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Abstract

Who can say in twenty words what can be said in ten, is also able of evils of all kinds

—Giosuè Carducci

Characteristic timescales associated with the function of biomolecules, like pro-
teins, range from femtoseconds up to minutes, whereas their corresponding spatial
extent ranges from few Å to µm when associating in large macromolecular complexes.
Moreover, biomolecules are functional in a large variety of different physico-chemical
conditions strongly dependent on pH, ionic strength, crowding agents, etc. This huge
complexity is hard to be studied with an arbitrary level of resolution embracing all
these spatial and temporal scales. Molecular simulation is a well established approach
to gain mechanistic insights into the function of biomolecular systems, producing atom-
istically detailed models of in vitro and/or in vivo conditions. I present in this thesis
two projects that aim at improving on the current limitations of multiscale molecular
simulations, namely (i) the sampling of large systems, and (ii) the detailed representa-
tion and description of realistic physiological conditions.

Addressing the first issue, I propose a new coarse-grained model for proteins to be
used in molecular dynamics simulations. This coarse-grained model is based on a more
accurate description of protein electrostatics, which accounts for dipolar contributions.
The parameterization of this force field is based on force-matching methods and on
the use of a particle swarm optimization heuristic algorithm. The obtained results are
encouraging being structural and electrostatic properties accurately reproduced with
the coarse-grained model for a variety of protein folds. Moreover, the parameterization
procedure can be straightforwardly applied to any protein, and can be extended to
a larger dataset to generate a fully transferable coarse-grained force field, to be ap-
plied to any protein and any large macromolecular assemblies for which long all-atom
simulations are still a challenge.

While the development and use of coarse-grained models are important to tackle
the limited sampling of large systems, it is still important to use all-atom molecular dy-
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namics simulation to investigate with high accuracy in physiological conditions protein
dynamics. For this reason, I present here the results of state-of-art molecular dynamics
simulations applied to study the influence of crowding agents on the internal dynamics
of the protein ubiquitin. Their analysis allows to describe how ubiquitin dynamics is
slaved by crowding agents.

This work demonstrates that the description of protein dynamics should take into
account its intrinsic multiscale nature. The development and applications of coarse-
grained models permit to simulate proteins at low computational cost, the use of
atomistic simulations allows to accurately describe proteins in absence and presence
of crowding agents, and both of them permit to highlight the essence of protein dy-
namics.

Keywords biomolecular modeling, proteins, multiscale simulation, molecular dy-
namics, coarse-grained model, electrostatics, crowding, ubiquitin.
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Riassunto

Chi riesce a dire con venti parole ciò che può essere detto in dieci, è capace pure di tutte
le altre cattiverie.

—Giosuè Carducci

Le tipiche scale temporali associate con il funzionamento di biomolecole, come le
proteine, variano dal femtosecondo al minuto, mentre i corrispondenti moti spaziali
variano da pochi Å ai micrometri, quando si associano in complessi supramolecolari.
Inoltre le biomolecole funzionano in una grande varietà di differenti condizioni fisico-
chimiche che dipendono dal pH, forza ionica, ”agenti affollanti” ecc. È difficile studi-
are questa grande complessità con un unico metodo capace di descrivere tutte queste
scale spaziali e temporali. Le simulazioni di dinamica molecolare sono un promettente
metodo di studio che permette di fornire dettagli meccanicistici sulla funzionalità di
macchine biomolecolari, esibendo modelli a risoluzione atomica di condizioni in vitro
e/o in vivo. In questa tesi io presento due progetti il cui fine è di superare le seguenti
limitazioni delle simulazioni di dinamica molecolare (i) ”sampling” di grandi sistemi e
(ii) la rappresentazione dettagliata, con annessa descrizione, di realistiche condizioni
fisiologiche.

Per affrontare il primo problema, io propongo un nuovo modello semplificato di
proteine da impiegare in simulazioni di dinamica molecolare. Questo modello semplifi-
cato è basato su una più accurata descrizione dell’elettrostatica delle proteine, che tiene
conto di contributi dipolari. L’assegnazione dei parametri a questo ”campo di forze” è
basato sul metodo del force-matching e sull’uso di un algoritmo euristico basato sulla
”ottimizzazione con sciami di particelle”. I risultati sono incoraggianti perchè le simu-
lazioni a livello atomistico sono consistenti con quelle fatte con il modello semplificato.
Infatti proprietà strutturali ed elettrostatiche sono riprodotte in maniera accurata per
una serie di diversi ripiegamenti proteici. Inoltre la procedura di assegnazione dei
parametri può essere applicata facilmente a qualsiasi proteina e può essere estesa ad
un più vasto set di proteine per generare un ”campo di forze” semplificato trasferibile,
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che può essere usato per qualsiasi proteina e qualsiasi complesso supramolecolare, per
i quali le simulazioni atomistiche risultano essere di difficile realizzazione.

Mentre lo sviluppo e uso di modelli semplificati sono importanti per affrontare il
problema del ”sampling” di grandi sistemi, è importante anche usare metodologie di
dinamica molecolare a livello atomistico per studiare con grande accuratezza e in con-
dizioni fisiologiche la dinamica delle proteine. Per questo motivo, io presento l’uso di
tecniche di dinamica molecolare di ultima generazione al fine di studiare l’influenza di
agenti affollanti sulla dinamica interna della proteina ubiquitina. Le analisi proposte
per le traiettorie di dinamica molecolare permettono di fornire una descrizione dettagli-
ata su come e perchè la dinamica dell’ubiquitina è influenzata dalla concentrazione di
”agenti affollanti”.

Questo lavoro di ricerca dimostra che la descrizione della dinamica delle proteine
dovrebbe considerare la sua intrinseca natura a differenti scale. Lo sviluppo di modelli
semplificati permettono la realizzazione di simulazioni di proteine a basso costo com-
putazione, l’uso di simulazioni atomistiche permette di descrivere la dinamica dell’ubiquitina
in assenza e presenza di ”agenti affollanti”, ed entrambi permettono di cogliere i fon-
damenti della dinamica delle proteine.

Parole chiave biomolecular modeling, proteins, multiscale simulation, molecular
dynamics, coarse-grained model, electrostatics, crowding, ubiquitin.
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Chapter 1

Introduction

But, if you really want to understand the detailed molecular interactions that make it go
in a particular direction, make certain contacts, break other contacts, hydrolyze GTP, you
know, form bonds, etcetera, and do it all amazingly accurately, then you do need a high
resolution picture of those states. But, that’s not going to be enough. It’s going to take a
lot of work by biochemists, by computational people who do molecular dynamics and
things like that to really, eventually, understand it in the sense that we would understand,
say, a more typical reaction.

—Venkatraman Ramakrishnan

Why should one use or develop molecular simulation methods during a Ph.D. in
bioengineering? Why should one use such theoretical methodology in order to tackle
Life Sciences related problems? I have asked myself these questions several times dur-
ing the past years and I have come to the following conclusion: Because most of the
scientists working in Life Sciences, without telling explicitly, would like to be reassured
that all the processes within the cell is the direct consequence of the dynamics of atoms,
simply dictated by the laws of Physics. In fact the cell, as a single entity or in a cul-
ture, in stable thermodynamic conditions, is so complex that we would like to look for
certainty among this overwhelming uncertainty. The mathematical tools that can be
used to describe atomic dynamics come from analytic mechanics, statistical mechanics
and numerical analysis. These tools have allowed us, with a lot of creativity and hard
work, to write down the equations of motion, solve them numerically on high perfor-
mance computers and analyze the results in a rigorous way. This is essentially the
vision of Feynman, as stated in his famous Lectures on Physics. However, this does
not clarify how hard it is to understand properly life sciences related problems using
such a bottom-up theoretical approach. For example, in the late ’50s Kendrew and
Perutz solved for the first time by X-ray crystallography the structure of hemoglobin,
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1. INTRODUCTION

but several theoretical and computational groups around the world are still working on
hemoglobin and myoglobin to understand how they really work!

Not less importantly, the knowledge that is accumulated through theoretical and
computational studies about the functional mechanism of biomolecules can be exploited
to design and program novel functions for them. On a bigger scale, in principle, one
could propose a complete atomistic picture of a cell that would help to identify weak
points in our understanding and improve our capability in forcing cells to do whatever
we need from them. Recently, in the Venter’s group, the first cell with a synthetic
genome has been created [1]. An atomistic model of such cell could allow to refine or
improve its functionalities through the identification of stable and/or transient inter-
actions among biomolecules composing it.

Therefore, in order to realize a faithful simulation of the cell, assuming to have
access to sufficient computer resources, we would need to accumulate the following
information:

1. Which are all the biomolecules composing the cell?

2. What are their concentrations?

3. Which are the starting conditions to solve the equations of motion?

4. What type of equations of motion should one use?

5. Which are the most appropriate energy potentials to describe their interactions?

The first two questions can be answered by biologists. Reply to the third one belongs
to the expertise of biologically oriented experimental physicists and chemists, while
the last two belong to the expertise of theoretical physicists and chemists, who can
eventually and practically run the simulation of the whole cell. Toward the realization
of this task there are many bottlenecks, such as the accumulations of this huge amount
of experimental data, their interpretation and access to communities that ”speak”
different languages, and the development of new theoretical models and methods.

Without taking into account this whole complexity, theoreticians estimated the
year when the simulation of a cell will be possible according with the Moore’s law.
van Gunsteren in 2006 made a prediction that one single copy of a cell composed by
1011 atoms will (could) be simulated by 2034 for 1 nanosecond [2]. This estimation
is maybe too naive because it does not take into account that is highly improbable
that by 2034 we will have all high-resolution structures for all the possible protein folds
(whose rate of discovery is less than one per year), all the possible DNA (and RNA)
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structures, membrane compositions, etc. Therefore, it is maybe too optimistic to think
that the community will be able to perform such a simulation in only twenty years.
Yet, the simulation won’t be able to cover much of the biologically relevant temporal
scale experienced by the cell.

Nevertheless, there are many intermediate steps we can do in order to be prepared to
approach a realistic simulation of a cell. For instance one possibility is to work toward
the accurate modeling of all the biomolecular types and to understand the behaviour of
small portions of the cell applying a divide et impera strategy. Proteins for instance are
one of the most important actors; in E. Coli the entire collection of proteins represents
the 55 % of total dry weight (with ' 2.4·106 elements) of the cell [3]. Also, historically
most of the attention has been focused on this class of biomolecules since the early days
of biomolecular modeling. In my thesis, the main focus will also be on proteins studied
using classical molecular dynamics simulations. However, the same attention should
be paid to membranes, nucleic acids, carbohydrates and all the other small moieties
composing the cellular environment.

Around 1965 the biomodeling era started in the group of Shneior Lifson, at the
Weizmann Institute, where the first ”force field” to study alkanes was developed [4].
Several of the most important scientists still active in this field met there, opening
the era of biomolecular modeling. Arieh Warshel and Michael Levitt in Lifson’s group
started applying these ideas to protein [5]. At the same time Martin Karplus visited
Lifson’s group [4], ideas and codes were shared, allowing the first minimization of a
protein structure in the 1969 [5; 6]. In Karplus’ group later, thanks to the joint effort
of Bruce Gelin and Andrew McCammon, and initial contribution of Warshel [4], it
was possible to run the first simulation of a protein [7], paving the way to the further
development of codes for molecular dynamics simulations and production of reliable
force fields. This was a scientific milestone that allowed to replace the idea that proteins
where just a collection of static atoms. During the same period when the first all-atom
simulation of a protein came out, Levitt and Warshel proposed the first coarse-grained
simulation of a protein [8].

Anyway, still in the late ’70s molecular simulations suffered from the limited com-
putational power that determined the use of very simple models, neglecting for example
the explicit presence of water. In those years, thanks to the CECAM (Centre Eu-

ropéen de Calcul Atomique et Moléculaire) people involved in biomodeling
had the opportunity to share ideas, codes and perspectives. These meetings were the
starting points for the creation of dedicated codes for biomolecular modeling like GRO-

MOS, developed by Wilfred van Gunsteren and Herman Berendsen who benefited from
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1. INTRODUCTION

the possibility to see and modify the CHARMM code [9]. Lately Wilfred van Gun-
steren shared the early version of GROMOS to Paul Weiner and Peter Kollman that
consequently wrote the first version of AMBER [9]. In the early ’80s the first reliable
water models appeared, giving the opportunity to simulate proteins in a more realistic
environment [10]. At the same time methodologies to perform free energy calculations
were introduced [11]. Moreover, solid methods to perform simulations reproducing sta-
tistical ensembles were proposed providing the molecular simulation field with a solid
theoretical foundation [12]. As soon as more computational power became available
to push further the limit of biomolecular modeling a new problem came out, namely
in silico melting of proteins due to the use of simple cut off for the treatment of the
electrostatics of non bonded interactions. Therefore, the introduction of methods like
the reaction field [2] and the particle mesh Ewald [13] permitted to perform, in the
early ’90s, simulations in the multi nanosecond temporal scales. The simulations were
also much improved from the physical point of view, because more reliable force fields
were proposed, able to reproduce or rationalize experimental results [14].

Thus, in early ’90s all the recipes and ingredients to do realistic simulations of
proteins were available to the community of biomolecular modelers. Nonetheless, new
”enemies” were waiting behind the corner. The enemies were, and still are, the contin-
uos need for computational power and the intrinsic temporal scales of protein dynamics
(i.e., the sampling problem) [2; 15]. Moreover, in order to simulate proteins as close
as possible to in vivo conditions all the other constituents of the cellular milieu needed
to be proposed, developed and tested. Since the early years it was clear that it was
necessary to work on three main fronts: (i) the creation of accurate models, (ii) the
implementation of efficient new techniques, and (iii) the hardware integration. It was
not by chance that the first force field was produced in a group that had access to one
of the biggest super-computer available at that time [5].

The development of models of interactions for biomolecules has been always the
crucial pillar to enrich the possibilities of modeling new systems. There are several
types of all-atom force-fields available like Amber, CHARMM, OPLS, Gromos [14].
The majority of the cited force fields has been improved along the years in describing
structural and dynamical properties of proteins and nucleic acids [16–18], allowing
recently studies on protein folding [19–21]. Moreover, some of these force fields have
been recently extended to carbohydrates, lipids, metabolites etc. [22–24] allowing now,
under certain ranges of validity, to propose model systems that should better mimic in
vivo and in vitro conditions.

Regarding novel techniques, a strategy used to enlarge the temporal scale of molec-
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ular simulations has been the development of enhanced sampling techniques, which
maintaining an all-atom representation are able to accelerate conformational changes
in proteins [25]. This type of approaches permits to maintain an accurate descrip-
tion while accelerating process thanks to the identification of reaction coordinates (i.e.,
dimensionality reduction) that should be able in principle to describe complex confor-
mational changes in proteins and in biomolecules in general. Another way which has
been largely explored is to improve the efficiency of softwares to make use of highly
parallel architectures on large clusters that recently disclose the possibility to perform
multi-million atoms simulations [26; 27]. Similarly, codes have been written or tailored
in order to be compatible with emerging commodity hardware, like GPUs (see for ex-
ample codes like NAMD [28], Amber [29] and AceMD [30]). More ad hoc solutions
have been available recently with the development of specialized computing units able
only to run molecular dynamics, but producing a throughput able to overcome the
millisecond barrier [31; 32].

Moreover, after 15 years from the pioneering studies of Levitt and Warshel [8],
coarse-grained or simplified models have started to gain more and more importance
as an alternative to all-atom representation in order to overcome sampling barriers
intrinsic for large systems and longer temporal scales [33]. A plethora of simplified
representations started to flourish first for surfactants, lipids and later for proteins and
nucleic acids [34–37]. Moreover, several groups started developing systematic ways to
produce force-fields for molecular dynamics packages [34].

Given these premises, we are today in the florid situation in which multiple models
and techniques can be used to describe with high accuracy biological systems extending
the analysis to very large systems for long timescales, which allows often a direct com-
parison with experimental measurements. Yet, I think it is of paramount importance
to keep improving the present capabilities, especially if one wants to reach the ultimate
goal of simulating the entire cellular environment. This thesis is meant to be a small
contribution to the extension of biomolecular modeling boundaries. I decided to entitle
this work Multiscale Simulations of Protein Dynamics because models and techniques
at different levels of resolution have been adopted and developed to touch some of the
limitations discussed above for the investigation of protein dynamics in realistic con-
ditions. While on one side I think it is necessary to develop new simplified models to
approach larger complexes, on the other hand atomistic simulations are still the most
valuable approach to gain insights into the microscopic details of protein function in
the cellular environment.

In particular, I first focused my attention on the development of a new coarse-
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1. INTRODUCTION

grained model for proteins to be used in molecular dynamics simulations. The main
ingredient of this new coarse-grained model for protein is the introduction of backbone
and side chain electrostatic contributions, that allow for an accurate description of
protein electrostatic properties. This improvement has important implications for the
study of molecular recognition and protein-protein interactions at a quasi-atomistic
level of resolution. The proposed coarse-grained model shows also a good compromise
in the accuracy vs. speed ratio, being the results in agreement with the atomistic
simulations while the computational cost is on average two orders of magnitude lower
than finer-grained simulations.

While coarse-grained models are suitable to reach cellular dimensions, the finest
details of protein dynamics still need an atomistic description to be captured. This is
the case for instance of the effects exerted in vivo on protein dynamics and binding by
the crowded environment of the cell. While coarse-grained models have been used to
study the entropic effects of molecular crowding, recently it has become clear that the
enthalpic contributions, due to repulsive and chemical interactions, play an important
role that can be accurately modeled only if atomistic models are adopted. For this
reason in the second part of my thesis I decided to investigate in detail the effect of
small crowding molecules on the dynamic properties of ubiquitin using state-of-the-art
large-sampling molecular dynamics simulations.

Therefore, the thesis is organized as follow:

• Chapter 2, where I present the theoretical foundation of the methods and analyses
used and improved during my thesis.

• Chapter 3, where I present a newly developed coarse-grained model for molecular
dynamics simulation of proteins.

• Chapter 4, where I present how small crowding agents influence protein dynamics.

• Chapter 5, where I will propose some ideas to further extend the boundaries of
biomolecular modeling.

16



Chapter 2

Methods

[Anfisen] showed a film of the folding of a protein with ”flickering helices forming and
dissolving and coming together to form stable substructures”. Of course, the film was
purely imaginary, but it led to my asking him whether he had though of taking the ideas
in the film and translating them into a quantitative model. He said that he did not really
know how he would do this, but to me it seemed clear that such a model could be based on
straightforward physical concepts [4].

Martin Karplus

In the present chapter I will describe the theoretical background and the techniques
employed for the development of the research described in this thesis. I will report the
foundations of biomolecular modeling as emerged from statistical mechanics, and I will
give an overview of the state-of-the-art of molecular mechanics techniques for research
in Life Sciences. In particular, I will start focusing on molecular dynamics simulation,
then on empirical force fields currently used to simulate biomolecules and I will end
presenting the analysis tools, used to benchmark or describe equilibrium properties of
simulations presented in Chapters 3 and 4.

2.1 Molecular Dynamics Simulation: a Tool of Statistical

Mechanics

Molecular dynamics is a technique for computing the equilibrium and transport prop-
erties of a many-body system for which a energy potential model for the interactions
between system constituents (i.e., particles) is assigned. In order to do that one has
to solve the equations of motion able to reproduce a given statistical ensemble using
an integrator, which propagates particle positions and velocities from time t to t +
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2. METHODS

δt. Eventually, relevant properties of the system, which can be directly or indirectly
compared with experimental data, can be calculated from the trajectory [38; 39].

During molecular dynamics (MD) simulation different types of thermodynamic en-
sembles, characterized by the control of certain thermodynamic variables, can be real-
ized. This possibility is of fundamental importance, especially for life-sciences related
studies, because it allows to reproduce in silico the physical conditions that can be en-
countered in the in vivo or in vitro setting. In the following I will introduce the ergodic
hypothesis at the basis of MD, and I will introduce the canonical (NVT) and isobaric-
isothermal (NPT) ensembles (I will neglect the grand canonical ensemble despite its
importance due to non-standard issues and implementation [40]). For both of them I
will present the correspondent mechanisms of control used for the development of this
research projects. Moreover, I will sketch the basic ideas behind the implementation
of integrators and some other technical tricks routinely used in molecular dynamics
simulations.

2.1.1 The Ergodic Hypothesis

A classical system is described by a classical Hamiltonian H, which is a function of
both coordinates r and momenta p. If the potential energy function is independent
from time and velocity, the Hamiltonian is equal to the total energy:

H = H(r,p) ≡ K(p) + U(r) =
∑
i

pi
2mi

+ U(r) (2.1)

where K(p) is the kinetic energy, U(r) is the potential energy, pi is the momentum of
particle i, and mi the mass of particle i. A microscopic state of the system is therefore
characterized by the set of values {r,p}, which corresponds to a point in the space
defined by both coordinates r and momenta p (commonly known as the phase space).

