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Abstract
Nowadays there is an increasing interest in the field of implantable biosensors. The possibility

of real-time monitoring of the human body from inside paves the way to a large number of

applications and offers wide opportunities for the future. Within this scenario, the i-IronIC

project aims to develop an implantable, low cost, health-care device for real-time monitoring

of human metabolites. The contribution of this research work to the i-IronIC project consists

of the design and realization of a complete platform to provide power, data communication

and remote control to the implantable biosensor. High wearability of the transmitting unit,

low invasivity of the implanted electronics, integration of the power management module

within the sensor, and a reliable communication protocol with portable devices are the key

points of this platform.

The power is transmitted to the implanted sensor by exploiting an inductive link. Simulations

have been performed to check the effects of several variables on the link performance. These

simulations have finally confirmed the possibility to operate in the low megahertz range,

where tissue absorption is minimum, even if a miniaturized receiving inductor is used.

A wearable patch has been designed to transmit power through the body tissues by driving an

external inductor. The same inductive link is used to achieve bidirectional data communica-

tion with the implanted device. The patch, named IronIC, is powered by lithium-ion polymer

batteries and can be remotely controlled by means of a dedicated Android application running

on smartphones and tablets. Long-range communication between the patch and portable

devices is performed by means of Bluetooth protocol.

Different typologies of receiving inductors have been designed to minimize the size of the

implantable device and reduce the discomfort of the patience. Multi-layer, printed spiral in-

ductors and microfabricated spiral inductors have been designed, fabricated and tested. Both

the approaches involve a sensibly smaller size, as compared to classic “pancake” inductors

used for remote powering. Furthermore, the second solution enables the realization of the

receiving inductor directly on the silicon substrate hosting the sensor, thus involving a further

miniaturization of the implanted device.

An integrated power module has been designed and fabricated in 0.18µm CMOS technology

to perform power management and data communication with the external patch. The circuit,

to be merged with the sensor readout circuit, consists of an half-wave voltage rectifier, a

low-dropout regulator, an amplitude demodulator and a load modulator. The module receives
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Abstract

the power from the implanted inductor and provides a stable voltage to the sensor readout

circuit. Finally, the amplitude demodulator and the load modulator enable short-range

communication with the patch.

Keywords: Inductive link, remote powering, implantable biosensors, multi-layer inductors,

microfabricated inductors.
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Résumé
Les dernières années ont vu un intérêt croissant envers le domaine des capteurs implantables.

La possibilité de contrôler en temps réel le corps humain ouvre la voie vers de nombreuses

applications et offre des opportunités intéressantes pour le futur. Dans ce contexte, le projet

i-IronIC a pour but de développer un capteur implantable à bas prix pour le contrôle en temps

réel de plusieurs métabolites dans le corps humain.

La contribution de ce travail de recherche au projet i-IronIC consiste en la réalisation d’une

plateforme complète capable de transférer l’alimentation et de communiquer avec le capteur

implanté. Invasivité et dimensions réduites, intégration du module de gestion de puissance et

protocole de communication fiable font parti des points clés de cette plateforme.

L’alimentation est transmise au capteur implantable par lien inductif. Plusieurs simulations

ont été effectuées afin d’étudier l’effet de variables externes sur les performances du lien.

Ces simulations ont confirmé la possibilité de travailler dans le domaine du mégahertz, où

l’absorption par les tissus est minime, même lorsque des inducteurs miniaturisés sont utilisés.

Un patch électronique a été conçu afin de transmettre l’alimentation à travers la peau grâce

à un inducteur externe. En outre, ce même lien est exploité pour communiquer de manière

bidirectionnelle avec le dispositif implanté. Le patch, appelé IronIC, est alimenté par batteries

aux polymères de lithium et peut être contrôlé à distance au moyen d’une application Android

pour smartphone et tablet. La communication à longue portée entre le patch et d’autres

dispositifs portables est basée sur le protocole Bluetooth.

