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Abstract
In this thesis we study the efficient implementation of the finite element method for the

numerical solution of partial differential equations (PDE) on modern parallel computer archi-

tectures, such as Cray and IBM supercomputers. The domain-decomposition (DD) method

represents the basis of parallel finite element software and is generally implemented such

that the number of subdomains is equal to the number of MPI processes. We are interested

in breaking this paradigm by introducing a second level of parallelism. Each subdomain is

assigned to more than one processor and either MPI processes or multiple threads are used

to implement the parallelism on the second level. The thesis is devoted to the study of this

second level of parallelism and includes the stages described below.

The algebraic additive Schwarz (AAS) domain-decomposition preconditioner is an integral

part of the solution process. We seek to understand its performance on the parallel computers

which we target and we introduce an improved construction approach for the parallel precon-

ditioner. We examine a novel strategy for solving the AAS subdomain problems, using multiple

MPI processes. At the subdomain level, this is represented by the ShyLU preconditioner.

We bring improvements to its algorithm in the form of a novel inexact solver based on an

incomplete QR (IQR) factorization. The performance of the new preconditioner framework is

studied for Laplacian and advection-diffusion-reaction (ADR) problems and for Navier-Stokes

problems, as a component within a larger framework of specialized preconditioners.

The partitioning of the computational mesh comes with considerable memory limitations,

when done at runtime on parallel computers, due to the low amount of available memory per

processor. We describe and implement a solution to this problem, based on offloading the

partitioning process to a preliminary offline stage of the simulation process. We also present

the efficient implementation, based on parallel MPI collective instructions, of the routines

which load the mesh parts during the simulation.

We discuss an alternative parallel implementation of the finite element system assembly based

on multi-threading. This new approach is used to supplement the existing one based on

MPI parallelism, in situations where MPI alone can not make use of all the available parallel

hardware resources.

The work presented in the thesis has been done in the framework of two software projects: the

Trilinos project and the LifeV parallel finite element modeling library. All the new develop-

ments have been contributed back to the respective projects, to be used freely in subsequent

public releases of the software.

Keywords: finite element method, parallel preconditioners, MPI, multi-threading
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Résumé
Dans cette thèse, nous proposons une implémentation efficace de la méthode des éléments

finis pour la résolution numérique d’équations aux dérivées partielles (EDP) sur des archi-

tectures parallèles modernes telles que les superordinateurs Cray et IBM. La méthode de

décomposition de domaine (DD) constitue la base des logiciels parallèles d’éléments finis et

est généralement implémentée de sorte que le nombre de sous-domaines corresponde à celui

des processus MPI. On s’attache à casser ce paradigme en introduisant un second niveau de

parallélisme. Chaque sous-domaine est assigné à plus d’un processeur et le second niveau

de parallélisme est implémenté à l’aide, soit de processus MPI, soit de threads multiples. La

présente thèse est dédiée à l’étude de ce second niveau de parallélisme et inclut les étapes

décrites ci-après.

Le préconditionneur décomposition de domaines de type Schwarz additif algébrique (AAS)

fait partie intégrante du processus de résolution. On cherche à comprendre sa performance sur

les ordinateurs parallèles considérés et on introduit une approche de construction améliorée

pour le préconditionneur parallèle. On examine une nouvelle stratégie pour résoudre les

problèmes de sous-domaines AAS, en utilisant plusieurs processus MPI. Au niveau du sous-

domaine, elle est représentée par le préconditionneur ShyLU. On apporte des améliorations

à son algorithme sous la forme d’un nouveau solveur inexact basé sur une factorisation QR

incomplète (IQR). Les performances obtenues à l’aide du nouveau préconditionneur sont

étudiées sur des problèmes de Laplace et d’advection-diffusion-reaction (ADR) ainsi que sur

des problèmes de Navier-Stokes, comme une composante appartenant à un cadre plus large

de préconditionneurs spécialisés.

Le partitionnement du maillage computationnel induit des limitations de mémoire consi-

dérables lorsqu’il est réalisé durant l’exécution sur des ordinateurs parallèles, du fait de la

faible quantité de mémoire disponible sur chaque processeur. On décrit et on implémente

une solution pour ce problème, en opérant un transfert du processus de partitionnement

à un niveau préliminaire "offline" du processus de simulation. On présente également une

implémentation performante - s’appuyant sur des instructions parallèles MPI collectives - des

tâches qui chargent les parties du maillage durant la simulation.

On discute une implémentation parallèle alternative du procédure d’assemblage des éléments

finis basée sur le multi-threading. Cette nouvelle approche est utilisée pour compléter celle,

existante, basée sur le parallélisme MPI, dans des cas où MPI seul est incapable d’exploiter

toutes les ressources matérielles parallèles disponibles.

Le travail présenté dans cette thèse a été effectué dans le cadre de deux projets logiciels :
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le projet Trilinos et la bibliothèque parallèle de modélisation éléments finis LifeV. Toutes

les nouvelles contributions ont participé au développement de leur projet respectif, dans

l’optique d’une utilisation libre dans les futures versions publiques du logiciel.
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1 Introduction

In this thesis we study the parallel implementation of the finite element method for the

numerical solution of partial differential equations (PDE). More specifically, we focus on

algorithms and techniques involving two levels of parallelism, obtained either with MPI only or

with a mix of MPI and multi-threading, geared towards modern supercomputer architectures.

The computer hardware used for scientific computing has evolved greatly from the early days

of Cray vector computers. In the last two decades we have witnessed many radical changes in

design. In the 1990s the first Beowulf cluster was constructed, which was little more than a

collection of desktop computers, called nodes, linked together by a fast network. Each node

had its own private memory space and there was no global view of the total installed memory

of the cluster. This cluster represents a so called distributed memory architecture.

One of the distinguishing features of the Beowulf cluster was the fact that is was constructed

out of commodity parts, opposed to custom built components, as it was done up to that point.

The Beowulf cluster gained popularity and, soon, the majority of the world’s most powerful

parallel computers were based on the Beowulf architecture. In 1993 the Top500 list was started,

tracking the world’s 500 fastest supercomputing machines (see [1]).

The advent of the Beowulf cluster had a lasting impact on supercomputer design. Modern

supercomputers, from companies like Cray or IBM, have a lot of custom designed features,

like the network interconnects, the storage subsystems or the packaging of the computer

components. However, they also use standard server or desktop processor architectures, like

x86 or PowerPC (although slightly modified in certain cases, like the IBM BlueGene series)

and, due to the distributed memory spaces they expose to the user, they represent a basically

unchanged usage scenario with respect to the Beowulf.

The message passing interface (MPI) library [2] for the Fortran and C programming languages

became the standard for programming distributed memory architectures. With MPI, paral-

lelism is implemented by running multiple processes on a parallel computer. These processes

have no view of the global memory space of the computer, each having access only to its own
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Chapter 1. Introduction

memory. Global communication between processes is achieved through sending and receiv-

ing messages between individual or multiple processes. Using MPI to solve scientific problems

involves partitioning the problem domain across all the processes used for a simulation. Each

process operates on its own partition of the problem data and exchanges information with

other processes as needed, with the help of the MPI library.

A further technological change took place in the first decade of the 21st century, when pro-

cessors with multiple cores became common in personal computers (e.g. dual-core laptops,

multi-core desktops etc.). These multicore computers differ from clusters in that all the com-

puting units (cores) are able to access the same memory space on the computer (they are

refered to as shared memory architectures). Multicore technology made its way into computer

clusters and supercomputers to the point that, nowadays, most, if not all, entries into the

Top500 are large distributed memory machines featuring multicore nodes.

This new architecture, mixing distributed and shared memory spaces, can be programmed ef-

ficiently using MPI, by assigning multiple processes to each shared memory region. By design,

MPI programming seeks to reduce the amount of communication between processes, which

is more expensive than computation in terms of CPU time. This may come with an increase in

memory usage, as some data needs to be duplicated on multiple MPI processes. An alternative

to this programming model is to mix MPI with another programming model dedicated to

shared memory architectures [3]. Within a node, shared memory parallel programming is

based on the use of multithreading. There exist multiple implementations of threads that

can be used, such as POSIX threads (see e.g. [4], [5]), OpenMP (see e.g. [6], [7]), Intel Thread

Building Blocks (see [8]), just to name a few. Program threads are created by processes and

represent independent lines of execution. Each thread has its own private memory space for

storing its own state, but, in addition to this, all threads created by a process can also access

the memory space of the “parent” process, which leads to lower memory requirements, due

to reduced data duplication among threads. The downside, however, is that the memory

access operations are performed across the entire shared memory space. This can have a

detrimental effect to performance in case of non-uniform memory architectures (NUMA),

where the shared memory is divided into areas with a considerable difference in access speed.

The effect of NUMA architectures on shared memory algorithms is shown in the experiments

contained in Chapter 6. As an additional consequence, shared memory algorithms are affected

much more by the so called memory wall, which is the ever increasing gap between processor

computation speed and memory access speed [9].

A more recent addition to the array of scientific computing machinery are the general pur-

pose graphical processing units (GPGPU). The idea of using the graphical processing units

(GPU) inside personal computers for scientific computations is not new (see e.g. [10], [11],

[12]), although initially the effectiveness of GPGPU usage was limited by the fact that nei-

ther the hardware, nor the software interface really accommodated the implementation of

general computational algorithms. Programs had to be implemented in terms of graphical

programming operations and data structures. Additionally, GPUs offer much less support
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for communication and synchronization between parallel execution elements, making it

difficult to implement some algorithms such as parallel direct or iterative solvers with high

efficiency. With the introduction of the compute unified driver architecture (CUDA) from

NVIDIA (see [13]) and the first graphical processors compatible with Stream Computing from

AMD (see [14]), it became possible to write general scientific computing software on GPUs

using a dedicated programming interface. Currently, scientific computing is an active topic of

research and there exist considerable positive results (see e.g. [15], [16], [17]), although some

problem domains and algorithms are still less suitable for GPU implementations than others.

In Chapter 2 of this thesis, a more detailed description of scientific computing hardware and

software is given, including current achievements in GPGPU software.

In our work we focus on the implementation of the finite element method on supercomputers

with multicore nodes. This choice of target architecture is not arbitrary. Although there is

evidence that GPUs can accomodate certain variants of the finite element method (see e.g. [18],

[19]), there are particular elements of our solution process which make multinode-multicore

supercomputers a more suitable target. Some of the elements influencing this decision are:

the use of very large unstructured meshes, implicit time discretization schemes, linear and

nonlinear solvers and finally the use of direct solvers as components of preconditioners.

All the work done in the scope of this thesis has been implemented in two (related) software

projects: the LifeV1 (pronounced “life five”) finite element modeling library and the Trilinos

Project [20], on top of which LifeV is constructed. Trilinos is a collection of C++ libraries

implementing an object-oriented modular software framework for the solution of large-scale

scientific problems. Trilinos provides LifeV with lower level components, such as: parallel data

structures for sparse matrices and vectors, linear and nonlinear solvers and some common

preconditioners.

LifeV is a C++ library providing state of the art mathematical and numerical methods for finite

element simulations. It is the product of a joint collaboration between École Polytechnique

Fédérale de Lausanne (CMCS) in Switzerland, Politecnico di Milano (MOX) in Italy and Emory

University (Sc. Comp) in the U.S.A. While LifeV is mainly a research tool, it has also served as

a production library for medical and industrial simulations. LifeV has been used for diverse

problems, for example: fluid-structure interaction [21], [22], simulation of orbitally shaken

viscous fluids with free surface [23], [24] or multiscale modeling [25], [26].

Domain-decomposition (DD) methods (see [27]) are used in most, if not all, modern parallel

implementations of finite element modelling software. Decomposition usually begins at the

geometric stage, with the partitioning of the computational mesh. The mesh of the entire

problem domain is cut into a given number of parts which are then individually assigned to

the MPI processes which perform the simulation. Once the continuous problem is discretized

with finite elements, the degrees of freedom (DOF) are distributed across all the processes and

the system of equations is assembled, in parallel, using this distribution.

1LifeV project website - https://cmcsforge.epfl.ch/projects/lifev
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In the solver stage, the algebraic additive Scharz (AAS) domain-decomposition preconditioner

represents a fundamental component, its performance and scalability are key to the overall

performance of the solution process.

In Trilinos, the established approach to construct the preconditioner (see [28]), in a parallel

MPI setting, is with a 1-to-1 correspondence between the number of MPI processes, denoted

NP , and the number of AAS subdomains, denoted NDD . It is known that the condition number

of the AAS preconditioner degrades with the number of subdomains (see [29]), although

this behaviour can be corrected with the addition of a coarse level to the preconditioner

formulation, which results in the 2-level AAS preconditioner.

Originally developed before multicore nodes became popular, the Trilnos implementation of

the AAS preconditioner has no knowledge of the topology of the underlying hardware. Our

goal is to have an arbitrary number of MPI processes assigned per subdomain, mapping the

subdomain problems much better to the multicore nodes of the targetted supercomputers

and allowing an independent parallelization algorithm to be used at the subdomain level.

After we put in place this improved implementation, we study the scalability and performance

of the preconditioner in terms of CPU time, by examining different choices and configurations

for the AAS subdomain solvers and bringing our own improvements to this area. We also seek

to understand how the new implementation of AAS performs both as a global preconditioner

for Laplacian and advection-diffusion-reaction (ADR) problems, and as a component within a

larger preconditioner framework for Navier-Stokes problems.

Another limitation of the Trilinos implementation of the 2-level AAS is the fact that the coarse

level is built without any information about the domain-decomposition on the fine level.

The DOFs of the coarse level problem are selected from all the MPI processes. With the new

implementation of AAS, it may be possible to reduce the minimum size of the coarse problem

by taking into account that multiple MPI processes are part of the same subdomain and

selecting fewer DOFs from each process. This could potentially improve the performance of

the preconditioner, although this issue has not yet been investigated in our work.

In Chapter 2 we give an overview of the finite element method and we describe in more

detail the current state of the art in scientific computing hardware and software. We then

discuss some issues related to the serial and parallel implementations of the finite element

method. The chapter continues with a review of the current parallel libraries for finite element

approximations, before discussing LifeV from the point of view of design and capabilities, as

well as of the limitations that LifeV had at the beginning of the thesis.

Chapter 3 introduces the first problem that we studied: the efficient implementation of the

AAS domain-decomposition preconditioner. After a brief theoretical overview of the method,

we disscuss possible limitations of its existing implementation in the Trilinos libraries. We

describe an alternative approach, similar to an earlier attempt described in [30], with the

goal of removing some of the existing limitations and improving performance on our target

architecture. The new AAS preconditioner has a second level of parallelism represented by
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parallel subdomain problems. These problems are constructed by grouping together the DOFs

corresponding to a given number of connected mesh parts, which produced in the mesh

partitioning stage.

The second part of the chapter is focused on the ShyLU preconditioner [31], developed at San-

dia National Laboratories. ShyLU is a parallel preconditioner originally designed for electrical

circuit simulations. It is based on a non-overlapping partitioning at the matrix level and a

Schur complement algorithm relative to the DOFs on the interface of this partitioning. We

implement the needed support for using it as an inexact solver for each of the AAS subdomain

problems and we study its performance compared to the pre-existing reference configuration

of AAS, for Laplacian and ADR problems.

In Chapter 4 we propose a novel use for a preconditioner based on an incomplete QR factoriza-

tion (IQR), originally introduced in [32] for fluid-structure interaction segregated algorithms;

there it is used as a matrix-free preconditioner for the Jacobian problem. We propose to

use it as an inexact solver for the Schur complement system in ShyLU. We run a set of tests,

benchmarking IQR against the strategies investigated in the previous chapter and finally we

discuss the performance increase which we obtained.

The following two chapters focus on two topics that are not directly related to the AAS precon-

ditioner, but which are nonetheless relevant in the context of large scale parallel computing.

Chapter 5 covers the preprocessing stage of finite element simulations in LifeV and describes

the solutions that we implemented for two related problems: the partitioning of the compu-

tational mesh when using a large number of MPI processes and the fast loading procedure

of the mesh parts during simulations performed on large scale parallel computing machines.

Chapter 6 focuses on the finite element assembly of the linear system matrix. We discuss

some issues related to multi-threaded parallel programming and we describe and evaluate

the performance, for different problems and different types of finite elements, of a new multi-

threaded implementation of the assembly routine. This multi-threaded approach is used to

regain parallel efficiency in the assembly stage in cases when due to memory limitations it

is not possible to fully utilize all the hardware resources available on a super computer node

using only MPI parallelism.

We conclude the numerical experiments of this thesis with a benchmark which involves the

solution of the Navier-Stokes equations in a geometry of physiological interest, more exactly,

an arterial aneurysm in a human patient. In the benchmark we examine the use of the new

preconditioning strategies introduced in Chapters 3 and 4 as components of preconditioners

for Navier-Stokes equations, based on approximate block factorizations.

In the final chapter of the thesis we identify all the contributions that we brought in the

course of this thesis to the LifeV and Trilinos software projects. Additionally, we issue a set of

recommendations based on the results obtained in the previous chapters. Finally, we identify

the future directions in which we would like to continue the research started in the course of

this thesis.
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2 State of the art of finite element soft-
ware

2.1 Introduction

This chapter begins with an overview of the finite element method. It continues with a descrip-

tion of the current state of the art in scientific computing hardware, as well as a presentation

of the relevant issues concerning serial and parallel finite element method implementations.

What follows is a review of parallel libraries for finite element approximations, with a subsec-

tion dedicated to the use of general purpose graphical processing units (GPGPU) in scientific

computing and their usage for finite element modelling. The final part of the chapter intro-

duces the LifeV parallel finite element library, its design, capabilities and limitations at the

time when this thesis began.

2.2 The finite element method for the approximation of PDEs

We are interested in the approximation of partial differential equations (PDEs) by the finite

element method. As an explanatory example, we will present the case of the Poisson problem

in two dimensions.

LetΩ be an open an bounded domain in Rd ,d = 2,3, .... The Poisson problem reads: find u,

such that
−∆u = f in Ω

u = 0 on ∂ΩD

∂u

∂n
= g on ∂ΩN ,

(2.1)

where f is a given function andΩD andΩN are distinct subsets of the boundary such that ∂Ω=
∂ΩD ∪∂Ωn , on which the boundary conditions of Dirichlet and Neumann type, respectively,

are imposed. For simplicity, we have restricted ourselves to the case of homogeneous Dirichlet

boundary conditions on ∂ΩD .
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2.2.1 Weak formulation

In many cases, such as problems with non-smooth data or geometry, it is necessary to rewrite

the problem (2.1) in the weak form, which accepts solutions which don’t necessarily satisfy the

original equations in a pointwise manner. The weak form is formally obtained by multiplying

the equations with a suitable set of test functions, performing integration on the entire domain

and using Green’s formula for integration by parts in order to reduce the order of differentiation

of the solution:

find u ∈V , such that a(u, v) = F (v) ∀v ∈V , (2.2)

where F is a linear functional which corresponds to the right hand side f and the Neumann

boundary conditions:

F : V →R, F (v) =
∫
Ω

f v +
∫
∂ΩN

g v, (2.3)

and a is a bilinear form which corresponds to the Laplacian operator:

a : V ×V →R, a(u, v) =
∫
Ω
∇u∇v. (2.4)

The test space V is chosen as:

V = H 1
∂ΩD

(Ω) = {
v ∈ H 1(Ω) : v |∂ΩD = 0

}
, (2.5)

where H 1 is the Sobolev space of order 1 overΩ.

Under suitable assumptions on Ω and provided that f ∈ L2(Ω) and g ∈ H−1/2(∂ΩN ), the

solution to the weak problem exists and is unique. The proof is based on the Lax-Milgram

Lemma [33]. In particular, it assumes that F (·) is a linear continuous functional, the bilinear

form a(·, ·) is continuous, i.e.

∃γ> 0 : |a(w, v)| ≤ γ||w ||||v || ∀w, v ∈V , (2.6)

and coercive, i.e.

∃α> 0 : a(v, v) ≥α||v ||2 ∀v ∈V. (2.7)

Here, ||·|| denotes the norm of V . Additionally, there exists the following bound on the solution:

||u|| ≤ 1

α
||F ||V ′ , (2.8)

where V ′ is the dual space of V .
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2.2.2 Finite dimensional approximation

Let us consider that the domainΩ⊂R3 has a polyhedral shape. We can define a tetrahedral

mesh Th of Ω composed of a set of non overlapping tetrahedra Ki , i = 1, ..., Nk . We require

Th to be conforming, i.e., two neighbouring tetrahedra can only have a common vertex, or a

common edge, or a common side. The following parameters are useful to describe the mesh.

We define

hK = di am(K ), with di am(K ) = maxx,y∈K |x − y |, (2.9)

which represents the diameter of an element K of Th . We can also define the value: h =
maxK∈Th hK which is sometimes called mesh size of Th . Finally, we define:

ρK = sup{di am(S) : S is a ball contained in K } . (2.10)

Using the parameters hK and ρK it is possible to state the following definition: a family of

triangulations {Th : h > 0} is regular if there exists a constant δ> 0 independent of h such that:

hK

ρK
≤ δ, ∀K ∈Th . (2.11)

Condition (2.11) ensures that the tetrahedra are not too streched in any direction.

Considering Pr the space of polynomials of degree r , we introduce the finite element space:

X r
h =

{
vh ∈C 0(Ω) : vh |K ∈Pr ,∀K ∈Th

}
, r = 1,2, ..., (2.12)

which is the space of globally continuous functions that are polynomials of degree r on each

element of Th . Additionally, we can define the space:

X̊ r
h = {

vh ∈ X r
h : vh |∂Ω = 0

}
. (2.13)

In general, when r = 1,2, ... we speak of P1, P2,... finite elements, respectively.

It is possible to obtain a finite dimensional approximation of the weak problem (2.2) by

considering a subspace Vh of V :

Vh = X̊ r
h ⊂V , dimVh = Nh <∞ ∀h > 0. (2.14)

The Galerkin problem that approximates the weak problem is written as:

find uh ∈Vh , such that a(uh , vh) = F (vh) ∀vh ∈Vh . (2.15)
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Let
{
Φ j , j = 1,2, ...Nh

}
be a basis for the space Vh , such that:

vh =
Nh∑
j=1

v jΦ j , ∀vh ∈Vh . (2.16)

Thanks to the linearity of a and F , (2.15) is equivalent to

a(uh ,Φh) = F (Φh), i = 1,2, ...N . (2.17)

In the Galerkin approximation, the trial space (the solution uh belongs to) is the same as the

test space Vh . Consequently, we can write uh as:

uh(x) =
Nh∑
j=1

u jΦ j (x), (2.18)

where u j , j = 1,2, ...Nh are unknown coefficients. Using (2.18) we can rewrite (2.17) as:

Nh∑
j=1

u j a(Φ jΦi ) = F (Φi ), ∀i = 1,2, ..., Nh , (2.19)

that is:

n∑
j=1

u j

∫
Ω
∇Φ j ·Φi =

∫
Ω
Φi f +

∫
∂ΩN

Φi gN ∀ i = 1, ..., Nh . (2.20)

It is possible to write (2.19) as a linear system:

Au = f, (2.21)

where the matrix A, called the stiffness matrix has the entries ai j = a(Φ j ,Φi ), the vector f has

the components fi = F (Φi ) and the solution vector u is composed of the unknown coefficients

u j .

We refer to [33] for properties of the Galerkin approximation. The stiffness matrix A associated

with an elliptic problem is positive definite. In addition, for symmetric bilinear form a(·, ·),

the stiffness matrix is also symmetric. Consequently, the linear system that results from the

Galerkin approximation of an elliptic problem can be solved using either direct methods like

Cholesky factorization [34], or iterative methods like the conjugate gradient method [35]. For

more details on the solution of the linear system of equations we refer to section 2.4 of this

chapter.

The Lax-Milgram Lemma gives the conditions under which the solution to the weak problem

exists and is unique. This conditions also hold for the Galerkin approximation, due to the fact

that the space Vh is a closed subspace of the Hilbert space V and the bilinear form a(·, ·) and
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the functional F (·) are unchanged with respect to the weak formulation.

The method is stable with respect to h and the solution has the following upper bound:

||uh ||V ≤ 1

α
||F ||V ′ . (2.22)

The Galerkin approximation is strongly consistent, it’s solution uh is the orthogonal projection

on Vh of the exact solution u:

a(u −uh , vh) = 0 ∀vh ∈Vh (2.23)

Regarding convergence, the following inequality holds:

||u −uh ||V ≤ γ

α
infwh∈Vh ||u −wh ||V ≤C

γ

α
hr |u|H r+1(Ω), (2.24)

for a suitable constant C > 0, with |u|H P (Ω), p ≥ 1 denoting the semi-norm of u of order p.

2.2.3 Assembly of the linear system of equations

In this section we describe the process to generate the linear system of equations associated

with the Galerkin approximation.

For simplicity, we describe the choice r = 1, i.e. piecewise linear finite elements: Vh = X̊ 1
h .

Starting from the union of vertices of the tetrahedra of the mesh Th , it is possible to define a

basis for Vh . Each vertex, say~xi , in this case also called a node, is assigned a functionΦi which

is linear in all the tetrahedra, is equal to one on that vertex, and is equal to zero on all other

vertices. The support of the defined basis function is equal to the union of tetrahedra which

have that vertex in common.

