q &n; * ¼ %
)

n * &
)

ffiffiffi
f
)

q
; (22c)

Gð%;*Þ & Bn þ
(%

&
)2G

) %n *
!

&
)
G
) "

)rs%rs +
4H

)

3ð!2 ! f
)
Þ

$
!K ! (&

&
)2!

&+ 1

&
) &n

%
; * ¼ %

)

n * &
)
!: (22d)

Here, indices A and B refer to contraction with unit
vectors orthogonal to ni, and we have set

! &
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4G

)
H
)
=3

q
. The characteristic fields are well

defined and independent from each other as long as

!2 ! f
)
. This restriction on hyperbolicity, which is more

explicity written as

4G
)
H
)
! 3f

)
; (23)

is also required for strong hyperbolicity in the second-order
BSSN system [47].

The eigenvalue problem *v ¼ Aðu); nÞv for the non-
gauge block is given by

ð*!%
)

nÞ#¼0; (24a)

ð*!%
)

nÞ#i¼!&
)

6
niKþ1

6
ni%k

kþ(#ni#; (24b)

ð*!%
)

nÞ~"ij¼0; (24c)

ð*!%
)

nÞ ~Aij¼!&
)

2
½~"nij(TF

þe!4#
)
½&)nði ~!jÞ!2&

)
nði#jÞ!nði&jÞ(TF;

(24d)

ð*!%
)

nÞ~"kij¼!2&
)
nk ~Aijþ2e!4#

)
nk½%ðijÞ(TF

þ("nk ~"ij; (24e)

ð*!%
)

nÞ~!j¼%nj!%jnþ
4

3
nj%k

k!4&
)

3
njK; (24f)
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where ~!k ¼ e!4#"
)
k‘
~!‘. This block consists of 32 inde-

pendent variables: 1 variable #, 3 variables #i, 5 variables
~"ij (since ~"ij is the linearization of a metric with fixed

determinant), 5 variables ~Aij (since ~Aij is symmetric and

trace-free), 15 variables ~"kij (since ~"kij is symmetric and

trace-free in i and j), and 3 variables ~!j.
The nongauge block needs (# ¼ 0 to be diagonalizable.

With (# ¼ 0, the characteristic fields and speeds are

#; Z0 & #n ! 1
8
~!n;#A; ~"ij; Zi & H

) ~!i ! Bi; ~"Aij; * ¼ %
)

n; (25a)

Vð*Þ
AB & ~Atf

AB ! ("

2&
) ~"

tf
AB ! 1

&
) e

!4#
)
%tf

ðABÞ +
1

2
~"tf
nAB; * ¼ %

)

n * &
)
; (25b)

Vð*Þ
nA & ~AnA ! ("

2&
) ~"nA ! 1

&
) e

!4#
)
%An +

1

2
½~"nnA ! e!4#

)$
~!A ! 2#A ! 1

&
) &A

%"
; * ¼ %

)

n * &
)
; (25c)

Vð*Þ
nn & ~Ann !

("

2&
) ~"nn þ

1

&
) e

!4#
)
%AB+

AB ! 2

3
e!4#

)
K +

!
1

2
~"nnn !

2

3
e!4#

)
ð~!n ! 2#nÞ

"
; * ¼ %

)

n * &
)
; (25d)

where the superscript tf refers to the trace-free part
in the transverse directions; for instance, ~Atf

AB ¼
~AAB ! 1

2+AB+
CD ~ACD.

Provided the functions f, G, and H depend smoothly on
ð&;#Þ and satisfy the restriction (23), a smooth symmetr-
izer Hðu); nÞ can be constructed from the characteristic
fields as described at the beginning of this subsection.

In the analysis above, we have assumed that all the
algebraic constraints are identically satisfied, which
is consistent with the evolution equations after the mod-
ifications to Eq. (15e) described in Sec. III B.3 If none
of the algebraic constraints are enforced, then Eq. (24)

yields ð*! %
)

nÞð")ij ~"ijÞ ¼ 0, ð*! %
)

nÞð")ij ~AijÞ ¼ 0,

and ð*! %
)

nÞð")ij ~"kijÞ ¼ nk½!2&
)ð")ij ~AijÞ þ ("ð")ij ~"ijÞ(,

which is a weakly hyperbolic system. In order to obtain a
strongly hyperbolic system, one could enforce only the
trace constraint ~Ai

i ¼ 0 and replace Dkij by its trace-free
part over ij in the right-hand side of Eq. (15e). In this case,
"
)ij ~"ij and "

)ij ~"kij are characteristic fields with speeds

* ¼ %
)

n and one has to perform the replacements

~" nn ! 2
3ð~"nn ! 1

2~"AB+
ABÞ

and

~" nnn !
2
3ð~"nnn ! 1

2~"nAB+
ABÞ

in the expression for Vð*Þ
nn in Eq. (25d).