Différents types d’inducteurs de réception ont été étudiés pour minimiser les dimensions

finales du dispositif et réduire l’inconfort du patient. Ainsi, des inducteurs multicouches et des

inducteurs micro-fabriqués ont été conçus, réalisés et testés. Les deux approches impliquent

une diminution substantielle de la taille par rapport aux inducteurs “pancake”, habituellement

utilisés pour la transmission de puissance sans fils. En outre, la deuxième solution présente

l’avantage de pouvoir être réalisée directement sur le substrat de silicium qui accueille le

capteur, permettant de réduire encore la taille de l’implant.

Un module intégré pour la gestion de la puissance a été conçu et réalisé en technologie CMOS

0.18µm. Le module est responsable de la gestion de la puissance reçue et de la communication

avec le patch. Le circuit, qui doit être intégré avec le capteur, comprend un redresseur à demi-

onde, un régulateur à faible chute de tension, un démodulateur d’amplitude et un modulateur
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de charge. Le module reçoit l’alimentation par l’inducteur et fournit une tension stable au

capteur. Le démodulateur d’amplitude et le modulateur de charge, quant à eux, permettent la

communication à courte portée avec le patch.

Mots clés : Lien inductif, transmission de puissance sans fils, biocapteurs implantables, in-

ducteurs multicouches, inducteurs micro-fabriqués.
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Sommario
Negli ultimi anni si è potuto assistere ad un crescente interesse nei confronti dei biosensori

impiantabili. La possibilità di monitorare in tempo reale il corpo umano dall’interno apre

la strada ad un elevato numero di applicazioni ed offre interessanti prospettive per il futuro.

In questo contesto, il progetto i-IronIC si propone di sviluppare un sensore impiantabile a

basso costo per il monitoraggio in tempo reale di diversi metaboliti presenti nel corpo umano.

Il contributo di questo lavoro di ricerca al progetto i-IronIC consiste nel progetto e nella

realizzazione di una piattaforma completa in grado di trasmettere potenza e comunicare con

il sensore impiantato. Elevata vestibilità, dimensioni contenute, integrazione del modulo di

gestione della potenza ed un protocollo di comunicazione affidabile sono punti chiave di

questa piattaforma.

La potenza è trasmessa al sensore impiantabile mediante accoppiamento induttivo. Diverse

simulazioni sono state effettuate per studiare l’effetto di variabili esterne sulle prestazioni

dell’accoppiamento. Tali simulazioni hanno confermato la possibiltà di lavorare nel campo dei

megahertz, dove l’assorbimento da parte dei tessuti è minimo, anche quando sono utilizzate

delle induttanze riceventi miniaturizzate.

Un cerotto elettronico è stato progettato per trasmettere potenza attraverso la pelle utiliz-

zando un accoppiamento induttivo. Inoltre, lo stesso accoppiamento induttivo usato per

la trasmissione di potenza è utilizzato per comunicare bidirezionalmente con il dispositivo

impiantato. Il cerotto, chiamato IronIC, è alimentato da batterie agli ioni di litio e può essere

controllato a distanza tramite un’applicazione Android dedicata per smartphone e tablet.

La comunicazione a lungo raggio fra il cerotto ed eventuali dispositivi portatili è effettuata

tramite Bluetooth.

Diverse tipologie di induttori riceventi sono state studiate per minimizzare le dimensioni

finali del dispositivo e diminuire il disagio del paziente. Induttori multi-strato ed induttori

microfabbricati sono stati progettati, realizzati e testati. Entrambi gli approcci comportano

una notevole diminuzione delle dimensioni se comparati ai classici induttori “pancake” so-

litamente utilizzati per la trasmissione di potenza senza fili. Inoltre, la seconda soluzione

presenta il vantaggio di poter essere implementata direttamente sul substrato di silicio che

ospita il sensore, riducendo ulteriormente le dimensioni dell’impianto.

Un modulo integrato per la gestione della potenza è stato progettato e realizzato in tecnologia

CMOS 0.18µm. Il modulo si occupa della gestione della potenza ricevuta e della comuni-
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Sommario

cazione con il cerotto. Il circuito, da integrare con il sensore, include un raddrizzatore a

semionda, un regolatore, un demodulatore di ampiezza ed un modulatore di carico. Il modulo

riceve potenza dall’induttore impiantato e fornisce una tensione stabile al sensore. Infine, il

demodulatore di ampiezza ed il modulatore di carico consentono la comunicazione a corto

raggio con il cerotto.