It is possible to rewrite the terms of (2.20) as elementwise sums. For example:

n∑
j=1

u j

∫
Ω
∇Φ j ·Φi =

n∑
j=1

u j

{ ∑
∆k∈Tk

∫
∆k

∇Φ j ·∇Φi

}
. (2.25)

Thanks to the chosen basis, the indices i, j and k for which the integral over∆k is different from

zero are limited to the patch of elements whereΦi andΦ j share their support. The two major

consequences are that the matrix A is sparse and that the computation of the entries of A can

be done on a restricted number of nodes. In the case of the P1 basis functions, we only have

three functions that are non-zero on the element. Restricting these global basis functions to

the element ∆k gives us the local element basis set:

Θ j := {
ψk,1,ψk,2,ψk,3

}
. (2.26)
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Data: A
1for k ← 1 to nElement s do

Data: Jac ← ComputeJacobian(k)
Data: el ement al A ← CreateElementalMatrix()

2for i ← 1 to nTestDo f do
3for j ← 1 to nTr i al Do f do
4for q ← 1 to nQuadPoi nt s do
5el ement al A(i , j ) = value(q , i , j ) * Jac * weight(q)

Data: currentIndices ← GetGlobalIndices(k)
6InsertElementalToGlobal(el ement al A, A, currentIndices)

7

Algorithm 1: Pseudo-code describing the assembly process of the stiffness matrix.

The next step is to perform a mapping from a reference element ∆∗ to a current element ∆k ,

which allows us to rewrite the expression for the coefficients of the elemental stiffness matrix

in terms of this mapping:

a(k)
i j =

∫
∆k

∂ψk,i

∂x

∂ψk, j

∂x
+ ∂ψk,i

∂y

∂ψk, j

∂y
dxdy

=
∫
∆∗

{
∂ψ∗,i

∂x

∂ψ∗, j

∂x
+ ∂ψ∗,i

∂y

∂ψ∗,i

∂y

∂ψ∗, j

∂y

}
|Jk |dξdη, i , j = 1, ...,n,

(2.27)

where (x, y) are the global coordinates, (ξ,η) are the local coordinates in the reference element,

ψk, j are local basis functions in the current element ∆k , ψ∗, j are local basis functions in the

reference element ∆∗, while |Jk | is the determinant of the Jacobian of the mapping from the

reference element to the current one.

The numerical computation of the integrals in (2.27) is performed using quadrature formulae:

∫
D

f (x)dx ≈
Nqn∑
iq=1

f (xiq )wi q , (2.28)

where D represents the region over which the integration is performed, Nqn represents the

number of quadrature nodes, xi q represent the coordinates of the quadrature nodes, while

wi q represent the weights associated with the corresponding quadrature nodes. The accuracy

of quadrature formulae increases with the number of quadrature nodes used, although this

increases the computational cost as well. For an overview of numerical integration using

quadrature rules we refer to [36]. Guassian integration formulae, which, for a given number of

quadrature nodes, achieve maximal accuracy are described in [33].

A straight-forward approach to implement the assembly of the stiffness matrix is by using

nested loops, over the elements, then the degrees of freedom of the test space, then the degrees

of freedom of the trial space (the solution uh belongs to) and finally over the quadrature points.

This algorithm is presented in pseudo-code in Algorithm 1.
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Data: rhs
1for k ← 1 to nElement s do

Data: Jac ← ComputeJacobian(k)
Data: elementalRhs ← CreateElementalVector()

2for i ← 1 to nTestDo f do
3for q ← 1 to nQuadPoi nt s do
4elementalRhs(i) = value(q , i ) * Jac * weight(q)

Data: currentIndices ← GetGlobalIndices(k)
5InsertElementalToGlobal(elementalRhs, rhs, currentIndices)

6

Algorithm 2: Pseudo-code describing the assembly process of the right hand side vector.

The process to compute the right hand side (Algorithm 2) is analogous to the stiffness matrix

computation, although it involves one fewer nested loops, as there is only one loop over the

local degrees of freedom.

For the case of different mesh types, like quadrilateral, tetrahedral or hexahedral, as well as

for higher order basis functions like piecewise quadratic functions, a similar aproach can be

used to derive the expression of the coefficients of the elemental stiffness matrices. For a more

in-depth treatment, we refer to [37].

Neumann boundary conditions are included in the weak form and are taken into account when

doing the computation of the right hand side vector. For Dirichlet boundary conditions, there

are multiple approaches. One can remove the degrees of freedom associated with Dirichlet

boundary conditions and include these boundary conditions in the right hand side, or one

can retain these degrees of freedom, set the diagonal value of the matrix to one, offdiagonal

values to zero and set the corresponding element of the right hand side vector to the value of

the Dirichlet boundary condition.

This elementwise approach is appropriate to describe, more formally, the assembly of the

linear system of equations, although it is also usable in practice. However, other strategies

can be encountered that seek to optimize the performance of this basic approach, involving

clustering elements together or looping over degrees of freedom instead of looping over

elements, or different parallel approaches.

2.3 Scientific computing hardware and software tools

In order to describe the implementation issues concerning the finite element method, an

overview of scientific computing hardware is required. This section presents the architectures

which are currently most common and the associated software tools used to program these

machines.

The supercomputers that are in use today are very different to the early designs from Cray

Supercomputers. These computers were vector machines where parallelism was implemented

13



Chapter 2. State of the art of finite element software

by performing the same operation simultaneously on large data sets. This approach is com-

monly refered to as single-instruction multiple-data (SIMD). A shift in the design strategy

of supercomputing machines occured in the late 1990s, with the appearance of the Beowulf

cluster. Contrary to previous machines constructed with custom made components, the

Beowulf cluster is composed of a number of computers (nodes), each with their own central

processing unit (CPU) and memory, which are all connected together in a network. Since the

memory of the machine is not presented to the user or programmer as a single unified space,

this type of machine is called a distributed memory architecture, and programs use some form

of message passing to exchange data between the nodes of the cluster. The message passing

interface (MPI) [2] has become a standard and it is the most widely used software toolkit for

programming supercomputers, with computer vendors each providing implementations of

the standard optimized for their own machines.

The shift from custom design to off-the-shelf parts was hugely successful, as Beowulf clusters

(now more tightly integrated through the use of specialized motherboards or network hard-

ware) have grown to represent the majority of the Top500; this list, which is compiled yearly,

started in 1993 and represents a global ranking of the world’s most powerful supercomputer

machines based on the High-Performance LINPACK benchmark for distributed memory ma-

chines [38]. Even supercomputers from companies like Cray and IBM, which contain custom

network interconnects, still share a lot with the Beowulf design: distributed memory spaces

and standard CPU architectures like x86 or PowerPC, which are used in workstation or server

computers.

Early distributed memory cluster nodes were single processor computers. At this stage MPI

was perfectly mapped to the architecture. Each node would run one process and the MPI

library would handle communication between these processes. A second stage of the evolution

of supercomputing machines arrived with the popularization of multi-core processors. Today,

most personal computers have processors with at least 2 cores and it is not uncommon in

workstations to have up to 48 cores and the trend is to increase the number of cores. Since

all the cores can use the global memory installed in the computer this is refered to as shared

memory architecture. This type of architecture has made its way also into supercomputers. A

typical hybrid configuration for a modern supercomputer is a few number of interconnected

nodes, each with multiple cores available. It is important to note the distinction between core

and process. A core represents a hardware unit of a CPU, capable of executing one or more

processes simultaneously. Process is a purely software concept: a program that is executing

on a computer represents a process.

Such an architecture with two levels of parallelism can still be programmed using MPI, with

multiple processes running on each node. There exist alternative approaches to programming

for this architecture. Since the cores on a node can all use the same memory space, there

is no need to have MPI communication inside a node. A single MPI process is executed per

node, and the available node level parallelism is exploited with multiple threads using toolkits

and libraries like POSIX Threads and OpenMP. A thread, also called lightweight process, is
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Figure 2.1: Simplified diagram depicting the structure of a hybrid cluster composed of 3 nodes.
Each node has a processor with 4 cores which is capable of hosting either 4 single-threaded
MPI processes or a single MPI process that spawns 4 threads.

an independent line of execution created by a process. The process can create multiple

threads but the threads can not exist beyond the lifetime of the owner process. Although

threads can each have private data, all the threads of a process can access the process’ global

memory space and use it to exchange information. One advantage of this hybrid approach to

programming is the fact that it may be easier to express certain algorithms in terms of parallel

operations to a shared global memory. As this is only possible at node level, MPI must still

be used between nodes, so the presence of two programming models in the same code base

could make the software more difficult to maintain or to understand. A graphical description

of the two possibilities is shown in Figure 2.1.

A final class of machines, which is more recent are graphical processing units (GPU). The

GPU is the specialized hardware of a computer that handles the tasks related to drawing 2D

graphics, accelerating the rendering of 3D scenes and performing video output. Unlike a CPU,

which has a small number of powerful cores, each optimized for single threaded performance,

a GPU is composed of many simple processor cores and is designed for parallel threaded

performance. This comes with restrictions, however, as the hardware is very limited when it

comes to the synchronization of threads or the exchange of information between them. It is

well suited for performing many simple calculations in parallel, in a SIMD fashion, but this

has to be done with little or no communication between the parallel threads.

Initial attempts to perform general scientific computations on GPUs using graphical program-

ming tools showed that these devices are attractive platforms for certain types of applications.

The programming languages have improved and now make it easier to implement scientific

applications on GPUs. There even exist clusters of computers equipped with GPUs, where the

computational power of GPUs is complemented by the large amount of memory available on
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distributed memory machines. A more detailed description of GPUs for scientific computing

and finite element modeling is provided in section 2.5.1.

2.3.1 Vectorization

Distributed and shared memory architectures are effectively programmed using MPI and

multithreading, respectively. However, all modern computer hardware offers an additional

level of parallelism, in the form of vector arithmetic units, i.e. the capability of executing the

same instruction simultaneously on multiple data elements (SIMD).

The use of vector hardware in scientific computing can be traced back to early supercomputer

designs, but it was with the Cray 1 supercomputer that first introduced a processor with good

scalar performance as well as vector processing capabilities. The Cray 1 was followed by the

Cray-XMP, which expanded the design of the Cray 1 with multiple vector processors and is

considered to be the first parallel vector processor.

Vector processing would make its way, in the second half of the 1990s, into mainstream desktop

processors in the form of the MMX instructions, which provided vector operations for integer

data. The MMX instructions could process either two 32bit integers, four 16bit integers or

eight 8bit integers at the same time. The 3DNow! and SSE instruction sets, from AMD and,

respectively, Intel, extended the vector operations to floating point data. In the most recent

version of the SSE instruction set, SSE4.2, either two double precision or four single precision

floating point variable can be processed at the same time. The follow-up to SSE was the

AVX instruction set from Intel, which extended the vector width to four double precision or

eight single precision floating point variables. The QPX vector instruction set supported by

the BlueGene/Q architecture from IBM also supports four double precision floating point

variables [39].

There is a continuing trend to increase the width of vector processing units. Recent develop-

ments such as the Intel Many Integrated Core (MIC) architecture (see [40]) brings the vector

width to 16 double precision variables. The presence of wide vector units together with a very

large number of processor cores makes the Intel MIC very similar to GPUs, from a hardware

and programming perspective.

The vector processing hardware can be used with two different approaches. The first is to

explicitly implement the vector parallelism through the use of special compiler instructions1.

These instructions offer the most control over which part of the code is vectorized, but their

use requires a considerable amount of programming effort.

The alternative is to rely on the compiler to automatically generate vectorized code. Histori-

cally, the automatic vectorization capabilities of compilers have been less reliable than coding

vectorization by hand, using compiler intrinsics. However, as automatic vectorization greatly

1Intel Intrinsics Guide - http://software.intel.com/en-us/articles/intel-intrinsics-guide
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decreases the effort on the part of the programmer, it represents a very important focus for

compiler developers. For an overview of the current performance of automatic vectorization

techniques, see [41], [42].

The LifeV library does not make use of compiler intrinsics for vectorization. The vector

processing hardware is exploited through optimized third-party libraries, in areas where

performance is critical, such as dense linear algebra routines. Although there exists potential

for some performance increase by applying vectorization techniques directly into certain

parts of the LifeV code, this does not represent the focus of this thesis.

2.4 Serial and parallel implementation

The serial implementation of finite element software is summarized in Figure 2.2. The usual

workflow begins with loading a polyhedral mesh from disk into memory, as an appropriate

data structure. The next step is the finite element loop: given a certain choice of finite element

discretization, the list of all the elements in the mesh (and associated degrees of freedom)

is parsed and the coefficients ai j and fi of the stiffness matrix and right hand side vector,

respectively, are computed (see Algorithms 1 and 2). At the end of this stage, the stiffness matrix

A and the right hand side vector f are given to the linear system solver. In a serial setting, this

solver can use a sparse implementation of direct method like the Cholesky or LU factorization.

There exist many variants of these methods, such as the multi-frontal method used in the

very robust and efficient solver packages UMFPACK [43] and MUMPS[44]. Due to the large

memory requirements of direct methods, when attempting to solve larger two-dimensional

and three-dimensional problems, it is common to use iterative solvers like preconditioned

Conjugate Gradient or GMRES [35]. When the problem is nonlinear, a nonlinear method such

as Newton iterations needs to be used [45]. In this case, at each nonlinear iteration the linear

Jacobian system, JF (xn)(xn+1−xn) =−F (xn), has to be solved. The final step, after the solution

of the linear system of equations is composed of any computations that need to be performed

on the solution, such as error computation, or simply comprises the export of the solution

Mesh loading

Loop on elements

Solver

Post processing

Global mesh

Assembly of the linear system: Ax = b

Serial direct or iterative solver

Exporting the solution x to disk

Figure 2.2: The block diagram describing the steps of a serial finite element method imple-
mentation.
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Figure 2.3: Ideal parallel speedup, according to Amdahl’s law, with respect to the number of
processes used, for different values of the parallel fraction of execution time p.

back to disk.

Parallelism and scalability

There exist two possibly complementary goals when developing the parallel implementation

for a numerical simulation. The first is to be able to solve the problem considered in a shorter

amount of time, by making use of additional parallel hardware resources. The measure of the

efficiency of this approach is represented by the speedup, the ratio between the total run-time

in the serial case (T1) and the run-time in the parallel case (TN ):

SN = T1

TN
, (2.29)

where the index N represents the number of processors used in the parallel case. In the ideal

case, the speedup would always be equal to the number of processors N (for example: a

program should finish four times faster, when using four processors instead of a single one),

but in practice this is never the case. Amdahl’s law [46] tries to quantify the speedup obtained

in practice:

SN = 1

(1−P )+ P
N

. (2.30)

Here S is the speedup, N is the number of processors used and P is a fraction which represents

the parallel portion of a program. Computing a precise value of the parameter P is not

possible, but the law is nonetheless useful to show that even for algorithms that are almost

100% parallelizable there exists a maximum achievable speedup which is independent of the

number of processors that is used. The measure of a program’s speedup for a given problem

size using an increasing number of processors is called strong scalability.

In Figure 2.3 we see that even with a parallel portion of 99.9%, strong scalability is limited
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when increasing the number of processors beyond 1000, unless the parallel portion of the

program also increases with the number of processors. At p = 95% the maximum speedup

obtained is less than 100, using 200 processes or more, while at p = 99.9% the speedup is

approximately 800, using 200 processes more. If the work is not constant, Amdahl’s law does

not apply any longer.

It should be noted that there also exist cases when superlinear strong scalability can be

observed. This can happen when dividing the work load into smaller and smaller parts allows

each part to fit completely into the smaller, but faster, cache memory.

A different concept, called weak scalability, has been introduced by Gustafson in [47]. Instead

of keeping the workload constant, it is assumed that the work is proportional to the number of

processors. Parallel hardware resources are not used to solve the same problem in a shorter

time, but they are used on a larger problem with the aim of solving it in the same amount of

time. This approach is described by Gustafson’s law which redefines speedup as:

S(N ) = p(N −1)+1, (2.31)

where N is the number of processors and p is the parallel fraction of the program. This new

definition of speedup works under the assumption that the problem size is scaled linearly with

the available compute resources available and is computed with respect to the hypothetical

time to solve the scaled problem on a single processor. In this context the ideal speedup

S(N ) = N is never reached, but there is a clear asymptote pN .

In the context of large scale parallel computing machinery the metric of weak scalability has

been essential in the development of new algorithms and approaches to computational sci-

ence. Although achieving weak scalability at large scale is possible, there are certain limitations

that prevent perfect scalability, like the communication cost associated with a certain parallel

configuration. Depending on the algorithm, the time spent transfering information between

processors could actually grow to dominate, or at least represent a considerable fraction of the

total run-time. This would mean that p is not constant any longer, but depends on N .

Parallel implementations

Algorithms based on domain or mesh partitioning are essential to all highly parallel finite

element implementations. They are useful in that the full resources of a parallel computing

machine are used, ensuring that the programs have weak scalability.

A parallel implementation follows the same general steps as the serial implementation, al-

though it involves additional concepts and issues which need to be managed to ensure proper

results. Figure 2.4 contains a block diagram of the parallel finite element process.

The parallel strategy which is described here is based on MPI, since it is known to allow very
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Initialize

Partition mesh

Loop on elements

Parallel iterative solver and
preconditioner

Parallel post-processing

Domain
partitioning

Global mesh reproduced on all processes

Each process only stores
its own mesh part

Global linear system is
distributed across all

processes

Domain decomposition
preconditioner

Figure 2.4: The block diagram describing the typical steps of a parallel finite element method
implementation. The coloured circles represent the four parallel processes in this example.

efficient implementations on large distributed memory machines, such as the benchmarks

used for the Top500. Due to the fact that the expensive communication between processes

needs to be explicitly performed by the programmer, it leads to a development process focused

on minimizing the amount of communication that is performed. Additionally, MPI is a very

mature standard and at this point represents by far the most common and efficient approach

used in parallel finite element software.

A typical simulation begins with creating the desired number of MPI processes. Since we are

mostly interested in situations like cardiovascular flows, where the geometry is not described

by a computer aided design (CAD) program, the mesh can not be created online, during

the simulation. Generally, the mesh is unstructured and needs to be partitioned among the

processes. If the mesh partitioning is performed online, during the parallel simulation, there is

the need to read the global unpartitioned mesh on each MPI process. This represents a serious

memory bottleneck. As we see in Chapter 5, moving the mesh partitioning to an offline stage,

performed before the online stage can remove this bottleneck.

Mesh partitioning is performed by dividing the elements of the mesh among all the processes.

Partitioning is usually done by first building the dual graph of the mesh which is then cut into

parts using a graph partitioner package like ParMETIS [48] or SCOTCH [49]. The algorithms

employed by the graph partitioners aim to reduce the total interface between mesh parts, in

order to reduce the amount of communication between processes. The original uncut mesh

can be deleted from memory, since from this moment on, each MPI process will only operate

on it’s own set of elements.
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Data: A
1for k ← 1 to nLocalEl ement s do

Data: kG ← LocalToGlobal(k)
Data: Jac ← ComputeJacobian(kG)
Data: el ement al A ← CreateElementalMatrix()

2for i ← 1 to nTestDo f do
3for j ← 1 to nTr i al Do f do
4for q ← 1 to nQuadPoi nt s do
5el ement al A(i , j ) = value(q , i , j ) * Jac * weight(q)

Data: currentIndices ← GetGlobalIndices(kG)
6InsertElementalToGlobal(el ement al A, A, currentIndices)

7GlobalAssemble()
8

Algorithm 3: Pseudo-code describing the assembly process of the stiffness matrix in the
parallel case. The parallel setting requires that the local element index k is translated to
a global element index kG , unique across all processes. The final step, GlobalAssemble,
performs the communication of partial coefficients associated with degrees of freedom on the
interfaces between mesh parts.

Having divided the list of elements among them, each process proceeds to loop over its own

elements and computes the coefficients of the stiffness matrix and right hand side vector that

are associated with the elements that they own (Algorithms 3 and 4).

This part is highly scalable, since the majority of the degrees of freedom owned by each process

are located in the interior of the mesh parts in which case the owner process computes the

associated coefficients in the linear system. Coefficients associated with degrees of freedom

located on the interfaces between mesh parts are computed as the sum of partial values

coming from all the processes which own elements that contain the respective degree of

freedom. This sum involves MPI communication and is represented in Algorithms 3 and 4 by

the call to the GlobalAssemble routine.

Each process maintains a set of associative arrays, or maps, which record the list of degrees

of freedom that are owned by the process. Figure 2.5 shows the distribution of degrees of

freedom across multiple processes for a simplified case of a parallel sparse matrix. The parallel

implementations of these data structures provide additional functionality, such as querying

which process owns a given set of degrees of freedom. The maps are also used to construct the

parallel distributed matrix and vector data structures that are used in the linear solver. The

matrix data structure usually employs a compressed sparse row storage strategy, with the rows

distributed across processes.

In the parallel case, the solution of the linear system of equations is handled by parallel

implementations of linear solvers. While it is technically possible to use parallel direct solvers

like MUMPS [44] or SuperLU_Dist [50], by far the most efficient solvers are the iterative ones

with parallel preconditioners based on domain-decomposition (DD) [51] or multigrid (MG)
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Data: rhs
1for k ← 1 to nLocalEl ement s do

Data: kG ← LocalToGlobal(k)
Data: Jac ← ComputeJacobian(kG)
Data: elementalRhs ← CreateElementalVector()

2for i ← 1 to nTestDo f do
3for q ← 1 to nQuadPoi nt s do
4elementalRhs(i ) = value(q , i ) * Jac * weight(q)

Data: currentIndices ← GetGlobalIndices(kG)
5InsertElementalToGlobal(elementalRhs, rhs, currentIndices)

6GlobalAssemble()
7

Algorithm 4: Pseudo-code describing the assembly process of the right hand side vector in
the parallel case. The parallel setting requires that the local element index k is translated
to a global element index kG , unique across all processes. The final step, GlobalAssemble,
performs the communication of partial coefficients associated with degrees of freedom on the
interfaces between mesh parts.
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Figure 2.5: The distribution of the rows of a parallel sparse matrix across three processes. Ac-
cording to this distribution, each process maintains a degree of freedom map which maintains
the association between local and global DOF numbering.

[52]. The next section gives an overview of the different methodologies and libraries that offer

such components for use in finite element software.

Typically, the parallel solvers provide a unified interface for serial and parallel use. The user or

programmer just connects the data structures that represent the linear system with the parallel

solvers and all the parallel implementation details, like communication between processes,

are hidded in the implementation. In most cases, application code that is built on third party

libraries that hide the MPI interface is nearly identical in the serial and parallel cases.

For parallel input and output (I/O) of data, most applications use a high performance I/O

library, like HDF5 [53]. Again, such libraries seek to hide the complexity of parallel disk read

and write operations, while achieving a high level of performance.

In parallel finite element software, one can encounter different performance bottlenecks in

22



2.5. Parallel libraries for finite element modelling

different stages of the simulation pipeline. Different ways to implement geometric domain

partitioning can lead to excessive memory usage, while the speed of parallel I/O greatly affects

the performance of this stage and of the post-processing stage. Many institutions in the field

of high performance computing dedicate a large amount of resources to the maintainance

and the development of highly efficient parallel file systems and storage hardware.

Scalable and robust solver and preconditioning strategies represent a very active and chal-

lenging field of research. Preconditioners for more complex problems, such as saddle-point

problems, remain very much an open research direction.

The final section of this chapter will continue the ideas from this section and will give an

overview of the design and implementation of the LifeV finite element modelling library.

The next chapter of the thesis will provide a discussion on parallel preconditioners based on

domain decomposition.

2.5 Parallel libraries for finite element modelling

Finite element modelling software is an established tool in engineering. Typically such soft-

ware is closed source, commercial, such as COMSOL [54], ANSYS [55] or Abaqus [56]. These

packages are very robust and are able to perform simulations in multiple problem domains,

such as mechanics, fluid dynamics, electromagnetics or coupled multiphysics problems.

While limited support for parallelism is present in recent version of these applications, the

focus is more on powerful workstations and small compute clusters, rather than large super-

computers.

In the research domain, open source project offerings are the norm and in some cases they

are designed to make use of large high performance computing architectures. There is also

a greater variety in the interface that these packages offer, ranging from lower level library

collections, to integrated environments for partial differential equation (PDE) solution and

simulations, finally to applications with a graphical user interface (GUI) that emulate the

usage experience of the commercial software. We will next give a short overview of the most

important open source projects in each one of these cathegories.

Frameworks for FEM applications

Software frameworks do not represent complete integrated applications for FEM. Instead, they

are collections of component libraries that are designed to be used together in order to build

such an application. They include: tools and structures for mesh handling, load balancing

and transformations, for high-performance linear algebra, for the assembly of the system of

linear equations, solvers and preconditioners and finally tools for post-processing.