IV. NUMERICAL EXPERIMENTS

Here, we summarize results of numerical experiments of
the first-order BSSN formulation described in the previous
sections, with different numerical approaches and codes,
from more traditional ones for which there is more expe-
rience (finite differences with adaptive mesh refinement),
to a promising approach that only recently is making its

way into numerical relativity (discontinuous Galerkin fi-
nite elements, restricted here to spherical symmetry).
In more detail, our approach and summary of numerical

experiments with the FOBSSN formulation is in the fol-
lowing order:
(1) Section IVA: Two Apples-with-Apples tests [67], as

well as results from single and binary black hole
moving-puncture simulations using finite differ-
ences with AMR. Most of our simulations show no
signs of time or numerical instabilities. By time
stability in time-dependent problems, it is referred
to the numerical solution not growing at any fixed
resolution in time unless the exact solution does so.
Numerical stability refers to the property that at any
fixed time the errors in the numerical solution de-
crease with increasing resolution. In our simula-
tions, we have found the solution to be both time
and numerically stable.
The nonlinear gauge wave test with large amplitudes
shows a global time instability (yet not a numerical
one) that is expected; see [67]. This suggests that the
addition of the extra constraints present when en-
larging the system to a purely first-order formulation
does not trigger any obvious instability. The ex-
tracted gravitational waves are found to be consis-
tent with simulations done using the standard
second-order BSSN formulation. In addition, the
FOBSSN results are often more accurate than
BSSN results using the same resolution.

(2) Section IVB: With the standard BSSN gauge con-
ditions, a nonrotating black hole is driven to the
trumpet solution [68]. However, this would require
either the moving-punctures technique [2,3] or the
turduckening one [56–58]. In the first case, the
equations become singular at the puncture locations,
which would be difficult to deal with using a very
high order method such as those motivating the
current paper. The turducken approach, on the other
hand, smooths the solution inside the black hole
while guaranteeing that the associated constraint

3These modifications do not change the principal part of the
equations when the algebraic constraints hold.
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violations do not ‘‘leak’’ to the exterior of the black
hole. As a first step in that direction, we test a
discontinuous Galerkin (dG) approach using the
FOBSSN system for black holes in spherical sym-
metry, first using excision.

(3) Section IVC: As a final step, we perform turducken
black hole dG simulations in spherical symmetry,
both using FOBSSN and the standard second-order
formulation. We are able to perform long-term and
stable evolutions with the standard second BSSN
formulation, but find numerical instabilities with
FOBSSN.

Discussions about all these experiments, their interpre-
tation, and proposed next steps are discussed in Sec. V.
Next, we provide a somewhat detailed summary of these
numerical experiments.

A. Finite differences

We have implemented the first-order system (14) and
(15) using the CACTUS framework [69,70], and employing
the CARPET AMR driver [71,72]. We used the
MATHEMATICA package KRANC [73,74] to expand the
FOBSSN equations to C code, in the same manner as
already for the MCLACHLAN code [58,75]. Both the
MATHEMATICA notebook as well as the resulting C code
will be made available for public download as part of the
Einstein Toolkit [76,77] under the name CARLILE.

Our implementation supports arbitrary finite differenc-
ing orders and time integration orders; below, we use
fourth-order accurate stencils and a fourth-order Runge-
Kutta time integrator. We use fifth-order Kreiss-Oliger
dissipation as well as fifth-order spatial interpolation at
AMR boundaries. We use buffer zones and tapered grids
[58] to avoid time interpolation at mesh refinement
boundaries. This makes all simulations fully fourth-order
convergent. The algebraic constraints ~"ij ~Aij ¼ 0 and
~"ij ~"kij ¼ 0 are enforced every time the state vector is
modified. However, ~" ¼ 1 ¼ " is not enforced, but is
nevertheless assumed to hold throughout the implementa-
tion. Our constraint damping and related parameter set-
tings are listed in Table I. We impose simple outgoing
radiation (Sommerfeld) boundary conditions on all fields.

(a) Robust stability test. One of the most important and
most fundamental tests for a formulation of the
Einstein equations and its numerical implementa-
tion is a robust stability test, which can demonstrate
linear stability. The simulation domain is initialized
with Minkowski data plus a small amount of noise,
and then let to evolve freely [67]. Here, we use a
cubic domain with 403 grid points and periodic
boundary conditions, and a noise amplitude of A ¼
10!6 in all BSSN or FOBSSN variables. Figure 1
compares the performance of BSSN and FOBSSN,
and finds very similar behavior. In particular, the L2

norm of the Hamiltonian constraint decreases stead-
ily over time, indicating robust stability.