Parole chiave: Accoppiamento induttivo, trasmissione di potenza senza fili, biosensori im-

piantabili, induttori multi-strato, induttori microfabbricati.
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1 Introduction

Nowadays there is an increasing interest in the field of implantable biosensors. The possibility

of real-time monitoring of the human body from inside paves the way to a large number of

applications and offers wide scenarios for the future. As an example, a promising application

is the use of implanted electrode arrays to monitor local neural circuits and the related spiking

activity [1–4]. The study of brain neural activity is a great help in the treatment of disorders

such as blindness, deafness, epilepsy, Parkinson’s disease and paralysis. For instance, in the

last mentioned disorder, by observing the emission rate of electrical impulses occurring when

particular movements are performed, it is possible to transform these signals into commands

for neuroprosthetic devices. These devices, controlled directly through the nerve signals [5],

are thus able to partially render the mobility to people with motion disabilities.

The brain is not the only application area for implantable biosensors. Significant effort

is dedicated to the design and development of implantable chemical sensors, capable of

detecting the concentration of clinically relevant species [6]. The real-time, continuous

monitoring of several metabolites in the human body enables personalized medicine and

point-of-care therapies, tuned on the response of the patient. As example, the constant

monitoring of the glucose level in the subcutaneous interstitial fluids is an important aid to

those patients who suffer from diabetes. By means of implantable sensors, located in the

subcutaneous zones, the percentage of glucose into the blood (glycemia) can be recorded and

transmitted to a remote device, such as a smartphone, to be analyzed. Thus, periodic and

disturbing blood drawing can be avoided.

Another metabolite that can be monitored by means of subcutaneous sensors is the lactate,

a product of the anaerobic muscle activity [7]. The lactate concentration into the blood

(lactatemia) or into interstitial tissues in muscles can be recorded to monitor the muscular

effort in sportsmen or people under rehabilitation. Different solutions have been proposed

in the literature to design and optimize amperometric biosensors dedicated to lactate detec-

tion [8, 9]. The use of carbon nanotubes has been proposed to enhance the sensitivity of these

devices [10, 11]. The presence of nanostructured electrodes slightly complicates the design of

the sensor. Due to the toxicity of nanotubes [12, 13], selective membranes must be used to

1



Chapter 1. Introduction

Soft biocompatible 
    encapsulation

Silicon chip for 
sensor readout

Wire bonding Antenna for remote powering
        and data transmission

Sensor platform

Biosensors

Porous biocompatible
          membrane

Figure 1.1: Schematic description of the i-IronIC implantable biosensor. Elaborated from [20].

avoid dispersion into the body. However, the enhanced sensitivity enables the detection of

small concentrations of the metabolite, typical of the body range.

1.1 i-IronIC Project

1.1.1 Description

The design and development of implantable sensors for the detection and measurement

of clinically relevant species is a multi-disciplinary field that is attracting the attention of

academia and industry since the last two decades. The cost for health-care services and the

population aging in developed countries increase the importance of these devices to prevent

chronic diseases and support the rehabilitation. Within this scenario, the i-IronIC project

aims to develop a low cost, health-care platform for real-time monitoring of human metabo-

lites such as lactate, cholesterol, and ATP. The continuous monitoring of these compounds

enables point-of-care treatments, tuned on the response of the patient, and offers an accurate

“telemetry” of the physical condition. Point-of-care therapies can be used to provide assis-

tance to elderly or disabled people, while “body-telemetry” can be useful for professional and

recreational sportsmen training.

Devices dedicated to the continuous monitoring of human metabolites, such as glucose [14]

and lactate [7], are already present on the market. Furthermore, experimental prototypes have

been reported in the literature for the detection of glutamate [15], ATP [16], and exogenous

metabolites such as cyclophosphamide and naproxen [17]. The aim of the i-IronIC project is

to hierarchically integrate these metabolite sensors into an unobtrusive biosensor to enable

minimally invasive, low cost human telemetry (Fig. 1.1). This device can perform electrochem-

ical measurements by means of microfabricated electrodes [18]. Thus, real-time monitoring of

the patients can be performed without invasive methods of analysis. An integrated logic unit

is designed in 0.18µm CMOS technology to drive these electrodes, each of which is dedicated

to the detection of a specific compound, and to perform several types of measurements, such

as cyclic voltammetry, chronoamperometry, temperature and pH detection [19].
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Figure 1.2: Example of voltammogram obtained with cyclic voltammetry. Elaborated from [22].