To obtain thermodynamic averages over a microcanonical ensemble, which is char-
acterized by the macroscopic variables (N, V, E), is necessary to know the probability
distribution ρ(r,p) of finding the system at every point (=state) in the phase space.
Knowing this distribution function is in principle possible to calculate phase space av-
erages of any dynamic variable A(r,p) of interest. Examples for dynamic variables are
the position, the total energy, the kinetic energy, structural fluctuations, and any other
function of r and/or p. These averages:

〈A(r,p)〉Z =
∫
V
dr
∫ ∞
−∞

dpρ(r,p)A(r,p) (2.2)
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are called thermodynamic averages or ensemble averages because they take into ac-
count every possible microscopic state of the system (Z is the partition function of the
system that counts the number of states the system can occupy). The drawback of this
approach is that in order to calculate such thermodynamic averages, is necessary to
simultaneously know the distribution probability for each and every state {r,p}.

An alternative strategy for calculating averages is to follow the motion of a single
point (i.e., a single molecular state) through the phase space as a function of time
by integrating the system’s equations of motion, taking the averages only over those
points that were visited during the trajectory. Averages calculated in this way are called
dynamic averages. Dynamic averages of any dynamical variable A(r,p) are calculated
along the trajectory as follows:

〈A(r,p)〉τ =
1
τ

∫ τ

0
A(r(t),p(t))dt (2.3)

where τ is the duration of the simulation.

The ergodic hypothesis claims that for a infinitely long trajectory the points gen-
erated by the equations of motion will cover the entire phase space, and in this limit
ensemble averages are equivalent to dynamic averages, i.e.:

lim
τ→∞
〈A(r,p)〉τ = 〈A(r,p)〉Z (2.4)

While it is assumed that finite molecular dynamics trajectories are ”long enough” in
the ergodic sense, the longer the sampling the better.

2.1.2 The Canonical Ensemble (NVT)

Integral Control or Nosé-Hoover Thermostat

A way to sample the NVT ensemble within the framework of MD is based on extended
system methods [41], where the Newton’s equations of motion are modified by adding
certain non physical variables. This methodology is used to control temperature using
the following non-Hamiltonian equation called Nosé-Hoover equation [42; 43]:

HN−H =
∑
i

p2
i

2mi
+ U(r) +

p2
η

2Q
+ LkBTη (2.5)

from which one can derive the following equations of motion:
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ṙi =
pi
mi

(2.6a)

ṗi = Fi −
pη
Q

pi (2.6b)

.
η =

pη
Q

(2.6c)

.
pη =

∑
i

p2
i

mi
− LkBT (2.6d)

where {ri}, {pi} are coordinates and momenta of the N particles with masses mi,
the forces Fi are derived from the N-particle potential and L is a parameter to be
determined. The two non physical variables η and pη in eq.2.6 regulate the fluctuations
in the total kinetic energy of the physical variables, and can be thus regarded as an
effective “thermostat” for the physical system. The parameter Q controls the strength
of the coupling to the thermostat: high values result into a low coupling and viceversa.
It has been shown that HN−H allows to generate a canonical distribution of the physical
degrees of freedom [43–45].

Stochastic Control

In a stochastic thermostat, all or a subset of the degrees of freedom of the system
are subject to collisions with virtual particles. This method is based on a Langevin
stochastic differential equation which describes the motion of a particle i subject to the
thermal agitation of a heat bath:

ṗi = −∇iU − γpi + F+ (2.7)

where γ is a friction constant and F+ a Gaussian random force. The amplitude of F+

is determined by the second fluctuation dissipation theorem:

< F+
i (t1)F+

j (t2) >= 2γkBTδijδ(t1 − t2) (2.8)

A large value for γ will increase thermal fluctuations, while γ=0 corresponds to the
microcanonical ensemble. It was proved that the stochastic thermostat generates a
canonical distribution function [41].

2.1.3 The Isothermal-isobaric Ensemble (NPT)

In the framework of the extended Hamiltonian approach a molecular dynamics simula-
tion at constant pressure and constant temperature is defined by the following extended
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Hamiltonian:

HNPT =
∑
i

p2
i

2mi
+ U(r) +

p2
η

2Q
+ LkBTη +

p2
ε

W
+ PextV (2.9)

The equations of motion that correspond to this Hamiltonian are the following:

ṙi =
pi
mi

+
pε
W

ri (2.10a)

ṗi = Fi −
pη
Q

pi −
pε
W

pi (2.10b)

.
V =

dV pε
W

(2.10c)

.
pε = dV

(
Pint − Pext

)
− pη
Q
pε (2.10d)

.
η =

pη
Q

(2.10e)

.
pη =

∑
i

p2
i

mi
+
p2
ε

W
− LkBT (2.10f)

where the volume V of the system is incorporated in the equations of motion. The

momentum pε is correlated to the variable
dε

dt
that depends on the volume as ε =

1
d
ln
( V
V0

)
and d has a space dimensionality. The V0 parameter is a reference arbitrary

volume usually equal to the initial volume. The pε variable acts as a barostat driven by
the fluctuations of the internal pressure Pint around to the external pressure applied in
an isotropic manner on the walls of the simulation box. The internal pressure is given
by the following:

Pint =
1
dV

[∑
i

p2
i

mi
+
∑
i

ri · Fi − (dV )
∂U

∂V

]
(2.11)

where Q and W control the strength of the coupling to the thermostat and barostat,
respectively.

It has been showed that the HNPT allows to generate a isothermic-isobaric distri-
bution of the degrees of freedom [44; 45].

2.1.4 Integration of the Equations of Motion

Assigned to the physical system a energy potential for intra- and intermolecular in-
teractions, the integrator of the equations of motion is responsible for the accuracy of
the results. Any finite difference integrator is an approximation for a system evolving
continuously in time. The requirements for a good integrator are:
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• accuracy, in the sense that it has to faithfully approximates the true trajectory

• stability, in the sense that it has to conserve energy avoiding instabilities

• robustness, in the sense that it allows for large time steps (but still physically
realistic) in order to propagate the system efficiently through phase space

For simplicity I will describe here only the Verlet’s algorithm for the canonical ensemble
as an example of successful algorithm routinely used for the integration of the equa-
tions of motion in MD. Other algorithms, based on Liouville formulation, have been
introduced to permit the use of multiple time steps [46]. I will just draw the main ideas
behind an algorithm for the integration of the equations of motion without entering
into details that go beyond the subject of the present research.

Verlet’s Algorithm for Nosé-Hoover Equations

The simplest and most straightforward way to construct an integrator is by expanding
the positions and velocities in a Taylor expansion. Starting from a backward and a
forward Taylor expansion of r and v around t, for a small enough time step δt it is
possible to write the following Verlet’s equations [38]:

ri(t+ δt) = ri(t) + vi(t)δt+
[Fi

mi
− η(t)vi

]δt2
2

+O(δt4) (2.12)

vi(t+δt) = vi(t)+
[Fi(t+ δt) + F(t)

mi
−η(t+δt)vi(t+δt)−η(t)vi(t)

]δt
2

+O(δt4) (2.13)

where η regulates the fluctuations in the total kinetic energy. Recently, these equations
of motion have been improved in order to make them time reversible [46], allowing at
the same time to increase accuracy and robustness of the integration.

2.1.5 Some Other Tricks of Molecular Dynamics

Periodic Boundary Conditions

To mimic the presence of an infinite bulk surrounding a N-particle model system,
periodic boundary conditions are usually employed. The volume containing the N
particles is treated as the primitive cell of an infinite periodic lattice of identical cells.
With periodic boundary conditions a given particle i interacts with all other particles in
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this infinite periodic system. Assuming that all intermolecular interactions are pairwise
additive, the total potential energy of the N particles in any periodic box is

Utot(r) =
1
2

∑
i,j,n

‘v(|rij + nL|) (2.14)

where L is the diameter of the periodic box (here assumed cubic for simplicity) and
n is an arbitrary vector of three integer numbers, while the prime on the sum indicates
that the term with i=j is excluded when the n=0. This means that within periodic
boundary conditions to simulate bulk behavior the potential energy is an infinite sum
rather than a finite one. In practice, however, it is possible to divide the type of
interactions in two categories: short and long range interactions.

Treatment of Short Range Interactions The force calculation is the most time-
consuming part of molecular dynamics simulations. In fact if one considers a model
system with pairwise additive interactions and does not truncate the interactions, for
a system of N particles, N(N-1)/2 pair interactions need to be calculated. Efficient
techniques exist for speeding up the evaluation of both short range and long range
interactions in such a way that the computing time scales as N3/2 and NlnN, rather
than N2.

In the case of short range interactions, like van der Waals interactions which decay
at large r like 1/r6, the contribution to the potential energy beyond a certain cutoff rc

is truncated (applying at the same time the minimum image convention). The most
used method is the Verlet’s list, in which a second cutoff radius rv > rc is introduced,
and before to calculate the interactions, a list is made of all particles within a radius
rv of particle i. In the subsequent calculation of the interactions, only the particles in
this list have to be considered. If the maximum displacement of the particles is less
than rv-rc, only the particles in the list of particle i have to be considered (calculation
of order N). As soon as one of the particles is displaced more than rv-rc, it is necessary
to update the list (calculation of order N2). The latter operation will dominate for a
very large number of particles. Typical values of cutoff are between 10 and 12 Å.

Treatment of long range interactions When periodic boundary conditions are
applied, the long range Coulombic interactions with particles in the central cell and
with all periodic images must be taken into account. Formally the lattice sum to be
evaluated is:

VCoul =
1
2

N∑
i,j=1

∑
n

‘
qiqj

|rij − nL|
(2.15)
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where n is a lattice vector and
∑

n ‘ means that for n=0 it is i 6=j. It is, however, a well
known problem that this type of lattice sum is conditionally convergent and a method
to overcome this limitation was invented [47]. The idea is to introduce a convergence
factor into the sum 2.15, which depends on a parameter s, and then evaluate the sum
for s→0 .

It is possible to demonstrate that 2.15 can be replaced by the following one:

VCoul =
1
2

[
N∑

i,j=1

∑
n

‘
qiqjerfc(α|rij − nL|/L)

|rij − nL|
+

4πqiqj
L3

∑
k

1
k2
eikrije−k

2/4α2
+

1
L

[∑
n6=0

erfc(αn)
|n|

+
e−π

2n2
/α2

πn2
− 2α√

π

]
N∑
i=1

q2i +
4π
L3

∣∣∣ N∑
i=1

qi

∣∣∣2] (2.16)

where the evaluation of the potential is split into four different terms, where the last
two terms, called self - and surface-terms, are constant and may be calculated at the
beginning of a simulation. The first two sums depend on the inter particle separation
rij and need to be evaluated at each time step. Thus, the lattice sum is essentially split
into a sum which is evaluated in real space and a sum over reciprocal space vectors,
k=2πn/L. The first sum gives the potential of a set of point charges screened by an
opposite charge of the same magnitude having a gaussian form factor with width α.
The second sum subtracts this screening charge, but the sum is evaluated in reciprocal
space. erfc(x)=1-erf(x) decays as e−x

2
for large x, so the first sum contains mainly short

range contributions. On the other side, the second sum decays strongly for large k -
vectors and thus contains mainly long range contributions. The typical implementation
done and commonly used in molecular dynamics packages has been proposed by the
Darden’s group [13; 48]

2.2 Atomistic Representation of Biomolecules

The success of any computational approach for the study of biomolecular systems relies
on the quality of the physical model used to calculate the energy of the system as a func-
tion of its structure. Empirical energy functions are usually employed in computational
studies of biochemical and biophysical properties of systems [14; 15]. In conventional
molecular dynamics simulations, the empirical energy functions are functions of nuclear
coordinates only. The use of a single nuclear coordinate to represent atoms is justified
in terms of the Born-Oppenheimer approximation [2; 15].

Here I will focus on the commonly used all-atom force fields neglecting the class of
united-atom models, which have been shown to have however a similar accuracy [2].
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2.2.1 Functional Form of the Potential Energy

The empirical energy functions usually consist of a large number of terms parameter-
ized from experimental data and/or quantum mechanical studies of small molecules or
fragments. It is assumed that such parameters may be transferred to simulate larger
molecules of interest in different environment [14]. The set of functions along with the
associated set of parameters is termed force field.

Here I will focus my attention on the AMBER force field [49; 50] because it has been
demonstrated over the last years to be one of the best for the simulation of proteins
and nucleic acids [16; 17], along with others like CHARMM [51] and OPLS [52]. For
this reason this force field was also used for the development of the research presented
in this thesis.

The functional form of the AMBER force field is based on the assumption of addi-
tivity and transferability of the contributions, and is given by the sum of bonded and
non-bonded contributions:

V AA
total(r) = V AA

bonded(r) + V AA
nonbonded(r) (2.17)

The bonded contributions comprise two-, three- and four-body terms

V AA
bonded(r) =

∑
bonds

Kr(r − req)2 +
∑
angle

Kθ(θ − θ0)2 +

∑
dihedrals

Kφ[1 + cos(nφ− φ0)] +
∑

improper

Kν(ν − ν0)2 (2.18)

where:

• the first sum models two-body interactions between consecutive atoms with force
constant Kr and bond equilibrium length req

• the second sum models three-body interactions to describe bond angles with force
constant Kθ and equilibrium bond angle θ0

• the third sum models four-body interactions due to proper torsions with force
constant Kφ, multiplicity n and equilibrium torsion φ0

• the fourth sum models out-of-plane vibration involving improper torsions with
force constant Kν and equilibrium value ν0

The non-bonded interactions are the sum of two main contributions:

V AA
nonbonded(r) =

∑
pairs

4εij

[(
σij
rij

)12

−

(
σij
rij

)6]
+
∑
pairs

qiqj
ε0rij

(2.19)
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where:

• the first term, usually called Lennard-Jones potential, is used to model van der
Waals interactions between atoms at the distance rij . εij is the well depth,
σij is the distance at which the Lennard-Jones potential is zero. The Lorentz-
Berthelodt combination rules [50] are used to obtain the parameters for each pair
of different atoms.

• the second term is a Coulombic potential used to model electrostatic interactions
between atoms with partial charges qi and qj at the distance rij , where ε0 is
dielectric permittivity of vacuo.

The AMBER force fields has been parameterized for proteins and nucleic acids us-
ing quantum mechanical calculations and the strategy of parameterization has been
explicitly described in [22].

2.2.2 Atomistic Models for Water

Atomistic simulations of biomolecules are usually performed considering explicitly the
presence of solvent molecules, such as water. Several models have been proposed for
describing water at the atomistic level capable to reproduce the main thermodynamics
features of water at room temperature [10; 53]. The majority of the water models are
compatible with force field of proteins. Historically the family of SPC models has been
developed to be compatible with GROMOS force field [54], whereas the TIPnP family
is compatible with AMBER and CHARMM force fields [55–57]. Recent studies have
shown that the mix of water models with different all-atom force fields does not raise
major concerns for the accuracy of the simulations [58].

2.2.3 Recent Improvements and Development

The current generation of AMBER force field is able to reproduce experimental data
reasonably well [59–61]. However, the force fields rely on a number of approximations
and thus need continuous improvement as soon as disagreements with experimental
data start to appear. For proteins, along this line of research, it has been recently pro-
posed the AMBER99SB [16] refined set of parameters that, improving the parameters
of the dihedral backbone angles, permits to better reproduce structural and relaxation
data. More recently in the group of D. E. Shaw improvements of AMBER99SB have
been proposed in order to better describe dihedral arrangements of several side-chain
amino acids (i.e., AMBER99SB-ildn [18]). For nucleic acids the Barcelona corrections
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have recently improved the reliability of DNA molecular dynamics simulations [17].
Still under development and refinement are more reliable parameters for RNA. More-
over, of paramount importance is the extension of force field to other categories of
biomolecules. Recently, important extensions of the AMBER force field in this context
are: Slipids [23; 62; 63] and GAFFLipid [64] for lipids; Glycam [24] for carbohydrates;
Åqvist parameterization for ions [65].

2.3 Coarse-Grained Representation of Biomolecules

A coarse-grained (CG) representation of a biomolecule is a simplified representation
with respect to its fine-grained description used as reference representation [8; 66]. Usu-
ally the reference representation is the all-atom models discussed above. In the previous
sentences there is the essence of the coarse-grained procedure but no specific recipe to
create robust models. In fact for a given simplified representation of a biomolecule a
plethora of coarse-grained representations can be imagined and developed [34].

Some scientists think that also an all-atom representation can be considered a
coarse-grained representation in which the electronic degrees of freedom have been
integrated out [67]. I don’t fully agree with this picture because the possibility to
neglect the electronic degrees of freedom is guaranteed by the Born-Oppenheimer ap-
proximation under some range of validity. The electrons are 3 orders of magnitude
faster than the fastest nucleus (the proton) thanks to fact that their mass is 3 orders
of magnitude smaller. Such a clear size- and time-scale separation is not always valid
in a coarse-grained representation. For these reasons I think that the theoretical justi-
fication of a coarse-grained model resides more on the theory of renormalization group,
where the process of coarse-graining is made integrating out degrees of freedom in order
to identify effective degrees of freedom [68; 69].

I decided to focus my attention on coarse-grained models constructed in order to
match closely atomistic structures (or forces). I will discuss exclusively models de-
veloped to treat proteins in simulation, but similar models can be applied to nucleic
acids [35] and membranes [70]. Thus, I will first discuss simplified representations
based on primary structures of proteins, despite simplified representations based on
secondary or tertiary structure exist [69]. I adopted this approach because I think
that it is necessary to have an accurate quasi-atomic description of protein structures
and dynamics to be put in correspondence with medium to low resolution structures
produced nowadays by X-ray crystallography (between 2 to 5 Å) and cryo electron mi-
croscopy (up to 20 Å). This simplified representation permits to decrease the number
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of particles (interacting centers or beads) allowing in such a way a speed up of the force
evaluation that, as described before, is the main bottleneck of a molecular dynamics
simulation. Furthermore, this allows at the same time a sufficient level of accuracy in
the description of physical-chemical properties of the biomolecule under investigation.

From my point of view, a coarse-grained representation of the primary structure is
based on the definition of a mapping scheme that permits, for every possible amino acid
composing a polypeptide chain, to pass from an all-atom representation to a simplified
one having at least one bead per amino acid. Once the coarse-grained representation
is defined, it remains to determine the functional form of the potential energy that
should describe accurately, for that mapping, protein dynamics preserving secondary
and tertiary structures.

I will present in the following a non exhaustive introduction to the main ideas be-
hind the development of a coarse-grained model touching upon the type of mapping,
functional forms for the potential energy, parameterization strategies, solvent descrip-
tion and choice of the time step. Relevant reviews and books have been written on
this topic, where further information can be found [34; 68; 69; 71–77]. The specific CG
force field developed in this thesis will be reported in detail in Chapter 3.

2.3.1 Atomistic to Coarse-Grained Mapping

The types of mapping for a coarse-grained model based on the primary structure have
been classified by Tozzini [34] who identified 7 different classes. Here, I propose an
extension of that classification in order to take into account coarse-grained models
preserving an almost atomic description of the backbone (class 0).

Class 0 in which the backbone is described at all-atom level and 1 to 4 beads are used
to describe side chains [78–81]

Class 1 in which an amino acid is described by one bead placed on the Cα [33; 82; 83]

Class 2 in which an amino acid is described by one bead placed on the Cβ [84]

Class 3 in which an amino acid is described by two beads: one placed on the Cα an
the other placed on the center of mass of the side chain [85]

Class 4 in which an amino acid is described by two beads: one placed on the center
of mass of the backbone and the other in the center of mass of the side chain [86]

Class 5 in which an amino acid is described by 1 to 3 beads: one placed on the Cα

and from 0 to 2 beads to represent the side chain [87; 88]
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Class 6 in which an amino acid is described by 1 to 5 beads: one placed on the center
of mass of the backbone and from 0 to 4 beads to represent the side chain [89]

Class 7 in which an amino acid is described by 3 beads: one bead placed on the Cα,
one bead on the centroid of the rest of the backbone and on bead for the side
chain [8; 66; 90]

All these mappings present advantages and disadvantages, which I won’t touch
in detail here. However, class 6 presents a good compromise in preserving the steric
hindrance of side chains, although this mapping compared to others implies an higher
number of beads. Models belonging to class 6 present moreover the best compromise
between the two requirements I discussed before, namely speed up of the calculations
and sufficient accuracy in describing the physicochemical properties of biomolecules.
For this reason I adopted this mapping to develop the original coarse-grained model
presented in Chapter 3.

2.3.2 CG Energy Functional Form

Apart for the UNRES force-field [90] the CG functional form that is usually adopted is
reminiscent of that used in all-atom potential energy function and usually the general
form is as follows:

V CG = V CG
pseudo
bonds

+ V CG
pseudo
bendings

+ V CG
pseudo
dihedrals

+ V CG
vdw + V CG

ele (2.20)

where:
V CG
pseudo
bonds

=
∑
pseudo
bonds

kp−b(b− b0)2 (2.21)

is used to describe harmonic pseudo bonds among two consecutive beads having force
constant kp−b and b0 equilibrium values b0;

V CG
pseudo
bendings

=
∑
pseudo
bendings

4∑
n=2

kp−a,n(ω − ω0)n (2.22)

is used to describe pseudo bending angles among three beads with ω0 equilibrium values
and kp−a,n constant forces;

V CG
pseudo
dihedrals

=
∑
pseudo
dihedrals

3∑
n=1

kp−d,n[1 + cos(nχ− χ0)] (2.23)
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is used to describe pseudo-dihedrals having χ0 equilibrium value, n as multiplicity and
kp−d,n force constants;

V CG
vdw =

∑
pairs

4δij
[(λij
rij

)m
−
(λij
rij

)6]
(2.24)

which is a generalized Lennard-Jones with repulsive part having an exponent m between
12 and 8 [89; 91; 92], which is used to mimic the apparent softness of coarse-grained
beads1;

V CG
ele =

∑
pairs

QiQj
ε0εrrij

(2.25)

is a simple Coulombic potential used to describe electrostatic interactions between
beads of charge Qi and Qj (this is commonly the only simple electrostatic contribution
modeled in this class of CG force field). Some time a relative dielectric constant εr is
used in order to effectively screen charge-charge interaction due to a coarse represen-
tation of the solvent, or a more explicit solvent representation is used (see below).