(b) Nonlinear gauge wave. A very demanding test is
evolving a nonlinear gauge wave. This is a fully
nonlinear solution of the Einstein equations where
the exact solution is known, as it is a flat space-time
in a complex, time-dependent coordinate system
[67]. Here, we use a one-dimensional domain with
40, 1, 1 grid points with periodic boundaries,
and evolve with the full three-dimensional formula-
tion. We test two cases, a large-amplitude (A ¼ 0:1)
and a small-amplitude (A ¼ 0:01), employing the
exp sin form of the gauge wave.
Figure 2 shows results from the large-amplitude
case. This is a very demanding case that is known
to go unstable quickly for many formulations of the
Einstein equations [67]. Here, we observe that both
the evolutions with BSSN and the FOBSSN formu-
lations break down; however, the FOBSSN evolu-
tion lasts for about twice as many crossing times.
We also observe that the breakdown mechanisms for
BSSN and FOBSSN are different—the BSSN result

 1e-05

 0.0001

 0.001

 0.01

 0  100  200  300  400  500  600  700  800

L 2
 H

am

t [M]

Robust Stability Test

BSSN
FOBSSN

FIG. 1 (color online). Robust stability test comparing of BSSN
and FOBSSN. A cubic domain is initialized with Minkowski
data and a low level of noise in all variables, and then evolved
with periodic boundary conditions. This tests linear stability of
the formulation. The fact that the constraint violation decreases
indicates stability. Both BSSN and FOBSSN perform very
similarly here.

TABLE I. Constraint damping and related parameter settings.

Code name Symbol Eq. Value Comment

harmonicN &2f (14a) 1 (1þ log)
harmonicF &2f (14a) 2.0 (1þ log)
ShiftGammaCoeff &2G (14c) 0.75 (standard choice)
BetaDriver ' (14d) 1.0
DAlphaDriver (& (14a) 1.0
DBetaDriver (% (14e) 1.0
DphiDriver (# (15a) 0.0 (not enforced)
DgtDriver (" (15e) 1.0
sigma ) (15f) 1.0
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develops high-frequency noise (depicted), while in
the FOBSSN result the metric drifts downward, i.e.
the proper size of the simulation domain decreases.
Figure 3 shows results from the small-amplitude
case. This is a less demanding case where most
formulations of the Einstein equations can perform
long-term evolutions [67]. After 100 crossing times,
both the BSSN and FOBSSN results look fine;
however, the BSSN result exhibits a much larger
upward drift in the metric.

(c) Single puncture black hole. A much more interesting
test of the FOBSSN formulation is evolving a punc-
ture black hole. Here, we choose a rotating puncture

with total mass M ¼ 1 and spin a ¼ 0:7, set up
via the TWOPUNCTURES thorn [78]. These initial
conditions are conformally flat and contain some
gravitational radiation, and the black hole is ex-
pected to relax to a stationary state after some
time. In the figures below, we use a length unit M
that corresponds approximately to the ADM mass
of the system, which is MADM ¼ 1:002 52M. The
black hole horizon has a coordinate radius of
approximately 0.376 initially and 0.766 at late
times.
We employ eight levels of mesh refinement in a
cubic domain, placing refinement boundaries at x ¼
½1; 2; 4; 8; 16; 64; 128(M, and placing the outer
boundary at 258:048M. The resolution on the finest
level, which encompasses the horizon at all times, is
h ¼ 0:032M.
Figure 4 shows the total mass of the black hole as
calculated by the QUASILOCALMEASURES thorn [79].
After an initial transient lasting about 20M, the
space-time becomes manifestly stationary. The an-
gular momentum (not shown) remains approxi-
mately constant at J ¼ 0:701* 0:006M2. Figure 5
shows a snapshot of the Hamiltonian constraint
in this stationary state along the x axis at t ¼
76:8M. As expected, the constraint violation in-
creases toward the black hole. Both BSSN and
FOBSSN perform approximately the same except
near the outer boundary, where FOBSSN seems
superior.