In a cyclic voltammetry measurement, a linearly varying potential is applied between the

electrodes. By changing the potential, a point is reached in which oxidation (loss of electrons by

the compound) takes place. The compound oxidation generates a current that is continuously

monitored. The graphic of the current against the potential (named voltammogram) shows

a positive peak while the oxidation potential is reached. In case of reversible reactions, as

the potential sweeps back towards the reduction potential, the oxidized species will start to

be reduced. The current reported in the voltammogram will now increase in the negative

direction until a reduction peak is reached. An example of voltammogram is reported in

Fig. 1.2. The peaks of current have almost the same height. The areas underneath the peaks

return the compound concentration, whereas the peak position and their distance are related

to the species involved in the reaction. If the reverse peak has a different or distorted shape, or

is not present at all, the reaction is not completely reversible or is not reversible at all.

In a chronoamperometry measurement, the potential applied between the cell electrodes is

stepped to the oxidation (or reduction) potential. The current through the cell shows a peak

while the potential is stepped and then decreases exponentially. The asymptotic value of the

current, when a steady-state is reached, is directly related to the compound concentration.

Temperature and pH sensibly affect the results obtained with these measurements [21]. Thus,

temperature and pH sensors have been included to calibrate the results obtained.

1.1.2 Requirements

Besides the sensing aspects, related to the electrochemistry domain, the implantable device

previously introduced must respect several constraints. It must be minimally invasive, com-

pletely biocompatible, with low thermal dissipation, and large power autonomy. This last

requirement should be carefully considered, since battery size and battery lifetime strongly

affect the performance and the invasivity of an implantable sensor. Modern batteries have

increased capabilities with respect to those available in the past: for example, lithium-ion
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Figure 1.3: Schematic representation of an inductive link performing remote powering and
bidirectional data communication.

batteries have reached a high level of energy density (up to 0.2 Wh/g) and are able to maintain

an almost constant voltage until they are discharged to 75%-80% [23]. Unfortunately, size

constraints of implantable batteries limit their efficiency and their repeated use implies their

substitution after a while.

Power constraints can be relaxed by energy harvesters, also named energy scavengers. These

devices exploit natural or artificial power sources surrounding the person to assist the im-

planted batteries, to recharge them and in certain cases even to replace them. Energy har-

vesters for implantable biosensors have been exhaustively studied and a large number of

solutions for different cases can be found in the literature. Most of the physical phenomena

have been studied to obtain harvesters suitable for in-body applications, having minimum

invasivity and high efficiency. Previously developed harvesting techniques for implantable

biosensors, surveyed in [24], are reported in Chapter 2.

Among these approaches, the remote powering through inductive link is one of the most

promising. In such a technique, near-field magnetic induction is used to transfer power

wirelessly through the body tissues. An alternate current is forced into an external inductor;

the variable magnetic field generated induces an alternate current into one or more receiving

inductors (Fig. 1.3). Moreover, inductive links enable bidirectional data communication with

the implanted sensor without using an implanted RF transmitter. Downlink communication

(from the external system to the implanted sensor) can be achieved by modulating the power

carrier; uplink communication (from the implanted sensor to the external system) can be

obtained by modulating the load of the receiving coil (Load Shift Keying - LSK).

This harvesting technique has been studied since several decades. Several solutions have been

proposed in the literature [25–34] and it has already reached the market with commercial

products [35]. Nevertheless, the miniaturization process of the receiving inductor, the wear-

ability of the transmitting unit and its remote control by means of portable devices are still

open research topics.
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Figure 1.4: A platform has been conceived to provide remote powering and data communica-
tion to the implantable system.

1.1.3 Remote Powering and Data Communication

The contribution of this research work to the i-IronIC project consists of the design and

realization of a complete platform to provide power, data communication and remote control

to the implantable biosensor shown in Fig. 1.1. High wearability of the transmitting unit, low

invasivity of the receiving inductor, integration of the power management module within the

sensor, and a reliable communication protocol with portable devices are the key points of this

platform. The schematic view of the different blocks composing the platform is reported in

Fig. 1.4.