In this category, there are two mature and robust major players which include parallelism

through MPI, the Trilinos Project [20], a collection of C++ libraries and PETSc [57], written in

23



Chapter 2. State of the art of finite element software

C. They are both developed at national research laboratories in the United States of America

and are used by a large number of research projects around the world. They support large-

scale distributed memory parallelism through MPI and, in more recent versions, also support

shared memory parallelism. While Trilinos is more modular in design, one can say that both

solutions offer equivalent features in different programming languages. Both projects offer

strong support for FE modelling, however the interfaces that they expose are general enough

to allow the use of other methodologies, such as finite volume or finite differences.

Integrated simulation environments

Integrated simulation environments represent an intermediate step between frameworks and

applications. They offer a more restrictive and higher level programming interface than frame-

work. The interface is tailored to focus more on the modelling parameters of the simulations,

hiding low level details from the user. This user interface is often provided in a higher level

programming language, such as Python [58]. The definition of a domain specific language

(DSL) for describing the weak formulation of the problem is a very convenient feature offered

by these environments and allow the user to define his problem in a language that is closer to

the underlying mathematics than regular C, C++ or Python would permit. From the point of

view of implementation, these DSL can be provided through template meta-programming in

the C++ language or through code generation at run-time, as is the case of Python interfaces.

Some projects, such as FEniCS [59] or deal.II [60] use Trilinos and PETSc to handle the lower

level and performance sensitive aspects of the simulation. As such, large scale parallel support

is inherited from these frameworks. In addition, FEniCS offers a comprehensive set of tools

for finite element modelling in the Python language.

Other projects, such as DUNE [61] or OpenFOAM [62] are more self-contained and do no rely

on Trilinos or PETSc, implementing their own versions of the tools offered by these frameworks.

They all offer a different interface for constructing a simulation and all have good support for

MPI parallelism and more limited support for shared memory parallelism.

The LifeV C++ library, which represents the context in which the new developments presented

in this work have taken place, falls into this category. A description of LifeV is given in section

2.6. The Feel++ library [63], also written in C++ should also be mentioned. It originated

as a fork of LifeV, but has since grown into an independent project with its own goals and

approaches.

Graphical user interface applications

Compared to the number of projects listed in the previous two categories, the number of open

source GUI applications for finite element modelling is much smaller. Projects that focus

on larger scale parallelism instead of workstation level performance will have limited use for

a GUI. However, the Elmer project [64] provides a mature open-source application for FE
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modelling, with preprocessing, solving and postprocessing capabilities and with support for

distributed and shared memory architectures.

2.5.1 GPU for numerical applications

Although in this thesis we do not focus on graphical processing units (GPU), we briefly describe

here their use for numerical modelling software in high-performance computations.

Hardware overview

Using the GPU to perform general computations is not a new idea. However, before the

development of the current programmable hardware and software application programming

interfaces designed specifically for general purpose computations, scientists needed to im-

plement their algorithms using graphical processing APIs like OpenGL and GLSL. This was a

difficult process, since scientific applications use algorithms, for instance direct and iterative

solvers, for which this hardware and software had not been intended.

The first release of GPUs built on the compute unified device architecture (CUDA) platform

from NVIDIA and the Stream Computing platform from AMD represent the first generation of

graphical hardware that directly support the development of scientific computing applications.

CUDA GPUs are programmed using an extension to the C++ programming language (C for

CUDA) and at this point represent the mainstream architecture for GPU computing.

GPUs are architecturally very different to modern CPUs, as they are more similar to vector

computers from the earlier days of supercomputers, such as the Cray-2. They consist of a

large number of processor cores, each core able to operate on multiple data elements in a

vector fashion. The processor cores are not very sophisticated, lacking much of the logic

hardware that allows modern CPUs to have very good scalar performance. The result is that

GPUs achieve high performance by maintaining a large number of threads across all these

processors cores, which hides the latency coming from the memory operations between

the CPU memory and GPU memory. Additionally the hardware offers very little support for

synchronization and communication between threads, with respect to a CPU. Algorithms that

are most suitable for implementation on the GPU have a large computational intensity (the

ratio between floating-point operations and memory operations) and can express parallelism

with few or no points of global synchronization between parallel elements. An in depth

description of CUDA hardware and software will not be given here, but is available in [13].

Finite element modelling on GPUs

One of the first numerical methods successfully ported to GPUs is the finite difference method

(FDM). In [10] a single-precision implementation of FDM on the GPU is presented. It uses

OpenGL for solving 2D electromagnetic scattering problems and is reported to be 7 times faster
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than a CPU implementation. The FDM, using a regular grid as spatial discretization, which

ensures very regular memory access patterns, combined with an explicit time discretization

scheme, is suited for implementation on GPUs.

The FE method, although more complicated from the implementation point of view, has also

been adapted to use GPUs, even prior to the appearance of CUDA hardware and software.

Turek et al. [65] attempted to use GPUs through the FEAST finite-element library which they

develop. Initially, a single-precision iterative solver is implemented on the GPU to serve

as a preconditioner for an outer iterative solver running in double precision on the CPU. A

2D Laplacian problem is solved on a regular cartesian grid. This approach, using OpenGL,

is approximately 3.5 times faster than a CPU implementation. A later development by the

same group is described in [66]. The FEAST library is used to solve a non-linear steady-state

Navier-Stokes problem. The linearized subproblems of the non-linear solver are solved with

a global BiCGStab preconditioned with a Schur complement matrix. Solving the advection-

diffusion problem is done with a global multigrid solver that uses as smoother multi-grid

solvers on the local domains running on the GPU. To ensure the regular access patterns

suitable for the GPU, this strategy uses a 2D unstructured mesh composed of a small number

of quadrilateral domains, while the domains themselves, on which the local multi-grid GPU

solvers are operating, are discretized with regular generalized tensor product grids. The

components that are ported to the GPU are up to an order of magnitude faster than the

original CPU version. These components represent only a fraction of the total solver code,

so the total simulation time is only decreased by a factor of two, as can be expected due to

Amdahl’s law.

There have been also other attempts to port multi-level preconditioners to GPUs, such as

the one described in [67]. It is a multi GPU implementation of a preconditioned conjugate

gradient (PCG) solver with an algebraic multi-grid preconditioner for 3D problems on un-

structured grids. It is based on a GPU implementation of a sparse matrix vector product and

uses an efficient interleaved compressed row storage format for the sparse matrices. This

implementation is 13 times faster than one on a high end CPU. A PCG solver implemented

on the GPU with a multi-level preconditioner for computational electromagnetics problems

discretized with high order FE is presented in [68], [69]. The coarse level problem in the

multi-level preconditioner is solved on the CPU using a direct solver. In this case, the GPU

was 4 times faster than the CPU.

An earthquake modelling application has been ported to NVIDIA CUDA hardware, operating

in single precision floating point arithmetic. Initially it ran on a single node equipped with

NVIDIA GPUs [70], it was later ported to a large GPU cluster [71]. The application uses a high

order spectral element method on a 3D unstructured hexahedral mesh with and explicit time

discretization scheme. The entire finite element loop runs on the GPU and mesh colouring

is used to avoid synchronization between thread blocks on the same GPU. The single node

version of the code is up to 25 times faster than the CPU version of the code, while the MPI

version is up to 20 times faster than the equivalent CPU implementation. The MPI version of
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the code also shows good weak scalability up to 192 GPUs.

A GPU implementation for fast simulations of the brain position shift during open cranium

surgery is found in [72]. The software uses finite element discretization on an unstructured 3D

mesh composed of linear tetrahedra and hexahedra and an explicit time advance scheme. The

GPU components are written in CUDA, using single precision floating point arithmetic. This

implementation is about 20 times faster than a CPU version, running in double precision.

A solver for Maxwell’s equations running in single precision floating point arithmetic on

NVIDIA CUDA GPUs is described in [17]. A nodal discontinuous Galerkin (DG)finite element

discretization on an unstructured tetrahedral mesh is used along with an explicit Runge-Kutta

time discretization. In the finite element loop the DG operator is split into several GPU kernels,

according to memory access pattern, which permits a more efficient use of the hardware. A

multi-GPU implementation using 8 GPUs is 18 times faster than a CPU version using 28 cores

[19]. A more efficient multi-rate time discretization scheme is introduced in [73], in order to

deal with the multi-scale nature in problem geometry. This version using 4 GPUs is up to 33

times faster compared to a CPU implementation running on a quad-code processor.

The key aspects of these efforts to implement the FE method on the GPUs are the prevalence of

regular grids, which facilitate regular memory access patterns, essential for high performance

achievement on the GPU. Additionally, FE discretizations such as the Discontinuous Galerkin

approach are preferred, which allow splitting the assembly operators into independent and

communications parts, in order to reduce the need for syncronization on the global GPU

memory space. Finally, for strategies where the entire simulation is running on the GPU, the

use of explicit time discretization schemes does away with the need to perform the solution

of the global linear system of equations, either using a direct or an iterative solver. The best

performance on a GPU is achieved for algorithms which can be implemented using single

precision floating point operations. In the case of algorithms which require higher precision,

there have been attempts to make use of linear solvers implemented in single precision

arithmetic used in conjuction with iterative refinement performed in high precision [74], [75].

2.6 The LifeV parallel finite element modeling library

This final section of the chapter introduces the software framework in which the work pre-

sented in this thesis has been implemented, namely the LifeV parallel finite element library. An

overview of the design and implementation of the library is given first, followed by a summary

of the main limitations and performance bottlenecks of the library at the beginning of the

author’s doctoral work.
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2.6.1 Design and implementation overview

LifeV (pronounced "life five") is a library for finite element modeling, developed as a joint

effort between Ecole Polytechnique Federale de Lausanne (CMCS) in Switzerland, Politecnico

di Milano (MOX) in Italy and Emory University in the U.S.A. The main application domain

is modeling the cardiovascular system (fluid dynamics, structure dynamics, fluid-structure

interaction, electromechanics of the heart).

The library has been designed for parallel operation. Although it can also be used on single

processor computers, the main target platforms are parallel systems, like IBM Blue Gene and

Cray supercomputers, that make it possible to perform large scale simulations, much beyond

the memory capacity and computational power of a single computer.

LifeV is a C++ library built on top of Trilinos, which provides distributed sparse matrices

and vectors, and parallel MPI numerical algorithms, like parallel direct and iterative solvers,

preconditioners, load balancing and graph manipulation procedures etc. As a result, there

are very few explicit calls to MPI functions, Trilinos acting as an abstraction layer above MPI.

The extensive use of the Trilinos framework allows a consistent parallel operation in the main

steps of a simulation: preprocessing, solving the linear system of equations, postprocessing.

LifeV is designed with modules dedicated to specific tasks. There is a core module, which

implements algorithms for the finite element method independently of the problem domain,

such as parallel matrix and vector interfaces, interfaces for linear algebra, matrix and vector

assembly and solvers for linear and nonlinear problems. The other modules of the library

depend on this core module and can be activated or deactivated at will. They represent

extensions to the core features needed to perform specialized simulations, such as level set

solvers, solvers and preconditioners for Navier-Stokes equations, electromechanics, fluid-

structure interaction problems and multi-scale simulations.

The assembly of the linear system of equations is implemented using expression-templates,

a template metaprogramming technique which provides a syntax closer to mathematics for

defining the weak formulation of the chosen problem and ensures enhanced performance

during this step of the simulation.

In addition to well known domain decomposition preconditioners, provided by the Trilinos

libraries, LifeV contains for example a set of preconditioners designed for Navier-Stokes

problems [76], [77], with an approach based on an approximate block factorization of the

Navier-Stokes system matrix, and others for fluid-structure interaction problems [78].

Thanks to the domain-decomposition method the parallel implementation of a finite element

solver is well suited for MPI. During simulations, LifeV performs the following steps:

1. Initialization - a given number of parallel MPI processes are started, each reading

simulation parameters from disk.
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2. Mesh loading - a polyhedral mesh describing the entire computational domain is read

from disk by each MPI process.

3. Mesh partitioning - the global mesh is partitioned into a series of subdomains, one for

each MPI process, using the ParMETIS parallel graph partitioning library. At the end of

this process, each MPI process keeps in memory only the mesh partition that belongs to

him, all further operations being performed on this local mesh.

4. Assembly of the global linear system - The linear systems associated with the Galerkin

approximation of the chosen problem is stored in memory using Trilinos data structures

distributed across all MPI processes. The assembly algorithm on each MPI process has

been described in section 2.4.

5. Solving the linear system of equations - Once assembled, the linear system of equa-

tions is solved using a parallel implementation of an iterative solver, also provided by

Trilinos, usually preconditioned conjugate gradient (PCG) or preconditioned GMRES.

6. Postprocessing and output - The solution of the problem is saved to disk using the high

performance parallel file format, HDF5.

2.6.2 Initial limitations of LifeV

LifeV currently only uses MPI for parallel operation. While this was a viable approach at the

time when LifeV was originally designed, the recent advances in computing hardware indicate

that a pure MPI approach to parallelism may not be the path of least resistance towards

achieving efficiency at scale[79]. A more flexible and hybrid parallelism could eliminate a

series of performance limitations of LifeV:

• Domain decomposition preconditioners - the Algebraic Additive-Schwarz precondi-

tioner is used, as a component, in all the preconditioner strategies that are available

in LifeV: multi-level preconditioners, approximate block factorization preconditioners

for Navier-Stokes. The available implementation is designed with a 1 to 1 correspon-

dence between the number of MPI processes and DD subdomains. Uncoupling these

two aspects in the implementation could increase the parallelism of the code, while

maintaining the same numerical behaviour of the preconditioner.

• Inefficient memory usage - in the preprocessing phase of a LifeV simulation, the global

mesh of the domain has to be partitioned between all the MPI processes. Due to the

partitioning library used, it is necessary that each process holds at one point in time a

complete image of the global mesh. This limits the maximum size of the simulations

that can be attempted, a limitation which is becoming greater with the decreasing size of

memory per processor that can be observed in newer supercomputers. Additionally, an

MPI-only domain decomposition approach, due to the need to duplicate and exchange

29



Chapter 2. State of the art of finite element software

information in the halo regions of each subdomain requires more and more memory

when increasing the number of MPI processes.

• Unexplored sources of parallelism - using multiple threads, in addition to MPI paral-

lelism, in certain stages of the simulation, such as assembly and the solver and precondi-

tioner could allow a better exploitation of modern hybrid supercomputing architectures.
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3 A domain decomposition precondi-
tioner based on two-level MPI paral-
lelism
This chapter focuses on a novel implementation of a domain decomposition preconditioner,

based on two levels of MPI parallelism, in order to better match the topology of the underlying

hardware and cope with the serial bottleneck bound to the coarse solver. We begin with an

overview of the algebraic additive Schwarz (AAS) preconditioner, and the two-level Schwarz

variant, which represent the setting in which the new approach is implemented. The new

strategy with two levels of parallelism is then described, from the algorithmic and implemen-

tation viewpoint. The final part of the chapter contains a discussion of different ways to treat

the subdomain problems that are associated with the AAS preconditioner, including a new

one based on a second level of parallelism.

3.1 The algebraic additive Schwarz preconditioner

The Schwarz method is one of the earliest domain decomposition methods [80], which has

seen a resurgence with the advent of parallel computing and is now in wide use in finite

element software packages. It provides an ideal framework for parallel execution, thanks to its

reinterpretation as an efficient preconditioner.

We describe the algebraic additive Schwarz (AAS) preconditioner, by reconsidering the Poisson

problem from the previous chapter (2.1). The domainΩ is partitioned in several overlapping

subdomains (see Figure 3.1). Suppose we want to solve the linear system of equations deriving

from the finite element discretization of this problem,

Au = f. (3.1)

Because of the problem size or for efficiency reasons we adopt a preconditioned iterative

method like GMRES or Conjugate Gradient. The idea of the additive Schwarz preconditioner is

breaking the global problem down into a series of local problems of Dirichlet type on overlap-

ping subdomains and defining the global preconditioner P AS of A as a sum of transformations
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Ω2

Ω1

Ω1 Ω2∩

Figure 3.1: The case when domainΩ is divided into two subdomainsΩ1 andΩ2, with overlap
Ω1 ∩Ω2.

of local inverse matrices, as follows:

P−1
AS =

N∑
i=1

RT
i Â−1

i Ri , (3.2)

where N is the number of subdomains, Ri is the restriction operator from the global problem

to the subdomain problem, RT
i is the prolongation operator from the subdomain problem to

the global one and Â−1
i is an exact or inexact inverse of the local stiffness matrix Ai = Ri ART

i .

When solving (3.1) with an iterative method, it is necessary to repeatedly solve the problem

P AS z = r, (3.3)

which is composed of N independent problems

Âi zi = Ri r. (3.4)

In a parallel setting, where the rows of the global matrix A are already distributed among the

available processes, the restriction operation involves selecting the locally stored rows from

the global matrix and any additional rows which correspond to the degrees of freedom in the

imposed overlap region. This local matrix Âi has a much smaller size than the global problem,

it is therefore possible to compute an exact or inexact LU or Cholesky factorization if it. The

prolongation operator represents applying Â−1
i to the set of coefficients in the residual vector,

which correspond to the degrees of freedom contained in a subdomain, in the course of a

Krylov iteration, like conjugate gradient (CG) or the generalized minimum residual (GMRES)

methods.

3.1.1 Optimality and scalability

One important property of preconditioners in general is optimality. A preconditioner is

considered optimal if its condition number is independent of the finite element gridsize

which is used. This means that using an optimal preconditioner there is an upper bound on
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the number of iterations that an iterative solver will require to converge (up to a prescribed

tolerance), independently of the mesh refinement used.

In the context of parallel computing and parallel preconditioners, we would like to define

an additional metric, namely preconditioner scalability. It has a slightly different meaning

than strong and weak scalability, described in the previous chapter. We consider that a

preconditioner is scalable if its effectiveness is independent of the number of processors used,

which, in the case of the pre-existing implementation of AAS, is the number of subdomains

used in the domain decomposition scheme. As in the case of optimality, the upper bound on

the number of iterations that an iterative solver, using a scalable preconditioner, requires to

converge should be independent of the number of processors used.

There exists in the literature a detailed analysis of the additive Schwarz method [81] [82] [27]

[51]. In this section we would like to recall some results which describe the optimality and

scalability of the AAS preconditioner in the case of Poisson problems. The convergence rate

of the preconditioned Conjugate Gradient solver when both A and the preconditioner are

symmetric positive definite is (see, [83]):

||Uk −U||A ≤ 2

(√
κ(P−1 A)−1√
κ(P−1 A)+1

)k

||U0 −U||A , (3.5)

where ||v||A =p
(v,v)A is the norm associated with the scalar product (v,w)A = (Aw,v). This

inequality relates κ(P−1 A) with the number of iterations necessary to achieve a prescribed

tolerance.

The following estimate is given in [29] for the condition number of the AAS preconditioner:

κ(P−1
AS A) ≤C

1

δ2H 2 , (3.6)

where H is the maximum diameter of the subdomains, δ ∈ (0,1) is a measure of the overlap

between subdomains and the constant C does not depend on the mesh refinement h or the

subdomain size H (which gives the number of subdomains), but depends on the coefficients

of the operator of the problem. If we consider a three dimensional case, the number of

subdomains N ≈C 1
H 3 and the estimate (3.6) can be written in terms of N :

κ(P−1
AS A) ≤C

1

δ2 N 2/3. (3.7)

The AAS preconditioner has the optimality property, but is not scalable.

One way to improve the scalability of the AAS preconditioner is to add to the subdomain

problems an additional coarse problem, using a coarse mesh where each element represents
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one of the subdomains. In the new, two-level form, the AAS preconditioner can be written:

P−1
C AS = RT

H Â−1
H RH +

N∑
i=1

RT
i Â−1

i Ri , (3.8)

where RH and PH are the restriction and prolongation operators associated with the coarse

problem and Â−1
H is the exact or inexact solve of the coarse problem.

For the two-level formulation of AAS, [84] gives an improved estimate for the condition number,

independent of the number of subdomains:

κ(P−1
C AS A) ≤C

1

δ
. (3.9)

This estimate shows that in the presence of a coarse problem the preconditioner is scalable.

We note that in both cases the overlap δ has to be chosen by the user. In many cases, δ=O(h),

which of course leads to a suboptimal preconditioner. However, having δ independent of h

means that the overlap includes more and more mesh layers as h decreases. This implies more

communication. Later on, we choose the minimal overlap δ= h, i.e. minimal communication

at the price of sub-optimality.

A qualitative interpretation of the two estimates presented here is that in the one-level formu-

lation, the AAS preconditioner degrades with the increase of subdomains, as the exchange of

information is only done through the overlap, and only between neighbouring subdomains.

The presence of a coarse level removes this restriction and allows an exchange of information,

even if only coarsely, between any two given subdomains.

From the point of view of the implementation, when using regular grids, the fine and coarse

grids are easy to obtain. First the coarse grid is generated and then the fine grid is obtained

by refining the coarse grid until the desired grid size is attained. In the case of unstructured

meshes, on a domain with irregular geometry, it is not possible to obtain the fine mesh from

the coarse one, as the fine mesh is needed to properly approximate the boundary of the

domain. Second, the coarsening procedure for the fine mesh is not trivial. In practice, the

easiest way to generate the coarse level problem for a 2-level Schwarz scheme is by using an

algebraic multi-grid (AMG) preconditioner [85], such as the ML package in Trilinos. The AMG

preconditioner handles building the coarse problem and the AAS preconditioner is set as a

smoother on the fine level.

3.1.2 Restricted Schwarz algorithm

A variation of the AAS preconditioner is the restricted Schwarz algorithm [51]. The prolonga-

tion operators RT
i are simplified by discarding the overlap information. The restricted variant
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of (the one-level) AAS can be written as:

P−1
AS =

N∑
i=1

R̃T
i Â−1

i Ri , (3.10)

where R̃T
i is a trivial prolongation operator which discards non local (i.e. not owned) degrees of

freedom. When computing A−1
i the data on the halo is gathered from the neighbour processes.

The same happens when applying the restriction Ri . Both steps require communication,

however RT
i does not, since the non local data is discarded at this point.

Although a complete analysis of this approach is to our knowledge still missing, the restricted

variant has been shown to lead to improved convergence used within GMRES with respect

to the standard form of AAS [86], while in the case of some symmetrical problems, GMRES

preconditioned with the restricted version of AAS performed better than CG with the standard

AAS, from the point of view of the number of iterations and CPU time [51]. It should be noted

that the restricted variant of AAS, due to its improved performance, is currently the default

implementation of AAS in both Trilinos and PETSc numerical frameworks. For the remainder

of this work, the restricted variant should be assumed whenever AAS is mentioned.

3.1.3 Numerical test

What follows is a simple numerical experiment, meant to visualize the differences in pre-

conditioner scalability between single level AAS and 2-level AAS. We setup, using LifeV, a 3D

Laplacian boundary value problem, on a regular cubic grid. P2 finite elements are used which

results in a linear system with approximately 5 million degrees of freedom (DOF). To study

strong scalability, the number of MPI processes is varied between 128 and 2048. The linear

system is solved using GMRES with a tolerance of 10−10. Given that the condition numbers of

AAS and 2-level AAS are influenced by the level of overlap (see Equations (3.6) and (3.9)), three

preconditioners are considered:

1. AAS - the single level variant implemented in the IFPACK package of Trilinos, with over-

lap δ= 2h. Exact LU factorization is used to solve the subdomain problems, provided by

the PARDISO [87] linear solver package.

2. 2-level AAS, with overlap - identical to the first case, but for the addition of a coarse

problem (through the ML package). Unfortunately, because of the number of MPI

processes used, it isn’t possible to solve the coarse problem exactly. Instead we use 5

iterations of Gauss-Seidel. It should be noted that the implementation of the coarse

solve is serial, independently of the number of MPI processes that are used. The coarse

problem is constructed and solved on the first MPI process.

3. 2-level AAS, with minimal overlap - the same configuration as in the previous case, with

the exception of the overlap between subdomains, which is set at δ= h.
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Figure 3.2: Comparison of AAS and 2-level AAS for a 3D Laplacian problem on a regular cubic
grid with P2 finite elements, 5 million degrees of freedom. Strong scalability is examined for
different levels of overlap.

In the implementation of AAS from the IFPACK package the minimal overlap δ = O(h) is

represented as zero overlap, while overlap of δ = O(2h) is represented as overlap of level 1.

The reason for this is that the boundary degrees of freedom in the overlapping subdomains

represent the homogeneous Dirichlet boundary conditions of the subdomain problems and

are eliminated.

Figure 3.2 displays the results of this numerical test. Measured quantities are the time to

compute the preconditioner, the number of GMRES iterations to convergence and the time to

GMRES convergence. Using the three measurements, we also compute the time to perform

one GMRES iteration and the total time, which represents the sum of the time to compute

the preconditioner and the time to GMRES convergence. The total time reflects the overall
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effectiveness of each approach.

Figure 3.2b shows the number of iterations to GMRES convergence in the three cases. The pre-

sense of the coarse problem is effective at limiting the iteration creep that is very pronounced

in the case of single level AAS. The number of iterations is still increasing with the number

of subdomains even in the case of 2-level AAS, due to the fact that the coarse problem is not

solved exactly. While the impact of the overlap level in the 2-level preconditioners is visible,

the iteration count increases with the number of processes at the same rate, regardless of the

level of overlap.