(d) Inspiralling binary black holes. As a more advanced
test, we also evolve inspiralling binary black holes,
using the R1 configuration of [80,81]. This configu-
ration performs about 1.8 orbits prior to merger,
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FIG. 3 (color online). Nonlinear gauge wave test, A ¼ 0:01
(small amplitude), comparing of BSSN and FOBSSN. At t ¼
200 (100 crossing times), both the BSSN and FOBSSN solutions
are still fine. However, the BSSN solution has begun to drift
upward much more than the FOBSSN solution.
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FIG. 4 (color online). Black hole total mass vs time for a single
puncture black hole with spin a ¼ 0:7, comparing the accuracy
of BSSN and FOBSSN. This is an initially nonstationary solu-
tion that evolves toward a trumpet solution. BSSN and FOBSSN
perform very similarly here, and, in particular, the moving-
puncture/turduckening approach to singularity handling seems
to work fine for FOBSSN.
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FIG. 2 (color online). Nonlinear gauge wave test, A ¼ 0:1
(large amplitude), comparing of BSSN and FOBSSN. At t ¼
70 (35 crossing times), the BSSN solution has broken down
(become irregular) due to accumulation of numerical errors. The
FOBSSN breaks down much later, shortly after t ¼ 120 (60
crossing times); at t ¼ 120, the FOBSSN solution is still regular,
and has only picked up a phase error and a global downward drift
in the metric.
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with a common apparent horizon first found at
roughly t ¼ 160M, where the ADM mass MADM ¼
0:966M sets the scale. The initial individual black
holes have masses M1 ¼ M2 ¼ 0:505M and have
no spin.
We use 9 levels of adaptive mesh refinement and
placed the outer boundary at 320M. The simulations
were performed at two resolutions of h ¼ M=28:8
and h ¼ M=38:4, where h denotes the grid spacing
on the finest grid, see also [80,81] for comparison.
We use fourth-order accurate finite differencing
stencils with lopsided stencils for advection terms
[82] and fourth-order Runge-Kutta time integration
with Berger-Oliger subcycling in time. We do not
employ tapered grids, using second-order time in-
terpolation where necessary on mesh refinement
boundaries.
Because of the larger number of constraints in the
first-order formulation, one would expect a better
accuracy in the second-order formulation for the
same number of grid points [83–86]. That seems
indeed to be the case here: we find that the
BSSN formulation allows us to use a lower resolu-
tion than the FOBSSN formulation to achieve time
stability.
Figure 6 shows the amplitude of the ‘ ¼ 2, m ¼ 2
mode of the Weyl scalar $4, extracted on a coor-
dinate sphere with radius r ¼ 50M. The low-
resolution FOBSSN simulation is visibly different
from the other simulations at the peak of the ampli-
tude. However, the high-resolution FOBSSN simu-
lation agrees with both BSSN resolutions.

Throughout the simulations, there is generally a
good agreement between all runs. The lower panel
of Fig. 6 shows the difference in the amplitude
between high- and low-resolution runs for the
BSSN and FOBSSN formulations, indicating that
BSSN may have a smaller relative error.

B. Discontinuous Galerkin

Next, we consider a dG scheme for the spherically
reduced first-order BSSN system (see [51] for a dG im-
plementation of the second-order form of the BSSN equa-
tions). There are some important differences with
FOBSSN in three dimensions, which arise when special-
izing to spherical symmetry. First, the constraint ~Ai

i ¼ 0 is
exactly satisfied by virtue of the spherically symmetric
restriction. Second, terms proportional to ) in Eq. (15f)
are identically zero and so we set ) ¼ 0. Finally, spherical
symmetry is no longer associated with the obvious choice
#i
jk ¼ 0 and " ¼ 1. As a consequence, using the fiducial

covariant derivative will give rise to terms which feature "
and its derivatives. Our approach is to notice the fact that
the covariant divergence Di%

i only depends on " and use
the constraint ~"! " ¼ 0 to replace Di%

i ! ~Di%
i

throughout the BSSN system (4). Furthermore, we
use ~#r in place of ~!r, which results in a strongly
hyperbolic spherically reduced BSSN system, explicitly
given by Eq. (10) of [51]. For a complete discussion,
see Ref. [87].
We have discretized the first-order spherically reduced

system with a nodal dG method [88,89]. Similar to a
multidomain pseudospectral collocation method, a dG ap-
proach provides for a multidomain treatment of the ge-
ometry where the numerical solution on each subdomain is
given by a (time-dependent) polynomial of arbitrarily
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FIG. 5 (color online). Hamiltonian constraint violation along
the x axis at t ¼ 76:8M for a single puncture black hole,
comparing the accuracy of BSSN and FOBSSN. The constraint
violation increases toward the black hole (located at x ¼ 0),
where the horizon has a coordinate radius of about r ¼ 0:766M
at this time. The constraint violation near x ¼ 100M is caused by
outer boundary effects. FOBSSN seems to perform slightly
better than BSSN in the bulk of the domain, and significantly
better near the outer boundary.

FIG. 6 (color online). Comparison between simulations of the
standard first order in time, second order in space implementa-
tion of BSSN, and a fully first-order reduction for a binary black
hole inspiral system. The top panel shows the amplitude of the
‘ ¼ 2, m ¼ 2 mode of$4 extracted at r ¼ 50 at two resolutions
h for both implementations. The bottom panel shows the differ-
ence between different resolutions.
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high-order degree N. On every subdomain, each compo-
nent of the partial differential equation is required to be
satisfied in a suitable weak (integral) sense, yielding
(N þ 1) ordinary differential equations often known as
Galerkin conditions. Adjacent subdomains are coupled in
a stable manner through a suitable numerical flux term
[88]. The resulting scheme is nearly identical to the one
presented in [51] with the notable exception of the absence
of second-order operators. Hence, we use the standard
local Lax-Friedrichs form for the numerical flux [88],
while in the second-order system, to which we will some-
times compare, a penalized central flux provides for a
stable treatment of the second-order operators (see page
13 of Ref. [51] for more details). The integration in time is
implemented using the method of lines with a fourth-order
Runge-Kutta scheme. After each time step, an exponential
filter is applied to the top two-thirds of the modal coeffi-
cients to control alias driven instabilities. Furthermore, in
our dG implementation of both the second- and first-order
BSSN system we have empirically observed that the con-
formal metric coefficients must not be filtered otherwise
the scheme becomes unstable. A perhaps related observa-
tion is that enforcing the constraint ~" ¼ " triggers an
instability at very early times. Neither this constraint nor
the spherically symmetric version of Eq. (13) is enforced in
our dG implementation.