The design of the receiving inductor is a critical step of the platform design. The miniaturiza-

tion of this element reduces the discomfort of the patient and eases the implantation process.

However, smaller receiving inductors generally involve lower link efficiency. Starting from the

literature, different approaches have been tested to realize the receiving inductor. Multi-layer

spiral inductors on printed circuit boards and microfabricated inductors have been studied,

fabricated and tested to check their performance within a real setup [36]. The simulations are

reported in Chapter 3 together with the frequency and geometry optimization. The fabrication

and the measurement of these inductors are described in Chapter 4.

A wearable, flexible transmitting unit, named IronIC patch, is designed to be placed directly

over the implantation area and provide power transmission and bidirectional data communi-

cation with the implanted device through inductive link [36]. A careful study has been done to

select the geometry of the external transmitting inductor [37, 38], in order to reduce the tissue

absorption and maximize the link efficiency. Powered by lithium-ion polymer batteries, the

patch can be placed in concave or convex parts of the body, thus reducing misalignments with

the implanted receiving inductor. Finally, connectivity with portable devices has been enabled

by using Bluetooth protocol. The design and realization of this device are deeply described in

Chapter 5. The Bluetooth protocol and the user interface are reported in Chapter 6.

Once delivered to the sensor, power needs to be properly stored and managed. Moreover, a

communication unit is needed to enable bidirectional data communication with the external
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transmitter unit. These functionalities (power management, power storage, and data com-

munication) have been implemented in a 0.18µm CMOS circuit to be integrated within the

sensor. Voltage rectifier, low-dropout regulator (designed by [39]), amplitude demodulator

and load modulator are included in that circuit. Simulations and measurements within a real

setup are described in Chapter 7.

1.2 Research Contribution

This thesis is both a research and an implementation work. On the research side, every block

of the i-IronIC chain of Fig. 1.4 has been designed starting from the state of the art presented in

the literature, with the aim to offer a novel and original contribution. On the implementation

side, this work provides practical solutions to design, develop and manufacture four out of

five blocks of the i-IronIC platform: long-range communication with remote devices, power

and data transmitter unit, receiving antenna, and integrated power management module.

Wearable sensor-based systems for medical aims have been already presented in the litera-

ture [40]. Flexible systems to be worn around the wrist for the monitoring and the evaluation

of vital signs have been reported by [41] and [42]. Wearable devices for the pulse oximetry have

been presented by [43] and [44]. A flexible and stretchable ECG patch to monitor the heart

activity has been proposed by [45], while a system based on a textile wearable interface to

simultaneously acquire different biomedical signals is presented by [46]. Different from these

approaches, the power and data transmitting unit presented in this thesis is not directly in-

volved in the sensing process, but offers a novel approach to transmit power and data through

the body tissues by means of a wearable device.

The multi-layer approach proposed for the receiving antenna has been conceived to reduce

the size of classic “pancake” inductors or single-layer inductors used for wireless power trans-

fer [25–27,31–33]. Multi-layer approaches have already been presented in the literature [47–49].

The design of multi-layer inductors reported in this thesis starts off from those works to fur-

ther investigate the effects of the spiral geometries on the link efficiency while multi-layer

structures are used. The fabrication and measurement of multi-layer inductors and the ef-

fects of their geometry on the link efficiency and voltage gain are a novel contribution to the

literature. Furthermore, a novel asymmetrical shape of the inductor is investigated to ease the

implantation process.

The microfabrication of the receiving antenna directly on the silicon substrate hosting the

sensor is presented as an alternative to the multi-layer approach. Several solutions have been

proposed in the literature for the microfabrication of spiral inductors on flexible substrate [50]

or silicon [51–53]. Starting off from these works, a microfabrication process has been proposed

to design high-thickness spiral inductors on several substrates, such as silicon and pyrex.

The realization of high-thickness structures with a single photoresist deposition is a practical

contribution to the existing literature.