2.3.3 Solvent Description

As in atomistic simulations also for CG models is important to consider an accurate
treatment of the solvent effects. Here I will give a brief introduction of the approaches
that are usually used for the description of the solvent in coarse-grained molecular
dynamics simulations.

Implicit solvent representation To describe and reproduce solvent effects and
evaluate electrostatic interactions in biopolymers, the concept of effective dielectric
constant has been largely explored [93–98]. This is done by using linear or nonlinear
distance-dependent dielectric functions, although the fact that they tend to ignore
the dielectric boundary between protein and solvent. The linear distance-dependent
dielectric function is usually given by the following formula:

εeff,L(r) = 1 + kr (2.26)

where k =4. This type of distance-dependent dielectric function has been used for
several all-atom force fields, like the first generation of AMBER force field [99]. This
approximation is thought to be too crude despite being extremely cheap from a com-
putational point of view [97].

1Some groups use a Buckingham potential in order to mimic the apparent softness [87]
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Nonlinear dielectric treatments are obtained using sigmoidal functions as the fol-
lowing:

εeff,S(r) =
ε3

1 + (
ε3
ε2
− 1)e

−
r

L3

(2.27)

where ε2 ∼5, ε3 ∼80, L3 ∼20 Å. This function approximates the low dielectric constant
characteristic for biopolymers at short distances, whereas at large distances approaches
the bulk dielectric constant of water. Other sigmoidal functions, for instance using cut-
off values of ∼20 at short distances and ∼80 at large distances, have been used [96]. In
order to take into account the effect of the dielectric boundary the Tanford-Kirkwood
theory has been also used [95]. More accurate distance dependent dielectric functions
have been proposed by the group of Mehler, that are connected to the classical dielec-
tric theory of polar solvation [93]. Moreover numerical methods have been developed
to describe the real geometry of proteins and solve the linearized Poisson-Boltzmann
equation [100].

Explicit Solvent Representation An explicit coarse-grained representation of wa-
ter molecules consists in grouping atoms belonging to one or more waters [101]. Usually
the potential energy function used to describe the water solvent is given by the sum of
a Lennard-Jones potential and a electrostatic contribution:

V CG
W = VLJ + Vele (2.28)

although some models do not make use of a Lennard-Jones (or use a modified Lennard-
Jones potential) and the electrostatic contribution is neglected [92; 102]. The electro-
static contribution is mainly used to mimic the dielectric properties of the solvent.The
most fruitful approaches used to parameterize this term consist in the creation of polar-
izable water models. In recent years, this has been done by using a variety of strategies,
like the polarization density functional approach [103; 104], the inertial approach [105];
or by giving an internal structure (to the bead of water) with interaction sites free to
vibrate and/or rotate around equilibrium values [106–108].

2.3.4 CG Parameterization Strategies

The calibration of coarse-grained parameters can be done in general based on matching
strategies of:

1. quantities obtained from simulations performed with a finer-grained model;
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2. quantities obtained from experiments;

3. a mix of experimental and computational quantities.

Here I will mainly focus on parameterization based on computational data since
this is the approach that I mostly used during my thesis. I will sketch the main ideas
that have been followed by other groups in the past, such as force-matching, relative
entropy, reverse Monte Carlo and iterative Boltzmann inversion 1. The main drawback
of all these methods is that they assume the reliability of the underlying atomistic
models, assumption that is not always true. On the other side, the main benefit is that
these models are based on well established theoretical concepts.

Force-matching In the domain of protein simulations, the force-matching strategy
has been broadly used mainly by the group of Voth, exploiting the idea proposed earlier
to calibrate interatomic potentials from first principle calculations [109]. This method
permits to determine an optimized force field describing the interactions between coarse-
grained sites from atomistic force data [110; 111]. The assignment of the force-field
parameters is done minimizing the residual function of N vector functions:

χ[F] =
1

3N
〈
N∑
l=1

|Fl(r)− fl(r)|2〉 (2.29)

where: F={F1, ...,FN} is an arbitrary set of N vector valued functions of the CG
configuration on each CG site I; fl =

∑
i∈Il fi(r) is the net force on the atoms involved in

the bead I; and the angular bracket indicates an equilibrium canonical ensemble average
evaluated with the atomistic model. The force-matching approach has been further
extended generalizing the Yvon-Born-Green theory [112–117]. It can be demonstrated,
in the framework of this theory, that for two particles distant |r| belonging to a system
composed by N particles, the total force acting on the first particle is given by two
contributions: the direct force from the second particle; the correlated net force from
the environment, which is decomposed into contributions from shells of particles at a
distance |r′| away from the first particle [118]. While well founded theoretically, this
method has not been able to produce a set of transferable parameters, despite some
trials have been attempted [119; 120], determining the need to run always an all-atom
simulation in order to perform the coarse-grained simulation.

1For simplicity I am not going to present cumulant-based expressions of multi-body terms used in

the UNRES force-field [90]

32



2.3 Coarse-Grained Representation of Biomolecules

Relative Entropy The concept of relative entropy has been exploited for the iden-
tification of one model system that best reproduces the features of an existing system
called target system [121]. This requires to minimize the relative entropy given by:

Srel =
N∑
i=1

pT,i ln
pT,i
pM,i

(2.30)

where the summation is over all configurations, pi is the probability of configuration i

in an ensemble, and T and M indicate target and model, respectively. The minimiza-
tion of the relative entropy is used to assign the values to a collection of adjustable
parameters {λ1, λ2, ...} from which a model potential energy function UM depends, us-
ing an atomistic target function UT . This method suffers, at the moment, of the same
limitations encountered with the force-matching method.

Reverse Monte Carlo The reverse Monte Carlo has been introduced to renormalize
the Hamiltonian of a molecular system given by:

H(r) =
N∑
α=1

kαSα(r) (2.31)

where Sα(r) are functions of particle coordinates r and kα are constants defining the
interaction potential [122]. By using an iterative procedure it is possible to assign
numerical values to kα using the following formula:

k(n+1)
α = k(n)

α + ∆k(n)
α (2.32)

where ∆k(n)
α is calculated starting from the knowledge of the differences of the trial

values and the reference values ∆〈S(n)
α 〉 = 〈S(n)

α 〉−S∗α of the function one would like to
reproduce, and inverting the equation

∆〈S(n)
α 〉 =

N∑
γ=1

∂〈S(n)
α 〉

∂kγ
∆k(n)

γ (2.33)

where S∗α is usually calculated at atomistic level.

Iterative Boltzmann inversion The technique of the iterative Boltzmann inver-
sion is based on the assumption that the total energy V CG can be separated into
bonded V CG

B and non-bonded V CG
NB contributions as described before. The coarse-

grained bonded interactions of the model are determined by sampling the coarse-grained
degrees of freedom with atomistic simulations (or structural databases) and calculating
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the corresponding probability distributions. These distributions are characterized by
pseudo-bonds {b}, pseudo-angles {ω} and pseudo-torsions {χ} giving a total distribu-
tion PCG({b}, {ω}, {χ}, T ) which is temperature dependent. Assuming uncorrelation
of the coarse-grained degrees of freedom the total distribution can be factorized:

PCG({b}, {ω}, {χ}, T ) = PCG(b1, T ) · . . . PCG(bN1 , T ) ·

PCG(ω1, T ) · . . . PCG(ωN2 , T ) ·

PCG(χ1, T ) · . . . PCG(χN3 , T ) (2.34)

for N1 pseudo-bonds, N2 pseudo-angles and N3 pseudo-torsions. The individual prob-
ability distributions are Boltzmann-inverted to obtain the corresponding potentials:

V CG(bi, T ) = −kBT ln

[
PCG(bi, T )

b2i

]
+ Cbi (2.35)

for the generic bond bi,

V CG(ωj , T ) = −kBT ln

[
PCG(ωj , T )

sinωj

]
+ Cωj (2.36)

for the generic angle ωj ,

V CG(χk, T ) = −kBT ln
[
PCG(χk, T )

]
+ Cχk (2.37)

for the generic torsion χk.
The coarse-grained non-bonded potential instead is calculated starting from the

knowledge of the atomistic radial distribution functions g(r) associated with the system
of interest using the following formula iteratively:

V CG
NB,i+1 = V CG

NB,i − kBT ln
[gi(r)
g(r)

]
(2.38)

Strictly speaking, the iterative Boltzmann inversion is mainly used to determine non-
bonded potentials [123–126], while simple Boltzmann inversion approaches are used to
have potentials describing bonded interactions in biomolecules.

To conclude, CG models have been also parameterized against experimental data.
This consists in tuning the values of the model parameters using a test-and-trial scheme
in order to reproduce some properties for which experimental data are available [92;
106; 107]. Typical properties than one would like to reproduce (mainly for surfactants)
are density, surface tension, solvent accessible surface area, relative static dielectric
permittivity and partition properties. One possible future approach to enhance the
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reach of these approaches could be to exploit efficient optimization strategies in order
to automatize the parameterization step to reproduce system properties.

2.3.5 Choice of a Realistic CG Time Step

The choice of the time step is in general of paramount importance for any reliable
molecular dynamics simulation. In the case of coarse-grained simulation the choice can
be complicated by the different levels of coarse-graining one decide to adopt. This topic
is still matter of debate and not clear and unique recipe has been adopted in literature
despite some suggestions have been proposed by van Gunsteren and coworkers [107;
127–129]. Following these ideas I will discuss about the choice of the proper time step
to use for a CG simulation, based on a very well known topic, the harmonic oscillator.
In fact, every coarse-grained potential is in part a collection of harmonic oscillators
having their own frequency of vibration given by:

ωCG =
2π
TCG

=

√
kCG

µCG
(2.39)

where TCG is the time of oscillation, kCG the force constant and µCG the reduced
mass. Thus, the minimum oscillation time TminCG of a coarse-grained model should be
compared with the minimum oscillation time TminAA of an all-atom potential. In the case
of the AMBER force field this is given by the bond between carbon atoms and nitrogen
atoms of purines (k=529 kcal·mol−1·Å−2, µ=6.47 amu), TminAA =0.34 · 10−13s, thus that
a δtAA=2 · 10−15s is commonly used 1.

One can in principle calculate given a CG mapping, the TminCG of the fastest CG bond
oscillation. The TminCG of the coarse-grained model presented in present thesis is given
by the bond between the backbone bead and a tyrosine bead (k=82 kcal·mol−1·Å−2,
µ=17.78amu), TminCG =1.43 · 10−13s.

The scaling factor fCG given by the fraction:

fCG =
TminCG

TminAA

(2.40)

should provide a realistic multiplication factor to the all-atom time step to have a
realistic time step to be employed in a coarse-grained simulation:

δtCG = fCG · δtAA (2.41)

1Whitout considering bonds involving hydrogen atoms
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In the specific case of the coarse-grained presented here we thus obtain δtCG=8.34 ·
10−15s, that should be considered as an upper limit 1. If one uses a constraint algorithm
like SHAKE [130], it could be acceptable to have δtCG=10.0 · 10−15s. The time steps
used by other groups is between the two extreme cases of 1 fs [112; 121] and 40 fs [89].
The use of a time step of 1 fs seems to be too conservative considering that 2 fs is the
all-atom time step. Others groups [79; 87; 90] use a time step of 5 fs that seems to
be reasonable considering the level of adopted granularity of their model. Recently the
group of van Gunsteren numerically demonstrated that the time step of 40 fs should
be avoided in order to preserve the thermodynamic properties of the model system,
proposing an upper limit of 10 fs for Lennard-Jones interacting particles having a mass
of four time that of one single water molecule [127].

2.4 Analysis of Protein Structure and Dynamics

In this section, I will report the general aspects of some of the analyses performed
on the MD trajectories at the atomistic and CG level. I will talk about analyses of
structural properties, structural fluctuation properties, principal component analysis,
autocorrelation functions and solvation dynamics. Altogether these analyses permit to
give a description of protein dynamics giving an exhaustive representation of it.

2.4.1 Structural Properties

Among the structural properties I considered the root mean square deviation (RMSD)
and gyration radius (Rg). I used these analyses to check the validity of my coarse-
grained simulations (Chapter 3) and monitor the structural behaviour of atomistic MD
simulations of ubiquitin (Chapter 4).

Root mean square deviation

The RMSD is generally used to quantify the structural deviation of the protein struc-
ture during molecular dynamics with respect to a reference structure that (usually) is
experimentally resolved with X-ray crystallography or NMR techniques. The RMSD is
given by the following formula:

RMSD(tj , t0) =

√√√√ 1
M

N∑
i=1

mi(ri(tj)− ri(t0))2 (2.42)

1In fact in the present thesis δtCG=5.0 · 10−15s
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where

M =
N∑
i=1

mi (2.43)

is the total sum of the masses of the atoms/beads of the protein, and where {r(tj)}
represents the collection of atom/bead positions for the protein at time tj , {r(t0)}
represents the collection of atom/bead positions of the reference structure.

Gyration radius

The gyration radius is calculated to quantify how compact is a globular protein. Its
formula is given by:

Rg(tj) =

√√√√ 1
N

N∑
i=1

(ri(tj)− rcom(tj))2 (2.44)

where rcom is the center of mass of the protein.

2.4.2 Structural fluctuation properties

Among the structural fluctuation properties I considered the root mean square fluctu-
ation (RMSF) and S2 order parameter that permit to quantify the level of dynamic
flexibility of the protein. I used these analyses to check if my coarse-grained model was
able to reproduce all-atom MD results (see Chapter 3).

Root mean square fluctuation

The RMSF is calculated usually for the Cα carbons using the following formula:

RMSFi =

√√√√ 1
T

T∑
tj=1

(ri(tj)− 〈ri〉)2 (2.45)

where T is the total amount of time simulated, 〈ri〉 is the average position of Cα carbon
i.

S2 order parameter

The S2 order parameter provides information about angular amplitude of the internal
motion of proteins [131]. The S2 order parameter for the backbone dipole moment
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given by the N and H atoms of the amide bond is considered. The S2 order parameter
is then calculated using the formula [132; 133]:

S2
i =

1
2

[
3

3∑
α=1

3∑
β=1

〈
µi,αµi,β

〉2
− 1
]

(2.46)

where µi,α (α=1, 2, 3) are the x, y and z components of the normalized dipole moment.

2.4.3 Principal Component Analysis

The principal component analysis (PCA), also called covariance analysis, is a mathe-
matical technique for analyzing high-dimensional data sets, that allows for a reduction
of the dimensionality of the space concentrating on the coordinates with larger spread or
fluctuations. This procedure for N -dimensional data r(t) is based on the construction
of the covariance matrix C ij , for atoms i and j, defined as

Cij = 〈(ri − 〈ri〉)(rj − 〈rj〉)〉 (2.47)

where 〈〉 is the average over all data points. The symmetric N xN matrix C can be
diagonalized with an orthonormal transformation matrix R:

RTCR = diag(λ1, λ2, . . . , λN ) (2.48)

where the column of R are the eigenvectors or principal modes. The eigenvalues λi are
equal to the variance in the direction of the corresponding eigenvector. The original
data can be projected on the reference system generated by the eigenvectors to give
the so-called principal components pi, i = 1, . . . , N :

p = RT (r− 〈r〉) (2.49)

In molecular dynamics of proteins, the data are the result of a dynamic process, so the
principal components are a function of time and p1(t) is the principal component with
the largest mean square fluctuation [134]. This type of analysis can be also used to
study large structural ensembles [135].

Hess analysis of conformational friction

The analysis of the principal components allows a rough estimation of the effective con-
formational friction coefficient experienced by a protein during a molecular dynamics
simulation [136; 137]. In practice, windows of the protein dynamics, extracted from
MD trajectories, are identified on the basis of a structural property, or PCA for which
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the protein is exploring one single minimum. For the identified window one carries out
PCA, calculating the principal components pi, i = 1, . . . , N , storing the correspondent
eigenvalues and assuring that they are gaussian distributed. For each of these princi-
pal components one can estimate the harmonic force constant in the direction of the
principal component i using the following formula:

ki =
kBT

λi
(2.50)

where kB is the Boltzmann’s constant, T the chosen temperature of the simulation, λi
the eigenvalue of the principal component i ([λ]=nm2). Typical values of k are between
100 and 800 kJ mol−1 nm−2 [136]. For all the principal components one has to calculate
the auto-correlation function using the usual definition:

Cpi(t
′) =

1
tmax

∑tmax

t0=1

1
Nocc

∑Nocc
j=1 pi(t0 + t′) · pi(t0)

1
tmax

∑tmax

t0=1 pi(t0) · pi(t0)
(2.51)

that is calculated for all the possible starting time t0 and where t′ is temporal scale
evaluated. The fit of 2.51 with a linear or exponential function permits then to give
an estimation of the decay time τ of that principal component. Typical values of τ
are between 15 to 10000 ps. Finally the estimation of the friction coefficient η for the
particular minimum under study is given by the following formula:

η = kτ (2.52)

with η having values ranging from 103 to 107 amu
ps [136; 137].

2.4.4 Auto correlation functions

Several auto correlation functions can be calculated to give a quantitative picture of
protein dynamics. Here I will focus my attention on the conformational auto correlation
function.

The internal conformational diffusion can be estimated calculating the following
quantity:

< ∆r(t′)2 >=
1

tmax

tmax∑
t0=1

1
Natoms

Natoms∑
i=1

(r(t0 + t′)− r(t0))2 (2.53)

that is calculated for all the possible starting time t0. The fitting of this function permits
the estimation of the effective diffusion coefficient in the internal conformational space
of the protein and should deviate from the Einstein’s relation in the sense that:

< ∆r(t′)2 >∝ t′β (2.54)
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where β <1 which is called sub-diffusive regime [138]. I will show in Chapter 4 that
this is the case for the proteins under study in the present thesis.

2.4.5 Describing Solvation Dynamics

The survival probabilities of water-protein contacts provide a quantitative estimation
of the time-scales of their interactions. This estimation relies on the function Pj(tn, t),
which takes the values of 1 if the jth water molecule is within a certain cut-off of
the protein between time tn and tn + t, and zero otherwise [139]. Averaging out this
function over the simulation time and all the water molecules, one can write the survival
probability as follow:

Nw(t) =
1
Nt

Nt∑
n=1

∑
j

Pj(tn, t) (2.55)

where Nt is the number of the simulation time-frames.
The protein hydration shell is approximated directly from the van der Waals pa-

rameters of the atomistic force field in use. Only water molecules with atoms within a
distance less than Rcut of any protein’s atom contribute to the first hydration shell. A
different cut-off is chosen for any couple of water molecule and protein atoms, w and
p, respectively, such that:

Rcut = f(rw + rp) (2.56)

where rw and rp are the van der Waals radii of the atoms obtained from the force
field. f is instead a coefficient, set to f=1.1, used to approximate Rcut to at least the
first minimum of the protein-water pair correlation function. Nw(0) gives the average
number of hydration water molecules, or hydration number, Nw(tsim) is instead the
number of water molecules bound to the system for the whole simulation [140].

The fit of the calculated water survival probability is usually done by one stretched
exponential combined with two or three simple exponential using the following for-
mula [141]:

Nw(t) ' nse
−
( t
τs

)γ
+

4∑
i=2

nie

(
−
t

τi

)
(2.57)

where the first exponential is called stretched exponential because usually γ 6 1.0 and
the residence time for it can be computed as average relaxation time:

〈τs〉 =
τs
γ

Γ
(1
γ

)
(2.58)

The temporal scales of the water survival on the surface of the protein are given by
〈τs〉 and τi with i=2 to 4, and the corresponding number of waters that belong to
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that particular scale are ns and ni with i= 2 to 4. Typical temporal scales of water
survival on the protein surface is somehow universal because it has been numerically
demonstrated that: < τs >6 30ps, 35 6 τ2 6 200ps, 300 6 τ3 6 1000ps and τ4 >

10 ns [140; 141]. This analysis was applied to the study of the effects of solvent and
crowding agents for ubiquitin dynamics (see Chapter 4).
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Chapter 3

Development of a coarse-grained model

for numerical simulations of proteins

The idea of using a simplified model in computational studies of proteins dates back to
Levitt & Warshel’s (LW) simplified model for protein folding [77].

Arieh Warshel

3.1 Preface

In the present chapter I will present the development of a coarse-grained (CG) model
that accounts for a simplified electrostatic description of soluble proteins. The mo-
tivation behind this choice is based on the fact that electrostatics is of fundamental
importance for an accurate description of secondary, tertiary and quaternary struc-
tures of proteins. This CG model has been developed with the aim of satisfying two
main requisites of a CG representation, namely to speed-up the simulations with respect
to the all-atom representation, and to reproduce structural and dynamic properties in
sufficient agreement with all-atom results.