The cost to compute the preconditioner is higher in the two level case (Figure 3.2a), as is

expected due to the added coarse problem, although the reduced number of iterations that

are needed leads to an overall lower time to GMRES convergence for 2-level preconditioners

(Figure 3.2c). The serial implementation of the coarse level greatly impacts strong scalability

beyond a certain number of subdomains and MPI processes.

Finally, considering the time to compute the preconditioner together with the time to GMRES

convergence (Figure 3.2e), we observe that the 2-level case with minimal overlap is overall

the fastest approach, due to the slightly smaller subdomain problems that are used and the

reduced communication costs involved. In the parts that follow, this is the configuration that

will be used for numerical tests using 2-level AAS.

3.2 Two-level parallelism in AAS

In Trilinos, the AAS preconditioner is implemented in the IFPACK package, which provides the

algebraic domain decomposition framework, as well as support for a collection of different

exact or inexact LU solvers for use with the local subdomain problems. The main limitation

of the implementation is the strict 1:1 relationship between the number of subdomains for

the domain decomposition scheme and the number of MPI processes in use. As shown in

the initial benchmark from the previous section, due to this dependence the parallel AAS

preconditioner is not scalable with the number of processes. We also observe a loss of strong

scalability in the preconditioner computation phase, since the coarse problem is solved

serially, on the first MPI process. This is a lesser limitation for stationary simulations, where

the preconditioner needs to be computed only once, but in the case of time-dependent

simulations this becomes a greater problem. In the non-linear case, although many times it is

possible to reuse the preconditioner, if the preconditioner needs to be updated multiple times

per time step, this loss of scalability becomes even more costly to the overall performance.

In this section we describe the implementation, in the AAS framework, of the support for

parallel subdomain problems. This implementation is similar to an earlier attempt, described

in [30] and it allows computing the AAS preconditioner using a number of processors that is a

multiple of the number of subdomains.

37



Chapter 3. A domain decomposition preconditioner based on two-level MPI parallelism

3.2.1 Implementation details

In the first section of this chapter, it was already mentioned that the AAS preconditioner

construction maps well on top the MPI parallel decomposition used for the linear system

matrix, since the rows of the matrix that are stored on each processor represent the non-

overlapping parts of each subdomain problem. Introducing two levels of MPI parallelism

to the AAS preconditioner does not affect the mesh partitioning and the assembly of the

linear system of equations. Both of these steps are performed using the total number of

MPI processes available, which we denote by NP . The mesh is partitioned into NP parts and

the linear system of equations is constructed with the rows of the system matrix distributed

across all the processes. At this point, we can either impose a number of subdomains NDD for

AAS or impose how many MPI processes should be used per subdomain NS . The following

relationship applies:

NP = NDD ×NS . (3.11)

The processes which belong to each subdomain are grouped together and construct the

subdomain matrix using their locally stored rows. The coefficients associated with the coupling

between the subdomain’s degrees of freedom and those of the other subdomains are discarded.

Figure 3.3 illustrates the process described here. This approach results in an AAS configuration

with minimal overlap which, as shown in the previous section, is preferred.

The parallel subdomain problems, once built, can be solved with an MPI parallel solver which

is able to use Trilinos parallel sparse matrices. Trilinos includes an interface to MUMPS, a

mature and efficient parallel direct solver. By default, it was intended to be used for solving

the global problem, but we have made modifications in Trilinos that restrict its operation to

the MPI subcommunicators associated with each parallel subdomain. As an alternative to

using parallel direct solvers for subdomain problems, Trilinos also provides the ShyLU package

MPI 1 MPI 10

MPI 12MPI 3

MPI 2 MPI 5 MPI 6 MPI 9

MPI 4 MPI 7 MPI 8 MPI 11

Boundary of mesh parts
and subdomains (N    )DD

(a) Serial subdomain problems:
NP = 12; NDD = 12; NS = 1

MPI 1 MPI 10

MPI 12MPI 3

MPI 2 MPI 5 MPI 6 MPI 9

MPI 4 MPI 7 MPI 8 MPI 11

Boundary of mesh parts

Boundary of subdomains (N    )DD

(b) Parallel subdomain problems:
NP = 12; NDD = 3; NS = 4

Figure 3.3: Domain decomposition for AS with one or two levels of parallelism. Each AS
subdomain has a different color.

38



3.2. Two-level parallelism in AAS

which can solve these problems inexactly. A discussion of ShyLU is given in Section 3.3, while

Section 3.4 contains a set of benchmarks where MUMPS and ShyLU are compared.

Some serial direct solvers which are available in Trilinos, such as KLU [88] and UMFPACK, are

able to solve the parallel subdomain problems, serially, by collecting the problems on one

process. The same applies to incomplete Cholesky and LU factorizations implemented in

Trilinos. The use of these serial exact or inexact solvers is only useful during development or

debugging, due to the serial bottleneck that is introduced.

3.2.2 Numerical assessment

To verify the correctness of the implementation of the parallel subdomain problems for

AAS, a simple numerical test is set up. A 3D Laplacian problem is solved with GMRES and

preconditioned with AAS. A varying number of MPI processes is used, ranging from 8 to 512.

First, the subdomain problems are serial (NS = 1, variable NP ); then the subdomains problems

are solved in parallel, keeping NDD constant, while varying the total number of processes NP

and the number of processes per subdomain NS (constant NDD , NS = NP /NDD ).

The results of this test are shown in Figure 3.4 and it can be seen that the implementation is

working as expected. This test involves no performance measurements, as the only concern is

the correctness of the implementation. We expect a constant number of GMRES iterations,

for a constant number of AAS subdomains. For validation, in both the serial (NS = 1) and the

parallel (NS ≥ 1) case, a serial LU solver is used, which gathers the subdomain problem on the

first MPI processes of each subdomain.
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3.3 ShyLU - a hybrid subdomain preconditioner

This section describes an alternative approach to treating subdomain problems in AAS with

exact LU factorizations. ShyLU is a hybrid preconditioner for multicore platforms, available as

a package in Trilinos [31]. The term hybrid refers to the mixed direct and iterative approach

used, as well as to the fact that while the main parallelisation scheme of ShyLU is MPI, it

can also make use of software subcomponents that are multi-threaded. There exist similar

efforts for developing such hybrid solvers or preconditioners [89], [90], [91]. While ShyLU

was originally developed as a preconditioner for circuit simulation problems, the author of

this thesis collaborated with the original developers of ShyLU with the goal of modifying and

adapting the preconditioner to the 2-level MPI framework described in the previous section,

i.e. to use it as an inexact solver for AAS. ShyLU has been developed with circuit applications in

mind. We are interested in extending it as a parallel inexact solver for the subdomain problems

in AAS in the finite element context.

The end goal is determining the effectiveness of ShyLU as a subdomain preconditioner in AAS

for PDE problems and introduce new components adapted to matrices that are less sparse

than the ones encountered in circuit simulations.

3.3.1 Algorithmic description

The ShyLU preconditioner is based on a Schur complement at the level of the partitioned

subdomain. Starting from a non-overlapping partition of the subdomain, the degrees of

freedom are grouped into internal ones and interface ones. Since the partitions are created

with a minimal interface, the corresponding matrix looks like in Figure 3.5 (possibly after

reordering). We suppose to be able to compute an approximated Schur complement relative

to the interface degrees of freedom. Indeed, ShyLU performs a partitioning and permutation

of the matrix, in order to obtain a matrix with a block diagonal upper left block. The D and G

blocks are square, while D is non-singular.

D C

R G

Figure 3.5: The matrix ShyLU produces for a decomposition into 4 non-overlapping parts
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In the case of LifeV, where ShyLU is applied to the parallel subdomain problems which are

built with the approach described earlier, there is no need for a second partitioning of the

matrix, as the subdomain problem matrices already have the needed structure.

To describe the steps of the Schur complement algorithm, let us consider the linear system:

Ai ui = fi , (3.12)

which represents our problem for subdomain i of the AAS preconditioner. Consequently, Ai ,

ui and fi are the restrictions to the subdomain i of the system matrix, solution and right-hand

side. This problem can be written in terms of blocks, after permutation:

Ai =
[

D C

R G

]
, ui =

[
u1

u2

]
, fi =

[
f1

f2

]
. (3.13)

The blocks R, C and G are all stored as parallel matrices, with rows distributed across all the

processes associated with the problem. Each process will only store its own subblock of D , as

a serial matrix. ShyLU solves the problem by performing Algorithm 5.

Algorithm 5 does not solve (3.13) but provides an approximation. We intend to use ShyLU

as part of a preconditioner. The exact Schur complement is dense, while an approximation

can reduce the memory requirements of the algorithm. Steps 1, 2 and 6 of the algorithm are

embarassingly parallel, due to the block diagonal structure of D , while Steps 3, 4 and 5 involve

some communication between processes.

While it is beyond the scope of this work to cover the analysis of Schur complement precon-

ditioning methods, we refer the reader to the relevant literature [51], [27]. In the following

sections we will focus on implementation and performance issues.

1Factorize: D (NO COMM)
2Solve: Dz = f1 (NO COMM)

/* S̄ is an approximation of Schur complement */
3Compute: S̄ ≈G −RD−1C
4Solve: S̄u2 = f2 −Rz
5Compute: t = f1 −C u2

6Solve: Du1 = t (NO COMM)
7

Algorithm 5: The solution algorithm used by ShyLU. All the steps are performed in parallel.
Lines marked with NO COMM denote operations that are embarassingly parallel, i.e. no
communications is needed between processes.
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3.3.2 Implementation overview

ShyLU is designed to be configurable and modular and can use other components from Trili-

nos in various stages of its algorithm. This subsection seeks to describe the main configuration

options and parameters that ShyLU currently exposes to the user.

Solvers for diagonal blocks

Using efficient solvers for the diagonal blocks is of great importance, since they represent

the largest part of the subdomain matrix. The matrix partitioning, either done during the

ShyLU algorithm or resulting from the geometric mesh partitioning, aims at minimizing the

interfaces between partitions. In consequence, the diagonal blocks, which contain the interior

DOFs of each part, are maximized with respect to the entire matrix. Another consequence of

the block diagonal structure is that the linear systems

Di zi = fi , i = 1, .., NS (3.14)

and

Di u1i = (bi −C u2)i , i = 1, ..., NS , (3.15)

associated with the blocks can be solved independently by the processes involved.

A sparse direct solver such as UMFPACK is used here. This solver is usually serial, although an

MPI parallel solver such as MUMPS can also be used, in serial mode. As stated earlier, some

modifications were needed in Trilinos to allow this mode of operation. MUMPS was initially

operating only in parallel, using the MPI processes available for the entire simulation, without

the possibility to restrict it to a subset of processes. If there are extra cores available which

cannot be used for MPI, a multi-threaded direct solver such as PARDISO can be used. As with

MPI solvers, a multi-threaded solver can of course also be used in serial.

For the purpose of the benchmarks performed in this chapter, no multi-threaded strategy is

used in ShyLU or outside, focusing instead on the 2-level MPI parallelism. ShyLU also allows

that inexact factorizations be used for the diagonal blocks, although this configuration is not

examined in this work.

Approximation method for the Schur complement

The Schur complement matrix:

S =G −RD−1C (3.16)

is dense. ShyLU uses a sparse approximation, denoted S̄, to lower memory usage. ShyLU

provides two strategies to compute such an approximation. The first one involves computing
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S̄ as per (3.16), a small number of columns at a time, and dropping values from these columns

based on an imposed threshold. The second strategy is based on the interface probing

technique [92], i.e. imposing a sparsity pattern of the approximate Schur complement. The

chosen sparsity pattern is that of a banded matrix, with a bandwidth that is imposed by the

user. The approximation S̄ is improved by adding the structure of block G to the banded

structure [31]. Neither strategy involves explicitly computing the exact Schur complement

matrix, as only the sparse approximation S̄ is computed explicitly and stored as a parallel

sparse matrix.

As we see later on, choosing between the two methods and tuning the parameters of the

dropping and probing directly impacts the time to compute the preconditioner and time to

GMRES convergence.

Solvers for the approximate Schur complement system

Once the approximate Schur complement S̄ is available, the solution of the approximate Schur

complement system:

S̄u2 = f2 −Rz (3.17)

can be performed in different ways. It can be solved directly and an MPI parallel direct solver

such as MUMPS needs to be used, since the sparse approximation of the Schur complement S̄

is stored in parallel regardless of approximation strategy. The size of this system is minimized

by the partitioning. Using a serial direct solver is possible, but not advised, as it can become a

considerable bottleneck, due to the added communication cost introduced by gathering all

the rows of the system on a single process.

The second way to solve the system is with a parallel iterative solver, typically GMRES. Two

options are possible for stopping the iterative solver. A stopping tolerance can be imposed,

which could lead to a prohibitively large CPU time if the tolerance is too small. Alternatively,

the solver can be stopped after a fixed number of iterations. Setting this number too low leads

to an increase in the number of outer iterations. Figure 3.6 shows the convergence history of

the inner solver for different problem sizes, using 8 MPI processes. Due to the approximation

methods of the Schur complement, we can not rely on any convergence analysis results

available.

The benchmarks described in the last section of this chapter show that even a relatively low

number of inner iterations (less than 10) leads to only a small increase in the number of outer

iterations.
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Figure 3.6: Convergence history of inner iterations in ShyLU for three problem sizes, using 8
MPI processes

3.4 Benchmarks

This final section of the chapter contains a set of numerical tests which allow to evaluate the

effectiveness of the 2-level MPI parallelism for AAS and the ShyLU subdomain preconditioner.

ShyLU is first studied without AAS, as a global preconditioner for GMRES and it is compared

with the MUMPS MPI parallel direct solver, both of which can be used for the subdomain

problems. The last set of benchmarks compares ShyLU and MUMPS, when used in a 2-level

AAS preconditioner for different problems.

3.4.1 Node-level measurements

An initial set of tests is presented with the goal of determining a good configuration for ShyLU

and also comparing it in terms of performance to the exact parallel LU factorization provided

by MUMPS. For this set of tests, AAS is not used.

We discretize using P1 finite elements, on regular grids, a 3D Laplacian problem{−∆u1 = f1 in Ω⊂R3

u1 =ψ1 on ∂Ω
(3.18)

and a 3D advection-diffusion-reaction (ADR) problem{−∆u2 +β∇u2 +u2 = f2 in Ω⊂R3

u2 =ψ2 on ∂Ω,
(3.19)

where β : R3 → R3 is a constant advection field and the functions ψ1 and ψ2 used when

imposing the essential boundary conditions represent the exact solutions to the two problems.

We examine the results for different magnitudes of the advection field in the ADR problem.

In terms of scalability and performance, the benchmarks produced the same results in all
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cases and we only present one set of results, corresponding to β= (1,0,0). Three problem sizes

(50000, 100000 and 200000 DOFs) were considered for each problem type.

The tests are run on one node of the “Aries” cluster at EPFL, which contains 4 AMD Opteron

“Magny-Cours” processors, each with 12 CPU cores. The total amount of RAM available on

the node is 24 GB. We use up to 48 MPI processes, on a single node of a computer cluster,

starting from 1 in the case of MUMPS and starting from 2 for ShyLU, since running ShyLU on

1 processor does not invoke the Schur complement framework and represents just a serial LU

factorization.

In the case of ShyLU, GMRES is used as an iterative solver. The two strategies for approximating

the Schur complement are examined for ShyLU, and in the case of probing, two diagonal

bandwidths are compared. MUMPS is used inside ShyLU both for the diagonal blocks and for

the approximate Schur complement system.

First the factorization phase is measured, which in the case of MUMPS includes the symbolic

and numeric factorizations. In the case of ShyLU it involves factorizing the diagonal blocks

and computing the approximation of the Schur complement.

We also record the number of GMRES iterations required to converge, in the case of ShyLU. In

the case of MUMPS, due to an implementation detail, we are forced to used GMRES as the

global solver. MUMPS is applied as a preconditioner for GMRES and the iteration count in

this case is meaningless, as it is always equal to one.

The time per GMRES iteration is also recorded and finally a total time to solution, which

includes the time to compute the preconditioner and the time to GMRES convergence, is

recorded to give a general view of the effectiveness of both approaches.

Laplacian problems

In terms of computing the preconditioner (Figure 3.7), MUMPS comes ahead of ShyLU consis-

tently, although it is important to note that it demonstrates poorer scalability. Additionally we

see that the first two problems are too small to maintain scalability when using 48 processes.

The threshold dropping strategy is considerably slower than probing and lowering the diagonal

bandwidth in the case of probing also has a visible impact, making ShyLU approach MUMPS

in terms of CPU time.

The slower threshold dropping method has an advantage over the probing method in terms of

the number of GMRES iterations needed to converge (Figure 3.8), as the dropping produces a

better approximation of the exact Schur complement.

From the point of view of time to perform one GMRES iteration (Figure 3.9), which involves a

forward and a backward triangular solve for MUMPS and two solutions of the diagonal blocks

and the solution of the approximate Schur complement system for ShyLU, MUMPS is slower
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and less scalable than ShyLU. There is also no considerable difference between dropping and

probing. Given that in the case of multi AAS subdomains both for MUMPS and ShyLU GMRES

will require multiple iterations to converge, this could prove a signification benefit for ShyLU.

In terms of total time to solution (Figure 3.10) we see that ShyLU comes close to MUMPS, but

only when using probing to approximate the Schur complement and with an appropriately

small diagonal bandwidth factor.
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Figure 3.7: Time to compute the preconditioner - 3D Laplacian problems
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Figure 3.8: Number of GMRES iterations - 3D Laplacian problems
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Advection-diffusion-reaction problems

The results for the ADR problems are similar to the results for the Laplacian problems. The

same conclusions apply as ShyLU and MUMPS have the same relative and absolute perfor-

mance as in the previous set of tests.

For ShyLU, this means that the algorithm is a viable approach for both symmetric and asym-

metric problems and allows us to consider its use in more complicated problems.
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Figure 3.12: Number of GMRES iterations - 3D ADR problems
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3.4.2 Multi-node measurements

Performing the single node measurements previously discussed allowed us to identify the

most advantageous parameters for ShyLU. The benchmarks in this section build upon the

previous measurements with the goal of determining the performance of the 2-level AAS

preconditioning with parallel subdomain problems, using either ShyLU or MUMPS on the

subdomain problems.

Two supercomputers were used for this set of benchmarks:

1. Cray XE6 “Monte Rosa” - at the Swiss Centre for Scientific Computing (CSCS) in Lugano.

“Monte Rosa” is composed of 1496 compute nodes, each one equipped with 2 16-core

AMD Opteron “Interlagos” processors and 32 GB of RAM.

2. BlueGene/Q - “Lemanicus” - at the Center for Advanced Modeling Science (CADMOS),

hosted at EPFL. “Lemanicus” consists of 1024 nodes, each equipped with a 16-core

PowerA2 processor and 16 GB RAM. The PowerA2 processor is able to support up to 4

threads per CPU core (64 threads).

We study Laplacian and ADR problems on regular cubic grids, discretized by P2 finite elements.

For each problem type we consider two problem sizes: 500000 DOFs and 2 million DOFs. On

the BlueGene/Q, we were only able to solve the smaller of the two problems.

For each problem type and problem size, a variable number of MPI processes are used, ranging

from 16 to 512 in the case of the smaller problems and from 32 to 1024 in the case of the larger

problems.

The linear system is solved using GMRES preconditioned by a 2-level AAS preconditioner with

minimal overlap (as described at the beginning of this chapter). At the coarse level, 5 iterations

of Gauss-Seidel are applied. We consider three different setups for the subdomain solvers

used by AAS:

1. Serial subdomain problems solved exactly with an exact LU factorization

This setup is used as a reference point for the other two strategies. To use the notation

introduced in section 3.2, the number of processes per AAS subdomain is always NS = 1,

and the number of AAS subdomains is equal to the number of MPI processes (NDD =
NP ). On the Cray XE6 we use the PARDISO direct solver as a subdomain solver. PARDISO

is not available on the BlueGene/Q, where we use UMFPACK instead.

2. Parallel subdomain problems solved exactly with MUMPS In this setup the number

of AAS subdomains is kept constant at NDD = 32, while the number of processes per

subdomain is increased along with the total number of MPI processes in use (NS =
NP /NDD ). The MPI parallel direct solver MUMPS is used to solve exactly the subdomain

problems. MUMPS is unable to solve the largest problems in this configuration, crashing
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with internal errors and another MPI parallel direct solver is not available for use on

the benchmark machine. This setup is not tested on the BlueGene/Q due to software

stability issues related to the MUMPS solver on this machine.

3. Parallel subdomain problems solved inexactly with ShyLU This setup is similar to the

previous one. The number of AAS subdomains is fixed (we consider NDD = 16 and

NDD = 32 for the small problems and NDD = 32 and NDD = 64 for the large problems)

and the number of processes per subdomain is increased along with the total number

of MPI processes (NS = NP /NDD ). The subdomain problem is solved inexactly with

ShyLU. PARDISO, on the Cray XE6, and UMFPACK, on the BlueGene/Q, are used to solve

the diagonal block problems in ShyLU, while the Schur complement is approximated

using the probing technique, with the most favorable bandwidth factor (0.02) from the

previous set of measurement. The approximate Schur complement problem is solved

inexactly, using 5 iterations of GMRES using ILU as a preconditioner.

For each problem size a variable number of MPI processes is used, therefore this set of

benchmarks describes the strong scalability of the global solve strategy. Additionally, the serial

subdomain problems decrease in size when the number of MPI processes increases. The

parallel subdomain problems are made up of multiple serial problems and in this benchmark

the number of MPI processes per subdomain increases with the total number of MPI processes.

This results in both ShyLU and MUMPS also being strongly scaled for this experiment. Finally,

in the case of MUMPS and ShyLU, the total number of AAS subdomains is kept constant, while

growing the number of MPI processes. By examining the number of iterations in the linear

solver we get an idea about the preconditioner scalability metric of this configuration of AAS.

In each case, we measure the time to compute the preconditioners, the number of itera-

tions performed by the GMRES solver and the time to GMRES convergence. Using these

measurements, we compute two additional values: the average time per GMRES iteration,

proportional to the time to perform one application of the preconditioner and the total time to

solution as the sum between the time to compute the preconditioner and the time to GMRES

convergence.

Laplacian problems

The measurements of the time to compute the preconditioners (Figure 3.15) show that using

parallel subdomain problems leads to a longer time to compute the preconditioner than

using serial subdomain problems. However, ShyLU again demonstrates better scalability than

MUMPS. When the size of the serial subdomain problems becomes small enough, starting

with 256 MPI processes for the small problem and 512 processes for the large one, the time

to compute the AAS preconditioner configured with serial subdomain problems starts to

increase. Due to the larger parallel subdomain problems, ShyLU does not lose scalability at

this process count and actually takes an equal time to compute as when using an exact LU

solver on the serial subdomain problems.
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Figure 3.15: Time to compute the preconditioner - 3D Laplacian problems

When using parallel subdomain problems, the number of GMRES iterations to convergence

is better kept under control (Figure 3.16). Due to the approximations performed during the

Schur complement algorithm, we see that in the case of ShyLU the iteration creep is more

pronounced than in the case of MUMPS.

Measuring the time to GMRES convergence we see that AAS with ShyLU and AAS with serial

subdomains have more or less the same scalability, although ShyLU is consistently slower.

While AAS with MUMPS starts out faster than AAS with ShyLU when NS is low, the poor

scalability demonstrated by MUMPS leads to ShyLU being equally fast as MUMPS at NS = 16.

The measurement of the time per GMRES iteration (Figure 3.18) shows the same trends as in

the measurements of the time to GMRES convergence.

Overall, using AAS with parallel subdomain problems and ShyLU could be beneficial at a high

process count where the size of the serial subdomain problems is too small for the standard

AAS preconditioner to be effective. The AAS / ShyLU approach still achieves strong scalability

in this situation (Figure 3.19).