6



1.3. Organization of the Thesis

1.3 Organization of the Thesis

Following the Introduction, the remainder of the thesis is organized as follows:

Chapter 2 introduces the most popular techniques for energy harvesting and power transfer

dedicated to implantable biosensors. For each technique, the advantages and the drawbacks

are discussed. Emphasis is placed on the inductive links, able to deliver power wirelessly

through the biological tissues and to enable bidirectional data communication with the

implanted sensor.

Chapter 3 describes the design of the inductive link. The modeling of the transmitting and

receiving inductors is reported here. Simulations are performed to achieve frequency and

geometry optimization. The possibility to work in the low megahertz range, where tissue

absorption is minimum, while dealing with small receiving antennas is also discussed. Finally,

a model is presented to calculate the electrical parameters of the receiving inductor starting

from its geometry.

Chapter 4 describes and motivates the design and fabrication of multi-layer inductors and

microfabricated spiral inductors. Both the approaches have been proposed to minimize the

size of the implant, while preserving the link efficiency. Simulations and measurements are

presented to support these two approaches and to enable a comparison with the state of the

art.

Chapter 5 reports the design and development of the power and data transmitter unit. The

IronIC patch, designed to be placed directly over the implantation zone to remotely power

the implantable system, is described here. The patch is battery powered and is capable

to provide power to the implanted system by means of an inductive link. Furthermore, it

enables bidirectional short-range communication with the implanted sensor and long-range

communication with portable devices, such as smartphones and tablets.

Chapter 6 describes the Android application designed to communicate with the IronIC patch.

The application, based on Bluetooth protocol, is described in detail and tested with a cus-

tom hardware for glucose and lactate detection in cell cultures. The user interface, running

on portable devices, such as smartphones and tablets, enables real-time and continuous

monitoring of the patient.

Chapter 7 describes the integrated power module, reporting the simulations and the mea-

surements performed to test and validate the circuit. The integrated circuit reported here

includes a voltage rectifier, a low-dropout regulator (designed by [39]), an ASK demodulator

for downlink communication and an LSK modulator for uplink communication.

Chapter 8 concludes the thesis with an indication of future developments and possible re-

search directions.
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2 Energy Harvesting and Remote Power-
ing for Implantable Biosensors

The most popular harvesting techniques for implantable biosensors are introduced in this

chapter, discussing for each technique the state of the art, the advantages, and the disadvan-

tages. An outlook of some new emerging techniques, inspired by biological mechanisms, is

also proposed. Finally, a special focus is dedicated to the remote powering and data commu-

nication through inductive link. This technique has finally been chosen to provide power and

data communication to the implantable sensor.

2.1 Kinetic

Kinetic harvesters aim to collect the energy related to human motions and convert it into elec-

trical energy [54]. These kinds of harvesters can be classified into three categories, depending

on the employed transduction method: electromagnetic, electrostatic, and piezoelectric.

Kinetic harvesters using electromagnetic transducers are able to generate an electromotive

force due to the change of an external magnetic flux through a closed circuit. The change

of flux can be induced, for instance, by rotating the circuit along an axis, thereby changing

the surface associated with the magnetic flux. This method has been used by Seiko to power

the quartz wristwatch “Seiko Kinetic” [55]. This watch is able to self-charge by the means of

wrist motion, transmitted by an oscillating weight to a magnetic rotor linked to a coil [56]. The

motion of the rotor induces an electromotive force through a coil and the generated charge

is stored in a standard battery. Moreover, this harvester is equipped with a charge pump

circuit with different multiplicative factors to quickly increase the voltage of the battery, in

order to reduce the start-up time of the watch as much as possible. The approach of Seiko

has been successfully tested in the biomedical field, being able to exploit the heart beats to

charge a pacemaker battery [57]. Implanted on a dog, this energy harvester has collected 80 mJ

after 30 min with a cardiac frequency of about 200 beats/min: around 13µJ per beat with a

returned power of about 44µW. A possible drawback of this technique is the necessity to

periodically lubricate the moving parts which, in the end, need to be replaced when worn out.