The present chapter is adapted from an article accepted for publication in the Jour-
nal of Chemical Theory and Computation with the title Electrostatic-consistent

coarse-grained potentials for molecular simulations of proteins. En-
rico Spiga†, Davide Alemani†, Matteo Thomas Degiacomi†, Michele Cascella‡, Matteo
Dal Peraro† († Institute of Bioengineering, School of Life Sciences, École Polytech-
nique Fédérale de Lausanne-EPFL, Lausanne, CH-1015, Switzerland; ‡ Departement
für Chemie und Biochemie, Universität Bern, Freiestrasse 3, Bern, CH-3012, Switzer-
land)
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3.2 Introduction

Fundamental biological processes at the molecular level involve macromolecular as-
semblies of the most different sizes, and can occur in a broad spectrum of time and
length scales [142]. The most straightforward and accurate way to study these pro-
cesses by computational approaches is to develop and use models at an atomistic level
of resolution. Atomistic models for biomolecules have been successfully applied in
the past decades [143], and are today at the most advanced frontier of biomolecular
simulations [26; 28; 29; 31]. To date, the boundaries for atomistic simulations have
reached the millisecond timescale and passed the million of atoms [19; 144–146]. De-
spite the current progress and success of all-atom simulations, the computational cost
for this resolution remains challenging for the routine study of larger systems and for
longer timescales. Following this objective, a variety of simplified models have been
proposed in the last decades [8; 66]. In particular, coarse-grained (CG) Hamiltoni-
ans have been introduced to describe macromolecular systems. The first CG models
focused on simple hydrophobic-polar interactions, which led to a series of models for
surfactants-water or lipid-water mixtures [36; 37; 124; 147]. In more recent years, the
same approach has been adopted for the development of multi-scale methods and CG
models for proteins and nucleic acids, used for the investigation of a large variety of
processes [34; 69; 71; 73; 75; 76; 79; 106; 148–152].

CG models for proteins are based on structural topologies that map the atomistic di-
mensionality to a given CG resolution, and on effective potentials able to reproduce the
interactions of the original atomistic representation. The different strategies to derive
CG potential parameters discussed in the literature are mostly based on mining degrees
of freedom through Boltzmann inversion techniques, thermodynamic integration, force
matching or cumulant-based descriptors [90; 111; 124; 153]. In fact, it is extremely dif-
ficult to derive a general, multi-resolution rigorous coarse-graining theory that would
be able to generate a consistent and transferable CG force field at any given level of
resolution. In the recent past, several steps towards this goal have been reported in the
literature [111; 112; 121]. Force matching strategies have been particularly successful in
determining effective coarse-grained potentials from atomistic simulations [110; 154].
This approach has been applied to the study of several problems ranging from the
folding of small peptides [155] to the simulation of immature HIV-1 virion [156]. More-
over, tentatives to overcome the problem of transferability of the potential parameters
have been done checking the correspondence of parameter values among systems [120]
or adopting a ”host and guest parameterization strategy” with consequent CG MD
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simulations to quantify the transferability of the parameters [119]. With the same
objective, using the Yvon-Green-Born integral equation it has been possible to treat
many-body structural correlations with the aim to determine more transferable poten-
tials for folded proteins [116]. Using the concept of relative entropy to guide the param-
eterization procedure, promising results have been recently obtained for the study of
large-scale fibrillar assembly [157]. Still, many issues afflict current CG schemes, which
limit their general applicability to a large class of relevant biological problems. The
functional form at CG level is not univocally defined, and in principle should explicitly
treat many body effects [158] or polarization terms. Also, optimal mapping schemes
able to ensure the accuracy of the potentials in reproducing particular properties of
interest [159] should be applied. In practice, effective schemes able to overcome some
of these problems producing CG force fields adapted to tackle specific biological prob-
lems are present in the literature. For example, the MARTINI force field for proteins
and lipids, which is characterized by good transferability, has been developed using a
combination of free energy based calculations and Boltzmann inversion [89; 153]. This
model was successfully applied to membrane simulations and showed great potential
for membrane proteins investigations [160–163]. One drawback of the MARTINI force
field lies in the requirement of external biases to preserve secondary structure elements,
limiting the possibility to explore phenomena associated to secondary structure transi-
tions. Another transferable coarse-grained model with dipolar backbone contributions
has been applied to small folded proteins, showing promising results for the description
of structural fluctuation properties at this level of resolution [87]. The investigation of
large conformational changes has been successfully addressed by cumulant-based ap-
proaches for the definition of effective multi-body potentials. Using such an approach
it has been possible to quantify correlations between local and non-local interactions,
creating an united-residue force-field [90; 164]. This force-field has been applied to
the folding of α- and α/β-proteins [165] and the opening and closing of Hsp70 chap-
erones [166]. Preserving an atomistic description of the backbone, while only the side
chains are coarse-grained, is an effective solution to explore and stabilize the secondary
structure elements. Not surprisingly, CG models obtained using this strategy are widely
used to study the aggregation of amyloidoigenic peptides, the folding of small peptides
and refinement of protein structures [78–80; 88; 91; 167; 168]. On the other side, while
improving on secondary structure stability, this approach departs from a uniform CG
mapping and introduces additional degrees of freedom at the backbone level to create
an almost atomistic representation.

My host group has recently proposed a strategy to describe the backbone contri-
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bution while preserving a single bead representation. The introduction of the explicit
backbone dipole defined by three consecutive Cα beads along with the treatment of
non-radial dipole-dipole interactions in dynamics allowed to obtain stable secondary
structure elements of unspecific poly-peptides and to sample conformational transi-
tions [83]. In this work, I introduce a description of side chains electrostatics and
extend this model to real proteins. The electrostatic contribution is explicitly consid-
ered to the second order of the multipole expansion, so that the remaining part of the
non-bonded interactions are responsible only for short-ranged contributions. As previ-
ously demonstrated [169], this approach has the benefit to better describe the actual
electrostatic field at a CG level with implications to the treatment of molecular recogni-
tion in protein-protein interactions (PPIs). Moreover, as shown for short peptides [83],
within this approach the secondary structure of a variety of folding motifs is naturally
maintained.

Following a parameterization protocol that combines Boltzmann inversion schemes
and force-matching methods, I tuned the bonded and non-bonded terms of the back-
bone and side-chain beads for a broad range of different structural protein folds, using
a novel algorithm based on particle swarm optimization [170–174]. The resulting set
of electrostatic-consistent potentials allowed simulating soluble proteins, and protein-
protein complexes at the sub-microsecond scale in few days, preserving a large struc-
tural and dynamic agreement with respective all-atom simulations and experimental
reference structures. Moreover, the proposed scheme of parameterization provides at
the same time an inexpensive way to quickly derive CG parameters for protein systems,
and can eventually contribute to the generation of more transferable parameters to be
use in a general multipurpose transferable CG force field.

3.3 Methods

3.3.1 Coarse-graining the atomistic structure and electrostatics of

proteins

The present CG model is based on an approximately four-to-one atoms-to-bead map-
ping, consistent to that used by other CG force fields (e.g. MARTINI [89; 92; 153]).
On average, four heavy atoms are represented by a single interaction center, with the
exception of aromatic side chains, where a higher resolution to map their geometric
specificity has been used (Fig. 3.1). All the amino acids are composed by a bead repre-
senting the backbone and placed on top of the Cα atom, whereas one or more beads are
used for the side chain, which are placed at the center of mass of their constituent heavy
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atoms. Alanine and glycine amino acids constitute the only exception, each being com-
posed by a single bead. The mass of each bead is constituted by the total mass of all the
respective atoms (Fig. 3.1, Tab. 3.1). Amino- and carboxy- terminal backbone beads
are described bringing their respective zwitterionic charge, and with the corresponding
different total mass with respect to normal backbone beads. Apart from the massive

Figure 3.1: Coarse-grained representation of amino acids used in this work. Backbone
beads are represented in ice-blue, side-chain beads are in yellow, arrows represent the
electrostatic dipole moments associated with polar side-chains and the backbone. Acidic
and basic amino acids carry net unitary charges.

beads, this CG structure presents multiple electrostatic centers bringing a multipolar
expansion of the corresponding all-atom electrostatic potential arrested to the dipolar
term. In particular, it has been introduced mono-polar charges and/or permanent elec-
trostatic dipoles at all charged/polar side-chains as well as at each peptide-bond of the
backbone (Fig. 3.1 and 3.2). The backbone dipoles are embedded in the structure of
the polypeptide chain following a previous work [83].
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Table 3.1: List of beads types

Bead type description mass [amu]

BA alanine bead 71.142

BU generic backbone bead 56.107

SR1 arginine side chain bead type 1 57.159

SR2 arginine side chain bead type 2 44.183

SN asparagine side chain 58.123

SD aspartate side chain 58.036

SC cysteine side chain 47.095

SE glutamate side chain 72.063

SQ glutamine side chain 72.150

SH1 histidine side chain bead type 1 26.038

SH2 histidine side chain bead type 2 28.097

SI isoleucine side chain 57.116

SL leucine side chain 57.116

SK1 lysine side chain bead type 1 42.018

SK2 lysine side chain bead type 2 31.121

SM methionine side chain 75.154

SF1 phenylalanine side chain bead type 1 26.038

SF2 phenylalanine side chain bead type 2 35.548

SP proline side chain 42.081

SS serine side chain 31.034

ST threonine side chain 45.061

SW1 tryptophan side chain bead type 1 26.038

SW2 tryptophan side chain bead type 2 28.097

SW3 tryptophan side chain bead type 3 38.049

SY1 tyrosine side chain bead type 1 26.038

SY2 tyrosine side chain bead type 2 41.554

SV valine side chain 43.089

3.3.2 Coarse-graining the potential function

For the CG protein representation it is adopted an additive potential function as typi-
cally used in all-atom Hamiltonians. This approach provides the best compromise be-
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Figure 3.2: Representation of electrostatic dipole moments. (A) v, n, m are the vectors
of the internal orthonormal basis used to reconstruct the backbone’s dipole; µm,n is the
projection of the dipole in the plane m, n; φ is the angle between the backbone dipole and
the vector v; θ is the angle between the projection µm,n and the vector n; γ is the bending
angle of the three consecutive Cα used to reconstruct the backbone dipole [83]. (B) SC is
the side chain bead with the associated dipole drawn as an arrow; χ is the bending angle
used to describe reorientation of the side chain; ψ is the improper torsion used to force the
chirality of L-amino acids.

tween reasonable accuracy and computational efficiency for CG simulations [34]. The
explicit introduction of electrostatic dipolar terms following [169] adds to the potential
minimal many-body contributions, which enhances the stability of secondary structure
elements without the use of ad hoc bias potentials [83]. The total potential function is
given by:

Vtotal =
∑
bonds

kb(|~rij | − r0)2 +
∑

bendings

4∑
n=2

ka,n(θijk − θ0)n +

∑
dihe

3∑
n=1

kd,n[1 + cos(nφijkl − φ0)] +
∑

improper

4∑
n=2

ki,n(ψijkl − ψ0)n +

∑
pairs

4εij
[( σij
|~rij |

)12
−
( σij
|~rij |

)6]
+ Vel(~rij) (3.1)
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where the first four terms describe bonded interactions and the remaining are used
to describe non-bonded ones. In particular, the first term describes pseudo-bonds
between backbone beads and beads that belong to the same residue using a simple
harmonic approximation, where r0 is the equilibrium value and kb is the constant force.
The second term accounts for pseudo-bending for backbone and side chain beads [82],
with θ0 the equilibrium value and ka,n the constant forces.

The third for torsion potential of pseudo-dihedrals [82] for backbone and multi-bead
side chains, with φ0 as the equilibrium values and kd,n as the constant forces. The final
term of the bonded potential describes improper torsion potentials used to force the
L-chirality to the side chains or to force the planarity of aromatic side-chains where ψ0

is the equilibrium value and ki,n the force constant.
The last two terms represent the non-bonded part of the total potential function: a

common 6-12 Lennard-Jones potential is used to account for effective non-bonded in-
teractions not explicitly included in the electrostatics potential term. The electrostatic
potential, instead, reads:

Vel(~rij) = C(|~rij |)
[
Vqiqj + Vqiµj + Vµiqj + Vµiµj

]
(3.2)

where all charge-charge, charge-dipole, and dipole-dipole interactions are consid-
ered. An implicit solvent model with a distance dependent dielectric constant was
used:

ε(|~rij |) = 1 + kij(|~rij |) (3.3)

where kij=4 [94]. This dielectric model has been chosen on the basis of its simplicity.
However, more accurate methods have been proposed [93], and will be tested in the
future (see Chapter 2).

Along with this simple distance-dependent screening, an explicit solvent model fol-
lowing the work of Warshel [103] and Borgis [104] was also implemented and tested.
In this model four water molecules are mapped into one single water bead. The elec-
trostatics problem of a dipolar or charged molecular solute immersed in a dielectric
medium is described by a local non-equilibrium solvation free energy ∆Fpol, which is
numerically integrated by discretizing the solvent region in ”water” grains. Each water
grain is associated with an induced dipole ~pi and the electrostatics field ~E0i, generated
by the solute. In this framework, the free-energy of solvation is given by:

∆Fpol =
N∑
i=1

~p2
i

2α
−

N∑
i=1

~pi · ~E0i (3.4)
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thus, the local solvent model is obtained by minimizing the functional relative to
all the ~pi, obtaining the equilibrium dipole moment, ~pi,eq

~pi =
psat

| ~E0i|
L
(
3α
| ~E0i|
psat

)
~E0i (3.5)

where

L(x) = coth(x)− 1
x

(3.6)

is the Langevin function. At the minimum the electrostatic free-energy is given by
the following:

∆Fminpol = −p
2
sat

3α

N∑
i=1

ln
[sinh(L−1(3α| ~E0i|/psat))

L−1(3α| ~E0i|/psat)

]
(3.7)

Where α = 2.3 is the polarizability and psat=1.5 D is the dipole saturation, that
are model parameters. This model is computationally efficient: electrostatics calcu-
lations are limited to solvent-solute interactions and solvent-solvent interactions are
short-ranged Lennard-Jones ones. It has been successfully applied by the Ha-Duong’s
group for the simulation of protein and protein-protein recognition [175–177].

3.3.3 Integrating dipole dynamics

Backbone dipoles are univocally defined by the Cα trace of the protein. The backbone
dipole µi is associated to a triplet of consecutive Cα beads (i − 1, i, i + 1)-th, being
located at the middle point between the second and the third bead, and its orientation
determined by the angle of the bead triplet [83; 169]. At each time step during the MD
integration loop, the forces on each backbone dipole are calculated and distributed on
the beads of the corresponding triplet, affecting their position and the amplitude of the
relative triplet bending angle [83] (Fig. 3.2 A).

The orientation of the dipoles associated to the polar side-chains (Fig. 3.2 B) are
updated by solving the classical equation:

d~µ

dt
= ~ω × ~µ (3.8)

where ~µ is the dipole moment and ~ω is the angular velocity of the side-chain. The
angular velocity of the side-chain is determined by its inertia tensor Ī, derived from
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Table 3.2: Bead types and their corresponding values of dipole moment |~µ|, and ellipsoids
of inertia Ix, Iy and Iz [178; 179]

Bead type |~µ| [eÅ] Ix [Å] Iy,z [Å]

SN 0.845 2.68 2.03

SC 0.497 2.76 1.88

SQ 0.809 3.24 2.08

SH2 0.736 3.39 2.14

SS 0.381 2.28 1.77

ST 0.373 2.72 1.93

SW2 0.393 4.23 2.52

SY2 0.299 3.87 2.34

the respective all-atom representation, and the electrostatic torque experienced by the
dipole (Tab. 3.2), following the equation:

~τ = Ī
d~ω

dt
(3.9)

For accuracy reasons, the equations 3.8, 3.9 are implemented in the MD loop using
the quaternion formalism [39]. The side chain electrostatic dipole moments are treated
as rigid bodies that can rotate around a fix point (the center of mass of the bead
which they belong). The module of the electrostatic dipole moment represents the
actual value as obtained from quantum chemical calculations [178] (Tab. 3.2). An
analysis of a non redundant subset of NMR structures of the Protein Data Bank,
once CG-mapped, permitted to find that there is no strong preferential orientation for
the electrostatics dipole moment of the side chains like asparagine, glutamine, serine,
threonine and cysteine. In the case of tyrosine instead two preferential orientations have
been found with respect to the plane of the ring, while for histidine and tryptophan
the dipole remains rigidly linked to the plane of the ring. Ellipsoids of rotations as
calculated using all-atom molecular dynamics simulations [179] were used to describe
the reorientation of the electrostatic dipole moment of the beads. In this model the
electrostatic dipole moment is assumed to be aligned along the direction of the inertia
axes with highest eigenvalue of the inertia tensor. The procedure for the backbone [83]
and side chain dipolar dynamics has been implemented in the molecular dynamics code
Lammps [180].
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3.3.4 Parameterizing the coarse-grained potentials

A two-step procedure was adopted to derive reliable values of the parameters for the
potential function discussed above. A first general set of bonded parameters is derived
using a Boltzmann inversion approach [124] on structural ensembles extracted from the
PDB and from MD simulations; then, bonded and non-bonded parameters are refined
for a given protein using a force matching procedure [109; 111].

Boltzmann Inversion Based on the adopted CG mapping scheme (Fig. 3.1), from
every atomistic degrees of freedom the relative CG conformational distributions of
bonded terms are obtained. In particular, the individual CG distributions for bond
lengths {r}, bending angles {θ} and torsions {φ}, PCG(χi, T ) are Boltzmann inverted
[124; 126] to obtain the corresponding potentials for the generic degree of freedom
χi = ri, θi, φi, using the equation:

V CG(χi, T ) = −kBT ln

[
PCG(χi, T )

f(χi)

]
+ Cχi (3.10)

where f(χi) is a function that takes into account the components of the Jacobian
determinant.

This procedure was performed on a non-redundant subset of the PDB in order to
identify all the possible coarse-grained degrees of freedom for the adopted mapping and
possible preferential orientations of side-chain dipoles. The NMR part of the subset has
been analyzed to identify possible preferential orientation of polar side chains. Since
not all amino acids are equally represented in the PDB and some degrees of freedom
could have poor statistics (e.g. degrees of freedom for tryptophan), additional proba-
bility distributions from all-atom MD simulations of all possible homo-nona-peptides
in explicit solvent in both α- and β-conformation have been extracted. The confor-
mational distributions obtained from the two sets, at least for the most represented
degrees of freedom, are in qualitative agreement (e.g. position of the minima for the
potentials).

In order to refine, and eventually converge to more transferable parameter values,
this initial seeding set was optimized using a force matching procedure on a given pro-
tein to further tune the bonded and parameterize the non-bonded interatomic potentials
based on the trajectories obtained from all-atom MD simulations. It is important to
notice at this point that the Coulomb term for charge and dipole interactions is not
affected by the parameterization procedure. Intramolecular electrostatic and Lennard-
Jones interactions between charges and/or dipoles separated by one or two bonds (1-3
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electrostatic interactions) have been excluded from our potential energy function.

Force matching The force matching procedure has been widely discussed in several
publications [109; 110; 154; 155]. Here its main steps will be recalled. Let {ω} indicate
the entire set of L parameters {ω1,... ωL} used to define the potential function adopted
for the coarse-grained representation. The optimal {ω} set defining the CG potential
function is the one minimizing the fitness function ZF (ω):

ZF (ω) =

√√√√(3
M∑
k=1

Nk

)−1
M∑
k=1

Nk∑
i=1

∣∣∣Fki(ω)− F 0
ki

∣∣∣2 (3.11)

where M is the number of sets of atomic configurations available, Nk is the number
of beads in configuration k, Fki(ω) is the force on the i-th bead in set k obtained with
parametrization ω, and F 0

ki is the reference force acting on the bead as given by the
following formula:

F 0
ki =

Li∑
j=1

F 0
jki (3.12)

which is the sum of the forces acting on the atoms that belong to the i-th bead.
All quantities are averaged for a large set of different configurations, sampled from a
preceding all-atom MD run.

Particle Swarm Optimization The set of parameters {ω} that minimizes the fit-
ness function ZF (ω) are obtained using a Particle Swarm Optimization (PSO) heuristic
method [181]. To do so, an ensemble of solutions (also called particles p) have their
position ω(p) and velocity v(p) randomly initialized in the multidimensional search
space identified by boundaries. Along the whole optimization process, every particle
will keep track of the position ω(p) associated with the best objective (fitness) function
value ZF (ω(p)). At the beginning of every discrete step, particles are updated about
the swarm status, i.e. the current position of all particles, as well as their respective
best found solution value and position. Subsequently, they will independently update
their own velocity, which will be used to update their position. Velocity update is
affected by three factors. The first, inertia, determines how a particle’s trajectory is
preserved along time. The second, personal best, attracts particles towards their own
best solution. The third, global best, attracts particles towards the best solution found
by neighbouring particles. Once velocity has been updated, a new position in which to
evaluate the objective (fitness) function can be computed.
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Table 3.3: List of backbone parameters

Parameter Value

∆V θ (barrier of backbone bendings) 8 kcal·mol−1

∆V α (barrier of backbone dihedrals) 7 kcal·mol−1

σ 4.27 Å

ε 1.3 kcal·mol−1

The boundaries associated with each parameter in the search space are guided by
previous values obtained by Boltzmann inversion (as in the case of side chain bonded
terms) or physically reasonable quantities preliminarily calculated, as for the case of the
backbone bonded terms. In particular, the PSO approach was used to define effective
bending potential parameters, able to correctly describe secondary structure conforma-
tions of an unspecific polypeptide (e.g. poly-alanine) arranged as α-helix and in β-turn
conformations. For the purpose of tuning the non-bonded potential terms the adopted
boundaries for the Lennard-Jones terms in the following range: 4.0 Å< σij <5.0 Å and
0.4 kcal · mol−1< εij <1.3 kcal · mol−1.