54



3.4. Benchmarks

 24

 26

 28

 30

 32

 34

 16  32  64  128  256  512

N
u
m

b
e
r 

o
f 

G
M

R
E
S
 i
te

ra
ti

o
n
s

Number of MPI processes

AAS w/ PARDISO (NS = 1)
AAS w/ MUMPS (NDD = 32)

AAS w/ ShyLU (NDD = 16)
AAS w/ ShyLU (NDD = 32)

(a) 500k DOF - Cray XE6

 24

 26

 28

 30

 32

 34

 36

 38

 40

 16  32  64  128  256  512

N
u
m

b
e
r 

o
f 

G
M

R
E
S
 i
te

ra
ti

o
n
s

Number of MPI processes

AAS w/ UMFPACK (NS = 1)
AAS w/ ShyLU (NDD = 16)

AAS w/ ShyLU (NDD = 32)

(b) 500k DOF - BlueGene/Q

 30

 32

 34

 36

 38

 40

 42

 44

 32  64  128  256  512  1024

N
u
m

b
e
r 

o
f 

G
M

R
E
S
 i
te

ra
ti

o
n
s

Number of MPI processes

AAS w/ PARDISO (NS = 1)
AAS w/ ShyLU (NDD = 32)

AAS w/ ShyLU (NDD = 64)

(c) 2M DOF - Cray XE6

Figure 3.16: Number of GMRES iterations - 3D Laplacian problems
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Figure 3.17: Time to GMRES convergence - 3D Laplacian problems

55



Chapter 3. A domain decomposition preconditioner based on two-level MPI parallelism

 0.00390625

 0.0078125

 0.015625

 0.03125

 0.0625

 0.125

 0.25

 0.5

 1

 16  32  64  128  256  512

Ti
m

e
 [

s]

Number of MPI processes

AAS w/ PARDISO (NS = 1)
AAS w/ MUMPS (NDD = 32)

AAS w/ ShyLU (NDD = 16)
AAS w/ ShyLU (NDD = 32)

(a) 500k DOF - Cray XE6

 0.03125

 0.0625

 0.125

 0.25

 0.5

 1

 2

 4

 8

 16  32  64  128  256  512

Ti
m

e
 [

s]

Number of MPI processes

AAS w/ UMFPACK (NS = 1)
AAS w/ ShyLU (NDD = 16)

AAS w/ ShyLU (NDD = 32)

(b) 500k DOF - BlueGene/Q

 0.0078125

 0.015625

 0.03125

 0.0625

 0.125

 0.25

 0.5

 1

 2

 32  64  128  256  512  1024

Ti
m

e
 [

s]

Number of MPI processes

AAS w/ PARDISO (NS = 1)
AAS w/ ShyLU (NDD = 32)

AAS w/ ShyLU (NDD = 64)

(c) 2M DOF - Cray XE6

Figure 3.18: Time per GMRES iteration - 3D Laplacian problems
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Figure 3.19: Total time to solution - 3D Laplacian problems
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Advection-diffusion-reaction problems

As in the case of the single node measurements, the graphs for the ADR problems are nearly

identical to the Laplacian case. ShyLU has the same behaviour and performance in both the

symmetric Laplacian case and in the unsymmetric ADR case.
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Figure 3.20: Time to compute the preconditioner - 3D ADR problems
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Figure 3.21: Number of GMRES iterations - 3D ADR problems
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Figure 3.22: Time to GMRES convergence - 3D ADR problems
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Figure 3.23: Time per GMRES iteration - 3D ADR problems
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Figure 3.24: Total time to solution - 3D ADR problems
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3.5 Closing remarks

In this chapter we have introduced a new strategy to construct the AAS preconditioner, based

on parallel subdomain problems and two levels of MPI parallelism. This was done in an

attempt to improve the strong scalability of the default AAS preconditioner, which is based on

serial subdomain problems.

The parallel subdomain problems are stored as distributed sparse matrices and can be solved

with an MPI parallel solver. We have examined two different subdomain solvers for use in the

new AAS preconditioner framework. The first is an exact parallel LU factorization, as imple-

mented in MUMPS. The second is ShyLU, an inexact solver based on a Schur complement

strategy.

The AAS preconditioner with parallel subdomain problems was benchmarked and compared

to AAS with serial subdomain problems. We have seen that ShyLU has better strong scalability

than MUMPS and is able to solve larger subdomain problems. Although it involves an inexact

solve of the subdomain problems, using AAS with ShyLU leads to a lower rise in the number of

GMRES iterations when increasing the number of MPI processes, than in the case of AAS with

serial subdomains problems.

The performance of the novel approach, in terms of CPU time, is not competitive, however.

The time needed to compute the preconditioners and the time to GMRES convergence, in the

case of parallel subdomain problems solved with MUMPS or ShyLU, are consistently larger

than with serial subdomain problems. The overhead introduced by the 2-level MPI parallelism

can not be compensated by the increased strong scalability of a subdomain solver like ShyLU.
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4 A preconditioner based on an incom-
plete QR factorization

4.1 Introduction

In this chapter we follow up on the results and benchmarks presented in Chapter 3. The ShyLU

preconditioner was shown to have good strong scalability, although it was generally slower

than the two-level AAS preconditioner with serial subdomain problems. We seek to improve

the performance of ShyLU by eliminating or ameliorating its main performance hotspots. In

this context, we introduce a novel preconditioner based on an incomplete QR factorization

and we evaluate its performance when used in conjuction with ShyLU.

4.2 Rationale

Understanding what are the main performance limitations of ShyLU requires a breakdown of

the total runtime of the ShyLU preconditioner, by measuring each step in Algorithm 5. We set

up a strong scalability test, which involves a 3D Laplacian problem, discretized with P1 finite

elements. We have considered three problem sizes: 23000, 45000 and 90000 DOFs. The linear

system is solved with GMRES, preconditioned with ShyLU. The AAS domain-decomposition

preconditioner is not used during this test and 2, 4 or 8 MPI processes are used for ShyLU.

Keeping with the notation introduced in the previous chapter, we have in this case: NP = 2,4,8,

NS = NP , NDD = 1. The sparse approximation of the Schur complement is computed using

the probing method, which was proven to be faster than the threshold dropping method. We

examine two different configurations for the treatment of the approximate Schur complement

system

S̄x2 = b2 −Rz. (4.1)

In the first configuration, ShyLU solves this system exactly with an LU factorization, using

the MPI parallel direct solver MUMPS. In the second one, ShyLU solves the system inexactly,

with 5 iterations of the Generalized Minimum Residual Method (GMRES) using ILU as a

preconditioner.
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NS 2 4 8
C Build blocks D , R, C , G 1.89% 2.98% 2.82%
C Symbolic factorization of D 5.04% 5.12% 2.99%
C Numeric factorization of D 16.9% 11.53% 5.22%
C Compute approximate S̄ 71.16% 61.64% 44.41%
C Symbolic and numeric factorization of S̄ 4.10% 17.69% 43.66%
S Solve Dz = b1 0.43% 0.39% 0.27%
S Solve S̄x2 = b2 −Rz 0.05% 0.21% 0.36%
S Solve Dx1 = b1 −Cx2 0.43% 0.44% 0.27%

Table 4.1: Breakdown of ShyLU runtime. All values represent percentages of the total ShyLU
runtime (compute P−1

ShyLU and apply P−1
ShyLU . The approximate Schur complement system is

solved exactly with MUMPS. Values in bold are related to the approximate Schur complement
S̄. The algorithmic step is listed in the first column: C - computation of P−1

ShyLU , S - solution of

P−1
ShyLU .

NS 2 4 8
C Build blocks D , R, C , G 1.89% 2.98% 2.82%
C Symbolic factorization of D 5.04% 5.12% 2.99%
C Numeric factorization of D 16.9% 11.53% 5.22%
C Compute approximate S̄ 71.73% 70.94% 74.22%
C Compute ILU preconditioner for S̄ 0.10% 0.14% 0.34%
S Solve Dz = b1 0.43% 0.39% 0.27%
S Solve S̄x2 = b2 −Rz 3.28% 5.37% 6.10%
S Solve Dx1 = b1 −Cx2 0.43% 0.44% 0.27%

Table 4.2: Breakdown of ShyLU runtime. All values represent percentages of the total ShyLU
runtime (compute P−1

ShyLU and apply P−1
ShyLU . The approximate Schur complement system

is solved inexactly with GMRES subiterations. Values in bold are related to the approximate
Schur complement S̄. The algorithmic step is listed in the first column: C - computation of
P−1

ShyLU , S - solution of P−1
ShyLU .

The operations measured belong either to the computation or the solution steps of the al-

gorithm. The computation step involves setting up all the data structures, the symbolic and

numeric factorizations of the diagonal blocks in matrix D, as well as the computation of a

sparse approximation of the Schur complement S. The final operation involved in the compu-

tation step depends on the solution strategy chosen for the approximate Schur complement

system. If a direct solver is used, then during the computation step the symbolic and nu-

meric factorization of the approximate Schur complement S̄ is also performed. If GMRES

subiterations are used, then the preconditioner (here ILU) is computed.

The computation step takes place before the solution phase of the global linear system of

equations and is performed once per time step, in a time dependent simulation, if the pre-

conditioner is not reused for multi time steps. It should be noted that ShyLU reuses, when

possible, internal data structures such as the symbolic factorizations. The implementation
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of the preconditioner for the iterative solver of the global linear system in LifeV does not

make use of this, however. A preconditioner can be reused, without any update, for multiple

time steps, but if it is not reused, then it is completely reinitialized and all the intermediate

computations are performed again.

The solution step takes place at each iteration of the global iterative linear solver and it

represents the application of the inverse of the preconditioner. In the case of ShyLU, it involves

the resolution of three linear systems of equations:

Dz = b1,

S̄x2 = b2 −Rz,

Dx1 = b1 −Cx2.

(4.2)

Tables 4.1 and 4.2 contain the measurements for the two configurations of ShyLU which we

examined. The breakdown of the total runtime of ShyLU is similar for all three problem sizes,

consequently we only present the case of 45000 DOFs. We see that most of the runtime is

spent computing the approximate Schur complement:

S̄ ≈G −RD−1C . (4.3)

When using an exact direct solver for the Schur complement system, an equal amount of

time is additionally spent factorizing S̄. We conclude that a faster means of computing this

approximation would greatly benefit the overall performance of the ShyLU preconditioner.

4.3 The incomplete QR factorization

In this section, we propose an alternative for the computation of the approximate Schur

complement and the inexact solution of the associated linear system of equations. The

strategy is based on an incomplete QR factorization which is obtained using a customized

implementation of a GMRES iterative solver. Although we intend to use the incomplete QR

factorization for the approximate Schur complement linear system, the method is general and

can also be used for linear systems associated with other types of problems. We begin with an

overview of the GMRES method, before describing the incomplete QR factorization algorithm.

4.3.1 The Generalized Minimum Residual Method

The Generalized Minimum Residual Method (GMRES) [93] [35] is an iterative method for

solving linear system of equations, part of the family of Krylov subspace projection methods.

Let us consider the linear problem:

find x ∈Rm : Ax = b, A ∈Rm×m , b ∈Rm . (4.4)

63



Chapter 4. A preconditioner based on an incomplete QR factorization

After n iterations of GMRES, the approximate solution xn is sought in the n-th Krylov subspace:

Kn = span
{

r0, Ar0, A2r0, ...An−1r0
}⊂Rm , (4.5)

where r0 = b− Ax0 is the residual corresponding to the initial guess x0 of the solution. The

approximate solution xn ∈ Kn produced by GMRES is one that minimizes the residual ||Axn −
b||.

Each GMRES iteration involves an Arnoldi iteration, which produces an orthogonal basis

v1,v2, ...vn of the current Krylov space. The vectors of the basis are stored as columns in the

matrix Vn ∈Rm×n . Additionally, through the Arnoldi iterations we obtain an upper Hessenberg

matrix H̄n ∈R(n+1)×n with the property:

AVn =Vn+1H̄n . (4.6)

Given that xn =Vnyn, yn ∈Rn and that the matrix Vn is orthogonal, the following holds:

||Axn −b|| = ||H̄nyn −βe1||, (4.7)

where β = r0/||r0|| and e1 = (1,0,0, ...0) is the first vector of the cannonical basis of Rn+1.

Indeed, r0 =βv1 by construction of the Krylov basis.

Computing the approximate solution xn after n GMRES iterations is a two step process. First,

find yn that minimizes ||H̄ny−βe1||, which involves solving a linear least squares problem of

size n, with n usually much smaller than the original problem size m. Finally, compute the

solution as: xn =Vnyn.

Solving the linear least squares problem

The linear least squares problem

yn = argmin
y∈Rn

||H̄ny−βe1|| (4.8)

is solved using a QR factorization of the Hessenberg matrix H̄n . The orthogonal matrix
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Qn ∈R(n+1)×(n+1) can be computed as the product of a series of matrices

Ωi =



1
. . .

1

ci si

−si ci

1
. . .

1


, i = 1, ..,n, Ωi ∈R(n+1)×(n+1), (4.9)

with c2
i +s2

i = 1. The coefficients (ci , si ) are on row i , while (−si , ci ) are on row i+1. Each matrix

Ωi represents a Givens rotation that eliminates the coefficient hi+1,i of the Hessenberg matrix.

In practice, the individual matricesΩi need not be stored explicitly, as only the sequence of

coefficients ci and si needs to be known to compute the action of Qn . Multiplying Qn with H̄n

will yield an upper triangular matrix R̄n ∈R(n+1)×n :

R̄n =Qn H̄n =Ω1Ω2...Ωn H̄n , (4.10)

with zeroes on the last row:

R̄n =
(

Rn

0

)
. (4.11)

Since Qn is orthogonal, the linear least squares problem becomes:

yn = argmin
y∈Rn

||H̄ny−βe1|| = ||QT
n R̄ny−βe1|| = ||R̄ny− ḡn||, (4.12)

where ḡn =Qnβe1 ∈Rn+1. The last row of the matrix R̄n and right hand side ḡn are eliminated,

formally Rn = ΠnR̄n and gn = Πn ḡn, where Πn is the natural projection from Rn+1 to Rn .

Solving the following upper triangular system using backward substitution:

Rnyn = gn, (4.13)

we obtain the solution yn of the original linear least squares problem and the approximation

xn ∈Rm is computed as xn =Vnyn.

4.3.2 The incomplete QR factorization as a preconditioner

The incomplete QR (IQR) factorization preconditioner is based on the idea of using the iterates

constructed during a GMRES solution process as a preconditioner to solve another linear

system, originally described in [94] and further developed here. We consider two linear
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systems:

A1z1 = g1,

A2z2 = g2,
(4.14)

where A1, A2 ∈Rm×m , z1,z2,g1,g2 ∈Rm and A1 and A2 have similar spectral properties. An

example of such a situation is inverting the Jacobian in a nonlinear solver.

Solving the first linear system, exactly or inexactly, using n iterations of GMRES, we obtain

matrix Vn , with columns which form an orthogonal basis of the Krylov subspace Kn , and the

matrices Qn and Rn which represent the QR factorization of the Hessenberg matrix constructed

by GMRES and of the restriction of A1 on Kn :

A1|Kn : Kn → Im(A1|Kn) ⊂ Kn+1 ⊂Rm (4.15)

Once the first linear system is solved, we wish to reuse these components to define a pre-

conditioner for A2. The right hand side g2 of the second linear system is first projected on

Im(A1|Kn), which is noted asΠIm(A1|Kn )g2. Then ḡn ∈Rn+1 is defined by

Vn+1QT
n ḡn =ΠIm(A1|Kn )g2, (4.16)

i.e., ḡn =QN V T
n+1g2. Solving Rnyn = gn for gn =Πḡn and setting zn =Vnyn yields

(A1|Kn)−1ΠIm(A1|Kn )g2.

An additional term is added to make the preconditioner non-singular:

1

λ
(g2 −ΠIm(A1|Kn )g2), (4.17)

where λ is a scalar to be chosen.

The full expression of the preconditioner reads:

P−1 = (A1|Kn)−1ΠIm(A1|Kn ) + 1

λ
(Id−ΠIm(A1|Kn )). (4.18)

In algebraic form this reads

P−1 =VnR−1
n ΠnQnV T

n+1 +
1

λ
(1n −Vn+1V T

n+1 +Vn+1QT
n (1n+1 − Π̄n)QnV T

n+1), (4.19)

where Π̄n is the projection which sets the last coordinate to zero and 1n and 1n+1 are the

identity matrices in Rn and Rn+1 respectively. Note that Vn+1V T
n+1 represents the projection on

Kn+1 and the last part is the complement of the orthogonal projection from Kn+1 to Im(A1|Kn).

Algorithm 6 details the steps to apply the preconditioner to a vector b.

The preconditioner represents an incomplete QR factorization (IQR) of the system matrix of
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the first linear system. In the limit case that the size of the Krylov subspace n is equal to the

problem size m, i.e. GMRES solves the first system to absolute precision, the preconditioner

becomes a full QR factorization of A1. In [94] it is shown that the IQR is non-singular.

4.4 Using IQR within ShyLU

The IQR as preconditioner is not limited in use to sequences of similar linear systems. In this

section we describe its use within the ShyLU preconditioner, as a cheaper alternative to the

existing resolution strategies for the Schur complement system.

Unlike the threshold dropping strategy and the probing strategy for computing S̄, the IQR

preconditioner has the advantage of being a matrix free method. No explicit computation of

an approximation of the Schur complement S is required, as only its action on a vector needs

to be computed. In ShyLU, S is implemented as an opaque operator object, which implements

an "Apply" method (i.e. x = Sy), and this object can be used without any modification for IQR.

The existing implementations of the GMRES method in Trilinos do not offer the possibility

of preserving the state of the solver after resolution and using the generated Vn , Qn and Rn

matrices in the manner described in the previous section. We have implemented a custom

version of GMRES with a persistent state manager, which we use to compute and apply the

IQR preconditioner. The new version is parallel, using MPI, and is compatible with the Trilinos

parallel matrix and vector classes.

We describe now the specific steps of using IQR inside ShyLU. The ShyLU computation step is

freed of the computation of S̄ and only the opaque operator object for S is constructed in this

phase. This considerably reduces the CPU time for computing the global preconditioner.

The IQR preconditioner (noted P−1
IQR ) is computed in the solution step of ShyLU, when the

ShyLU preconditioner is applied to a vector during the first outer GMRES iteration. During

this first iteration, the GMRES solver embedded in P−1
IQR executes a prescribed number n

of iterations and stores the Vn , Qn and Rn matrices needed during the next outer GMRES

iterations. The number of inner iterations n, which represents the size of the Krylov subspace

1Compute: bp =V T
n+1b

2Update: x = x−Vn+1bp

3Update: bp =QT
n bp

4Compute: bq =QT
n (1n+1 − Π̄n)bp =QT

n (0,0,0, ...bp(n +1))T

5Update: x = 1
λ (x+Vn+1bq)

6Solve: Rnyn =Πnbp

7Return: x = x+Vnyn

8

Algorithm 6: The application of the IQR preconditioner to a vector b. Vn , Qn , Rn are obtained
after the GMRES iterations on the first linear system.
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Kn and the size of the Qn and Rn matrices, is imposed as a percentage of the size of the Schur

complement matrix. During all the subsequent outer GMRES iterations, the steps outlined in

Algorithm 6 are performed.

We provide two different ways to apply P−1
IQR :

1. Use it as a preconditioner for one or more GMRES inner iterations.

2. Use it as a matrix free approximation of the inverse of the Schur complement matrix in

(3.17), i.e.

S̄u2 = f2 −Rz, (4.20)

is replaced by

PIQR u2 ≈ f2 −Rz. (4.21)

In this case, for the outer GMRES solver to converge, we experienced that the λ scaling

parameter of IQR needs to be set to 1 (no scaling).

We have examined both scenarios and we have observed that there is no benefit to using

P−1
IQR as a preconditioner for inner iterations. Although it leads to a slightly lower number of

outer GMRES iterations than when using it as an inexact solver, in both cases we observe the

same increase in the number of outer GMRES iteration with the number of MPI processes.

Additionally, the CPU time per (outer) GMRES iteration and the total time to (outer) GMRES

convergence is larger in the former case. Unless it is explicitly stated otherwise, it should be

assumed that IQR is used as an inexact solver in ShyLU in all benchmarks in this thesis.

4.4.1 Numerical benchmarks and discussion

To evaluate the performance of IQR we perform the tests described in Section 3.4.2 To sum-

marize, the tests are Laplacian and (advection-diffusion-reaction) ADR problems (see (3.18)

and (3.19)), discretized with P2 finite elements. Two problem sizes are considered: 500000

and 2 million DOFs. Strong scalability measurements are done varying the number of MPI

processes Np . The number of AAS subdomains is kept constant (NDD = 16 and NDD = 32, for

the smaller problems and NDD = 32 and NDD = 64, for the larger problems), increasing the

number of processes per subdomain NS = NP /NDD .

The linear system of equations is solved with GMRES preconditioned with 2-level AAS precon-

ditioner with minimal overlap. The coarse problem is solved inexactly with 5 Gauss-Seidel

iterations. At the fine level, the parallel AAS subdomain problems are solved inexactly with

ShyLU, using IQR for the Schur complement system (3.17), as described in (4.21). For the

diagonal block solvers, PARDISO is used.
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NP

NDD = 16 NDD = 32

Dimension of 
Krylov subspace

Size of Schur
complement

Dimension of 
Krylov subspace

Size of Schur
complement

32 15 3123

64 30 6037 8 1705

128 49 990 18 3770

256 71 14356 30 6090

512 43 8774

(a) 500000 DOFs

NP

NDD = 32 NDD = 64

Dimension of 
Krylov subspace

Size of Schur
complement

Dimension of 
Krylov subspace

Size of Schur
complement

64 21 4337

128 48 9736 14 2820

256 79 15871 30 6009

512 115 23057 48 9750

1024 74 14815

(b) 2 million DOFs

Table 4.3: Dimension of the IQR Krylov subspaces (0.5% of the size of Schur complement
matrix) used for the benchmarks. Values represent the average over all the AAS subdomains.

For the IQR factorization, we have considered Krylov subspaces of different dimensions; in the

configuration of ShyLU we prescribed the dimension of the Krylov subspace as a percentage

of the size of the ShyLU Schur complement matrix S: 0.5%, 1%, 10%, 20%. We observed that

using a size larger than 1% is not beneficial, the total CPU time increases without a reduction

in outer GMRES iterations. We also reduced even further the dimension of the Krylov subspace

but in that situation the number of outer iterations was too large. Additionally, since the

results for 1% and 0.5% Krylov subspace sizes are very close to each other, we only plot the

measurements for the smallest of the two, to keep the figures readable. Table 4.3 shows the

dimension of the Krylov subspaces and sizes of the corresponding ShyLU Schur complement

matrices for this case.

The preconditioner behaved equivalently for the Laplacian and the ADR problems, conse-

quently we only present the results for the ADR problems.

We compare the ShyLU/IQR preconditioner with the best configuration from the previous

tests, 2-level AAS with PARDISO, NS = 1 and with the previous ShyLU configuration.

Figure 4.1 shows the time spent in the computation phase of the ShyLU preconditioner.

This time is greatly decreased in all cases, using IQR. This is to be expected, since the IQR

preconditioner isn’t actually computed until the first outer GMRES iteration. In the case of IQR,

the time reported in this figure accounts for the time to construct the operator object for the

Schur complement matrix S and the time to perform the symbolic and numeric factorization

of the diagonal blocks Di . The size of each serial subdomain problem in the references case
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Figure 4.1: Time to compute the preconditioner - 3D ADR problems

(AAS with PARDISO, NS = 1) is approximately the same as the size of each diagonal block

Di in ShyLU, due to the mesh partitioning algorithm which will minimize the size of the

interface between mesh parts. In this case, computing the ShyLU preconditioner always

involves some extra amount of computation work compared to the reference case, due to the

added operations involving the Schur complement. The time to compute the preconditioner

can be considered a lower bound for the time to compute ShyLU.

We see that the number of outer GMRES iterations (Figure 4.2), is considerably larger in

the case of ShyLU with IQR. The rate of increase of the iterations with the number of MPI

processes seems to be similar, though, to ShyLU with a probing method and to AAS with serial

subdomain problems solved exactly with an LU factorization.

The total time to GMRES convergence (Figure 4.3), while higher than the AAS/PARDISO

reference case, is lower than for ShyLU with a probing approximation of S̄. It should be noted

that this time also involves the computation of the IQR preconditioner at the first outer GMRES

iteration. At a high MPI process count, globally (NP = 1024) and per subdomain (NS = 16), the

two configurations of ShyLU achieve the same time to GMRES convergence. Although the

configuration of ShyLU with the IQR preconditioner leads to a much larger number of outer

GMRES iterations, the fact that the time per GMRES iteration (Figure 4.4) is always lower than

the case of ShyLU with probing, leads to the improved time to GMRES convergence.
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Figure 4.2: Number of GMRES iterations - 3D ADR problems

The same remark applies as for the time to compute the preconditioner. AAS with ShyLU

always involves more computation work at each outer GMRES iteration than AAS with serial

PARDISO. The time per GMRES iteration for ShyLU will never be lower than in the reference

configuration.

Overall, the IQR configuration of ShyLU is on average twice as fast as the previous configuration

using a sparse approximation of the Schur complement. We do not observe any reduced

reliability, as both configurations of ShyLU have been able to solve all the test cases with all

combinations of global and per-subdomain MPI processes.

4.5 Conclusions

In this chapter we have described the algorithm of the incomplete QR factorization precondi-

tioner. A parallel implementation of this preconditioner, which we developed in the Trilinos

libraries is used as an alternative inexact solution strategy for the Schur complement system

in the ShyLU preconditioner. The new implementation was benchmarked and it proved to be

an overall improvement over the pre-existing configuration options of ShyLU. The approach

based on ShyLU and IQR, although still generally slower than an AAS preconditioner with

serial subdomain problems solved with LU factorizations, is on average twice as fast as the

fastest configuration of ShyLU identified in the previous chapter. Given the generally good
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Figure 4.3: Time to GMRES convergence - 3D ADR problems

performance of IQR in these benchmarks, we evaluate it further in Chapter 7, as a component

within a larger preconditioner framework for Navier-Stokes problems.
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Figure 4.4: Time per GMRES iteration - 3D ADR problems
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5 Preprocessing requirements

5.1 Introduction

In this chapter some aspects related to preprocessing are discussed. It begins with an overview

of the mesh partitioning process, as it was also implemented in LifeV at the time when this

thesis began, and describes the limitations of this approach. Then, there is a discussion

of alternate mesh partitioning techniques which alleviate the problems listed in the second

section of the chapter. The final section describes an implementation of efficient mesh loading

for parallel simulations.