Moreover, the oscillating weight makes this solution not suitable for implantable biosensors.
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Kinetic harvesters based on electrostatic transducers utilize variable capacitors having the

position of the plates changed by an external force. They can work with fixed charge or fixed

voltage. Working with fixed charge, the external force changes the voltage across the capacitor,

while working with fixed potential the motion of the plates generates current through the

capacitor. Independent of the operation mode, in most cases they need to be precharged to

operate. This technique has low efficiency when high power is required, but works quite well

with devices having low power requirements, such as the implantable biosensors. Furthermore,

it is appropriate for MEMS realization. The literature offers kinetic harvesters with electrostatic

transducers that can render up to 58µW when set in motion by a force emulating the cardiac

signal, exploiting a capacitor with a capacitance variable between 32 nF and 110 nF [58]. A

MEMS electrostatic harvester rendering 80µW when excited with an acceleration of 10 m/s2

has been proposed [59]. This harvester is dedicated to biomedical applications and operates

with constant charge; moreover it is non-resonant, thus it can operate over a wide range of

oscillation frequencies.

Finally, the kinetic harvesters based on piezoelectric transducers use the capability of the

piezoelectric materials to generate an electric field when subjected to mechanical deforma-

tion. Different from the electrostatic transducers, no precharging is required. Piezoelectric

harvesters based on Aluminum Nitride (AIN) have returned up to 60µW, with a footprint

smaller than 1 cm2 [60]; this power, however, is obtained with unpackaged devices and could

significantly decrease once the harvesters are packaged; Piezoelectric harvesters based on

Lead Zirconate Titanate (PZT) have obtained up to 40µW [61].

Kinetic harvesters are widely used in commercial sensors available in the market. Per-

petuum [62] and EnOcean [63] provide a large spectrum of solutions for different application

fields, including wireless sensor nodes. None of these commercial solutions is however dedi-

cated to implantable biosensors.

2.2 Thermoelectric Effect

Scavengers exploiting thermal gradients to generate energy are based on the Seebeck effect.

Due to a temperature difference between two different metals or semiconductors, a voltage

drop is created across them.

The core element of this kind of scavengers is the thermocouple (Fig. 2.1). Two materials are

linked together, maintaining their junctions at different temperatures. The voltage generated

across a thermocouple due to a temperature difference (T1 −T2) can be expressed as

V =
∫ T2

T1

[SB (T )−S A(T )]dT , (2.1)
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Figure 2.1: Schematic representation of a thermocouple: two materials are linked together
keeping their junctions at different temperatures. A voltage drop is thus created across them
because of the Seebeck effect. Reprinted from [24].

Figure 2.2: The connection of many thermocouples (left) electrically in series and thermally in
parallel forms a thermopile (right). Reprinted from [24].

where S A and SB are the thermoelectric powers (or Seebeck coefficients) of the two materials

A and B. Semiconductors typically have a high Seebeck coefficient and that is why these mate-

rials are commonly used for thermocouples. Moreover, n-type and p-type semiconductors

have Seebeck coefficients with different signs; thus, if the two semiconductors composing

a thermocouple have opposite doping, the contributions to the voltage reported in (2.1) are

summed.

Energy scavengers exploiting the thermoelectrical effect consist of many thermocouples

connected electrically in series and thermally in parallel to create a thermopile (Fig. 2.2).

Additional elements, such as radiators and structures to convey the heat into the thermopile

legs are normally used to increase the efficiency of these devices.

Thermopiles are usually inserted in a thermal circuit as depicted in Fig. 2.3. If we assume that

the thermopile is placed between the human body (source) and the external ambient (sink),

Rsr represents the thermal resistance during a heat exchange between the hot plate of the

thermopile and the body, while Rsk represents the thermal resistance during a heat exchange

between the cold plate of the thermopile and the ambient. The temperature difference
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Figure 2.3: Schematic example of a thermal circuit. Reprinted from [24].

between the body and the ambient is denoted as ∆T , while ∆T ′ is the temperature difference

that is effectively present across the thermopile plates. The thermopile has a thermal resistance

between the plates equal to Rt and a heat flux W flows across it. In this description, the heat

flux is considered constant. This assumption remains valid only for high values of the thermal

resistances Rsr and Rsk .

The thermal resistance Rt of the thermopile is the parallel combination of the thermal resis-

tance Rp of the thermopile legs, also called pillars, and the thermal resistance Ra of the air in

between the legs


Rp = h

2na2 rp ,

Ra = h

A−2na2 ra ,
(2.2)

where A is the area of the thermopile plates, h is the height of the pillars, equal to the distance

between the plates, and a is the lateral dimension of the pillars, assumed with square base.