Multiple runs of PSO showed how some parameters converged sooner that others,
for instance bonded parameters for the side chains invariantly converged to the same
values, permitting to fix them on following optimization cycles for tuning more fluctu-
ating parameters like bonded terms for backbone and general non-bonded term. The
backbone bonded and non-bonded parameters converged roughly to identical values
(Tab. 3.3, Fig. 3.3). This already hinted to a partial set of parameters that can be
transferable and used for a general CG force field.

Reference all-atom simulations The atomistic reference forces, used for the force-
matching procedure on the set of proteins studied in this work, have been extracted
from all-atom simulations carried out using NAMD simulation package [26] in explicit
solvent and periodic boundary conditions, using a Langevin dynamics for the thermo-
stat and a Nosé-Hoover-Langevin piston for the barostat. Simulations were carried out
using smooth particle-mesh Ewald (SPME) [48] for the calculation of electrostatic inter-
actions. All simulations were carried out using all-atom force field Amber99SB [16; 50]
for the protein and TIP3P model [55; 56] for the water. The all-atom MD simula-
tions were 100 ns long for five proteins belonging to different structural families and
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Figure 3.3: Convergence of the Particle Swarm Optimization during the force matching
as a function of the number of steps

covering single molecule in solution and protein-protein complexes. Namely, α-, β-,
α/β-proteins and small protein-protein complexes are selected to test the performance
of our CG approach. The protein α3W, with PDB entry 1lq7, is a de novo α-protein
composed by 67 amino acids arranged as a clockwise bundle of three helices, whose
structure has been obtained by NMR [182]. The Cox11 protein is the β-protein, PDB
entry 1sp0, which structure has been obtained by NMR and is composed by 131 amino
acids [183]. The LysM Domain, with PDB entry 1e0g, is the α/β-protein: it has been
obtained by NMR, and is composed by 48 residues [184]. The coiled-coil protein is the
engineered water soluble phospholamban, which is composed by four helical monomers
of thirty amino acids in an anti-parallel arrangement, and which structure has been
obtained by X-rays crystallography [185; 186]. Finally, the barnase-barstar complex
solved by X-rays crystallography, is composed by a total of 189 residues [187].

For all the proteins the simulations time was set to 100 ns, from which 1000 struc-
tures were extracted to be used for the force-matching. For this purpose PSO was used
with a setup of 20 particles with 3 consecutive repetitions of 300 optimization steps
each. For all the particle swarm optimization runs, the difference between reference
forces and the calculated one was in the order of 1 kcal·mol−1·Å−1 for degree of freedom
(Fig. 3.3). For a protein of ∼50 residues such a setup permits to have a refined set of
parameters in less than 2 days on 4 CPUs.

The possibility to reduce the number of structures and the length of the required
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all-atom MD trajectory to be used for the particle swarm optimization runs has been
explored. Using the Jarvis-Patrick clusterization method [188], as implemented in
Gromacs [27], it is possible to reduce the number of structures of another order of
magnitude. Preliminary force-matching calculations and consequent results, obtained
from CG simulations, gave the same qualitative results showed in the present work
(data not shown). For the α3W protein a simulation in explicit solvent were carried out
without tuning the water-protein Lennard-Jones parameters of interaction and setting
them to the same value that are εij= 0.8 kcal

mol and σ=4.7Å whereas the water-water
Lennard-Jones parameters of interaction are: εij= 0.8 kcal

mol and σ=4.6Å.

The possibility to define fully transferable non-bonded parameters as extracted from
the specific parameterization of the 5 structurally different proteins studied in this
work were explored. To do so, a simple averaging of the values of non-bonded ε and σ

obtained for each pairs of beads were calculated and the resulting structural features
from CG MD simulations compared with the previous specific CG parameterization.
Such a parameterization has been used to simulate protein structures that do not belong
to the training set, namely L25 and B1 immunoglobulin-binding domain protein [189;
190], with PDB entries 1b75 and 1pgb, respectively.

3.3.5 Coarse-grained simulations and structural observables

The coarse-grained molecular dynamics simulations for all the proteins were performed
with the MD suite of programs Lammps, in the canonical NVT ensemble using the
Langevin thermostat and an integration time step of 5 fs. The values of the harmonic
spring constant of the CG models dictate the most convenient time steps [73; 107].
Calculating the ratio between the highest frequencies of harmonic springs between this
CG and atomistic potentials, it has been estimated a convenient value for the CG
time step were estimated to be up to 4 times bigger than for all-atom MD. Therefore,
not using any constraints on the bonded degrees of freedom [130] it is possible to
conservatively integrate the equations of motion with a time step of 5 fs. The use
of an algorithm like SHAKE on all bonds potential terms will presumably allow to
increase the time step to 10 fs, which appeared to give stable dynamics already within
the current setup for most of the systems. All systems were first progressively heated
from 100 K to 300 K for 0.5 ns, then equilibrated at this temperature for an additional
1 ns, and finally simulated for a production trajectory of 100 ns. For Lennard-Jones
interactions the cut-off is 15 Å, whereas for electrostatics interactions it is 50 Å.

On average, for the proteins under study, the computational gain using this CG
model is in the order of 200 times, without considering further optimization of our
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routines. The computational gain has been calculated dividing the total number of
hours needed to run 100 ns with the all-atom force field by the total number of hours
need to run 100 ns with our coarse-grained force field. For the explicit solvent the
computational gain is in the order of 10 times.

For each simulated protein structural fluctuations and electrostatics properties were
monitored to compare the results from CG and atomistic MD simulations. Among the
structural properties it has been considered values of backbone bending and torsional
angles, RMSD (root mean square deviation), gyration radius (Rg) were considered.
Structural fluctuations were also considered as RMSF (root mean square fluctuations)
and S2 order parameters of backbone’s dipoles. The S2 order parameter quantifies the
angular amplitude of N-H dipole internal motions, and quantification has been done
for the backbone dipoles. The S2 order parameter is calculated using the formula [133]:

S2
i =

1
2

[
3

3∑
α=1

3∑
β=1

〈
µi,αµi,β

〉2
− 1
]

(3.13)

where µi,α (α=1, 2, 3) are the x, y and z components of the normalized backbone’s
dipole moment at all-atom and coarse-grained level. The presence of coarse-grained
monopoles and dipoles allows for the comparison the electrostatic features at the two
levels of resolution. The electrostatics potentials of each protein have been calculated
using APBS [100], and the results compared using the PIPSA 3.0 package [191; 192].
The all-atom results of RMSF, S2, bending and dihedral curves were compared with
coarse-grained results model using the cosine similarity to which it will be referred as a
similarity index as it has been done in PIPSA [191]. The cosine similarity is a measure
of the similarity of two vectors of a inner product space.

3.4 Results and Discussion

3.4.1 Structural and electrostatic coarse-grained properties for differ-

ent protein families

The coarse-graining procedure has been tested using a set of proteins representative
of distinct SCOP families. In particular, α3W as an α-helical protein, Cox11 as a
representative of full β proteins, and the LysM domain as a mixed α/β fold were
simulated. The latter was also previously investigated by other CG approaches [193],
allowing for a cross-comparison with my method.

All the proteins simulated at the CG level conserved their fold for 100 ns as during
atomistic simulations, showing a very good agreement between all-atom and coarse-
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Table 3.4: Summary of the structural and dynamic CG properties. RMSD: root mean
square displacement in Å; Rg : gyration radius in Å; SIRMSF , SIS2 , SIbend and SIdihed
are respectively the similarity indexes between all-atom and CG representation for RMSF,
S2, bending and dihedral angles quantities. In square brackets are reported the all-atom
values for RMSD and Rg in Å.

Protein RMSD Rg SIRMSF SIS2 SIbend SIdihe
α3W 2.6±0.3 11.3±0.2 0.95 0.95 0.99 0.83

[2.5±0.2] [12.2±0.2]

Cox11 3.0±0.3 15.3±0.2 0.80 0.93 0.98 0.70
[3.0±0.3] [16.8±0.2]

LysM Domain 2.6±0.3 8.8±0.2 0.93 0.92 0.99 0.85
[2.7±0.4] [9.9±0.2]

Water soluble
phospholamban

4.7±0.6 14.7±0.4 0.95 0.99 0.99 0.97

[2.7±0.5] [16.4±0.2]

Barnase-Barstar 3.5±0.2 15.7±0.1 0.95 0.99 0.99 0.83
[1.1±0.2] [17.2±0.1]

grained description (Tab. 3.4, Fig. 3.4). The secondary structures were conserved with-
out the use of any additional ad hoc biases on the bending and torsional potential terms.
Only minor discrepancies are observed on the loop regions connecting secondary struc-
ture elements like in α3W and Cox11 (Fig. 3.4A and 3.4B). The agreement between
the backbone bending and torsional angles calculated at the two levels of resolution is
very good (Tab. 3.4; Fig. 3.5A and C; Fig. 3.6A and C; Fig. 3.7A and C). The cosine
similarities between all-atom and coarse-grained values for backbone bending angles
are between 0.98 and 0.99, while for backbone dihedrals are between 0.70 and 0.83,
with the Cox11 protein being the least good.

The RMSD values reach convergence in around 5-10 ns (similarly to atomistic MD),
fluctuating to values as low as 3 Å for 100 ns for all three proteins (Tab. 3.4; Fig. 3.8
A, B and C). The absolute values observed for RMSD are in line or lower than results
reported using other CG models [193]. For instance, the LysM domain protein shows
using this CG representation an RMSD as low as 2.7 Å, while simulations with the force-
field OPEP 4.0 [193] obtained a RMSD of 3.6 Å. The gyration radius is systematically
slightly higher at all-atom level with respect to the coarse-grained representation, being
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Figure 3.4: Structural comparison between all-atom and CG simulations of soluble pro-
teins. Backbone superpositions of the last structure obtained from all-atom (in orange)
and CG (ice-blue) MD simulations for (A) the α3W protein, (B) Cox11 protein (C) LysM
domain protein. Relative RMSD and gyration radius values are reported in Table 3.4.

the difference however in the order of 1 Å(Tab. 3.4). This slight collapse is likely to
be intrinsically dependent on the coarse-grained representation, because the adopted
mapping is not able to completely reproduce the steric effects of all the side chains,
and buried cavities accommodating few water molecules cannot be filled by water beads
having larger hindrance at CG granularity.

The general dynamic features are also in good agreement with the atomistic simu-
lations. The RMSF calculated at CG level is systematically lower than for the all-atom
one (Fig. 3.9), as already observed using other models [87]. The major differences are
again on the loop regions. For example in the case of the α3W protein the loops are
composed by glycines that are very flexible, whereas this coarse-grained representa-
tion of the bending potential does not take into account in the current state a specific
bending for glycines. RMSF peaks are not always well reproduced but the model cor-
rectly reproduces the trends of the fluctuations. The similarity cosines of the RMSF
calculated at all-atom and coarse-grained level are 0.95 for α3W, 0.79 for the Cox11
and 0.93 for the LysM domain. The decrease in flexibility observed for the RMSF is
confirmed also when calculating the S2 order parameter of the backbone. Anyway the
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Figure 3.5: α3W: Bending and dihedral results. (A) and (B) Bendings for specific and
”general” parameterization respectively, (C) and (D) Dihedrals for specific and ”general”
parameterization respectively

agreement between the two levels of resolution is good: the similarity cosines of the S2

calculated at all-atom and coarse-grained level are 0.95 for α3W, 0.93 for the Cox11
and 0.92 for the LysM domain. The difference in flexibility observed for RMSF and
S2 has been attributed (i) to the simple fact that at the coarse-grained level the lower
number of degrees of freedom does not intrinsically allow the complete description of
the structural fluctuations, and (ii) to the potential form of the bending terms, which
is not parametrized to be sequence-dependent, but has a general form which is meant
to describe at the same time α, β and coil structures.

The monopole and dipolar terms for the backbone and side chains are able to well
reproduce the electrostatic potential of the proteins. In fact, when comparing the CG
and atomistic values of the electrostatic potential using PIPSA, quite high similarity
indexes were obtained (Tab. 3.5; Fig. 3.10, 3.11, 3.12 ). The lowest value of the
similarity index has been obtained for the α3W protein (0.97): in fact at the surface of
this protein there are fewer charged or polar residues than in the other cases.

Along with the results using the distance-dependent model of implicit solvent for
the α3W protein were obtained results with the explicit CG water model (Fig. 3.13,
3.14, 3.15). The RMSD is 2.2±0.2 Å, whereas the gyration radius is 11.7±0.2 Å,
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Figure 3.6: Cox11: Bending and dihedral results. (A) and (B) Bendings for specific and
”general” parameterization respectively, (C) and (D) Dihedrals for specific and ”general”
parameterization

Table 3.5: Summary of the electrostatics properties. P (in eÅ) is the total elec-
trostatic dipole moment for the entire protein, SIele is the similarity index between
the all-atom and CG electrostatic potential as calculated with PIPSA. Compare with
Fig. 3.10, 3.11, 3.12, 3.20, 3.21, 3.28, 3.29 for a 3D visualization of the electrostatic potential
at the molecular surface calculated using APBS.

Protein ‖PAA‖ ‖PCG‖ SIele
α3W 88.6 119.3 0.97

Cox11 50.6 55.4 0.99

LysM 39.0 44.2 0.99

Water soluble phospholamban 630.7 630.2 0.95

Barnase-Barstar 200.2 218.8 0.93

L25 47.3 48.3 0.97

B1 Immunoglobulin-binding 63.8 94.6 0.93
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Figure 3.7: LysM domain: Bending and dihedral results. (A) and (B) Bendings for
specific and ”general” parameterization respectively, (C) and (D) Dihedrals for specific
and ”general” parameterization respectively

results that are in line with the all-atom ones. For the gyration radius the same type
of collapse were not observed with the implicit solvent. A good agreement between all-
atom and coarse-grained simulations with explicit solvent has been observed also for
the others properties, namely RMSF, S2, backbone’s bending and dihedral (Fig. 3.14,
3.15). This indicates that some of the drawbacks observed using the implicit solvent
could be partially solved by using an explicit CG model for water. The use of the
explicit solvent will be further explored in next studies.
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Figure 3.8: RMSD results of specific parameterization. (A) α3W, (B) Cox11, (C) LysM
domain, (D) Water soluble phospholamban, (E) Barnase-barstar complex

Summarizing, this section showed that it is possible to obtain, with a minimal
amount of investment in terms of CPU time, a tailored parameterization for any sol-
uble protein. The CG simulations produced results in very good agreement with the
atomistic simulations and similar to results obtained using force fields adopting a com-
parable mapping topology [193].
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Figure 3.9: Comparison between dynamic properties of all-atom and CG MD simulations.
RMSF and S2 are reported for α3W protein (A, B), Cox11 protein (C, D) LysM domain
protein (E, F).
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Figure 3.10: Electrostatics of α3W protein. Comparison between the atomistic (in A)
and CG (in B) electrostatic potential mapped on the protein molecular surface. Potential
is reported in kBT/e with red for negative values and blue for positive. [SIele=0.83]

Figure 3.11: Electrostatics of Cox11 protein. Comparison between the atomistic (in A)
and CG (in B) electrostatic potential mapped on the protein molecular surface. Potential
is reported in kBT/e with red for negative values and blue for positive. [SIele=0.95]
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Figure 3.12: Electrostatics of LysM domain protein. Comparison between the atomistic
(in A) and CG (in B) electrostatic potential mapped on the protein molecular surface. Po-
tential is reported in kBT/e with red for negative values and blue for positive. [SIele=0.96]

Figure 3.13: α3W in explicit coarse-grained water: RMSD and gyration’s radius results.
(A) RMSD, (B) Gyration’s radius
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Figure 3.14: α3W in explicit coarse-grained water: (A) RMSF and (B) S2 results.

Figure 3.15: α3W in explicit coarse-grained water: (A) bending and (B) dihedral results.
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Structural and electrostatic coarse-grained properties for protein-protein
complexes

Having shown that within the proposed approach it is possible to simulate soluble pro-
teins reproducing structural, electrostatic and dynamic features of all-atom simulations,
the investigation was extended to protein-protein complexes. First, the engineered sol-
uble phospholamban protein-protein complex, chosen because it is among the simplest
not covalently bonded helix bundles was studied [185]. The second complex investi-
gated was the barnase-barstar complex [187], which is in principle more challenging
because it is composed by different secondary structure elements with different recip-
rocal arrangements.

As already obtained for the single proteins, the secondary structures were strongly
conserved during CG simulations with only some discrepancies on the loop regions.
Comparing the last structures obtained at the two levels of resolution, the percentage
of conserved secondary structures was on average around 70 %. The RMSD reached
convergence after about 10 ns, in line with the atomistic simulations. The difference
on the RMSD calculated at the two levels of resolution differ of about 2 Å (Tab. 3.5).
In the case of the water soluble phospholamban the main structural differences are
in correspondence of the protein termini, whereas in the case of the barnase-barstar
complex similar differences are observed for both proteins composing the dimer. This is
likely due to two main reasons: (i) the coarse-grained representation does not perfectly
reproduce the steric effect of the side chains at the interface, and (ii) the implicit solvent
model does not allow for optimal solvation of the regions at the interface between the
two proteins. This can be particularly relevant in case that interstitial waters localize
in the area (e.g., CG water models would have the same problem), and it can lead
to exploration of slightly different conformations at the interface. The gyration radius
results confirm this hypothesis because the difference between the all-atom and the
coarse-grained values is in the order 1.5 Å (Tab. 3.5).

Nonetheless, the protein-protein interfaces are well conserved for both complexes
and key electrostatic interactions are mainly preserved. For example, in the water solu-
ble phospholamban, electrostatics interactions that stabilize the complex such as Cys80-
Cys110 and Cys80-Arg117 are maintained (Fig. 3.16B). In the case of the barnase-
barstar complex interactions at the interface are also well preserved reproducing the
majority of the contacts (e.g. Arg81 (barnase)-Asp147 (barstar), His100 (barnase)-
Asp147 (barstar), Arg81 (barnase)-Gly151 (barstar), see Fig. 3.16D and Tab. 3.6).
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Figure 3.16: Structural comparison between all-atom and CG simulations of molecular
complexes. Backbone superpositions of the last structure obtained from all-atom and CG
MD simulations for (A) water soluble phospholamban, and (C) barnase-barstar complex
(color code as in Figure 3 apart for all-atom barnase in light orange, CG barnase in or-
ange, all-atom barstar in blue and CG barstar in ice-blue); (B) interface of water soluble
phospholamban with all-atom residues in licorice representation and relative CG beads in
transparent van der Waals representations; (D) interface of barnase-barstar with all-atom
residues in licorice representation and CG ones in transparent van der Waals representa-
tions. Relative RMSD and gyration radius values are reported in Tab. 3.5

The CG RMSF and S2 values are in good agreement with all-atom MD results
(Fig. 3.17). The structural fluctuation properties are preserved and also the secondary
structure elements, as seen from the superposition of the last structures obtained at
the two levels of resolution (Fig. 3.16). This is strengthened by the agreement of the
backbone bending and torsional angles for the two complexes (Tab. 3.5; Fig. 3.18 A and
C; Fig. 3.19 A and C). Also in this case, a very good agreement were found the electro-
static potentials calculated at the atomistic and CG levels of resolution: the similarity
indexes calculated with PIPSA are 0.95 and 0.93 for the water soluble phospholamban
and the barnase-barstar complex, respectively (Tab. 3.5, Fig. 3.20 and 3.21).
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Figure 3.17: Comparison between dynamic properties of all-atom and CG MD simula-
tions of molecular complexes. RMSF and S2 are respectively reported for water soluble
phospholamban (A, B) and barnase-barstar complex (C, D).
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Table 3.6: Barnase-barstar interface: significant intermolecular distances are reported
and compared in the two representations

Barnase
residues/bead

Barstar
residues/bead

All-atom [Å] Coarse-grained
[Å]

Arg81 BB Tyr137 BS3 7.7±0.2 15.3±3.5

Asn82 BB Tyr137 BS3 6.0±0.3 13.6±3.4

His100 BS2 Gly139 BB 4.4±0.2 8.3±0.4

His100 BB Asn141 BS1 6.7±0.2 11.0±0.5

Glu58 BS1 Leu142 BB 5.1±0.6 5.0±0.7

Arg57 BB Asp143 BS1 4.3±0.2 7.8±0.5

Arg81 BS2 Asp147 BS1 3.4±0.2 4.0±0.4

Arg85 BS2 Asp147 BS1 4.6±0.1 4.1±0.3

His100 BS3 Asp147 BS1 4.1±0.1 5.0±0.6

Lys25 BS2 Thr150 BS1 4.5±0.6 7.2±0.5

Arg81 BS2 Gly151 BB 4.9±0.3 4.9±0.3

Arg57 BS2 Glu184 BS1 3.7±0.3 5.0±0.7
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Figure 3.18: Water soluble phospholamban: Bending and dihedral results. (A) and (B)
Bendings for specific and ”general” parameterization respectively, (C) and (D) Dihedrals
for specific and ”general” parameterization respectively
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Figure 3.19: Barnase-barstar complex: Bending and dihedral results. (A) and (B) Bend-
ings for specific and ”general” parameterization respectively, (C) and (D) Dihedrals for
specific and ”general” parameterization respectively
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Figure 3.20: Electrostatics of water soluble phospholamban protein. Comparison between
the atomistic (in A) and CG (in B) electrostatic potential mapped on the protein molecular
surface. Potential is reported in kBT/e with red for negative values and blue for positive.
[SIele=0.95]

Figure 3.21: Electrostatics of barnase-barstar complex. Comparison between the atom-
istic (in A) and CG (in B) electrostatic potential mapped on the protein molecular sur-
face. Potential is reported in kBT/e with red for negative values and blue for positive.
[SIele=0.93]
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3.4.2 Towards a transferable coarse-grained force field for proteins

In the presented simulations, specific sets of parameters were optimized each time for
each protein under study. Although the results show very good accuracy with respect
to all-atom simulations and parameterization is very efficient, such approach lacks full
transferability, as it requires re-optimization of some of the force field terms every time a
new system is studied. In order to test the possibility of extending the approach towards
the definition of a fully transferable potential, an averaged force field potentials were
implemented. This new set of parameters was then used to run CG molecular dynamics
of the 5 systems in the training set, as well as L25 and B1 immunoglobulin-binding
proteins, two additional systems not included in the set employed for calibration.