5.2 Runtime mesh partitioning

During a typical finite element simulation performed with LifeV, there exist two ways to obtain

the initial computational mesh of the problem domain. The first one is to generate the mesh

procedurally at runtime. The second one is to load the mesh, which has been generated by a

different software, from disk, at the beginning of the simulation. The former is appropriate for

structured meshes of simple geometries, while for complicated geometries or unstructured

meshes it is necessary to resort to the latter.

Each MPI process in a parallel simulation opens the mesh file and builds the mesh object

which contains the lists of all the mesh elements, faces, edges and vertices in the global

mesh. The mesh object for the global mesh is not a parallel data structure, it is identical on

each process. These lists are used to construct the dual graph of the mesh, which describes

the connectivity of the mesh elements. Figure 5.1 depicts the dual graph associated with a

structured triangular mesh of a square domain.

Mesh partitioning is performed with a graph partitioning library, such as ParMETIS or Zoltan

[95], which operates on the dual graph of the mesh. The objective of the graph partitioning

is to cut the dual graph into a given number of subgraphs, here equal to the number of MPI

processes, while ensuring that the subgraphs are balanced in size and that the number of edge
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Figure 5.1: The dual graph associated with a structured triangular mesh of a square domain.
The nodes of the dual graph correspond to the elements of the mesh and there is an edge
between two graph nodes if the mesh elements associated with the graph nodes have a
common face.
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Figure 5.2: The partition of the dual graph associated with a structured triangular mesh of
a square domain. The dotted line represents the cut through the dual graph. Blue elements
belong to process 0, while green ones belong to process 1.

cuts is minimized. As a result, the interface between the mesh parts (i.e. the set of element

faces that the mesh parts share) produced by the partitioning is minimized. In a parallel

setting, this leads to a minimal amount of communication between processes. The graph

partitioning process is parallel and each process is responsible of a portion of the graph. The

processes receive an initial list of elements that make up their subgraph, choice of elements

which is arbitrary, and at the end of the process receives the final list of elements in their mesh

part. The partitioning of the dual graph associated to a given mesh is illustrated in Figure

5.2. Of course, the final partitioning is not univocal, as different software, or even different

implementations, may produce a different partitioning.

With the final list of local elements computed, each process is able to build its own lists of the

elements, faces, edges and vertices contained in its mesh part. All the entities are renumbered

locally in this new object. At the end of this step, the mesh object corresponding to the original

unpartitioned mesh is no longer needed and is discarded, freeing up memory.
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Figure 5.3: The contents of the unique and repeated maps in the case of a mesh partition
between two processes. Blue elements belong to process 0, while green ones belong to process
1. Process 0 receives ownership of the DOFs on the partition interface.

5.2.1 Building the DOF maps

Following the mesh partition process, it is necessary to construct the set of degrees of freedom

(DOFs) that make up our discrete problem, according to the choice of finite element space.

This step can be done in parallel by each process, on its own mesh part. Both the mesh entities

and the DOFs in the local mesh part are identified according to a local numbering scheme.

Thus it is necessary to associate the local numbering of the DOFs on each process with a global

numbering on the whole problem. This part requires communication between processes and

results in two different local-to-global maps for the DOFs, which serve two different purposes

in the course of a simulation.

The first map, called unique map, contains the DOFs that are owned by the process. For DOFs

which reside on the interface between two or more mesh parts, assigning them to a process is

a matter of convention. In LifeV, they are assigned to the process with the lowest MPI rank.

The second one, which we call repeated map keeps track of these DOFs on all processes which

share this interface, in addition to the unique DOFs. For a simplified example describing the

contents of the two types of DOF maps, see Figure 5.3.

The unique map is used when there aren’t multiple processes updating the same matrix or

vector rows, e.g. during the resolution of the linear problem. The repeated map is needed for

finite element assembly operations of matrices and vectors. In this context, there are cases

when matrix coefficients are computed on a different process than the one which owns the

row of the matrix. In the example given in Figure 5.3, process 0 owns the rows 0, 4 and 8 of

the system matrix. The matrix coefficients a(0,3), a(4,3), a(4,7) and a(8,7) are computed by

process 1 and communicated to the owner process at the end of the assembly procedure. The

repeated map is also used when dealing with nonlinearities. For example, when looping on an

element to compute the local matrix entries of the convective term, it is necessary to access

the values of the velocity in all the element’s DOFs. It can happen that the unique map does

not provide them and they are retrieved using the repeated map. The volume of each mesh

part decreases much faster than the surface of the interfaces between mesh parts, when the

number of parts is increasing. At high process counts, the cost in terms of CPU time of the

communication associated with the interface DOFs is no longer negligible compared to the
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Figure 5.4: Mesh partitioning with overlap. The elements in the overlap region are in yellow.
Process 0, owner of the DOFs on the interface, receives the elements in the overlap region to
complete the support of the basis functions associated with the interface DOFs. Process 1
does not require additional elements.

cost of the computations involved in the assembly of the linear system.

5.2.2 Overlap support for partitioning

An alternative approach, which removes the communication cost during the finite element

assembly, is to partition the mesh with an overlap (see Figure 5.4). This way, on each process,

all the tetrahedra which represent the support of the basis functions associated with the DOFs

in the unique map are locally available.

Elements in the overlap region are added to the processes which have the interface DOFs in

their unique maps. An additional map of DOFs, called ghost map in LifeV, is constructed on

each process with the new DOFs from the overlap region. In Figure 5.4, process 1 does not

need ghost elements, while process 0 has elements 1, 4 and 7 as ghosts. Figure 5.5 describes

the contents of the DOFs in a simple mesh partitioning case with overlap.

In the end, the ghost map is merged into the repeated map. The matrix and vector coefficients

associated with interface DOFs are now entirely computed with local DOF information from

the unique and repeated maps, without any MPI communication.

5.2.3 Limitation of runtime partitioning

The main bottleneck in the mesh partitioning step is the memory consumption, which is

due to the loading of the original unpartitioned mesh on each process. When using a small

mesh with not too many elements, the extra memory usage is negligible. Large meshes need

usually a large number of MPI processes, however, the memory requirements of the complete

mesh may become too limiting. The current trend in supercomputer design is to increase the
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0 1 2

3 4 5

6 7 8

Process 0

Process 1

Process 0 Process 1

Unique map: 0, 1, 2, 4, 5, 8 3, 6, 7

Repeated map: 0, 1, 2, 4, 5, 8 0, 3, 4, 6, 7, 8

Ghost map: 3, 7 0, 4, 8

Figure 5.5: The contents of the unique, repeated and ghost maps in the case of a mesh partition
with overlap between two processes. DOFs 0, 4 and 8, on the partition interface, belong to
process 0. This process requires DOFs 3 and 7 to complete the support of the basis functions
on the interface. Process 1 requires DOFs 0, 4 and 8 to complete the support of basis functions
associated with DOFs 3 and 7. At the end, the ghost maps are merged into the repeated maps.

number of processor cores available on each node. In contrast, the total memory available

per node is increasing at a much slower rate. This leads to a situation where the available

memory per processor core and, in an MPI setting, per process, is decreasing. The inefficient

memory usage in the mesh partitioning greatly limits the maximum size of simulations that

can be performed on supercomputers. The overlapping mesh partitioning removes the MPI

communication costs from the FE assembly phase, but it does not improve the memory usage.

5.3 Alternate mesh partitioning techniques

This section describes two mesh partitioning techniques developed for LifeV, in the course of

this thesis. The first one improves the memory usage for large simulations, while the second

strategy is strictly tied to the use of the ShyLU subdomain preconditioner, which was described

in the previous chapter. The two techniques are not mutually exclusive and can be combined

when needed.

5.3.1 Offline partitioning

The mesh partitioning strategy described in Section 5.2 is refered to as an online strategy, as it

takes place entirely during the run-time of the simulation. In an effort to lower the run-time

memory requirements, the mesh can be partitioned offline, i.e. before the simulation and

possibly on a different computer. In this situation, some data structures need also to be

precomputed, stored and loaded online in parallel.

Offline step

The offline step is performed serially on a different machine than the one which will run the

simulation. This machine is typically a desktop workstation with a large amount of RAM, of

the order of tens of GB, much higher than the 512MB to 2GB of RAM that are available per
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OFFLINE (Serial)

Load global mesh

Construct dual graph

Partition graph
into N parts

Construct N mesh parts

Write N mesh parts to disk

(a) Offline stage

ONLINE (N MPI processes)

Process 0

Construct DOF maps

Load mesh part 0

Continue

Process N-1

Construct DOF maps

Load mesh part N-1

Continue

(b) Online stage

Figure 5.6: The two steps of the offline partitioning strategy. Using N MPI processes in the
online stage.

process on supercomputers. In the extreme cases of very large meshes, this step can be run as

a job on a compute cluster that has high memory nodes available, usually with a few hundred

GB of RAM per node.

First the global mesh is loaded into memory and the dual graph is constructed. In the online

strategy the number of parts for the partitioning is always the same as the number of MPI

processes. In this case, the graph is partitioned into the desired number of parts for the future

simulation and each mesh part is built in turn. At the end of the offline phase, the original

mesh is discarded from memory and all the mesh parts are written to disk. The choice and

implementation of the read and write routines for the mesh parts is discussed in Section 5.4.

The offline step is summarized in Figure 5.6a.

Online step

All the mesh partitioning operations have been performed in the offline stage. During the

run-time of the simulation, each process only needs to read its own mesh part from disk (see

Figure 5.6b). Having done this, the simulation continues as in the case of online partitioning.
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Benefits and limitations

Moving the mesh partitioning stage offline and performing it serially results in much more

efficient memory usage. The global unpartitioned mesh is loaded only once into memory,

opposed to once per mesh part in the online strategy. The memory usage is thus independent

of the number of mesh parts that are produced. Given the large amount of memory available

in workstations compared to the low amount of memory per process that is made available on

a supercomputer, we are able to partition much larger meshes with the offline strategy.

A disadvantage of this approach is that the offline mesh partitioning can take a longer amount

of time, since it it performed serially. This time is however easily amortized given the fact

that a saved partitioned mesh can be reused for multiple runs of a simulation, as long as the

number of mesh parts (and, as a result, the number of MPI processes) is unchanged.

5.3.2 Hierarchical partitioning

At the end of the mesh partitioning, no assumptions can be made on the relative position of

any two mesh parts, especially in the case of an unstructured mesh of a complicated geometry

that is cut into a large number of parts. It is possible that consecutively numbered mesh parts

do not have a common interface (no common face, edge or vertex).

In the AAS strategy based on 2 levels of MPI introduced in Chapter 3 the parallel subdomain

problems are built by combining the serial subdomain problems assigned to consecutively

numbered processes. Consequently, these serial subdomain problems are built using consec-

utively numbered mesh parts. In the situation where one of these parts is not connected to

the others, the ShyLU preconditioner cannot be used, due to the Schur complement frame-

work that is used (the process associated with the isolated mesh part would not have any

contribution to the Schur complement.)

The remedy is a hierarchical partitioning: the global mesh is first partitioned into a number

of parts equal to the number of subdomains NDD for the AAS preconditioner. A second

partitioning is performed individually on each mesh part obtained at the first step, using the

number of MPI processes per subdomain NS as the number of parts. This two step process

ensures that the mesh parts that form each parallel subdomain form a connected volume.

5.3.3 Runtime partitioning with MPI-3.0 shared memory regions

In this section we outline a possible alternative implementation strategy for mesh partitioning

in LifeV, based on some recent additions to the MPI standard.

Originally, MPI was designed around the concept that multiple processes should not share

any memory space and should only communicate by sending and receiving messages. This

fundamental concept of the programming model leads to software implementations that
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1Begin simulation: Use N MPI processes, on M supercomputer nodes.
2On each node there are N /M = n MPI processes, which can use the same shared
3memory region.
4Define: M process groups, one per node.
5Define: One shared memory region usable by the members of each group.
6Load: The first process of each group loads the global mesh of the simulation from
7disk into the shared memory region of his group.
8Partition: Mesh partitioning then takes place unchanged, N mesh parts are produced.
9Cleanup: The global mesh objects can be discarded from memory at this point,

10along with the shared memory regions that were used to store them.
11

Algorithm 7: The alternative mesh partitioning algorithm, using MPI-3.0 shared memory
regions

minimize the communication between processes, which represents a very expensive type of

operation in terms of CPU time. Inter-process communication can be avoided through data

duplication, which, however, leads to an increased memory consumption.

Current trends in supercomputing hardware design (see Section 2.3) and the current level

of maturity of software tools such as OpenMP justify the use of both MPI parallelism and

multi-threading for the producing computational software that is more memory efficient

than MPI-only implementations. Mixing MPI and multi-threading introduces, unfortunately,

additional complexity to the code and requires an increased amount of programmer effort for

development, maintenance and tuning.

The most recent version of the MPI standard, MPI-3.0 (see [96]), introduces MPI shared

memory regions, which can be used as an alternative for shared memory multi-threading,

for some types of algorithms. It is now possible to define memory regions that are accessible,

for read and write operations, to all processes within a given group. Processes can use these

memory regions to share large resources, such as static lookup tables, removing the need

to duplicate them in the private memory space of each process. A discussion of the shared

memory features of MPI-3.0 and the results of some initial experiments can be found in [97]

and [98].

Although the programming interface for using shared memory regions has been stabilized in

the final version of the MPI-3.0 standard, the standard is yet to be implemented in the current

versions of the MPI library made available by supercomputer vendors.

Shared memory regions in MPI represent a promising tool which could also be used in the

mesh partitioning stage in LifeV, eliminating the memory bottleneck associated with the

runtime partitioning approach. The mesh objects in LifeV are effectively sets of lookup tables

that could be stored in shared memory regions. The modified implementation of the runtime

partitioning process is described in Algorithm 7.
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The online/offline approach described earlier in this chapter effectively removes all the re-

dundant memory usage during the online stage, although the proposed alternative approach

using MPI-3.0 shared memory would still reduce the memory consumption of the original

runtime partitioning strategy by a factor of n (the number of MPI processes per node, for the

process configuration defined earlier). An additional benefit would be greater flexibility, due

to the removal of the offline stage.

We consider this strategy a valid approach which we intend to explore as soon as stable

implementations of the MPI-3.0 standard become available on our target supercomputing

platforms.

5.4 High speed parallel mesh loading

This section discusses the implementation of the read and write routines for the mesh parts

produced by the offline partition strategy, as well as the optimization needed to ensure the

high performance of these routines.

The mesh object can be represented as a set of arrays enumerating the vertex coordinates

and the vertices that make up each edge, face and element in the mesh. Additional arrays are

used to encode the connectivity of the entities composing the mesh. For large meshes, this

represents a considerable volume of data which needs to be written to disk; using a specialized

file format is recommended.

The file format that we chose to store the mesh parts is the Hierarchical Data Format version

5 (HDF5) [53] which represents the de-facto standard format for parallel input and output

(I/O) of scientific data. The file is in a binary format, data structures are represented as multi-

dimensional arrays which are stored hierarchically in folders, similarly to a computer file

system. It is intended for use when large amounts of tabular data is written or read in a parallel

MPI environment and it is implemented using the parallel I/O subsystem of MPI libraries

(MPI-IO).

Our preliminary implementation of the mesh I/O routines for LifeV creates an individual

folder for the tables related to each partition. In these folders, a separate table exists for each

array: the three vertex coordinates, array of edge vertices, array of face vertices etc. A simplified

representation of this structure is shown in Figure 5.7.

While functional, this implementation proved to be extremely inefficient when using a large

number of MPI processes. With more than 1000 MPI processes, the time to load the mesh parts

clearly dominated the entire run-time of a simulation, making this version of the routines

unusable.
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HDF5 File

Folder: Partition 1
Table: Vertex coordinates x

Table: Vertex coordinates y

Table: Vertex coordinates z

Table: Vertex coordinates x

Table: Vertex coordinates y

Table: Vertex coordinates z

Table: Vertex coordinates x

Table: Vertex coordinates y

Table: Vertex coordinates z

Folder: Partition 2

Folder: Partition 3

Figure 5.7: Simplified representation of the initial implementation of HDF5 storage for mesh
parts. Each mesh part has its own folder and for each array that is stored a separate table is
defined in the HDF5 file.

5.4.1 Optimization with MPI-IO collectives

A profiling analysis of the first implementation revealed that the internal structure chosen

for the HDF5 file was causing the performance issues. As each MPI process was requesting

to read an individual table from the file, this resulted in a very large number of requests to

the HDF5 library. Most importantly, these requests could not be satisfied in terms of MPI-IO

collective operations, which are essential to MPI-IO parallel performance.

An MPI-IO collective operation is performed when multiple processes request to simultane-

ously write or read data to or from the same table at regular positions inside the table. For

example, processes request consecutive rows, consecutive columns or adjacent blocks from

a table. The performance of this type of operations comes from the fact that the number

of effective read and write operations is greatly reduced. A table can be read entirely using

one MPI-IO operation, which satisfies the requests of all the processes. Furthermore, the I/O

subsystem of a cluster or a supercomputer is able to agregate the I/O operations of groups of

MPI processes and efficiently delegate them to a smaller number of processes that perform

the actual read and write operations, placing a much lower demand on the storage system.

For more information on MPI-IO and collective operations, we refer to [99] and [100].

The new implementation makes exclusive use of MPI-IO collective operations. The structure

of the HDF5 file is different in that the data of each mesh part is no longer placed in separate

folders. Separate tables aren’t created for each mesh part and the data is placed in shared

tables in consecutive rows, as is described in Figure 5.8.

The new routines for mesh part I/O perform predictably and efficiently. The fraction of

the run-time needed to read the mesh parts, when using upwards of 1000 MPI processes,

remains below 10% for simulations of stationary problems. For longer running simulations of

time-dependent problems, this fraction becomes negligible.
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Partition 3

HDF5 File
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Partition 2
Partition 1
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Partition 2
Partition 3

Table 1 - Vertex coordinates x

Table 2 - Vertex coordinates y

Table 3 - Vertex coordinates z

Figure 5.8: Simplified representation of the optimized implementation of HDF5 storage for
mesh parts. Processes place data in common tables, which enables the use of MPI-IO collective
operations.
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6 Multi-threaded finite element assem-
bly

6.1 Introduction

The assembly of the linear system of equations can represent a considerable part of the total

simulation time, depending on the size of the problem and the type of FE discretization.

Nonlinear simulations require that the stiffness matrix and right hand side vector be updated

at each linear step, further increasing the percentage of the total run-time spent inside the

assembly loop.

The existing implementation of the finite element assembly in LifeV, based on MPI paral-

lelism, has already been discussed in Chapter 2. It maps properly to the domain partitioning

strategy and has good scalability with the number of MPI processes. The current trend in

supercomputer design is to increase the number of cores available on each node, although

the amount of memory per node is increasing much slower. The reduced amount of memory

per core is limiting the effectiveness of this MPI only approach. On this type of machines, it is

often impossible to fully subscribe the nodes with MPI processes (i.e. run a number of MPI

processes equal to the number of cores), due to the limited amount of memory per core. With a

hybrid approach, using MPI at the global distributed memory level and using multiple threads

inside each shared memory region, it is possible to better exploit the available resources, while

keeping the efficiency of the implementation high.

This chapter describes a multi-threaded implementation in LifeV of the assembly of linear

system matrix. The issues related to this sort of design are discussed as well as the impact that

different implementation details have on strong. Finally, the implementation is benchmarked

on two different supercomputing architectures and the performance of the strategy discussed.

6.2 Requirements of the multi-threaded implementation

Before describing the details of the multi-threaded implementation, it is necessary to explain

two concepts related to shared memory programming: thread-safety and reentrant functions.
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A function is said to be reentrant if it can be safely executed in parallel multiple times, for

instance, if it is called by multiple threads of execution. To ensure this behaviour, a reentrant

function must not maintain any state between calls and it must not operate on global or static

data, but only on data provided by the caller. While the concept of reentrancy is essential in

the context of parallel or asynchronous programming, it is not strictly related to this domain.

It is also needed, for instance, in recursive algorithms. It is generally good practice to write

reentrant code, whenever possible.

Thread-safety is a property of functions, related to reentrancy, but it only regards the imple-

mentation of the functions, not their interface. A thread-safe function can safely be called by

multiple threads of execution. It can make use of shared resources, such as memory and open

files, but it serializes all use of these resources. It is possible that non-reentrant functions are

thread-safe, but making functions reentrant can often make them thread-safe, too [5].

Some constraints need to be placed on the routines composing the FE assembly loop. Figure

6.1 contains the flowchart of the assembly loop in LifeV, in the case of MPI only parallelism.

In Figure 6.1, the COMPUTE ELEMENTAL MATRIX routine computes the coefficients of the

local elemental matrix, which are associated with the DOFs of one element. In a domain

decomposition setting, each MPI process calls this routine on his own set of elements. In our

case, we are interested in a second level of parallelism represented by multiple threads. This

START

GET LIST OF ELEMENTS

COMPUTE ELEMENTAL
MATRIX

SELECT NEXT ELEMENT

UPDATE GLOBAL
MATRIX

LAST
ELEMENT ?

STOP

YES

NO

Figure 6.1: FE assembly loop in the MPI single-threaded case. Green denotes routines which,
if well coded, are reentrant, while blue denotes routines which are not reentrant but need to
be thread-safe.
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routine contains no communication between MPI processes, but is called simultaneously,

for different finite elements, by multiple threads. Consequently, it needs to be written in a

reentrant fashion.

The routine UPDATE GLOBAL MATRIX performs all the write operations to the shared global

memory. The coefficients of the local elemental matrix are inserted in the proper locations of

the global FE matrix. Since it is possible that two elements send contributions to the same

coefficient in the global matrix, this routine needs to be thread-safe. The way thread-safety is

implemented has little impact on the correctness of the code, save for a small variability due

to the non-associativity of floating point operations [101]. However, it can have a considerable

impact on the performance and scalability of the implementation.

The thread-safety of this routine can be ensured in multiple ways. At higher level of the

program, the entire call to this routine can be serialized; this gives poor performance, as it

considerably increases the serial portion of the program. At a lower level, thread-safety can be

imposed at the level of actual individual memory operations. The latter approach is described

in Section 6.3.

The multi-threaded mode of operation has some additional requirements which parallel

sparse matrix class in Trilinos must satisfy. Objects of this matrix class exist in two states:

1. Open - A matrix can be built in this state and it does not contain any elements at the

start, the sparsity pattern is not defined. Coefficient values and indices are inserted into

temporary data structures. At the end of the insertion process, the matrix needs to be

closed. The sparsity pattern of the matrix is encoded as a graph and elements are moved

into the permanent data structures.

2. Closed - If a matrix is build directly in this state, the graph representing the sparsity

pattern of the matrix needs to be computed beforehand. In the closed state, existing

coefficients can be updated, but no new coefficients can be added to the matrix, as the

sparsity pattern cannot be modified. This state is optimized for linear algebra operations

(matrix-vector product, matrix-matrix product). It is worth noting that due to the static

nature of the data structures used in this state, the update operations are faster than the

insertion/update operations in the open matrix state.

The internal mechanisms of the Trilinos matrix class differ between these states. Memory

reallocation operations, which are used in the open state of the matrix, cannot be performed

in a thread-safe manner. In a multi-threaded setting, it is imperative that the matrix is built in

the closed, optimized state.

In the context of the LifeV library, at the beginning of this thesis, the typical usage scenario

was to create open matrices for the assembly stage, close them and use them in the closed, op-

timized, state only in the linear solver. We implemented the needed support for precomputing

the sparsity graph, which permits building the matrices directly in the closed, optimized state.
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Figure 6.2: Cost of the finite element matrix assembly with or without a precomputed graph,
depending on the problem size, for 3D Laplacian problems with P2 finite element.

The graph of the matrix is computed within a separate loop over the finite elements. In this

loop, the coefficients of the matrix are not computed, instead, only the indices of the non-zero

values of the matrix are computed and stored. The graph object which is computed with this

procedure is later used to construct the system matrix. As result, the construction of the matrix

object is changed, while the assembly loop is mostly unchanged, with the exception that a

different method is called to insert coefficients into the their final position in the matrix, on

account of its closed state. Figure 6.2 shows a comparison of the CPU time needed to assembly

a matrix without using a precomputed graph, the CPU time to precompute the graph and the

time to assemble the matrix with the precomputed graph, for different problem sizes. The

test problem is a 3D Laplacian on a regular grid, using P2 finite elements. It can be observed

that using a precomputed graph is always beneficial as the combined time to compute the

graph and to assemble the matrix using the graph is always lower than the time to assemble

the matrix without the graph. In a simulation that involves a recomputation of the matrix

coefficients, the gains in terms of CPU time can become substantial.

6.3 Multi-threaded implementation

The multi-threading mechanism for the assembly loop has been implemented using OpenMP,

a pragma based approach to multi-threaded programming. Serial (single-threaded) code is

annotated with instructions to the compiler (compiler pragmas) regarding which parts of the

code are to be executed in parallel, which variables are to be shared between threads and

which parts of the code are to be serialized. The compiler can be instructed to ignore the

OpenMP pragmas, in which case the resulting code is fully functional, but single-threaded.