All simulations presented next are for the Schwarzschild
metric in conformal ingoing Kerr-Schild coordinates4 [51].
The source terms S&, S

r
%, and S

r
B in the gauge equations (9)

and (10) are chosen so that the numerical solution is time
independent. Typical choices for f, G, ', and ) are used;
in detail: f ¼ 2=&, G ¼ 3=4&!2, ' ¼ 50, and terms pro-
portional to ) are identically zero. Furthermore, we set5

H ¼ e4#=L and choose L ¼ 10 such that the excision
surface is not too close to r ¼ 0, where field gradients
are large. All damping parameters (&, (%, (#, and ("

are set to 20. We find that different values of L have
negligible effect on the scheme’s stability, and, in particu-
lar, no dependence on the location of the e4# ¼ 2&L
surface of weak hyperbolicity [cf. Eq. (23)].

The radial domain ½0:4; 50(M is covered by 100 equally
sized subdomains.6 We treat the inner boundary by exci-
sion. At the outer physical boundary, we specify the ana-
lytic values for the incoming characteristic modes, which,
for the spherically reduced system considered here, are
given by Eqs. (17a-i) listed in [51] (Dirichlet conditions). Figures 7 and 8 show that the scheme converges exponen-

tially with N and is able to achieve very long run times. In
an attempt to remove the slow growth in time for any fixed
resolution seen in the Hamiltonian constraint, we varied
our numerical setup including the exponential filter pa-
rameters (the number of filtered modes, the dissipation
exponent, and which variables to filter), the time step, the
Br damping parameter ', the numerical flux dissipation
parameter, and the auxiliary field damping parameters,
without significant improvements.

FIG. 8. Exponential convergence of discontinuous Galerkin
evolutions with polynomial order, see Sec. IVB. The norm
used is the L2 one.

FIG. 7 (color online). Discontinuous Galerkin evolutions
of a black hole in spherical symmetry, using excision.
See the text in Sec. IVB for more details. The last two
resolutions have essentially reached double-precision roundoff
errors.

4In these coordinates, at least initially, ~"ij ¼
diagð1; r2; r2sin2,Þ and so the algebraic constraint is ~" ¼ " ¼
r4sin2,.

5The dG code evolves the conformal factor $ ¼ e!4#.
Nevertheless, we continue to refer to the conformal factor as
# in this section.

6This is far from optimal, since a better choice would be to
have the size of the domains increase with radius. However, it
suffices to make our point about stability and convergence.
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C. Turduckening

Successful numerical evolution of binary black hole
systems requires a suitable treatment of singularities.
There are three distinct techniques used: moving punctures
[2,3], excision, and smoothing via turduckening [56–58].
State-of-the-art second-order BSSN codes avoid the com-
plications of excision, which require horizon tracking. A
moving-puncture technique was used in our finite differ-
ence implementation in Sec. IVA, while the dG code in
Sec. IVC) each relied on excision. It has been shown that
the usual gauge conditions are attractors of the trumpet
solution [90–93] for which there is an incoming character-
istic mode even at the puncture [94]—generically, we
therefore do not expect an excision surface where no
boundary conditions are required to exist. As the majority
of BSSN implementations without excision have been thus
far limited to finite difference methods, one wonders how
other methods might deal with singularities. In this sub-
section, we give a preliminary look at turduckening for the
nodal dG code.

We follow the turduckening technique described in
Ref. [58]. Singular initial data in the interior of the black
hole is replaced with smooth constraint-violating data. The
prescription for such smoothing used here is as follows. If
the computational domain is r 2 ½0; Rmax=M(, we select a
coordinate location rt inside the horizon and make the
replacement r ! r in the equations for the initial data,
where r is rigged to satisfy rð0Þ ¼ r0, rðrtÞ ¼ rt, and r ¼
r for r > rt. In addition, we require r to have a specified
number of continuous derivatives (typically 8), such that
the turduckened and original data match to the specified
degree of smoothness where they are joined. A polynomial
r with these properties is constructed by solving a system
of linear equations for the polynomial coefficients.