Table 3.7: Summary of the structural and dynamic CG properties using a generalized CG
parameterization. RMSD: root mean square displacement in Å; Rg : gyration radius in Å;
SIRMSF , SIS2 , SIbend and SIdihe are respectively the similarity indexes between all-atom
and CG representation for RMSF, S2, bending and dihedral angles quantities. In square
brackets are reported the all-atom values for RMSD and Rg in Å.

Protein RMSD Rg SIRMSF SIS2 SIbend SIdihe
α3W 2.4±0.2 11.1±0.2 0.92 0.93 0.99 0.85

[2.5±0.2] [12.2±0.2]

Cox11 3.0±0.4 15.1±0.2 0.81 0.94 0.98 0.73
[3.0±0.3] [16.8±0.2]

LysM Domain 2.7±0.3 8.8±0.1 0.95 0.93 0.99 0.83
[2.7±0.4] [9.9±0.2]

Water soluble
phospholamban

4.5±0.4 16.3±0.2 0.93 0.98 0.99 0.97

[2.7±0.5] [16.4±0.2]

Barnase-Barstar 3.4±0.2 15.9±0.1 0.93 0.98 0.99 0.82
[1.1±0.2] [17.2±0.1]

L25 3.8±0.3 12.1±0.2
[3.5±0.8] [13.1±0.3] 0.91 0.94 0.98 0.70

B1
immunoglobulin-
binding

2.6±0.2 9.8±0.1 0.90 0.98 0.99 0.82

[1.1±0.3] [10.4±0.1]
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A good agreement for the CG simulations of the proteins from the training set has
been obtained (Tab. 3.7). In particular, the percentage of preserved secondary structure
elements for the proteins that belong to the training set are in line with what has been
obtained with specific parameterizations (Tab. 3.7). The systems not included in the
training set were instead described with slightly lower accuracy but in line with the
results obtained for the others proteins (Fig. 3.23, 3.22, Tab. 3.7). Secondary structure
elements are preserved, the main differences being on loop regions (Fig. 3.24).

Figure 3.22: RMSF and S2 calculations for ”general” parameterization. (A) and (C)
RMSF and S2 for α3W, (B) (D) for Barnase-barstar complex
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Figure 3.23: RMSD results for ”general” parameterization. (A) α3W, (B) Cox11, (C)
LysM domain, (D) Water soluble phospholamban, (E) Barnase-barstar complex, (F) L25,
(G) B1 immunoglobulin-binding

Superposition of the last structures obtained at the two levels of resolution gives
RMSD values for L25 and B1 immunoglobulin-binding of 4.0 Å and 3.6 Å, respectively,
whereas the percentage of preserved secondary structure elements is around 70 % for
both for the last structures for the two level of resolution (Fig. 3.25, 3.26). RMSD and
gyration radius (Tab. 3.7 and Fig. 3.23) obtained using the general CG force field are
very similar to the relative atomistic values.

Both L25 and B1 immunoglobulin-binding proteins have been recently used to test
two coarse-grained force-fields, i.e. the one developed by Ha-Duong and coworkers [87]
and Opep4.0 [193]. A RMSD of 6 Å and 2.9 Å, respectively when using the former and
the latter model was reported for L25. For the OPEP4.0 model it should be noted that
only some parts of the protein have been selected for the calculation of the RMSD. B1
immunoglobulin-binding protein showed instead an RMSD of around 4 Å and 3.3 Å,
respectively. Compared to the reported data, for both these proteins this coarse-grained

79



3. DEVELOPMENT OF A COARSE-GRAINED MODEL FOR
NUMERICAL SIMULATIONS OF PROTEINS

Figure 3.24: Comparison of atomistic and CG structures for the ”general” parameteri-
zation. Backbone superimpositions of the last structure obtained from all-atom (orange)
and CG (iceblue) simulation (A) L25 (B) B1 immunoglobulin-binding

Figure 3.25: L25: bending (A) and dihedral (B) results.
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Figure 3.26: B1 immunoglobulin-binding: Bending (A) and dihedral (B) results.

approach performs reasonably well, despite the fact that there is always a discrepancy
of around 1.5 Å with respect to the atomistic value for the RMSD and of around 1 Å
for the gyration radius (Tab. 3.7).

The agreement of structural fluctuations with all-atom values is lower than for
specific parameterizations (Tab. 3.7), however the similarity index for the properties
calculated at the two levels of resolution for L25 and B1 immunoglobulin-binding pro-
teins are quite high (Tab. 3.5 and 3.7, Fig. 3.25, 3.26, 3.27, 3.28, 3.29), showing that
this preliminary version of a general set of electrostatic-consistent CG potentials goes
in the right direction towards the development of a reliable transferable CG force field.
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Figure 3.27: RMSF and S2 calculations for ”general parameterization”. (A) and (C)
RMSF and S2 L25, (B) and (D) for B1 immunoglobulin-binding

Figure 3.28: Electrostatics of L25 protein. Comparison between the atomistic (in A) and
CG (in B) electrostatic potential mapped on the protein molecular surface. Potential is
reported in kBT/e with red for negative values and blue for positive. [SIele=0.97]
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Figure 3.29: Electrostatics of B1 immunoglobulin-binding protein. Comparison between
the atomistic (in A) and CG (in B) electrostatic potential mapped on the protein molecular
surface. Potential is reported in kBT/e with red for negative values and blue for positive.
[SIele=0.93]

3.5 Conclusions

In this work I presented a coarse-graining procedure to generate potentials for molec-
ular simulation of soluble proteins incorporating explicit and detailed description of
electrostatics. The adopted strategy for the parameterization of the coarse-grained
potentials is based on Boltzmann inversion and a force-matching scheme relying on
high-resolution protein structures and atomistic simulations. The derivation of the pa-
rameters is obtained using a new and robust global optimization algorithm based on
particle swarm optimization, that handles the assignment of several hundreds parame-
ters in a relatively short amount of time.

The combination of electrostatic terms at the backbone and polar side-chains to
terms accounting for the steric hindrance of the CG beads produces stable protein ter-
tiary structures, and maintains the global fold of a variety of soluble proteins. This
approach produces also dynamically stable quaternary complexes, like in the case of the
phospholamban and barnase-barstar systems. Despite the intrinsic limitations of any
coarse-grained representation, these results demonstrate that CG potentials generated
by this procedure produce a very good and consistent agreement with all-atom simula-
tions, well reproducing the main structural and dynamic properties. Importantly, these
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Table 3.8: Interface barnase-barstar for ”general” parameterization

Barnase
residues/bead

Barstar
residues/bead

All-atom [Å] Coarse-grained
[Å]

Arg81 BB Tyr137 BS3 7.7±0.2 9.8±0.7

Asn82 BB Tyr137 BS3 6.0±0.3 8.6±0.7

His100 BS2 Gly139 BB 4.4±0.2 9.1±1.1

His100 BB Asn141 BS1 6.7±0.2 10.1±0.6

Glu58 BS1 Leu142 BB 5.1±0.6 6.5±0.8

Arg57 BB Asp143 BS1 4.3±0.2 5.6±0.6

Arg81 BS2 Asp147 BS1 3.4±0.2 4.3±0.5

Arg85 BS2 Asp147 BS1 4.6±0.1 4.1±0.2

His100 BS3 Asp147 BS1 4.1±0.1 6.6±0.8

Lys25 BS2 Thr150 BS1 4.5±0.6 8.1±0.8

Arg81 BS2 Gly151 BB 4.9±0.3 4.5±0.3

Arg57 BS2 Glu184 BS1 3.7±0.3 4.2±0.2

CG models are also able to describe the main interface interactions, producing stable
protein complexes. Although not explicitly tested for all the existing folding families
it is expected that the derivation of specific parameters obtained using this strategy
would be as accurate to guarantee the description of the structure and dynamics of
other proteins at this level of granularity.

These results are promising and suggest that electrostatic-consistent CG potentials
can be efficiently used to explore protein-protein molecular recognition using molecular
dynamics sampling. These results are in fact in good agreement with all-atom simu-
lations and, when directly compared with previously reported CG force fields, showed
similar or better performances in describing structural and dynamic determinants of
soluble proteins. Moreover, this procedure can be straightforwardly extended for the
parameterization of any protein. The extension of this optimization procedure to a
larger dataset may prelude to the generation of a fully transferable CG force field that
will be applied in principle to any protein or, more interestingly, any large macromolec-
ular assemblies for which direct, long all-atom simulations may not be easily affordable.
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3.6 Future Directions and Development

The first priority, which is currently ongoing, is to further advance on establishing a
more robust transferability for the CG models developed in this thesis. I am currently
following two strategies to overcome this limitation of the model by (i) extending the
proteins set in order to have more statistics during the optimization of relevant param-
eters, and (ii) assigning and tuning residue-specific parameters for the backbone.

Moreover, the introduction of a correct treatment of electrostatics at this coarse-
grained level of resolution should not be limited only to proteins but eventually extended
to other biomolecules. In fact, being the ultimate goal to simulate the cellular environ-
ment, carbohydrates, phospholipids, nucleic acids and other small molecules should be
described using a similar treatment of electrostatic contributions. Clearly, as done for
proteins, all these models should be validated against experimental data and all-atom
results in order to check their reliability. Another interesting extension of the present
work would consist in the development of an hybrid all-atom/coarse-grained treatment
following the same spirit of quantum mechanics/molecular mechanics hybrid methods.
This approach would give the opportunity to still treat large systems in their cellu-
lar environment, considering regions where atomistic details are important, like ligand
pockets or protein-protein interfaces, with higher resolution and accuracy.

In conclusion, the mapping proposed in the present work is not the only one possible
and for the study of specific problems it could be the case to adopt mappings at lower
resolution, based on secondary or even tertiary structure elements. Also for these types
of mappings a simplified electrostatics can be proposed, preserving the main physical
properties of biopolymers, such as macrodipoles or other simplified charge distribu-
tions. In this way one could study the dynamics mechanism of binding and aggregation
between biomolecules with improved accuracy. In this context, the optimization strat-
egy used in this work and based on particle swarm optimization could contribute to
generate consistent models at lower levels of resolution based on properties extracted
from the underlying high-resolution treatment of the molecular interactions.
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Chapter 4

All-atom simulations of crowding effects

on protein dynamics

È piccolo il mondo, eh?

Si! Piccolo e affollato!

continuavano a chiamarlo Trinità

The world is small, right?

Yes! Small and crowded!

Trinity Is Still My Name

4.1 Preface

In the present chapter I will present the work done to get insights, through the use of
state-of-the-art molecular dynamics techniques, into the influence of crowding agents on
the internal dynamics of proteins. In particular, ubiquitin has been chosen as model sys-
tem to study the role of small crowding molecules. The initial part of the present chapter
has been accepted for publication in Physical Biology with the title All-atom simu-

lations of crowding effects on ubiquitin dynamics, Luciano Andrés Abriata1,
Enrico Spiga1, Matteo Dal Peraro. The final part, reporting on the role of crowding
concentration is instead currently under preparation for submission.

1The first two authors contributed equally to this work
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4.2 Introduction

Cellular environments are crowded by solutes and macromolecules of all sizes, creat-
ing conditions far from those present in typical in vitro experiments [194]. The solute
concentration in the cytoplasm of E. coli cells is estimated to be in the order of 300-
400 g/L [194; 195]. This can be conceptualized visually and numerically in recent
computational works [195; 196] to reach the conclusion that intracellular solutes must
inevitably experience non-specific, unintended interactions with each other. Especially
for macromolecules, such interactions are expected to introduce significant alterations
in the thermodynamics and kinetics of the processes they are involved in. In the case
of proteins, some of these alterations have been observed and quantified through ex-
periments in which a property is quantified in the presence of increasing quantities of a
crowding agent such as small sugar moieties, dextrane, PEG, Ficoll or other proteins.
One of the most important and generalized findings is that the crowding agent usually
improves the stability of globular proteins to the extent that it can even induce folded
states on chemically denatured proteins and on natively unfolded proteins [196–203].
These stabilizing effects are typically in the order of a few kcal/mol, but they represent
important contributions and are expected to be relevant in vivo because proteins are
only marginally stable [197]. But on the other hand, structural stabilization and crowd-
ing itself are expected to alter the landscape of the conformational space accessible for
motions, potentially compromising dynamic features important for protein function
and regulation and for protein-protein interactions.

Although little is known about the underlying processes that drive crowding ef-
fects, most experiments suggest that they are rather non-specific, supporting the no-
tion that repulsions and steric (i.e. entropic) effects are dominant. However, recent
works reported approximately similar contributions from repulsions and chemical (i.e.
enthalpic) interactions between proteins and crowders, although no specific interactions
were observed with the crowders [198; 199]. Unfortunately, atomistic investigations of
the impact of crowding on protein structure and dynamics are inherently difficult: in
X-ray studies crystal packing does not leave space for crowding assays, whereas in NMR
studies the increase in viscosity produced by high crowder concentrations broadens sig-
nals eventually rendering them undetectable. As an example, NMR studies could not
go beyond 100 g/L of solutes, which would be desirable to achieve crowding levels as
those inside cellular environments [198–200].

Like for many experimentally intractable phenomena, molecular dynamics simula-
tions are a powerful alternative to study the problem of interest at atomistic level.
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Indeed simulations have been carried out on a few proteins under cell-like crowded con-
ditions, helping to understand some of the effects of crowding [196; 201–206]. Among
these works, most treated the crowder molecules as coarse, big spheres that cannot
account for the effects of chemical interactions. Only the most recent simulations have
employed fully atomistic descriptions of the systems [196; 202; 203], starting to re-
veal the importance of enthalpic effects together with recent experiments [198; 199].
However, none of these works studied the effect of crowding on the internal protein
dynamics. In order to start filling this gap, the effect of glucose crowding at 325 g/L on
the dynamic features of ubiquitin through all-atom MD simulations has been studied
here.

Ubiquitin stands as an interesting workhorse protein for studying the effect of crowd-
ing on protein structure and dynamics because both aspects have been vastly studied
through experiments and simulation [135; 207–218]. Such studies have disclosed how
structural fluctuations are intimately linked to the protein’s capacity to interact with
other proteins to achieve its primary function of targeting their fates in the cell, in-
between what conformational selection and induced fit models predict [135; 213; 219–
221]. Also, ubiquitin has been the subject of a few experimental studies under crowded
conditions [198; 222; 223]; more specifically, it has been reported that wild type ubiq-
uitin and three destabilized mutants of this protein gain stability in solutions crowded
artificially with glucose or dextrose and that the amount of gained stability is similar
for the wild type and destabilized mutants, and for glucose and dextrane, suggesting
that the operating mechanism is unspecific [222]. Also, a very recent work revealed
that crowding effects on ubiquitin are mediated by unspecific chemical interactions and
repulsion effects in roughly similar amounts [198].

Our extensive knowledge on ubiquitin dynamics and its role in target recognition
is a picture derived from experiments in dilute conditions and simulations in explicit
water. However, no studies have assessed the effect of crowding on the protein’s dynamic
features at atomistic level. With this motivation in mind, simulations of ubiquitin in
pure water and in 325 g/L of glucose as a starting point to study this matter were
carried out and compared. Glucose at 325 g/L was chosen to mimic a crowded medium
because (i) despite being still far from a true biological medium it is a popular solute
crowder used in experimental studies, and (ii) because such studies have shown that it
exerts several effects on proteins including stabilization of the protein fold. Moreover,
(iii) accurate atomistic force fields for molecular dynamics simulations of glucose are
available [24] allowing to obtain a realistic modeling of a simple crowded environment
for ubiquitin.

89



4. ALL-ATOM SIMULATIONS OF CROWDING EFFECTS ON
PROTEIN DYNAMICS

4.3 Methods

4.3.1 Molecular dynamics simulations

Simulations were run with the NAMD [26] code using the amber99SB [16] force field for
the protein, TIP3P [55; 56] for water and Glycam06 [24] parameters for α-D-glucose.
The structure of human ubiquitin in PDB ID 1D3Z [224] (model 1) was used as a
starting point for minimization, equilibration and production in both simulations. For
the simulation of ubiquitin in water the molecule was solvated in a TIP3P box (315396
Å3), whereas for the simulation under crowding conditions the molecule was first put
together with 317 glucose molecules using the Packmol [225] program, and then solvated
with TIP3P water molecules. After minimization and equilibration the volume of the
box was 291135 Å3 resulting in an average concentration of 325 g/L.

4.3.2 Principal components analysis (PCA) and projection of the tra-

jectories

To build the reference frame for trajectory projection, PCA was carried out on the
covariance matrix of Cα positions for residues 2-70 of 72 high-resolution X-ray structures
of human ubiquitin aligned to model 1 of PDB ID 1D3Z [224]. This is the same strategy
used by others [135; 219], but is based on a larger set of structures. This set includes
free monomers, covalent oligomers and complexes with binding partners, all solved at
a resolution equal or better than 2.5 Å (list of PDB codes and PDB titles in Tab. 4.1).
Projection of the trajectories on the reference frame was also preceded by alignment
to model 1 of PDB ID 1D3Z. The sum of squared PCA loadings (i.e. eigenvalues) 1
and 2 shows that the structural variability that spreads the X-ray structures on the
reference frame arises from sequence segments 6-11, 33-36 and 46-49 (Fig. 4.2B) which
show indeed different conformations in the set of structures (RMSF from structures in
Fig. 4.1).
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Table 4.1: PDB files used to build by PCA the reference frame used for projection of the
simulations. All ubiquitin chains from these PDB were included

1P3Q 3BY4 3TMP 3NS8 1UBI 3IFW 2AYO

1UZX 1WRD 1S1Q 3ONS 3EHV 2XEW 2C7M

1XD3 2WWZ 2PHW 3N32 2W9N 3ALB 1CMX

2D3G 3B0A 3RUL 2IBI 3HM3 1UBQ 1NBF

2G45 3B08 3UGB 2O6V 3K90 2C7N

2HD5 3MHS 3AXC 1TBE 3H7S 2FCQ

2OOB 3NHE 3U30 2JF5 3H7P 1AAR

2QHO 3PRP 3AUL 3EFU 3A33 1YD8

4.3.3 Calculation of free-energy landscapes

Free-energy landscapes were built from the trajectories projected on the reference frame
by binning the projection into a grid and counting the number of frames inside each
cell of the grid (Ni) to compute its free energy according to:

∆Gi = −kBT ln
(Ni

N0

)
(4.1)

where N0 corresponds to the most populated bin, which thus sets the free energy offset.
Strictly speaking this is not exactly a free-energy evaluation.

4.3.4 Interactions between ubiquitin and other proteins in X-ray struc-

tures

The average number of ubiquitin-partner interactions per residue was approximated
as the average (through all X-ray structures that contained a protein interacting with
ubiquitin) number of Cα atoms of ubiquitin-bound proteins that are within 5 Å of each
Cα atom of ubiquitin.