This approach is not intrusive, but at the same time it is expressive enough that the details of

the parallelism are exposed to the programmer.

The existing implementation of the linear system assembly in LifeV, with MPI parallelism,
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SET 1
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Figure 6.3: FE assembly loop in the multi-threaded case (N threads), showing fork-and-join
parallel model.

is described in detail in [24]. Using this framework as a starting point, the multi-threading

is implemented in two steps. First, the total amount of work is divided among the threads.

Second, it must be ensured that the threads synchronize safely and correctly, if needed.

6.3.1 Work sharing

The parallelisation of the FE assembly loop is performed with a fork-and-join approach [7]. The

desired number of threads is spawned before the assembly loop and all the thread-local data

that is required is constructed. The list of all the elements stored on the current MPI process

is divided among the available threads and each thread will then perform the computations

for its own subset of elements, one element at a time. The lifetime of the threads extends

until right after the assembly loop, at which point the threads are stopped and the program

becomes once again single-threaded. This process is summarized in Figure 6.3.

6.3.2 Synchronization

In parallel programming, communication and synchronization represent bottlenecks that

are to be avoided, if possible. OpenMP provides two main types of mechanisms that ensure

thread-safety through synchronization. Critical regions are the first mechanism. A block of

code can be marked as a critical region, which will force the threads to execute it serially. Any
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portion of code can be placed in a critical region, but this mechanism comes with a large

overhead in terms of CPU time. This makes critical regions feasable only when the code

they contain is short or when they are encountered infrequently during the run-time of the

program.

Atomic regions represent the other synchronization mechanism. They are much more efficient

than critical regions, but their use is limited to serializing operations performed on individual

memory locations (updating a single floating point value, incrementing an integer counter

etc.). The advantage over critical regions is that the atomic region will result in serialization

only if two threads attempt to simultaneously modify the same memory location. This leads

to better performance compared to using critical regions.

The IBM BlueGene/Q architecture offers an additional thread-safety mechanism, based on

transactional memory [102]. It is used on the same type of memory operations as an atomic

region, but differs in implementation. Threads execute the operations in parallel, observing

the initial state of the memory location that is to be modified. If this state is changed by the

time the thread is ready to update the memory, refered to as a thread collision, the thread will

discard the results of the operations it performed and will redo these operations until able

to perform the update. This approach can be beneficial as it doesn’t involve the serialization

of any portion of the code, although in the event of many collisions there is considerable

overhead due to the operations that need to be repeatedly performed.

The multi-threaded implementation of the assembly loop requires some form of synchro-

nization when inserting the coefficients of the local elemental matrix into the global matrix.

The parallel sparse matrix class in Trilinos contains two code paths: one for updating locally

stored rows and one for updating the non-local rows. For local rows, the static data structures

of the closed matrix class are used and it is possible to implement thread-safety using only

atomic updates. For updating non-local rows, some temporary data structures are used to

collect the indices and values that are then communicated to other MPI processes. This is

done regardless of whether the matrix is in the open or closed state. The implementation of

these temporary containers is not thread-safe, therefore these operations need to be serialized

using critical regions.

If the overlapping mesh partition process, described in the Section 5.2.2, is used, in the

assembly loop there are only calls to update local rows in the global matrix and there are no

more costly critical regions. The benchmarks of the assembly of the sytem matrix, discussed

in the following section, are conducted both with and without an overlapping mesh partition.
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6.4 Benchmarks

6.4.1 Experiment setup

The multi-threaded implementation is tested on two modern high performance computing

architectures:

1. Cray XE6 - “Monte Rosa” - this system is located at the Swiss Center for Scientific

Computing (CSCS) in Lugano, Switzerland. It is composed of 1496 nodes, each node

is equipped with two 8-core AMD Interlagos processors and 32 GB RAM, and high

performance networking with the proprietary Gemini 3D torus interconnect. This

machine has a non-uniform memory architecture (NUMA): all the RAM installed in a

node is visible to all the CPU cores of a node, but each core has a preferential memory

region, with operations to this region being faster than to other non-preferential regions.

In the particular case of the Cray XE6, the memory on each node is divided in two

preferential regions, one for each half of the CPU cores.

2. BlueGene/Q - “Lemanicus” - this system is owned and operated by the Center for

Advanced Modeling Science (CADMOS) and it is located at Ecole Polytechnique Federale

de Lausanne (EPFL). It consists of 1024 nodes, each equipped with a 16-core PowerA2

processor and 16 GB RAM. The PowerA2 processor is able to support up to 4 threads per

CPU core (64 threads). The machine has uniform memory nodes (UMA) and is designed

with large scale hybrid (MPI and threads) applications in mind. On this machine we

examine transactional memory synchronization, in addition to OpenMP atomic regions.

The benchmark consists of measuring the CPU time needed for the assembly of the matrix of

linear system of equations using the multi-threaded implementation. We examine two prob-

lems types, a 3D Laplacian problem and an advection-diffusion-reaction (ADR) problem, both

on regular cubic meshes1. Additionally, for each problem type, we use in turn two different

finite elements, P1-Bubble and P2. We have examined multiple problem sizes, corresponding

to approximately 10000, 50000 and 1000000 DOFs per MPI process. We observed that the

strong scalability of the assembly process was identical in all cases. Hence, we will only show

the results for the case of 50000 DOFs per MPI process. The BlueGene/Q architecture imposes

the use of a minimum of 64 nodes for a job. We run the job with 64 MPI processes, with

one MPI process per node, on both machines, which leads to an equal amount of inter-node

commmunication on both machines. This amounts to a global problem size of approximately

3.2 million DOFs. The number of threads per MPI process used for the assembly is varied from

1 to 16. Both the overlapping and the non-overlapping approaches are tested, to expose the

cost of the critical regions in the non-overlapping case. In the case of the BlueGene/Q, we also

examine transactional memory as an alternative to OpenMP atomic regions.

1In general, we are interested in unstructured meshes, therefore, even if the cubic grid is structured, it is stored
as an unstructured one.
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In all cases, we also provide as a reference the CPU time to perform the assembly of the

system matrix using only MPI parallelism, with an equal number of processors as in the

multi-threaded case.

6.4.2 Measurements and discussion

Figures 6.4 and 6.5 show the results of the experiment on the BlueGene/Q and the Cray XE6,

respectively. We observe that on the BlueGene/Q machine our implementation achieves

better strong scalability than on the Cray XE6, due to the uniform memory architecture of

the former. In the case of the NUMA architecture of the Cray, memory operations outside of

the preferential memory region are quite costly and affect strong scalability. It is therefore

advisable to use a maximum of 4 or 8 threads on this machine, to maintain high efficiency.

The assembly is less scalable in the case of the ADR problem than for the Laplacian one, due to

the computation of the advection term which involves additional memory access operations

to the global advection field. This effect is most apparent when using P2 finite elements, when

the multi-threaded approach is visibly less scalable than the MPI only one. Since this loss

of scalability is visible on both machines, we believe that the cause is an inefficient use of

memory in this computation in a multi-threaded setting, which stems from the design of the

fundamental data structures, such as the parallel and serial matrices and vectors that are in

use, as well as the manner in which they are accessed. There is a strong development effort in

the Trilinos project with the goal of implementing a full linear algebra stack which is optimized

for multi-threaded applications [103], [104]. At the time of the writing of this thesis, this new

development branch has not yet achieved full feature parity with the current one, on which

LifeV is developed. Consequently, it is not currently possible to make use of the new Trilinos

development branch in LifeV without a substantial loss in capability.

The assembly is slightly less scalable when using P2 elements, rather than P1-Bubble elements.

This is to be expected, as in the P2 case, all of the DOFs reside on the faces of the elements. In

this case there is a larger chance that two threads attempt to update the same row in the matrix,

invoking an OpenMP atomic lock. For P1-Bubble elements, the basis function associated with

the DOF in the center of the element has its support limited to the element itself. Consequently,

all the coefficients in the matrix row corresponding to this DOF are computed in one step of

the loop over the finite elements, without the possibility of a thread collision.

We also observe that the use of overlapping mesh partitioning is only visibly beneficial for

P2 finite elements. The number of DOFs residing on the interface between mesh parts is

much lower in the case of P1-Bubble elements and the cost of communicating non-local row

coefficients is much lower.

The transactional memory synchronization, available on the BlueGene/Q proves to be either

equivalent in terms of CPU time, to the OpenMP atomic regions, or slightly slower.

Tables 6.1a and 6.1b contain the best case parallel speedup and efficiency observed during
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Figure 6.4: Strong scalability of multi-threaded assembly on the IBM BlueGene/Q.

the tests, which corresponds to the overlapping case, using P1-Bubble elements and OpenMP

atomic regions for synchronization. Efficiency is computed as the ratio between the measured

speedup and the ideal one. The approach is more efficient on the BlueGene/Q, where at 16

threads the efficiency is about 86% for the Laplacian problem and 62% for the ADR problem,

compared to the Cray, where it is approximately 60% for the Laplacian problem and 46% in

the case of the ADR problem.

The scalability of the multi-threaded approach is equal, in most cases, to the MPI only ap-

proach. When the MPI approach performs better, such as the case of ADR problems and P2

finite elements, the multi-threaded approach can be used in conjuction with MPI, i.e. using a

combination of MPI processes and threads which occupies all the processors on a node. In

such a case, the full resources available on a node can still be exploited, with only a small loss

in efficiency.

6.5 Conclusions

In this chapter we described the work done to implement a multi-threaded implementation

of the linear system matrix assembly in LifeV. The implementation was benchmarked on two

modern high performance computing machines, the IBM BlueGene/Q and the Cray XE6,

which have very different characteristics. The scalability of the code was measured up to

16 threads and the efficiency of the approach was computed. We observed that the multi-
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Figure 6.5: Strong scalability of multi-threaded assembly on the Cray XE6.

Problem size Number of threads 1 2 4 8 16

Laplacian
Speedup 1.00 1.97 3.97 7.57 13.79

Efficiency (%) 100 98.52 99.23 94.59 86.19

ADR
Speedup 1.00 1.92 3.58 6.28 9.97

Efficiency (%) 100 95.97 89.39 78.51 62.30

(a) IBM BlueGene/Q

Problem size Number of threads 1 2 4 8 16

Laplacian
Speedup 1.00 1.67 3.25 5.67 9.57

Efficiency (%) 100 83.72 81.21 70.83 59.83

ADR
Speedup 1.00 1.69 3.10 4.83 7.31

Efficiency (%) 100 84.70 77.45 60.41 45.71

(b) Cray XE6

Table 6.1: Best case speedup and efficiency of multi-threaded assembly. P1-Bubble elements,
overlapping partitioning and OpenMP atomic regions are used.

threaded approach is sensitive to the type of finite element used and that it is less efficient on

non-uniform memory architectures, as is the case of Cray machine, than on uniform memory

ones, like the BlueGene/Q. The scalability of the multi-threaded assembly strategy is equiv-

alent, in most cases, to the existing implementation, based only on MPI parallelism. Multi-

threading can be used in this situation without sacrificing efficiency. When the architecture

does not allow that all the hardware is exploited using only MPI parallelism, multi-threading

can be used together with MPI, resulting in a better usage of hardware resources.

96



7 Large scale simulations

In this chapter we investigate the performance of the preconditioning methods introduced in

Chapters 3 and 4 in the context of the numerical solution of the Navier-Stokes equations. We

begin with a short description of the discretization of the Navier-Stokes equations using finite

elements, as well as the preconditioners for Navier-Stokes problems which are available in

LifeV, see also [77]. In the second part of this chapter, we present the benchmark problems

that we use to evaluate our preconditioners. The chapter concludes with a discussion of the

numerical results from the benchmarks.

7.1 The Navier-Stokes equations

7.1.1 Weak form

The incompressible Navier-Stokes equations, which describe the motion of a fluid with con-

stant density ρ in a domainΩ⊂Rd , d = 2,3, are written as follows:
∂u

∂t
−div

[
ν(∇u+∇uT )

]+ (u ·∇)u+∇p = f, in Ω, ∀t > 0

divu = 0, in Ω, ∀t > 0
(7.1)

Here, u represents the fluid velocity, while p represents the pressure divided by the fluid

density. ν is the kinematic viscosity, defined as the dynamic viscosity µ divided by the fluid

density and f is a forcing term per unit mass.

The first and second equations impose, respectively, a conservation of momentum and of

mass. The first equation is nonlinear, due to the convective term (u · ∇)u. In the case of

constant kinematic viscosity ν, the diffusion term can be simplified:

div
[
ν(∇u+∇uT )

]= ν(∆u+∇divu) = ν∆u, (7.2)
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which results in an equivalent form of the equations:
∂u

∂t
−ν∆u+ (u ·∇)u+∇p = f, in Ω, ∀t > 0

divu = 0, in Ω, ∀t > 0
(7.3)

System (7.1) or (7.3) are complemented with an initial velocity, u(·,0) = u0 in Ω, and boundary

conditions which close the system; for example, of Dirichlet and Neumann type:
u =ϕ, on ΓD , ∀t > 0,

ν
∂u

∂n
−pn =ψ, on ΓN , ∀t > 0,

(7.4)

where ϕ and ψ are given vector functions and ΓD and ΓN represent a partition of the domain

boundary ∂Ω, such that ΓD∪ΓN = ∂Ω and Γ̊D∩Γ̊N =; and n is the outward unit normal vector

to ∂Ω. For simplicity, we consider the case of homogeneous Dirichlet boundary conditions,

i.e. u = 0 on ΓD , ∀t > 0. The initial condition and boundary conditions yield well posed

problems in the two-dimensional case [33]. The same is not necessarily true in the three-

dimensional case. The existence of the solution has been proven for the weak formulation

of the Navier-Stokes equations [105], although the uniqueness of the solution is still an open

problem.

Using similar steps as in Section 2.2, we obtain the weak formulation of the Navier-Stokes

equations: ∀t > 0, find u ∈V , p ∈Q, such that:

∫
Ω

∂u

∂t
·vdΩ+ν

∫
Ω
∇u ·∇vdΩ +

∫
Ω

[(u ·∇)u] ·vdΩ−
∫
Ω

p divvdΩ

=
∫
Ω

f ·vdΩ+
∫
ΓN

ψ ·vdΓ ∀v ∈V ,∫
Ω

q divudΩ= 0 ∀q ∈Q.

(7.5)

The space V is chosen such that the test functions vanish on the portion of the boundary

where Dirichlet boundary conditions are applied:

V = [H 1
ΓD

(Ω)]d = {v ∈ [H 1(Ω)]d : v|ΓD = 0}. (7.6)

If ΓN 6= ;, the space of the pressure test functions is chosen as:

Q = L2(Ω). (7.7)

If ΓN = ;, the pressure p appears in the equations only through its gradient and can be

determined only up to a constant. To avoid this, the pressure could be imposed in one point of

the domain, which is inconsistent with the choice of Q, or it can be required that the pressure
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has a null average in the domain. In the latter case, the space Q becomes:

Q = L2
0(Ω) = {p ∈ L2(Ω) :

∫
Ω

p dΩ= 0}. (7.8)

The Reynolds number Re is a measure of the extent at which convection dominates the

diffusion. It is defined as:

Re = U L

ν
, (7.9)

where L is a representative length of the problem domain and U is a representative velocity. At

low values of the Reynolds number (Re ¿ 1), the generalized Stokes problem is an acceptable

simplification of (7.3):
∂u

∂t
−ν∆u+∇p = f, in Ω, ∀t > 0

divu = 0, in Ω, ∀t > 0

u = 0, on ∂Ω, ∀t > 0.

(7.10)

In case this linear evolution problem is advanced in time by an implicit finite difference

method, we obtain (now u and p denote the value of un+1 and pn+1 at the new time level)
αu−ν∆u+∇p = f, in Ω, α≥ 0

divu = 0, in Ω,

u = 0, on ∂Ω,

(7.11)

where f is a new right hand side (still denoted with the same symbol) and α is a coefficient

proportional to the inverse of the time step δt .

The weak formulation of (7.11) is written: find (u, p) ∈V ×Q such that:{
a(u,v)+b(v, p) = (f,v) ∀v ∈V ,

b(u, q) = 0 ∀q ∈Q,
(7.12)

where V and Q were defined earlier and the following notations hold:

a : V ×V →R, a(u,v) =
∫
Ω

(αu ·v+ν∇u ·∇v)dΩ,

b : V ×Q →R, b(u, q) =−
∫
Ω

q divudΩ,

(f,v) =
d∑

i=1

∫
Ω

fi vi dΩ.

(7.13)
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7.1.2 Finite element discretization

The Galerkin approximation of (7.12) is written as follows: find (uh, ph) ∈Vh ×Qh such that:{
a(uh,vh)+b(vh, ph) = (f,vh) ∀vh ∈Vh ,

b(uh, qh) = 0 ∀qh ∈Qh ,
(7.14)

where Vh ⊂V and Qh ⊂Q are finite dimensional subspaces depending on the real parameter

h (the grid size).

The existence and uniqueness of the solution, cf. [106], is guaranteed if the bilinear form a(·, ·)
is coercive and continuous, the bilinear form b(·, ·) is continuous and if there exists a positive

constant β such that:

∀qh ∈Qh , ∃vh ∈Vh : b(vh, qh) ≥β||vh||H 1(Ω)||qh ||L2(Ω). (7.15)

(7.15) is also called the inf-sup condition, since it is equivalent to the following: a positive

constant β exists, such that:

inf
qh∈Qh ,qh 6=0

sup
vh∈Vh ,vh 6=0

b(vh, qh)

||vh||H 1(Ω)||qh ||L2(Ω)
≥β. (7.16)

The choice of finite element spaces is therefore guided by the inf-sup condition. The space of

the velocity solution Vh needs to be larger than the space of the pressure solution Qn for the

solution to be unique. Two finite element spaces that satisfy the inf-sup condition are said to

be compatible. Examples of common choices of compatible finite element spaces are: Vh ={
vh ∈ [C 0(Ω̄)]d ,vh |K ∈ [P2(K )]d ∀K ∈Th ,vh |ΓD = 0

}
, Qh = {

ph ∈C 0(Ω̄), ph |K ∈P1(K ) ∀K ∈Th
}

(in brief P2 −P1); another option is provided by (P1 −bubble , P1) in which case vh |K is a

linear polynomial plus a cubic one that vanishes on ∂K (a “bubble”), a further one is (P2 -

P0). Note that in the third case the pressure function is discontinuous across interelement

boundaries. In the case of incompatible spaces, the solution is unstable and a stabilization

method needs to be employed. For the purpose of the numerical benchmarks described later

in this chapter, only compatible finite element spaces have been used. For a discussion on

stabilization techniques for Stokes equations, we refer e.g. to [107]. Additionally, an in depth

analysis of the numerical approximation of Navier-Stokes equations is available in literature

[33] [108].
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7.1.3 The solution of the nonlinear system of equations

Using the notations and choice of finite element spaces from the previous section, the Galerkin

approximation of (7.3) reads: for every t > 0, find (uh(t ), ph(t )) ∈Vh ×Qh such that:

(
∂uh(t )

∂t
,vh

)
+a(uh(t ),vh)+ c(uh(t ),uh(t ),vh)+b(vh, ph(t ))

= (fh(t ),vh ∀vh ∈Vh ,

b(uh(t ), qh) = 0 ∀qh ∈Qh .

(7.17)

The convective term of the original equations is represented by the trilinear form:

c(w,z,v) =
∫
Ω

[(w ·∇)z] ·vdΩ ∀w,z,v ∈V. (7.18)

The nonlinear system of equations that corresponds to (7.17) can be written in compact form

as follows: for all t > 0,M
du(t )

d t
+ Au(t )+C (u(t ))u(t )+B T p(t ) = f,

Bu(t ) = 0,
(7.19)

with initial condition u(0) = u0. There are many ways to discretize the problem in time. For

example, the θ-method can be used to perform the time discretization of the system. By

setting:

un+1
θ = θun+1 + (1−θ)un ,

pn+1
θ = θpn+1 + (1−θ)un ,

fn+1
θ = θf(θt n+1 + (1−θ)t n),

we obtain the following system of algebraic equations:M
un+1 −un

∆t
+ Aun+1

θ +C (u∗)un+1
θ +B T pn+1

θ = fn+1
θ ,

Bun+1
θ = 0.

(7.20)

The choice of u∗ may lead to a nonlinear problem, e.g. if u∗ = un+1
θ

, or to a linear one, if u∗

is an extrapolation of un+1
θ

based on un and un−1. Here, M represents the mass matrix, with

entries:

mi j =
∫
Ω
ϕiϕ j dΩ.

Based on the choice of parameter θ, there are multiple alternatives to the solution of this

system.

If θ = 0, we obtain the forward Euler method, which in this case leads to an overdetermined
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system for the velocity unknown:{
Mun+1 = H(un ,pn , fn)

Bun+1 = 0.

Replacing pn by pn+1 leads to a semi-explicit discretization:
1

∆t
Mun+1 +B T pn+1 = G,

Bun+1 = 0,
(7.21)

where G is a suitable known vector. This involves solving for pressure a reduced system

B M−1B T pn+1 = B M−1G and recovering the velocity un+1 from the first equation. Given a

choice of compatible finite element space Vh and Qh , the reduced system is non-singular. The

time discretization is stable under the condition [33]

∆t ≤C min

(
h2

ν
,

h

maxx∈Ω
|un(x)|

)
.

In the case of an implicit discretization such as the backward Euler method (θ = 1 and u∗ =
un+1
θ

), which is unconditionally stable, we obtain the nonlinear algebraic system of equations:

M
un+1 −un

∆t
+ Aun+1 +C (un+1)un+1 +B T pn+1 = fn+1,

Bun+1 = 0.
(7.22)

Solving the problem in the implicit case requires three nested loops:

1. the temporal iterations

2. iterations of the Newton method (or another linearization method)

3. iterations of a preconditioned Krylov method (typically GMRES or BiCGStab)

If the convective term u∗ is treated explicitly, this results in the semi-implicit scheme, which

avoids the use of Newton iterations for the solution of the problem. The algebraic system of

linear equations that is formed reads:
1

∆t
Mun+1 + Aun+1 +C (un)un+1 +B T pn+1 = G,

Bun+1 = 0,
(7.23)

with G a suitable vector. This method comes with the following restriction on the time step
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[33]:

∆t ≤C
h

maxx∈Ω |un(x)| . (7.24)

7.1.4 Preconditioners for Navier-Stokes equations

An efficient class of preconditioners for Navier-Stokes equations is derived from block factor-

izations of the system matrix in:[
F B T

B 0

][
U

P

]
=

[
b

0

]
, (7.25)

where F = 1
∆t M + A +C (un) for the case of (7.23). The matrix can be written as a block LU

factorization:[
F B T

B 0

]
=

[
I 0

BF−1 I

][
F B T

0 −S

]
, (7.26)

where S = BF−1B T is the pressure Schur complement. Computing these factors is too expen-

sive, due to the presence of S, which would require the computation of the inverse F−1. To

alleviate this computational cost, the approximations F̂ and Ŝ can be used. To obtain the

Pressure Correction Diffusion (PCD) preconditioner [109], S is replaced by

ŜPC D = Ap F−1
p Mp , (7.27)

where Mp is the pressure mass matrix, Ap the pressure Laplacian matrix and Fp is the

convection-diffusion pressure matrix, where the advection term corresponds to the discretiza-

tion of un∇p; these matrices are complemented by homogeneous Dirichlet or Neumann

conditions, see [110] for more details. F−1 can be approximated by a suitable preconditioner

for advection-diffusion problems. Applying this preconditioner involves one pressure Poisson

solve, a mass matrix solve and a matrix-vector product with Fp .

Starting from a different LU factorization of the matrix in (7.25)[
F B T

B 0

]
=

[
F 0

B −S

][
I F−1B T

0 I

]
, (7.28)

and approximating S by Ŝ = BD−1B T we obtain the SIMPLE preconditioner, first introduced

in [111]. D is a triangular matrix which is easy to invert, such as the diagonal of the F block. F

is also approximated by D in the right factor. The SIMPLE preconditioner reads:

PSI MPLE =
[

F 0

B −Ŝ

][
I D−1B T

0 I

]
(7.29)
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The application of the simple preconditioner involves an F-solve for the velocity and a problem

similar to the Laplacian for the pressure.

The SIMPLE preconditioner can be regarded as a particular case of a general family of inexact

factorizations:[
F 0

B −BL B T

][
I U B T

0 I

]
. (7.30)

The two matrices L and U both represent approximations of F−1. Using this factorization,

the solution of the linear system involves the following steps:

1. Solve: F u∗ = b for the intermediate velocity

2. Solve: −BL B T p̂ =−Bu∗ for pressure

3. Compute final velocity: û = u∗−U B T p̂.

Two possibilities for the choice of L and U have been investigated in [112]:

L =U =
(

1

∆t
Ml

)−1

, (7.31)

where Ml is the lumped mass matrix, which is called the Chorin algebraic approximation, and:

L =
(

1

∆t
Ml

)−1

,

U = F−1,

(7.32)

which is refered to as the Yosida approximation. Choosing U as an approximation of the

inverse F−1, we obtain the approximate Yosida preconditioner.