In effect, our prescription stretches the physically cor-
rect (nonsingular) data for the region ½r0; rt( over the
turduckened region ½0; rt(. This choice of initial data will
naturally be constraint violating. As the constraint system’s
wave speeds (see Sec. III C and Ref. [58]) are not super-
luminal, these violations remain ‘‘trapped’’ inside the
horizon for all future times. Furthermore, for the second-
order BSSN system, Ref. [58] found that the region of
constraint violation quickly shrinks relative to the numeri-
cal grid. We experimented with turduckening the second-
order dG scheme described in [51], and found that the
region of constraint violation quickly shrinks with this
scheme as well. These simulations used a grid with a larger
outer boundary and staggered domain sizes: 1 subdomain
½0; rt ¼ :4(M comprising the turduckened region with
r0 ¼ :1M, 3 subdomains in ½:4; 1:5(M, 6 subdomains in
½1:5; 10(M, and 12 subdomains in ½10; 100(M. Otherwise,
the same numerical settings as in IVB, although here we
use frozen outer boundary conditions on all fields and
gauge source terms chosen so that Eqs. (9) and (10) are
initially time independent. Figure 9 shows the scheme is

stable and whenever t >M converges towards a time-
independent solution exponentially with N.
Furthermore, the technique is observed to be robust for a

variety of numerical parameter choices and domain de-
compositions. Results from our second-order BSSN dG
code suggest the turduckening technique to be applicable
beyond finite difference schemes. Nevertheless, we have
been largely unsuccessful at achieving robust stability
turducken tests for FOBSSN. A typical evolution lasts on
the order of tens to hundreds of M, although some low-
resolution runs can last into the thousands of M before
crashing.
The presence of extra auxiliary constraints (12a)–(12d)

presents a genuine difference between turduckening a first-
and second-order BSSN system. In the first-order system,
we have two distinct choices for calculating the auxiliary
variables in the turduckened region of the initial data:
calculating the analytic derivatives of the fields at the
turduckened grid points or applying the numerical
derivative operator to the turduckened fields. In the first
case, the auxiliary constraints are violated since the auxil-
iary fields correspond to derivatives of the nonturduckened
fields. In the second case, the auxiliary constraints are
satisfied but the turduckened initial data no longer repre-
sents the physically correct data for ½r0; rt( stretched over
region ½0; rt(. We experimented with both choices and
found that the region of constraint violation is not guaran-
teed to shrink when using the first choice in which the
auxiliary constraints are violated. Figure 10 documents
a typical comparison with turduckening parameters
rt ¼ :3M and r0 ¼ :1M. We note that our observations
are influenced, for example, by the source terms S&, S

r
%,

and SrB.

FIG. 9 (color online). Evolutions of a black hole in spherical
symmetry using the standard second order in space BSSN
formulation and a dG scheme with turduckening, see
Sec. IVC for details. The norm used is the L2 one.
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V. COMMENTS

The goal of this paper has been a first step toward
combining the robustness and simplicity of evolutions of
the BSSN formulation of Einstein’s equations, most nota-
bly being able to avoid the complications of excision, with
very high accuracy numerical schemes—those being a
multidomain pseudospectral collocation method and a dis-
continuous Galerkin method. Furthermore, any of these
approaches would allow, due to their memory efficiency
and the speedup of graphics processing units, to run binary
black hole simulations on a single graphics processing unit,
thereby avoiding the bottleneck of PCIe communication
between CPUs; see, for example, [95].

For this purpose, we derived and analyzed the hyperbol-
icity, characteristic variables, and constraint propagation of
a fully first-order BSSN formulation of the Einstein equa-
tions with optional constraint damping terms, FOBSSN.
Unfortunately, we have not been able to derive a symmetric
hyperbolic formulation, but only a strongly hyperbolic one.
It is known that in more than one spatial dimension, strong
hyperbolicity, even with maximal dissipative boundary
conditions, does not guarantee well-posedness of the
initial-boundary value problem [96]. Yet, in our numerical

experimentswe have been able to carry out binary black hole
simulations using our FOBSSN system, finite differences,
and adaptive mesh refinement, without any need for fine-
tuning and no obvious signs of time instability (convergent
errors that grow in time) or numerical instability (errors that
get larger at higher resolutions at any fixed time). Most
notably, the presence of the extra constraints in FOBSSN
seems to cause no problems.
Next, natural steps would be three-dimensional discon-

tinuousGalerkin evolutions of FOBSSN using, for example,
Hedge [97], and implementation of more sophisticated
boundary conditions, such as those of Ref. [61].
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APPENDIX A: THE COVARIANT BSSN SYSTEM

In this Appendix, we sketch the derivation of the cova-
riant BSSN system, Eqs. (4a)–(4e). The derivation follows
from the analysis in Ref. [59] by setting the determinant of
the conformal metric to ", and choosing the trace of ~Aij to
vanish. For simplicity, we assume that the fiducial fields "
and #i

jk are constructed from a time-independent metric
"ij. Unlike in the main body of the paper, here we do not
assume that the fiducial metric is flat.