4.3.5 Calculation of NMR parameters from MD trajectories

N-H order parameters (S2) and residual dipolar couplings (RDC) were computed from
the trajectories using equations reported in the literature. The trajectory is aligned
to model 1 of PDB ID 1D3Z and the normalized N-H vectors µ are retrieved for each
peptide bond in each frame of the aligned trajectory. The calculation of S2 is done
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Figure 4.1: Functional flexibility of ubiquitin as derived from X-ray structures and MD
simulations. (A) RMSF observed in the 72 X-ray structures on which PCA was carried
out. (B) Average number of interactions observed for each ubiquitin residue with all other
proteins in the 72 X-ray structures used for PCA. (C) RMSF derived from simulations
of ubiquitin in water (black) and 325 g/L glucose (red). Panels D, E and F color-code
the same information on the structure of ubiquitin (increasing from blue to red): average
number of contacts (D), and flexible regions as determined from the RMSF in water (E)
and in 325 g/L of glucose (F). The C-terminus (residues 71-76) is not reported because it
is missing in some structures due to its high flexibility (trimmed in panels D-F).

as described elsewhere [226] assuming full decay of the autocorrelation function for µ
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Figure 4.2: Construction of the reference frame for projecting simulations. (A) Principal
components 1 against 2 (in Å), for the X-ray structures used to build these axes (each red
point is a structure). (B) Squared sum of loadings 1 and 2.

during the time of the trajectory:

S2
i =

1
2

[
3

3∑
α=1

3∑
β=1

〈
µi,αµi,β

〉2
− 1
]

(4.2)

where the average 〈µi,αµi,β〉 is computed over the whole trajectory (see Chapter 2,
section 2.4). The N-H residual dipolar couplings were computed for each alignment
medium for which data are available, as described by Showalter et al [227]. Briefly, for
each medium an alignment vector A=(Axx, Ayy, Axy, Axz, Ayz) is fit that minimizes
the difference between the experimental RDC data (vector Dexp with as many elements
as N-H peptide bonds for which data is available in that alignment medium) and the
back-calculated RDC values (Dback of same size) in a least-squares sense. The back-
calculated data is Dexp = M×A, where M is a matrix derived from the trajectory
formed by one row of 〈µ2

x〉− 〈µ2
y〉, 〈µ2

y〉− 〈µ2
z〉, 2〈µxµy〉, 2〈µyµz〉 and 2〈µyµz〉 values for

every N-H pair for which data are available. The least-squares problem (M× A - Dexp

→ min) is solved by singular value decomposition as described in detail in that same
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work [227].

4.3.6 Root mean squared fluctuations of Cα atoms in protein ensem-

bles

Root mean squared fluctuations (RMSF) were computed for each Cα atom as:

RMSFi =

√∑N
j (ri,j− < ri >)2

N
(4.3)

where ri denotes the position of Cα atom i, and j runs through the N frames of simulated
time or X-ray structures. Cα atoms 2 to 70 were considered for the ensemble of X-ray
structures and Cα atoms 1 to 76 for the simulations. Calculations were done after
alignment to a reference structure (i.e., model 1 of 1D3Z).

4.3.7 Kinetic description of basins in the conformational landscapes

The formalism proposed by Hess [136; 137] was carried out on the basins observed
in the conformational landscape of each simulation to describe them in terms of their
deepness and roughness. First, ∼25 ns-long sections of the trajectories were identified
in which the protein remained inside each basin according to the projection on the
two-dimensional reference frame built from X-ray structures. For each sub-trajectory,
PCA was carried out to obtain the most important fluctuations inside each basin, and
the first and second eigenvalues (λ) were used to compute the force constant k that
defines the harmonic well in the direction of the two most important eigenvectors, using
the formula:

k =
kBT

λ
(4.4)

where kB is Boltzmann’s constant and T=300K. The autocorrelation functions were
computed for the first principal components and their first decaying parts were fitted
to obtain the reported τ parameters. The internal friction-like coefficient η is then:

η = kτ (4.5)

which measures the roughness of the basin completing its description together with the
harmonic well constant k.
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4.3.8 Internal conformational diffusion

The internal conformational diffusion were estimated calculating for the Cα atoms the
following quantity:

< ∆r(t′)2 >=
1

tmax

tmax∑
t0=1

1
Natoms

Natoms∑
i=1

(r(t0 + t′)− r(t0))2 (4.6)

The calculated functions were then fitted with a power-law function:

< ∆r(t′)2 >' Deff t
′α (4.7)

where Deff is an effective internal diffusion coefficient and α measures the deviation
from Brownian diffusion [138].

4.3.9 Analysis of water and glucose residence times

Interactions between water or glucose molecules and the protein were investigated
in both simulations by computing survival probabilities for water-protein and sugar-
protein contacts. Two atoms were considered to be in contact when the distance be-
tween them was lower than 1.1 times the sum of their van der Waals radii [139–141].
The survival probabilities were computed calculating the function:

Nw(t) =
1
Nt

Nt∑
n=1

∑
j

Pj(tn, t) (4.8)

where Pj(tn, t) takes the values of 1 if the jth water sugar molecule is in contact with
the protein between time tn and tn + t, and zero otherwise, and Nt is the number of
frames. The calculates survival probabilities were then fitted to a stretched exponential
combined with two or more standard exponentials:

Nw(t) ' nse
−
( t
τs

)γ
+

4∑
i=2

nie

(
−
t

τi

)
(4.9)

where ns and ni are the number of water/sugar molecules with residence times τs and
τi on the surface of the protein.

4.4 Crowding effects on ubiquitin dynamics

4.4.1 Simulation of ubiquitin dynamics in water

The dynamic features of ubiquitin in dilute solution have been vastly studied by NMR,
revealing nano- to micro-second timescale motions that are important for target recog-
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nition [135; 213; 219–221]. These experimental observations were complemented with
molecular dynamic simulations in several works to further dissect the contributions of
conformational selection and induced fit mechanisms on target binding [219; 220; 228].
Of particular importance, 0.5 to 1 µs-long simulations performed with amber99SB, a
highly accurate force field that fairly reproduces NMR dynamic data, showed that free
ubiquitin is constantly exploring conformational states that resemble those observed in
X-ray structures of the protein complexed with different partners [219; 220]. Based on
these works, it has been performed a reference 500 ns long simulation of free ubiquitin in
water using the amber99SB force field. As reported for previous simulations, this sim-
ulation can also reproduce fairly well the experimental order parameters available from
relaxation and RDC data [207] (Fig. 4.3A) and the residual dipolar couplings measured
in [227] alignment media [210; 211; 217; 229–231] (Fig. 4.3B). The RMSF profile de-
rived from the simulation (black curve in Fig. 4.1C and Fig. 4.1E) follows that observed
in a set of X-ray structures of ubiquitin bound to different partners (Fig. 4.1A), both
pointing at increased dynamics of the loops involved in the recognition of ubiquitin’s
binding partners (Fig. 4.1B and 4.1D).

All in all, this analysis shows that the amount of flexibility observed in the trajec-
tory is consistent with experimental data in dilute solution, and that flexible regions
of the protein are important for its ability to bind different partners. However, the
analysis does not reveal any information about the conformational space accessible to
the protein through collective motions as a result of such flexibility. In order to explore
this, the simulation were projected on a two-dimensional reference frame built by map-
ping through principal components analysis the structural variability observed in 72
experimental X-ray structures of human ubiquitin under different scenarios (Fig. 4.2A,
where each red point is an X-ray structure). This method has been recently intro-
duced to analyze simulation trajectories and ensembles for which no specific reaction
coordinate can be defined a priori [135; 219; 220]. Briefly, this method combines the
collective fluctuations of the most variable regions of the protein into two new vari-
ables, i.e. the principal components 1 and 2, which account for as much fluctuation as
possible. Projection of the Cα coordinates of our trajectory on this two-dimensional
frame (Fig. 4.4A in blue, where only 1 frame was plot every 1 ns for simplicity) shows
that the protein explores the whole range of conformations sampled by the X-ray struc-
tures, covering smoothly the conformational space. Fig. 4.4B is a simpler and more
informative representation of the projection, in which the density of frames projected
on a grid was converted into a free energy landscape relative to the deepest well. The
largest barriers separating these states are around 1 kcal/mol, indicating a nearly flat
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Figure 4.3: Assessment of the simulation in water against NMR data. (A) N-H order
parameter computed from the 500 ns-long simulation of ubiquitin in water (red) compared
to the values derived from NMR relaxation data (black) and from RDCs (blue). (B) N-H
order parameter computed from the 500 ns-long simulation of ubiquitin in water (red)
compared to the averaged order parameters from NMR relaxation and RDC data (green).
(C) Correlation between experimental and back-predicted N-H residual dipolar couplings.
Each color corresponds to a different alignment medium.

energy surface consistent with the very fast exchange observed between conformational
states and with the fast dynamics determined by NMR.
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Figure 4.4: The conformational landscape sampled by ubiquitin in water and 325 g/L
glucose. (A and C) 500 frames of the 500 ns trajectories in water (blue in A) and glucose
(green in C) projected on the reference frame built through PCA of X-ray structures (red
points). (B and D) Free energy landscapes computed from both MD trajectories relative
to the lowest energy point in each of them, color-coded as shown on the bars in kcal/mol.

4.4.2 Ubiquitin dynamics in 325 g/L glucose

In the next step a 500 ns-long MD trajectory of ubiquitin in a solution crowded at 325
g/L of glucose were investigated. For this simulation the amber99SB force field [16] to
describe the protein, and the Glycam06 [24] force field to describe glucose molecules,
were combined. This setup leaves around the protein molecule a random distribution
of water and glucose molecules in a ratio of about 20:1; details on system setup and
simulation are given under Methods. Comparison of the RMSF in 325 g/L glucose
against the values computed in water (red vs. black in Fig. 4.1C, respectively) shows
that the amplitudes of loop motions are slightly reduced under crowded conditions
during the timescale of the simulations. Notably, the effect on RMSF is not as dras-
tic as that observed in a previous simulation of myoglobin under much more crowded,
near-dry conditions at almost 90 % w/w sucrose [232; 233]. As a result of the mild
reduction in loop flexibility, the RMSF and S2 values of the loops become all similar in
the crowded condition, indicating similar mobility at 325 g/L crowder concentration.
Thus it seems that crowding restricts the mobility of loops in an amount proportional
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to the amplitude of their potential fluctuations. Importantly, and as shown in Fig. 4.5,
this equalizing effect is also seen on the N-H order parameters, which can be obtained
experimentally and compared to test our findings. In order to explore the impact of
crowding on collective motions and the conformational landscape explored by the pro-
tein, the simulation was projected on the two-dimensional reference frame built above.
Projection of 1 frame every 1 ns (Fig. 4.4C) shows that the protein has not explored
the same conformational space as in water during the same time length. Instead, dur-
ing the simulation the protein is restricted to small excursions slightly away from its
initial conformation, always staying within the same basin. This is also evident in the
time evolution of the conformational space sampled in Fig. 4.6. The finding of a strong
restriction in the size of the explored conformational space with only a minor reduction
in RMSF indicates that local fluctuations take place to similar extent under both con-
ditions but collective motions (i.e. transitions between basins) have been compromised
or more likely slowed down in the crowded condition defined by small sugar molecules.

Figure 4.5: Effect of glucose crowding on the N-H order parameter. The order parameter
for each non-proline residue computed from the MD simulations in water (red) and in 325
g/L glucose (blue).
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Figure 4.6: Crowding slows down the kinetics of exploration of the conformational space.
Columns show the conformational space sampled at increasing time points of the simula-
tions in water (left) and in 325 g/L glucose (right). The time corresponding to each free
energy plot is indicated on the bottom left of each panel.
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4.4.3 Exploration of basins in both simulations

In only 40 ns of simulation time the protein simulated in water has escaped from the
initial energy well and has already explored most of the conformational space that it
will sample during the rest of the simulation (Fig. 4.6, left). In contrast, the simulation
in 325 g/L glucose is still trapped around its starting point at 300 ns (Fig 4.6, right)
and has made only one unsuccessfull attempt to visit an alternative conformation at
around 400 ns (Fig. 4.4 and 4.7). Moreover the speed at which the protein explores
the conformational space is slower in the crowded condition than in water. In order
to quantify this, the rate at which the conformational basins are explored has been
explored by using the formalism proposed by Hess [136; 137] to model the diffusion of
a protein inside a conformational basin in terms of internal friction coefficients (η) and
harmonic force constants (k) characteristic of the basin. To do this ∼25 ns-long sections
of the trajectories in which the protein remained inside each of the two basins of the
simulation in water and in the single basin observed in glucose solution were analyzed.
The parameters obtained for the two first principal components of motion inside each
basin are given in Tab. 4.2. The two basins observed in water are characterized by
similar harmonic force constants, whereas the basin observed in the crowded condition
features a ∼5 times stronger k meaning a deeper and sharper energy well. The later
is also rougher with η being an order of magnitude larger and meaning an increased
”friction” and a much slower exploration of the basin in the presence of crowder. In

Figure 4.7: Conformational space explored by ubiquitin in water and in glucose. The
free energy landscape of ubiquitin in water from Fig. 4.4B, on which 400 frames of the
trajectory in 325 g/L glucose have been projected.
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Table 4.2: Analysis of internal dynamics within each conformational basin

λ [Å2] k [kJ· mol−1 nm2] τ [ps] η [amu·ps−1]

Water (left basin)

PC 1 8.84 28.2 9420 2.66·105

PC 2 3.78 65.9 5860 3.86·105

Water (right basin)

PC 1 6.49 38.5 1350 5.19·104

PC 2 3.46 72.1 681 4.91·104

325 g/L glucose

PC 1 1.46 170 7950 1.36·106

PC 2 0.69 360 3700 1.33·106

brief, these results predict that crowding slows down internal dynamics by exerting an
increased ”internal friction” and possibly by imposing higher energy barriers around the
conformational basins reducing the rate of exchange between them. Importantly, the
effect is more important for larger scale motions. Similar ideas implying that crowding
slows down internal motions have been suggested by experimental observations in the
last few years [234; 235]. Also, recent computational and experimental studies showed
that the confinement of a protein inside a micelle reduces its internal dynamics due to
interactions with the surfactant [236; 237]. Thus, little by little the notion that dynam-
ics are affected by crowding is gaining further support and starting to be connected
with the interactions that take place between crowders and the protein at its surface.

4.4.4 Extensive interactions between glucose molecules and ubiquitin

Considering the high concentration of glucose molecules in the simulation box, encoun-
ters between these molecules and the protein are very likely to happen. Indeed, visual
inspection reveals extensive associations of several glucose molecules with the protein,
resembling the multimolecular complexes observed in a recent all-atoms simulation of
the cytoplasm of E. coli [196]. In the absence of crowders the protein interacts with
an average of 236.6 water molecules at any given moment, whereas in 325 g/L glucose
this decreases to an average of 80.3 water molecules due to an average of 27.2 glucose
molecules that become in contact. This means that every ∼156 water molecules that
are excluded from the surface, ∼27.2 glucose molecules are attached, resulting in a ratio
of ∼5.7 water/glucose present at the protein surface. This ratio is consistent with the
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larger area of glucose and shows how interactions between the crowder and the protein
result in desolvation of its surface, as observed through simulations and experiments
for near-dry conditions [232; 233; 238] but to a lesser extent. Notably, five glucose
molecules never leave the protein surface along the whole trajectory. This does not im-
ply constant interaction of the glucose molecules with the same protein residues; rather,
the glucose molecules shuffle interactions to different atoms of the protein wandering
around its surface. For example, there is a glucose molecule that interacts with the
first loop of the protein switching hydrogen bonds between its hanging alcohol groups
and different atoms of the protein during the whole simulation (Fig. 4.8D-E).

Figure 4.8: Interactions between ubiquitin and water/glucose molecules. (A) Average
number of water molecules in contact with each residue at any given moment along the sim-
ulations with (blue) and without (red) crowders. (B) Average number of glucose molecules
in contact with each residue in the simulation in 325 g/L glucose. (C) Relative solvent
accessibility for each residue, as calculated with ASAView [239] (D and E) Typical sugar-
ubiquitin interactions during MD. The time evolution of relevant distances between three
different oxygen atoms of one glucose molecule and different ubiquitin atoms of the first
loop is reported in panel D, while in E their spatial distribution is reported using the same
color code.

Analyses per residue (Fig. 4.8A-C) reveal homogeneous desolvation and glucose
binding along the exposed parts of the protein, suggesting extensive enthalpic pertur-
bations that average smoothly on the protein surface. This picture is in line with the
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recent finding that unspecific interactions are an important component driving crowding
effects on top of the already known steric effects. Regarding desolvation, perturbations
of the hydration structure and dynamics have been predicted in a recent simulation
meant to assess the effect of protein rather than small-molecule crowders [203]. In the
case of glucose molecules, however, the perturbation of hydration structure and dynam-
ics on the first water shell seems stronger, which can be attributed to the much smaller
size of glucose and its higher density of polar groups. The results were interpreted
thinking that glucose molecules bound to the protein and water molecules trapped in-
between drag the exposed residues. Since the interactions are not specific, the effect
is generalized and decorrelates collective motions making them less likely to happen;
in other words, slowing them down. Further work is underway to better understand
these effects of crowding on the internal protein dynamics, and to evaluate the role of
protein-glucose, protein-water and glucose-water interactions (see next section).
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4.5 Effect of crowding concentration and initial conditions

on ubiquitin dynamics

In the previous sections it was shown how ubiquitin’s internal dynamics is strongly
slowed down under glucose crowding at 325 g/L compared to a reference simulation in
water. A simulation in water could vastly explore in 40 ns all the states observed for
ubiquitin in crystallographic (apo and bound) conformations and previously reported
MD simulations [135; 213; 220], whereas the simulation in 325 g/L glucose could only
fluctuate around the starting structure during a 500 ns simulation. However, a number
of issues still remain open for the specific case of ubiquitin and likely in general for
protein dynamics. First, does crowding affect diffusion through a conserved landscape,
or does it alter the shape of this landscape? Second, what happens at an intermediate
crowder concentration, or if the simulations are launched from different initial states of
the conformational landscape observed in water? Third, is there an effect of crowding
on the rate of exploration of the conformational space inside a basin, and how does
this relate to the first two issues? In an attempt to answer these questions and better
describe the effects of crowding on ubiquitin’s internal dynamics, the effect of glucose
concentrations and initial conditions were studied. Finally, the effect of crowding on
the mobility of glucose and water molecules around the protein surface was addressed,
trying to describe how interaction events at the protein surface connect to the protein’s
internal mechanics.

Figure 4.9: (A) Free energy landscape explored by ubiquitin in a 500 ns long simulation in
water, as derived from its projection on the 2 first principal components that describe the
variability observed in X-ray structures. Asterisks denote starting points for simulations
under crowding conditions. (B) The most flexible segments of ubiquitin as revealed from
the analysis of variation in X-ray structures, which is well reproduced by MD simulations
as shown in several works.
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In particular, looking at the conformational space of ubiquitin (Figure 4.9) two
main basins can be identified: a smaller one centered at around [-4.5, 0.5] Å in PC1-
PC2 space, and a bigger one centered at around [0, 0] Å. Based on the shape of this
landscape and on the previous results, three relevant states were defined: point L
(after left) that corresponds to the deepest point of the smallest basin, point R (after
right) that corresponds to the deepest point of the biggest basin, and point C (after
center) that corresponds to the starting structure of the simulation in water reported
above. The additional two states (i.e., R and L) were used to start additional MD
simulations and served to another purpose. Namely, some simulation studies suggest
that this big basin might actually be two basins separated by a small energy barrier
(with minima approximately on points C and R). In the previous section it was reported
how ubiquitin in 325 g/L glucose was restricted to small fluctuations around the starting
conformation (around point C) instead of exploring the whole conformational landscape
defined by the X-rays structures or free MD in water. Therefore, simulations run at an
intermediate glucose concentration of 108 g/L and at 325 g/L, each starting from these
three distinct points were performed and analyzed.

4.5.1 Simulation in water and 108 and 325 g/L glucose, starting from

the structure of free ubiquitin

Projection of the simulation in water at increasing time steps (Fig. 4.10, left) shows
that in only 40 ns the protein has explored most of the conformational space it will
explore in the rest of the simulation. Instead, the simulation in 108 g/L started from
the same structure (i.e. that of free ubiquitin, point C of the conformational landscape
in water) shows that after 500 ns the protein is stuck in what corresponds roughly to
the rightmost basin of the simulation in water (Fig. 4.10, center). Comparison of the
ending points of the simulations in water and in 108 g/L glucose suggests that the
broad basin explored in the crowded condition matches fairly well with the rightmost
basin of the landscape obtained in water. The simulation started from the same point
in 325 g/L glucose (Fig. 4.10, right) reveals a more extreme situation, with only one
tight basin that corresponds to the left area of the rightmost basin observed in water
(or of the single basin observed in 108 g/L glucose).

Ideally, the two simulations under crowded conditions could be extended as long
as needed expecting transitions to occur from the current basins to alternative basins.
This could in principle allow to determine whether similar basins are available in the
three conditions but separated by higher energy barriers as the crowding concentration
increases, or if a radical perturbation of the landscape takes place in the presence
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Figure 4.10: Projection of the Cα coordinates of ubiquitin at increasing times of simula-
tion in water (left), 108 g/L glucose (center) and 325 g/L glucose (right), all started from
the structure of free ubiquitin (point C of the conformational landscape observed in water,
Figure 4.9)
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of crowders removing and/or shifting the basins. However, a large number of such
transitions would be required to build an actual free energy profile, becoming more
computational demanding. As an alternative approach, MD simulations starting from
points L and R of the conformational landscape observed in water, each at 108 and 325
g/L concentration of glucose as a crowder were performed.