The preconditioners listed here can be all used within the LifeV library. The analysis of the

preconditioners and a discussion of their implementation is found in [77].

7.2 Numerical benchmarks

7.2.1 Description of test problems

The numerical benchmarks we propose in this chapter involve the solution of the Navier-

Stokes equations using the finite element approximation, on a physiological problem geometry,

that of an arterial aneurysm. The geometry was obtained through medical measurements of

a real patient pathology [77]. Figure 7.1 shows the problem domain geometry that was used.
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Based on this geometry, computational meshes of two different sizes were produced: one with

approximately 1 million tetrahedra, the other with approximately 8.7 million tetrahedra.

For the purpose of the numerical tests, the velocity and pressure are discretized using P2 and

P1 finite elements, respectively, which results in approximately 4.8 million DOFs for the small

problem and 37 million DOFs for the large problem. The following characteristic measures

correspond to this benchmark: characteristic length Lchar = 0.35cm, characteristic velocity

Uchar = 22cm/s, density ρ = 0.001g /cm3 and kinematic viscosity ν= 0.035cm2/s. Using these

values, the Reynolds number computed Re = Lchar Uchar
ν = 220. For the time discretization, a

semi-implicit backward Euler scheme is used, with a time step ∆t = 10−3s. A suitable initial

solution is obtained by solving a Stokes problem, with the same discretization parameters, on

the same problem domain.

The linear system of equations is solved at each time step with GMRES without restart, with

a tolerance of 10−7, using the PCD preconditioner described in the previous section. We

approximate the inverse of the velocity convection-diffusion block F−1 with an application

of the 2-level AAS preconditioner introduced in Chapter 3. In the interest of brevity, for the

remainder of this chapter we will simply use AAS to refer to the 2-level AAS preconditioner

with minimal overlap, where the coarse level problem is solved inexactly with 5 Gauss-Seidel

iterations. We perform strong scalability measurements, comparing multiple configurations

of this preconditioner:

1. As a reference, we setup the AAS preconditioner with serial subdomain problems (NS =
1), solved exactly with a serial LU factorization.

2. Alternatively, AAS is configured to use a given number of parallel subdomain problems,

and the number of processes assigned per subdomain is computed as NS = NP /NDD . On

each subdomain, the ShyLU preconditioner is used with the best-case pre-existing con-

figuration, as obtained in Chapter 3: exact LU factorization on diagonal blocks, sparse

approximation of the Schur complement using the probing method and 5 subiterations

Figure 7.1: The geometry of the aneurysm problem, viewed from two angles.
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of GMRES on the Schur complement system.

3. The ShyLU preconditioner is used again with the difference that the Schur complement

system is solved inexactly using the IQR method, introduced in Chapter 4. We use a value

of 5% for the size of the Krylov subspace, relative to the size of the Schur complement

matrix. To ensure convergence in the case of the current benchmarks, the scaling

parameter λ was set to the average of the diagonal elements of the upper triangular

matrix R . Additionally, the computation of the IQR preconditioner is performed using a

vector of ones as right hand side. With the exception of IQR, the configuration of ShyLU

is identical to the previous case.

4. An additional case is considered on the Cray machine, where the multi-threaded direct

solver PARDISO is available. In this case, we keep the number of MPI processes constant

at NP = 128 for the small problem and NP = 1024 for the larger one and we increase the

total processor usage by using multiple threads per MPI process. The number of AAS

subdomains is constant in this case, equal to the number of MPI processes.

In cases where parallel subdomain problems are used, the number of subdomains is imposed

at NDD = 128 in the case of the smaller problem and NDD = 1024 for the larger one.

The tests are run on two supercomputers: the Cray XE6 “Monte Rosa” at CSCS and the IBM

BlueGene/Q “Lemanicus” of CADMOS. A variable number of MPI processes is used: from 128

to 1024 processes in the case of the smaller problem and from 1024 to 8192 in the case of the

larger one.

In all test cases, the serial LU factorization is performed using PARDISO on the Cray and

UMFPACK on the BlueGene/Q. The use of different LU solvers is due to the fact that PARDISO,

which is not open source software, is not available on the BlueGene/Q.

For each case, we measure the time to compute the global preconditioner, the number of

outer GMRES iterations that are performed and the total time to outer GMRES convergence.

As in the previous numerical tests, the time per outer GMRES iteration is computed using the

acquired measurements, as well as a total time to solution, which is the sum of the time to

compute the preconditioner and the time to GMRES convergence.

7.2.2 Results and discussion

Smaller problem - 4.8 million DOFs

From the point of view of the time to compute the preconditioner (see Figure 7.2) we see that

the IQR configuration of ShyLU is much faster than the one using the probing method to

approximate the Schur complement matrix. We would like to state, again, the observation

from Chapter 4 that the time to compute the preconditioner in the reference case (NS = 1,

exact LU) represents a lower bound for the time to compute the ShyLU preconditioner. ShyLU,
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Figure 7.2: Time to compute the preconditioner - 4.8 million DOFs

 32

 64

 128

 256

 128  256  512  1024

Ti
m

e
 [

s]

Number of used processors

AAS w/ PARDISO (NS = 1)
AAS w/ ShyLU probing (NDD = 128)
AAS w/ ShyLU IQR 0.5% (NDD = 128)
AAS w/ PARDISO multi-threaded (NDD = 128)

(a) Cray XE6

 32

 64

 128

 256

 128  256  512  1024

Ti
m

e
 [

s]

Number of used processors

AAS w/ UMFPACK (NS = 1)
AAS w/ ShyLU probing (NDD = 128)
AAS w/ ShyLU IQR 0.5% (NDD = 128)

(b) BlueGene/Q

Figure 7.3: Number of GMRES iterations - 4.8 million DOFs

in all configurations, performs additional work in the preconditioner computation phase, with

respect to the reference case. Computing the LU factorization of NDD ×NS = NP diagonal

blocks is equivalent, in terms of the amount of work, to the the factorization of NDD = NP

serial subdomain matrices (in the reference case). However, ShyLU must perform additional

computations related to the Schur complement system. The same observations apply to the

time per outer GMRES iteration. The multi-threaded PARDISO is slower to compute the LU

factorization than both the reference case and ShyLU with IQR preconditioner.

The IQR preconditioner, when used inside ShyLU, leads to a much larger number of outer

GMRES iterations than both the other configuration of AAS with ShyLU and the reference

configuration for AAS (Figure 7.3). As is expected due to the constant number of AAS subdo-

mains and the fact that multi-threaded PARDISO performs an exact LU factorization of the

subdomain matrices, the number of outer iterations is kept constant in this case.

However, the IQR configuration is twice as fast, in terms of time per GMRES iteration, as the

configuration of ShyLU with probing the approximation (see Figure 7.5. However, due to the

much increased number of outer GMRES iteration needed to converge, the actual time until

GMRES convergence is either comparable or slightly slower than ShyLU with probing, as is

shown in Figure 7.4. We observe a loss of scalability in the case of multi-threaded PARDISO, in
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Figure 7.4: Time to GMRES convergence - 4.8 million DOFs
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Figure 7.5: Time per GMRES iteration - 4.8 million DOFs

terms of time per outer GMRES iteration which also leads to an increasing time to GMRES

convergence. The triangular solves performed by PARDISO do not represent a highly scalable

algorithm from the point of view of strong scalability and the performance is further hindered

by the NUMA architecture of the Cray node.

Overall, IQR represents a considerable improvement over the pre-existing configuration of

ShyLU. In terms of global time to solution (i.e. time to compute the preconditioner and to

solve the linear system) we see that IQR brings a two-fold decrease in CPU time. Even with

the addition of IQR, using parallel subdomain problems for AAS and ShyLU remains more

than twice as slow as the reference configuration involving serial subdomain problems. The

multi-threaded approach is overall equivalent to the reference case at 256 MPI processes,

but due to the poorly scalable GMRES iterations it loses the advantage over ShyLU at 1024

processes.

Larger problem - 37 million DOFs

In the case of the larger problem, with NP = 2048, NDD = 1024, NS = 2 the IQR configuration

did not converge globally. We also observe a loss of scalability in the computation of the pre-
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Figure 7.6: Total time to solution - 4.8 million DOFs
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Figure 7.7: Time to compute the preconditioner - 37 million DOFs

conditioner in the reference case, when moving from 4096 to 8192 processes, which indicated

that the problem size is not large enough for this number of MPI processes.

Otherwise, we see the same relative performance between the three preconditioner strategies.

The time to compute the IQR configuration of ShyLU is a massive improvement over the

probing configuration, approaching the reference case in terms of CPU time (Figure 7.7).

For the larger problem, the AAS preconditioner with multi-threaded PARDISO subdomain

solver exhibits the same strong scalability as in the case of the smaller problem. The time

to compute the preconditioner is however much closer to the reference case and lower than

for either configuration of ShyLU. We see the same loss of strong scalability in the GMRES

iterations, but overall the multi-threaded case is equivalent to the case with serial subdomain

problems and is faster than when using the ShyLU preconditioner with parallel subdomain

problems.

It leads, however, to a much large number of outer GMRES iterations (Figure 7.8) which causes

the time to GMRES convergence to be larger than in the case of probing (Figure 7.9), although

for IQR the time per GMRES iteration is more comparable to the reference case when NS = 1.
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Figure 7.8: Number of GMRES iterations - 37 million DOFs

 2

 4

 8

 16

 32

 64

 1024  2048  4096  8192

Ti
m

e
 [

s]

Number of used processors

AAS w/ PARDISO (NS = 1)
AAS w/ ShyLU probing (NDD = 1024)
AAS w/ ShyLU IQR 0.5% (NDD = 1024)
AAS w/ PARDISO multi-threaded (NDD = 1024)

(a) Cray XE6

 8

 16

 32

 64

 128

 256

 512

 1024  2048  4096  8192

Ti
m

e
 [

s]

Number of used processors

AAS w/ UMFPACK (NS = 1)
AAS w/ ShyLU probing (NDD = 1024)
AAS w/ ShyLU IQR 0.5% (NDD = 1024)

(b) BlueGene/Q

Figure 7.9: Time to GMRES convergence - 37 million DOFs
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Figure 7.10: Time per GMRES iteration - 37 million DOFs

As in the case of the smaller problem, the use of IQR leads to a visible decrease in CPU with

respect to the previous configuration of ShyLU (Figure 7.11). The reference configuration

remains, in most cases, twice as fast as the configuration using ShyLU.
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Figure 7.11: Total time to solution - 37 million DOFs

7.3 Closing remarks

In this chapter we have continued the investigation on the performance of the ShyLU subdo-

main preconditioner and of the IQR preconditioner, which is used as a component for the

Schur complement algorithm employed by ShyLU (see 5). A set of benchmarks was set up,

involving the numerical solution of Navier-Stokes on physiological problem domains. The

performance of the reference preconditioner available in LifeV for this type of problems, the

PCD preconditioner, was evaluated for different approximation strategies for the inverse of

the convection-diffusion block. The reference strategy, involving a 2-level AAS preconditioner

with serial subdomain problems solved exactly with an LU factorization, was compared to the

2-level AAS preconditioner with parallel subdomain problems introduced ealier in this thesis.

For solving, inexactly, the parallel subdomain problems, the ShyLU preconditioner was used

in two configurations: one involving the approximation of the Schur complement matrix

using the probing method, the other using the IQR preconditioner introduced in Chapter 4.

The reference configuration of AAS remained faster than the one involving ShyLU, however,

the IQR preconditioner that we developed represents a considerable improvement to the

performance of ShyLU. Although the IQR is in an early stage of development, the positive

results obtained so far motivate further study in this direction, which will bring improvements

both algorithmically and to the implementation side.
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8 Summary of contributions, recom-
mendations and future work

In this chapter we summarize the contributions made in the course of this thesis to the Trilinos

and LifeV software libraries. They have been integrated into the code bases of both projects

and are, or will soon be, available for public use. Additionally we issue some recommendations

to the solution of various problems, based on the findings presented in the previous chapters.

8.1 Contributions to Trilinos

Two levels of parallelism for AAS

One of the central contributions to the Trilinos library collection is the addition of support

for parallel subdomain problems in the Algebraic Additive Schwarz (AAS) preconditioner

framework. Previously, the implementation of AAS in the IFPACK package supported only

serial subdomain problems, which imposed the limitation that the number of AAS subdomains

is strictly tied to the number of MPI processes in use. Our attempt to remove this limitation

was justified by two facts. First, the number of iterations needed for an iterative solver to

converge, when preconditioned with AAS, in the absence of a coarse problem, will increase

with the number of subdomains in the AAS formulation. This concern is secondary, since in

our solution process the AAS preconditioner is never used without a coarse problem. Second,

it may be possible to achieve better scalability, in terms of CPU time, on modern multi-core

nodes if an additional level of parallelism is employed at the subdomain level.

We introduced the needed support in the IFPACK package and the new implementation

was proven to be numerically equivalent to the previous one, i.e. with an exact solve of the

parallel subdomain problems, keeping the number of subdomains constant and increasing

the number of MPI processes used leads to an equal number of linear solver iterations as in

the case of serial subdomain problems.
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Subdomain solvers for AAS

With the support of parallel subdomain problems in place in AAS, the issue of suitable parallel

(using MPI) subdomain solvers has been investigated. Trilinos offers an interface to the most

efficient direct solvers, such as UMFPACK, MUMPS and PARDISO. The MUMPS solver uses

MPI parallelism and is suitable for solving the parallel subdomain problems although the

interface did not allow the use of MUMPS in any other situation than as a linear solver for the

global problem. Performing some modification to this interface, we were able to integrate

MUMPS with the new AAS preconditioner.

An alternative strategy for solving the parallel subdomain problems was found in the ShyLU

preconditioner. ShyLU, based on a Schur complement algorithm, was originally developed

in Trilinos as an inexact solver or preconditioner for the very sparse linear problems that are

associated with electrical circuit simulations. We sought to use ShyLU as an inexact subdomain

solver in the AAS preconditioner for the linear systems associated with the finite element

discretization of partial differential equations, which represents a different setting than its

original one. We made the needed modifications to its implementation to allow its use in

this new context. The combination of AAS and ShyLU showed very good strong scalability,

although in terms of absolute CPU time it performed worse than a reference configuration of

AAS with serial subdomain problems.

The incomplete QR factorization preconditioner

Our further work was to increase the absolute performance of ShyLU. Performance analysis

helped us identify that most of the CPU time used by ShyLU was spent with the computation

of the sparse approximation of the Schur complement and the solution of the corresponding

linear system.

We investigated an alternative solution to this problem in the form of the incomplete QR

factorization (IQR). The IQR is based on performing a QR factorization of the system matrix

projected on a Krylov subspace of much smaller size than the problem at hand. The algorithm

uses GMRES iterations to obtain the Q and R factors. By reusing the Q and R factors, this

algorithm can be used as a preconditioner for solving a series of linear systems which are

spectrally equivalent, such as the case of the linear solves occuring during nonlinear iterations.

We implemented the IQR in Trilinos and we used it as an inexact solver for the Schur com-

plement linear system in the ShyLU preconditioner, which brought a considerable increase

in the absolute performance of ShyLU. IQR is implemented independently of ShyLU, which

potentially allows its use in other contexts. Indeed, we showed that IQR is generally beneficial

when used within ShyLU; other applications are the subject of future work.
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Thread safety for finite element matrices

Additional changes were needed for the parallel sparse matrix classes of Trilinos. In LifeV, we

developed support for the multi-threaded finite element assembly of the linear system matrix.

The Epetra package, used by LifeV, was not developed with multi-threading in mind, but rather

MPI parallelism only. We performed a series of modifications to the parallel sparse matrix

classes that ensured that the constructions of these matrices could safely be performed using

multiple threads simultaneously.

8.2 Contributions to LifeV

The new additions to Trilinos listed in the previous section can be used in LifeV; this did not

require significant changes to the LifeV code directly. Here we describe other contributions to

LifeV.

Mesh partitioning operations

At the time this thesis was started, the mesh partitioning process in LifeV was always performed

at runtime and represented a considerable memory bottleneck in the simulation process. We

implemented a set of classes which offload the mesh partition process to an earlier, offline,

stage. With these new classes it is possible to partition the mesh of the simulation before-hand,

on a workstation and save the mesh parts to disk, using the efficient binary storage format

HDF5.

Additionally, the new mesh partitioning classes offer support for hierarchical mesh partition-

ing, which was needed to ensure the connectivity of the mesh parts that make up individual

parallel subdomains in the new AAS framework.

Efficient input and output of meshes

The offline partitioning process brought the need to have a fast and efficient way to read, at

runtime, the mesh parts that are saved during the offline stage. At high processor counts this

process puts considerable pressure on the input/output subsystem of compute clusters or

supercomputers and, if done inefficiently, can grow to dominate the runtime of a simulation.

We implemented the support to load the mesh parts in a fully parallel manner, using efficient

MPI-IO collective operations, with the end result that the loading operation now represents

only a small fraction of the total simulation runtime.

Multi-threaded finite element assembly

The last addition to LifeV represents a multi-threaded implementation of the finite element

assembly of the linear system matrix. This development was motivated by the need to regain

115



Chapter 8. Summary of contributions, recommendations and future work

parallel efficiency in this stage of the simulation, in cases when the available memory on

supercomputer nodes limits the use of MPI processes, such that the number of processes is

lower than the number of available cores. The multi-threaded assembly can currently be used

in LifeV independently of problem type.

The new assembly process has the requirement that the sparse matrix objects that are used to

store the linear system matrix have to be constructed with a static sparsity graph. Support for

precomputing this sparsity graph was implemented in LifeV. The option to use a precomputed

graph when constructing the system matrix is also available without the multi-threaded

assembly and we saw that it improves the performance of the system matrix assembly in all

cases.

8.3 Recommendations

In this final section we identify the best configuration options and parameters values to be

used at various steps of the simulation process in LifeV.

8.3.1 Preprocessing and finite element assembly

The offline mesh partitioning strategy, described in Chapter 5, represents an efficient solution

for the severe memory bottleneck that is encountered when partitioning the mesh at runtime

into a large number of parts. For all but the most trivial simulations, the computational

mesh of the domain should be partitioned before-hand, into the desired number of parts,

on a workstation with a large amount of memory available. The mesh parts are loaded at

simulation runtime using the efficient mesh loading routines based on HDF5 and MPI-IO

collective operations.

In order to reduce the amount of MPI communication during the finite element assembly

stage, the mesh partitioning should be performed with an overlap. This way, off-processor

rows in the linear system do not need to be updated during the system assembly, leading to a

decrease in CPU time and increased scalability of the assembly stage.

The linear system matrix should be constructed in the closed state, with the use of a precom-

puted sparsity graph. While in the case of a stationary simulation the benefit of this approach

is minimal, in the case of time dependent and non-linear simulations where multiple matrix

updates are performed, using the precomputed graph is essential to good performance.

On supercomputers with large multi-core nodes, with a reduced amount of available memory

per CPU core, it may not be possible to fully subscribe the CPU cores using only MPI processes.

In such a situation, the multi-threaded finite element assembly should be used in conjuction

with MPI to better utilize the available hardware resources.
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8.3.2 Linear solver and preconditioner

LifeV offers a selection of specialized preconditioners for the solution of the Navier-Stokes

equations, in the form of the approximate block factorization preconditioners PCD, SIMPLE

and Yosida. All these preconditioners require, however, an approximation of the inverse of the

advection-diffusion block of the system matrix. The 2-level AAS preconditioner is an efficient

way to provide such an approximation and its performance and scalability is key to the global

performance of the simulation.

We have observed that an inexact solver is suitable for the coarse level of the preconditioner.

Using a few iterations of Gauss-Seidel is enough to keep the number of outer GMRES iterations

under control, when the number of AAS subdomains increases. Additionally, the use of

minimal overlap between subdomains is recommended. This results in smaller subdomain

problems and removes much of the MPI communication cost associated with the construction

of the overlap regions.

There are two strategies for constructing the AAS subdomain problems. The first is to define

serial subdomain problems, which will correspond directly to the distribution of the degrees of

freedom of the global problem, resulting from the mesh partitioning process. In this case, the

recommended way to solve the subdomain problems is with an exact LU factorization, which

leads to a minimal number of GMRES iterations. There is a variety of direct solver packages

which can be used for this: UMFPACK, MUMPS or PARDISO. While PARDISO generally offers

superior performance to the other solvers, it is not free open source software and is not

available on all target platforms. An additional feature of PARDISO is multi-threading. In the

situation described in the previous section, when all the CPUs on a supercomputer node can

not be fully subscribed using MPI processes, the PARDISO solver can be used in multi-threaded

mode in order to supplement the MPI parallelism and make better use of the hardware.

A second approach to building the AAS preconditioner is with parallel subdomain problems,

constructed by putting together the rows in the linear system associated with multiple con-

nected mesh parts. This approach, developed and studied in the course of this thesis, is at this

point slower than the case of serial subdomain problems, although it exhibits very good strong

scalability. The ShyLU preconditioner, based on a Schur complement algorithm, should be

used to solve inexactly the parallel subdomain problems.

The two main factors for the performance of ShyLU are the choice of the LU solver for the

diagonal blocks and the treatment of the Schur complement system. For the inversion of the

diagonal blocks, the same solvers as in the case of serial subdomain problems should be used.

PARDISO is preferred, but ultimately the choice is affected by availability. For the resolution of

the Schur complement linear system, the probing method can be used to compute a sparse

approximation of the Schur complement matrix and the resulting linear system can be solved

inexactly using a small number of GMRES subiterations. Alternatively, the IQR preconditioner

represents an alternative to the probing method. With IQR, the Schur complement linear

system can be solved inexactly without the need to explicitly compute the Schur complement
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Chapter 8. Summary of contributions, recommendations and future work

Preprocessing
• offline mesh partitioning, runtime loading
• mesh partitioning with overlap of 1 finite element strip
• hierarchical partitioning when NS > 1

FE assembly
• precomputed matrix graph
• if NP < NCPU use multi-threaded FE assembly

Solver • preconditioned iterative solver: CG, GMRES

Preconditioner

• for Navier-Stokes problems: PCD, SIMPLE, Yosida
• for the AD block or Laplacian, ADR problems: 2-level AAS

2-level AAS

Coarse level: 3-5 Gauss-Seidel iterations

Fine level:
AAS with minimal overlap

(NDD = NP / NS)

subdomain 
solver

(fine level)

NS = 1 NS > 1

Exact LU factorization ShyLU

UMFPACK,
MUMPS,
PARDISO

(multi-threaded 
if NP < NCPU)

Block solver: exact LU

Schur complement approximation: 
IQR or Probing

IQR Probing

Dimension of 
Krylov subspace 

0.5% of size of 
Schur 

complement 
matrix

Diagonal factor 
2% of size of 

Schur 
complement 

matrix

5 GMRES 
subiterations

Table 8.1: Recipe table for finite element simulations with LifeV and Trilinos. NP is the
number of MPI processes in use, NC PU is the total number of CPUs available, NDD is the
number of subdomains for the AAS preconditioner and NS is the number of MPI processes
per subdomain.

matrix or a sparse approximation of it. This latter approach, which we have introduced and

described in this thesis, leads to much improved CPU time to compute and apply the ShyLU

preconditioner, at the cost of a larger number of iterations in the outer linear solver.

“Recipe” table

Finally, we provide Table 8.1, synthetizing the ideas in Section 8.3, to serve as a quick reference

for the setup and configuration of finite element simulations with LifeV and Trilinos, using the

new developments introduced in this thesis.
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8.4. Future work

8.4 Future work

The work we have done in the course of this thesis has helped us identify a number of research

and development directions, which we believe are worth being pursued.

The IQR preconditioner, used as an inexact solver for the Schur complement system inside

ShyLU proved to give a valuable increase in performance. We would like to further investigate

IQR and bring improvements both to the algorithmic side and to its implementation. Addition-

ally we would like to investigate other uses for IQR, separate from the ShyLU preconditioner.

The ShyLU preconditioner has good strong scalability but comes with the disadvantage that

the Schur complement algorithm is implemented using MPI only, due to memory limitations.

We have identified scenarios when it is not possible to fully utilize available hardware resources

using only MPI parallelism. The multi-threaded direct solver PARDISO, which can be used

as a subdomain solver on the fine level of AAS, has good performance but it is not free open

source software and its availablity is limited. We would like to develop a multi-threaded

implementation of the ShyLU algorithm, also making use of IQR. The new implementation

will be integrated in the Trilinos software project, where it will serve as an open source and

freely available alternative to existing multi-threaded preconditioners and inexact solvers.

Saving the solution during large scale simulations in LifeV we encounter similar performance

problems as with the early implementation of the parallel mesh loading routines. It would

be worthwhile to apply the improvements that have been done on the parallel mesh loading

routines also to the solution output. This will lead to a much better usage of the allocated

resources which are available for the LifeV project on supercomputers.

Finally, we would like to continue the refactoring of LifeV’s linear algebra foundation classes,

migrating them to the newer branch of linear algebra packages from Trilinos. The benefit of

this endeavour would be improving the support and perfomance of multi-threaded operation,

which could be added, in LifeV, also to other stages of the simulation process.
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