Begin with the evolution equations for the physical
spatial metric and extrinsic curvature,

@?"ij ¼ !2&Kij; (A1a)

@?Kij ¼ &½Rij ! 2KikK
k
j þ KKij( !DiDj&; (A1b)

where Rij and Di are the Ricci tensor and covariant de-
rivative for "ij. Now, let @? & @t !L% act on the BSSN
variables # and ~"ij, which are defined in Eqs. (1a)–(1d).
The right-hand sides of these equations are written in terms
of BSSN variables by inverting the definitions (1):

"ij ¼ e4# ~"ij; (A2a)

Kij ¼ e4# ~Aij þ 1
3"ijK: (A2b)

The results are identical to Eqs. (4a) and (4b), respectively.
The derivation of the equation of motion (4d) for ~Aij

follows the same pattern; apply @? to ~Aij in Eq. (1d), use
the evolution Eqs. (A1a) and (A1b), then replace the
physical metric and extrinsic curvature with the BSSN
variables through Eqs. (A2a) and (A2b). In this case, we
must also write the physical Ricci tensor Rij in terms of
conformal variables. Insert the relation

#i
jk ¼ ~#i

jk þ 2ð+i
j
~Dk#þ +i

k
~Dj#! ~"jk

~Di#Þ (A3)

for the Christoffel symbols into the definition of the Ricci
tensor. This yields the splitting (5) between the conformal
Ricci tensor ~Rij and the terms (7) that depend on the
conformal factor #.

The derivation of the identity (6) used for the conformal
Ricci tensor is somewhat tedious. Beginning with the
definition

~R ij ¼ @k~#
k
ij ! @i~#

k
jk þ ~#k

ij
~#l

kl ! ~#k
il
~#l

jk; (A4)

it is straightforward to show that the difference between the
conformal and fiducial Ricci tensors is

~Rij!Rij¼Dk"~#k
ij!Di"~#k

jk

þ"~#k
ij"~#l

kl!"~#k
il"~#l

jk: (A5)

One can also show that

"~#i
jk ¼ 1

2~"
ilðDj ~"kl þDk ~"jl !Dl ~"jkÞ; (A6)

and derive the useful relations Dk ~"ij ¼ 2"~#ðijÞk and

Dk ~"
ij ¼ !2"~#ðijÞ

k. With these results, the first two terms
in the difference (A5) become

Dk"~#k
ij !Di"~#k

jk

¼ !1
2~"

klDkDl ~"ij þDðið"~#jÞk
kÞ ! ðDði ~"

klÞðDk ~"jÞlÞ
! 1

2ðDk ~"
klÞðDl ~"ijÞ þ ðDk ~"

klÞðDði ~"jÞlÞ ! Rij

! ~"kl ~"mðiRjÞkl
m: (A7)

With the definition "~#i & ~"jk"~#i
jk, the conformal Ricci

tensor from Eq. (A5) becomes

~Rij ¼ !1
2~"

klDkDl ~"ij þ ~"kðiDjÞ"~#k ! ~"kl ~"mðiRjÞkl
m

þ ~"kl"~#m
kl"~#ðijÞm þ ~"klð2"~#m

kði"
~#jÞml

þ "~#m
ik"~#mjlÞ: (A8)

If the fiducial metric is flat, as assumed in the main body of
the paper, then the fiducial Riemann tensor term on the
right-hand side vanishes. The result (6) is obtained by
replacing "~#i with the new variable ~!i and dropping the
fiducial Riemann tensor.
To obtain the equation of motion (4c) for K, we first

let @? act on K & "ijKij, using the results (A1). The
right-hand side is simplified by adding !&H , where
H ¼ K2 ! KijK

ij þ R is the Hamiltonian constraint.
Equation (4c) then follows after using the inverse relations
(A2) to write the result in terms of BSSN variables.
The conformal connection vector is defined in Eq. (3).

To derive the evolution equation (4e) for ~!i, we first let the
operator @? act on "~#i & ~"jk"~#i

jk with "~#i
jk expressed

as in Eq. (A6). This generates several terms of the form
@?ðDi ~"jkÞ. Using the fact that Lie derivatives and partial
derivatives commute [98], one can write these as

@?ðDi ~"jkÞ ¼ Dið@? ~"jkÞ þ 2ðL%#
l
iðjÞ~"kÞl: (A9)

Now, use the identity [99]

L %#
i
jk ¼ DjDk%

i ! Ri
jkl%

l; (A10)

which is straightforward to verify. The result of this calcu-
lation for @?"~!i is an expression in which the operator @?
acts only on the conformal metric ~"ij. Using the equation
of motion (4b), we find
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@?ð"~#iÞ ¼ ~"jkDjDk%
i ! ~"jkRi

jkl%
l ! 2ffiffiffiffi

"
p Djð&

ffiffiffiffi
"

p
~AijÞ

þ 2

3
~"jk"~#i

jkDl%
l þ 1

3
~DiðDk%

kÞ: (A11)

Next, we add the term 2& ~Mi, which is proportional to the
momentum constraint (8b), to obtain

@?ð"~#iÞ ¼ ~"jkDjDk%
i ! ~"jkRi

jkl%
l þ 2

3~"
jk"~#i

jkD‘%
‘

þ 1
3
~DiðDk%

kÞ ! 2 ~Aik@k&þ 2& ~Ak‘"~#i
k‘

þ 12& ~Aik@k#! 4
3&

~DiK: (A12)

Now, use the definition (3) to replace @?"~#i with @? ~!i.
The result, assuming the fiducial metric is flat so that Ri

jkl

vanishes, is the equation of motion (4e).