4.5.2 Exploring alternative states of the ubiquitin conformational land-

scape

In MD simulations starting from points L and R at 325 g/L of glucose the protein
remains stuck around each starting conformation during the whole simulation time
(Figure 4.11). This shows that each conformation is very stable against interconver-
sion into other conformations in the submicrosecond timescale, implying very high
energetic barriers between them relative to those in water. The simulations in 108
g/L (Figure 4.11) show an intermediate effect, with only a few interconversion events
taking place between the different basins. This precludes proper computation of the
conformational landscapes for these simulations, but for sure indicates that at 108 g/L
glucose the basins are separated by more modest barriers, slightly higher than those
present in water but much lower than those in 325 g/L. This is even more evident cal-
culating, using a Boltzmann inversion, from the density probabilities of PC1 the pseudo
free energy profiles along this principal component (Fig. 4.12). From the figure 4.11
it is clear that the glucose concentration is determining an increase of the energetic
barriers to be overcame to pass from a minimum to another (this ∆G estimation has
to be considered qualitative, since more rigorous estimation can be obtained only by
larger sampling or by using enhanced sampling techniques).
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Figure 4.11: Pseudo free energy profiles of PCA1 calculated using Boltzmann’s inversion.
(A) Simulation in water, (B) Simulations in 108 g/L glucose concentration, (C) Simulations
in 325 g/L glucose concentration

Structural fluctuation properties

From the calculation of structural fluctuation properties it is clear that the increasing
glucose concentration generally decreases, in correspondence of the loops, the intensity
of the fluctuations (Fig. 4.13). In fact the RMSF calculated from the simulations at
100 g/L glucose concentration are quite in line with the simulation carried out in water
(Fig. 4.13A), whereas in the simulations performed at 325 g/L glucose concentration
some peaks are almost abolished (Fig. 4.13C). For the S2 order parameter the results are
somehow different because passing from 108 g/L to 325 g/L the peaks are sufficiently
reproduced (Fig. 4.13B and D). The different concentrations of sugar seem to modulate
in different ways these two structural dynamics properties. In fact high concentration
of sugar seems to decrease fluctuations around average position of Cα allowing at the
same time the same angular amplitude movements of backbone dipoles.

109



4. ALL-ATOM SIMULATIONS OF CROWDING EFFECTS ON
PROTEIN DYNAMICS

Figure 4.12: (Left) Projection of the Cα coordinates of ubiquitin at increasing times of
simulations in 108 (left) and 325 (right) g/L glucose starting from points L, C and R of
the conformational landscape

Internal conformational diffusion

In order to quantify the diffusion velocity in the conformational space in absence and
presence of glucose the internal conformational diffusion was evaluated. This has been
done calculating the effective diffusion coefficient in the conformational space of ubiq-
uitin using the formula 4.6. From Fig. 4.14 it is clear that the diffusion on the con-
formational space depends on the concentration of glucose as already Fig. 4.9, 4.10
and 4.12 showed. Anyway this analysis permits to show that, despite different start-
ing conditions, the same concentration of sugar is modulating of the same amount the
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Figure 4.13: Comparison of structural fluctuations properties. (A) Comparison of RMSF
between simulation in water and simulations at 100 g/L glucose; (B) Comparison of S2

order parameter between simulation in water and simulations at 100 g/L glucose; (C)
Comparison of RMSF between simulation in water and simulations at 300 g/L glucose;
(D) Comparison of S2 order parameter between simulation in water and simulations at 300
g/L glucose

diffusion in the conformational space (Tab. 4.3). The sugar strongly influences the ef-
fective diffusion in the conformational space of ubiquitin without altering significantly
the sub diffusive regime, despite the fact that small differences exist in the parameter α
(Tab. 4.3). In fact the increasing of glucose concentration corresponds to a decreasing of
the effective diffusion coefficient passing from 0.272 in water to 0.049 in 325 g/L glucose
concentration. The effective diffusion coefficients at 108 g/L glucose concentration are
instead in between the value in water and the values in 325 g/L glucose concentration
(Tab. 4.3, Fig. 4.14).
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Table 4.3: Results of the fit of the internal conformation diffusion curves (Fig. 4.14) with
equation 4.6

Type simulation Deff α

Water 0.272 0.123

108 g/L (L) 0.123 0.138

108 g/L (C) 0.121 0.140

108 g/L (R) 0.093 0.172

325 g/L (L) 0.082 0.121

325 g/L (C) 0.049 0.190

325 g/L (R) 0.073 0.125

Figure 4.14: Comparison of internal conformational diffusion calculated from the different
simulations

Kinetic description of the basins

In order to better understand the causes leading to a slow-down of atomic motions, a
mechanical description of the basins observed in all the simulations presented above
has been performed based on a formalism proposed by Hess [136; 137], which mod-
els the diffusion of the protein through the conformational basin in terms of internal
friction coefficients (η) and harmonic force constants (k) for the principal components
of motions inside the basin (see Chapter 2). For each basin in each simulation, the
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first principal components during ∼25 ns-long windows of the trajectories in which the
protein remained inside the basin were analyzed.

Internal friction coefficients and harmonic force constants turned out to be very
sensitive to glucose concentration, for the first principal component of motion. The
case of component 1 is illustrated in Fig. 4.15, where both parameters are plotted
as a function of glucose concentration. The force constant on component 1 grows
exponentially with glucose concentration leading to sharper and more conformationally
restricted basins. Assuming nearly fixed positions for the basins, this would lead to
their crossing at higher energies lowering the probability of exchange between them,
in agreement with the previous results. In parallel, internal friction grows roughly
linearly with glucose concentration hampering diffusion inside the basins. In summary,
this analysis reveals a double effect of the crowder on the topology of the basins.

Figure 4.15: Plots of harmonic force constants k (A) and internal friction coefficients η
(B) for component 1 of the main basins observed in the simulations as a function of glucose
concentration

Interaction of water and glucose molecules with the protein surface

In order to quantify and better understand these phenomena, the residence times and
diffusion properties of water and glucose molecules on the surface of the protein were
analyzed. For this purpose it has been used Marchi’s formalism for the calculation
of survival probabilities for protein-solvent/solute interactions [140; 141]. Regarding
water-protein interactions, the work by Marchi et al. identified three characteristic
residence times for water molecules on the surface of proteins based on ∼10 ns-long
simulations in pure explicit water. Following this approach, the MD trajectory in water
has been analyzed, where additional (slower) time scales can be expected due to the
much longer simulation time of the present MD simulations. The trajectories for the
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glucose, the survival probabilities of glucoses presence on the surface of the protein
were estimated.

In the simulation of ubiquitin in pure water an average of 290 molecules interact-
ing along the trajectory. Most of them (80 %) experience the fastest possible exchange
regime with a residence time of 30 ps diffusing slightly off the Brownian limit (i.e.,
Kohlrausch’s stretching parameter γ = 0.899 against a value of 1 for Brownian mo-
tion). Around 17 % of the molecules belong to the second time regime with an average
residence time of 140 ps, and 2 % have an average residence time of 920 ps correspond-
ing to the third regime. Very few molecules ( 0.35 %) have residence times longer than
1 ns, reaching an average of 13.4 ns. No water molecule remains bound to the protein
for the entire simulation suggesting no exchange processes slower than 10 nanoseconds.

The presence of glucose in the solution induces strong non-Brownian diffusion on the
fastest timescale of water motions, as revealed by the drop in Kohlrausch parameters.
As shown in Fig. 4.16 glucose molecules interact with the protein removing water
molecules from its surface. The effect is stronger at higher glucose concentrations and
independent of the starting conformation; in particular, the observations at 325 g/L
indicate that the number of attached glucose molecules and detached water molecules
is similar in the three main conformations. More interestingly, Fig. 4.17 reveals that
despite the drop in the total number of water molecules wetting the protein surface, the
numbers of water molecules with the two longest residence times (n3, n4) increase with
concentration. Fig. 4.18 further shows that the residence times of water molecules also
increase steeply with glucose concentration. Altogheter, this evidence suggests that the
binding of glucose molecules to the surface of the protein traps water molecules. Since
the residence times of glucose molecules are at least 1-2 orders of magnitude larger than
those of water molecules, the overall effect is dramatic even at only 100 g/L glucose.
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Figure 4.16: Number of water and sugar molecules on the protein surface as function of
sugar concentration

Figure 4.17: Number of water molecules exchanging interactions with the protein surface
on different time scales: sub-nanosecond (ns, in black), 0.1-100 ns (n2 and n3, in red and
green), and the slowest process (n4, blue) reaching up to 380 ns
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Figure 4.18: Correlation plots for the number of water molecules under each residence
timescale in the seven simulations.

Figure 4.19: NS(t) for sugar molecules on the protein surface in dependence of sugar
concentration
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Table 4.4: Number of water and glucose molecules attached to the protein surface as
calculated from simulation

Type simulation NW (0) NS(0)

Water 289.6 0.0

108 g/L (structure L) 161.7 54.7

108 g/L (structure C) 168.1 51.7

108 g/L (structure R) 150.9 59.1

325 g/L (structure L) 111.4 81.7

325 g/L (structure C) 120.0 78.1

325 g/L (structure R) 114.5 81.3

Fig. 4.19 shows the functions NS(t) as calculated from simulations at different glu-
cose concentrations and starting conditions, whereas Tab 4.4 makes a summary about
the number of water or glucose molecules always attached to the protein surface. It is
clear that sugar molecules remain attached to the protein surface for all the simulation
time forcing the protein to be dynamically slaved by glucoses at sub microsecond tem-
poral scales. Moreover, the number of glucose molecules attached to the protein surface
increases as the glucose concentration increases amplifying the effect of the dynamic
slavery. The water and glucose molecules attached to the protein surface put weight
on it slowing down the conformational exploration. In fact if only water is present
the weight of waters on the protein surface is ∼5200 Da (being 18.015 Da the water
weight). At 108 g/L glucose concentration the weight of the attached molecules (waters
and glucoses) is ∼12.000 Da (being 180.156 Da the α-D-glucose weight), whereas at
325 g/L glucose concentration is ∼23.000 Da. The weight is double passing from 0 g/L
to 108 g/L and passing from 108 g/L to 325 g/L. These mass values together with the
temporal scales of water and glucose permanence on the protein surface make clear the
origin of the dynamic slavery (i. e. water and glucose fluctuations dominate protein
dynamics [240]) due to the presence of the glucoses.
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4.6 Discussion

The set of extended MD simulations carried out in this work allowed to describe and
explain the influence of different concentrations of glucose on ubiquitin internal dy-
namics. The main finding, highlighted by the PCA analysis, is that the increment of
the concentration of glucose, independently from the starting conditions, determines
a slow down of the exploration of the conformational space. The evaluation of the
effective diffusion coefficients permits to quantify the diffusion velocity in the ubiqui-
tin conformational space. The results permitted to connect the slowing down of the
conformational exploration to the glucose concentration.

The Hess analysis complements the previous findings showing that the internal
dynamics of ubiquitin, when trapped in a minimum of free-energy, is largely affected by
different concentration of glucose. The increment of glucose concentration determines
that minima become at the same time steeper and rougher respect to the corresponding
minima in water, being respectively k and η higher. The steeper and rougher nature of
the minima has an effect on the structural dynamics properties as RMSF and S2 order
parameter. In fact higher concentrations of glucose correspond to a smoothing of the
RMS fluctuations whereas S2 order parameters seem affected but in a different way,
showing that angular amplitudes of backbone dipoles are almost the same. This result
is in line with a recent paper where ubiquitin where simulated as confined in a inverse
micelle [236].

The evident slow down of the conformational space exploration is clearly due to
the presence of glucose molecules. The presence of glucose molecules determines a
more viscous medium, keeping trapped ubiquitin for longer time in stable and meta-
stable conformations. The analysis of the contact survival probabilities protein-water
and protein-glucose permitted to quantify the temporal scales of existence of such
contacts. The glucose molecules, belonging to the first shell of contacts, interact with
the surface of the protein on a temporal scale of several tens of nanoseconds. This
temporal scale together with the observation that a glucose molecule is heavier than a
water molecule, having at the same time more hydrogen bond acceptors and donors,
permits to understand that the internal motions of ubiquitin are slowed down because
the ”effective mass” of the protein is increased. The presence of glucose molecules
reduces the number of waters on the protein surface diminishing the accessible surface
and at same time increases the water permanence time trapping them. The drastic
alteration of the solvation mechanism does not permit a fast exchange of waters with
the bulk. The long time permanence of glucose on the protein surface in combination
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with the slow exchange of waters turns out in the slow exploration of the ubiquitin
conformational space.

Although the constituents of the cellular medium are chemically varied and not
simply glucose rings, they contain exposed polar and charged groups capable of estab-
lishing electrostatic interactions, salt bridges and hydrogen bonds with protein surfaces,
which are largely polar and charged. In our view, based on the present and others’ re-
sults, all these transient, unspecific interactions average out to a constant enthalpic and
entropic perturbation of the protein surface. This perturbation would imply both ther-
modynamic stabilization of the protein fold and a slow down in all large-scale kinetic
processes thus slowing down unfolding rates too. In this regard, all the observations
are in agreement with the experimental reports that crowding enhances the native
structure of proteins [241; 242] and that part of this stabilizing mechanism acts on the
folding pathways themselves [205]. On top of this, these finding that collective motions
are slowed down allow to propose that crowding agents can stabilize proteins by simply
trapping the native conformations, i.e. through a kinetic contribution. Similar ideas
were suggested by different experimental and computational evidence [243; 244].

Notably, these effects would also stabilize protein complexes, as well as complexes
composed of different kinds of macromolecules as reported in a recent all-atoms sim-
ulation of E. coli ’s cytosol. This might be of little importance for strongly inter-
acting proteins but would be important for proteins involved in interactions defined
as ”transient” by experiments. In particular, this can explain why some interactions
predicted by genetic evidence are not confirmed by in vitro experiments. Stabiliza-
tion of protein-protein interactions by crowding would have profound implications for
many proteins, including ubiquitin itself. Moreover, crowding could have an effect on
the relative weight of induced-fit and conformational selection mechanisms that guide
protein-protein recognition.

Finally, one can speculate that the marginal stability observed for proteins in solu-
tion arises from the fact that they have evolved to work in crowded, stabilizing envi-
ronments. Under this scenario, potential proteins that are too stable in dilute solution
would be unnecessarily too stable in the cellular medium, and possibly too rigid to
function properly.

4.7 Conclusions

Crowding effects are very important for life as we know it, where they influence the
thermodynamics and kinetics of cellular chemistry, and in biotechnology where they
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can be exploited to stabilize protein samples and in protein refolding protocols. I have
herein investigated the effect of glucose crowding on the internal dynamics of a pro-
tein, providing a starting point to better describe the interplay between protein-sugar,
protein-water and sugar-water interactions at the protein surface at atomic level. These
results back up the notion that crowding might be an element with which cells manip-
ulate protein dynamics affecting their folding, function and regulation. As increasingly
recognized by these findings and by several recent works, more realistic insights into the
biological physics and chemistry of the cell might be obtained by including crowders in
experimental and computational research.

These results also point out an important aspect in this field of research. While
the entropic contribution of crowding agents can be modeled through coarse-grained
models as already done in other works [245–248], the use of all-atom MD simulations
is still necessary for taking into account the important enthalpic contributions of inter-
molecular interactions.

Despite the interesting outcomes of this work, there are several possible directions
that I am exploring to extend the reach of this computational investigation. First,
sampling is surely a limitation in this study and extending the duration of the simula-
tions in order to reach at least the µs timescale should provide further insights. This
could permit to observe transitions among the minima obtained at high concentration
of glucose, allowing a more precise estimation of the free-energy profiles. In parallel, the
use of enhanced sampling techniques, like replica exchange molecular dynamics [249],
would also allow to have a more quantitative insight into the pseudo free energy land-
scape under different glucose concentrations. Furthermore, α-D-glucose is not the only
type of crowder used in in vitro experiments and certainly is not the optimal crowder
to mimic in vivo cellular conditions. In order to have a exhaustive picture of the in-
fluence of crowding agents, one should consider the effects of agents of different sizes
and physicochemical properties (e.g. proteins, nucleic acids, metabolites etc.). In this
study, glucose was chosen because its size allowed for an atomistic detailed analysis.
Given the ever-growing sampling capability of atomistic MD simulations, the extension
of this approach to more realistic physiological situations could be soon realized.
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Chapter 5

Conclusion and perspectives

We choose to go to the moon. We choose to go to the moon in this decade and do the
other things, not because they are easy, but because they are hard, because that goal will
serve to organize and measure the best of our energies and skills, because that challenge is
one that we are willing to accept, one we are unwilling to postpone, and one which we
intend to win, and the others, too.

John F. Kennedy

In this thesis I presented two different contributions for the extension of the present
boundaries of biomolecular modeling, namely the development of simplified coarse
grained models for soluble proteins, and the application of state-of-the-art atomistic
molecular dynamics to investigate the effect of molecular crowding on protein dynam-
ics.

The development of a novel coarse-grained model for proteins aims at extending
the possible sampling of molecular simulations retaining at the same time a sufficient
accuracy in describing intermolecular interactions. The key point of this model is the
introduction of electrostatics, which is of upmost importance in biology for driving
molecular assembly and function. The model has been tested against finer-grained
simulations giving structural and dynamic results that are encouraging for the simu-
lation of large biomolecular complexes. While this contribution represents an effort
in developing models with accuracy competitive with all-atom results, I am obviously
aware that such model, as others of similar nature, won’t be able to capture properties
accessible only to atomistic simulations (one example is in fact reported in Chapter
4). However for the treatment of very large systems, their assembly and dynamics the
present model offers some improvements over current methods, being able to preserve
secondary structural elements and to reproduce more faithfully electrostatics. Nonethe-
less, this model is still open to several improvements making appealing the possibility
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to spend time on it in order to extend its capabilities. Among possible applications,
I can envision: the study of protein-protein interactions in molecular dynamics, the
use for macromolecular assembly scoring and the elucidation of fibril formation. At
the moment the field of coarse-grained modeling is not as well established as atom-
istic simulations, but it is gaining more and more respect permitting the simulation of
phenomena that are far from being accessible with all-atom molecular dynamics tech-
niques. Thus, improving CG model accuracy and allowing hybrid treatments of the
degrees of freedom (as for example in atomistic/CG schemes) will contribute to the
routinely use of CG simulations as complement to finer-grained simulation to catch
and attack biological problems in a multiscale fashion.

On the other side, especially with the ever-increasing power of accessible hardware,
atomistic MD simulations is a fundamental technique for the study of the physicochem-
ical properties of living systems. The chapter about the influence of crowding agents
on the ubiquitin dynamics demonstrates that state-of-the-art molecular dynamics in
combination with present atomistic force fields permits to quantify and estimate effects
that are not easily accessible to experiments. Some estimated quantities, like effective
internal diffusion coefficients and friction coefficients, can be considered theoretical pre-
dictions that deserve an experimental confirmation. This could permit to understand
if the used model systems are realistic and if current force fields are accurate enough
to describe this type of phenomena. This study represents an effort in describing and
treating model systems, mimicking as close as possible at least in vitro conditions, with
the aim in the future to reproduce in vivo conditions. In fact, often molecular dynamics
simulations aimed at giving a microscopic picture of biological problems are not always
performed having in mind the typical in vitro or in vivo conditions, apart for the ionic
strenght. I think that for the future developments and directions of biomolecular mod-
eling it is important to overcome also this barrier, given that computational approaches
are sometime the only way to describe a system without heavily perturbing its native
conditions.

Reconnecting with the introduction of this thesis, the previous chapters could be
seen as small steps in the direction to mimic through molecular dynamics investigations
a cell or at least parts of it. Anyway, I think that the road that brings to the simulation
of a small cell or an organelle is still really long and extremely impervious. I think that
not only a theoretical and methodological progress is needed, but also the responsible
acting of single entities inside an organized and fully integrated community, where
theoretical physicists and chemists can speak the same language of biochemists and
biologists.
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To reach these goals, I think that in the future the biomolecular dynamics commu-
nity would need to focus on the following points:

1. Development and improvement of accurate atomistic force fields for all the pos-
sible categories of biomolecules

2. Development and improvement of coarse-grained models and all-atom/coarse-
grained hybrid models

3. Extension of the structure-function paradigm accounting for dynamical properties
of biomolecules

The accomplishment of the first point would permit to perform biomolecular sim-
ulations of model systems able to reproduce, under some ranges of validity, in vitro
and/or in vivo conditions. The need to work on the second point is due to the fact
that computational resources will be always somehow limited. Thus the development
of coarse-grained models enabling the simulations or representation of large molecular
complexes at nearly atomistic level is advisable in order to save computational power.
In parallel, the development of hybrids models could permit to preserve an atomistic
representation where and when is needed. Having now available molecular dynamics
packages and all-atom force fields able to capture the main features of biomolecules
it is time to be able to reinforce the role of dynamics within the structure-function
paradigm.

All the proposed points can be achieved both by single groups or by clusters of
groups, but I think that is becoming clearer and clearer that what the community of
biomolecular modeling would like to do is too complex to be handled by a single group.

Thus, I think that what is missing in our community is the organization of joint
efforts to accelerate the achievement of these goals. I clearly understand that the
problem to organize joint efforts is mainly politic rather than scientific, but I think
that with a reasonable amount of diplomacy this task can be accomplished. I have
in mind that could be important for the european biomolecular modeling groups to
create a community like Simbios or IMP and Rosetta in USA. Inside this European

Biomolecular Modeling Community it might be possible to create Divisions that are
focused on specific fields (e.g., development of codes, models and force fields, etc.).
Clearly the work of each division would not be self-consistent but would benefit from
the contribution of the other divisions. I think, that the scientific achievements by an
organized community should definitely boost the rationalization of experimental data
and the predictive power of biomolecular modeling.
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