APPENDIX B: FUNDAMENTALVARIABLES IN
TERMS OF CHARACTERISTIC VARIABLES

The first-order BSSN variables in the gauge block can be
obtained from the characteristic variables using the for-
mulas

BA¼ 1
2ðG

ðþÞ
A þGð!Þ

A Þ! (%

&
)2G

) %A; (B1a)

%nA¼%Anþ
&
)

2

ffiffiffiffiffi
G
)

H
)

vuut ðGðþÞ
A !Gð!Þ

A Þ; (B1b)

K¼1

2
ðGð&;þÞþGð&;!ÞÞþ (&

&
)2f

)&; (B1c)

&n¼!&
)

ffiffiffi
f
)

q

2
ðGð&;þÞ!Gð&;!ÞÞ; (B1d)

Bn¼
1

2
ðGð%;þÞþGð%;!ÞÞ! (%

&
)2G

) %n!
4H

)

3ð!2!f
)
Þ
1

&
)&n;

(B1e)

%nn¼!%AB+
ABþ&

)
G
)

!

!
1

2
ðGð%;þÞ!Gð%;!ÞÞ

þ 4H
)

3ð!2!f
)
Þ

$
!K! (&

&
)2!

&
%"

: (B1f)

We then apply the relations

&i¼ni&nþ"
)A
i &A; (B2a)

%ij¼%nnninjþni"
)A
j%nAþ"

)A
i nj%Anþ"

)A
i "

)B
j %AB; (B2b)

with similar expressions for %i and Bi.
For the nongauge block, the inverse transformation is

~Atf
AB¼

1

2
ðVðþÞ

AB þVð!Þ
AB Þþ("

2&
) ~"

tf
ABþ

1

&
) e

!4#
)
%tf

ðABÞ; (B3a)

~"tf
nAB¼!ðVðþÞ

AB !Vð!Þ
AB Þ; (B3b)

~!A¼
1

H
) ðZAþBAÞ; (B3c)

~AnB¼
1

2
ðVðþÞ

nB þVð!Þ
nB Þþ("

2&
) ~"nBþ

1

&
) e

!4#
)
%Bn; (B3d)

~"nnB¼!ðVðþÞ
nB !Vð!Þ

nB Þþe!4#
)$

~!B!2#B!
1

&
)&B

%
; (B3e)

~!n¼
1

H
) ðZnþBnÞ; (B3f)

#n¼Z0þ1
8
~!n; (B3g)

~Ann¼
1

2
ðVðþÞ

nn þVð!Þ
nn Þþ("

2&
) ~"nnþ

2

3
e!4#

)
K

! 1

&
) e

!4#
)
%AB+

AB; (B3h)

~"nnn¼!ðVðþÞ
nn !Vð!Þ

nn Þþ4
3e

!4#
)
ð~!n!2#nÞ: (B3i)

The tensor components ~Aij and ~"kij are then reconstructed
as

~Aij ¼ ~Annð32ninj ! 1
2"

)
ijÞ þ ni"

)B
j
~AnB þ nj"

)B
i
~AnB

þ "
)A
i "

)B
j ÂAB; (B4a)

~"kij ¼ ~"nnnnkð32ninj ! 1
2"

)
ijÞ þ nkni"

)B
j ~"nnB

þ nknj"
)B
i ~"nnB þ nk"

)A
i "

)B
j ~"

tf
nAB þ "

)A
k ~"Aij: (B4b)
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[53] C. Cattoën, Ph.D. thesis, Victoria University of

Wellington, 2009.
[54] M. Cecere, F. Parisi, and O. Reula, arXiv:1112.3039.
[55] K. Duru, K. Mattsson, and G. Kreiss, Department of

Information Technology, Uppsala University, Report
No. 2011-008, 2011 (unpublished).

[56] Z. B. Etienne, J. A. Faber, Y. T. Liu, S. L. Shapiro, and
T.W. Baumgarte, Phys. Rev. D 76, 101503 (2007).

[57] J. D. Brown et al., Phys. Rev. D 76, 081503 (2007).
[58] J. D. Brown, P. Diener, O. Sarbach, E. Schnetter, and M.

Tiglio, Phys. Rev. D 79, 044023 (2009).
[59] J. D. Brown, Phys. Rev. D 79, 104029 (2009).
[60] C. Gundlach and J.M. Martin-Garcia, Phys. Rev. D 70,

044032 (2004).
[61] D. Nunez and O. Sarbach, Phys. Rev. D 81, 044011

(2010).
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