The parameter n represents the number of thermocouples (each one having two pillars) while

ra and rp are the thermal resistivity of the air and of the pillars, respectively.

It is possible to demonstrate that Rp and Ra should be equal to maximize the generated

power [64]. Thus, by equalizing the two previous expressions, the optimum number of ther-

mocouples to be used in a thermopile is obtained

n = rp

rp + ra
·

A

2a2 = rp

Ra
·

h

2a2 . (2.3)
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The thermal gradient ∆T ′ across the thermopile can be written as

∆T ′ =W Rt =W
Rp

2
, (2.4)

where the thermal resistance of the thermocouple Rt is the parallel of Rp and Ra . The thermal

resistance Rp has been fixed equal to Ra to maximize the generated power.

The electrical parameters of the thermopile can be determined as


∆V = nSp∆T ′ = rp

SpW

4
·

h

a2 ,

R = 2nρ
h

a2 = rp

rp + ra
·
ρA

h
·

(
h

a2

)2

.
(2.5)

The first equation of (2.5) returns the voltage drop across the entire thermopile and is obtained

from (2.1) by considering Sp as the sum of the Seebeck coefficients of the two pillars of

every thermocouple. The second equation of (2.5) describes the electrical resistance R of the

thermopile, where ρ is the electrical resistivity of the pillars.

Finally, the power delivered by the thermopile to a matched load is equal to

P = ∆V 2

4R
= 1

64

S2
pW 2

u Ah

ρ
(rp + ra)rp , (2.6)

where Wu =W /A is the heat flux per unit area. A common figure of merit for the thermopiles

is the following

ZT =
S2

p rp

ρ
∆T ′ , (2.7)

where ZT is a dimensionless factor describing the performance of a thermocouple.

With the formulas just introduced, the voltage V is shown to be proportional to h/a2, while the

power P is proportional to h. The aspect h/a between the height of the pillars and the lateral

dimension is limited by technology aspects [65]. Thus, by increasing h to obtain higher power,

h/a2 is decreased and, hence, the voltage. For this reason, there is no space for simultaneously

optimizing of power and voltage.
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Table 2.1: Human temperature gradients at room temperature. Table from [66].

Site

Muscle Fat Rested Walking Running

Thickness Thickness (v=0.2 m/s) (v=1.56 m/s) (v=4.25 m/s)

(mm) (mm) ∆T (K) ∆T (K) ∆T (K)

Abdomen 16.34 14.8 1.73 3.8 4.75

Biceps 34.6 3.33 0.45 1.22 1.7

Calf-posterior 65.36 4.93 0.65 1.74 2.4

Chest 33.45 7.26 0.94 2.37 3.18

Forearm 26.04 3.24 0.44 1.16 1.63

Hamstring 69.29 6.97 0.91 2.32 3.14

Lumbar 37 6.54 0.85 2.18 2.96

Quadriceps 54.54 6.42 0.82 2.12 2.89

Subscapular 23.74 8.4 1.06 2.6 3.44

Suprapatellar 29.42 6.23 0.81 2.08 2.81

Triceps 41.84 5.92 0.78 2.02 2.75

When low thermal gradients are applied, as in the case of human body applications, it is

not straightforward to obtain voltage levels sufficient to power integrated circuits. Com-

mercial thermopiles commonly use bismuth telluride (Bi2Te3), having a Seebeck coefficient

S =±0.2 mV/◦C, due to the high ZT factor. By using that material for the thermocouple pillars,

with a temperature difference ∆T ′ = 1 ◦C, 5000 thermocouples having a total area of about

25 cm2 are required to produce a voltage drop ∆V = 1 V [64].

Moreover, a value of∆T ′ = 1 ◦C between the thermopile plates is not easily achieved. Based on

results from [64], placing a commercial thermopile exploiting bismuth telluride on a human

forearm and considering an area A = 1 cm2, we can assume as reasonable the following values:

Rsr = 500 K/W, Rsk = 1030 K/W, Rt = 50 K/W, Tsr = 37.5 ◦C, Tsk = 28 ◦C. If the heat flux W

passing through the thermopile is

W = ∆T

(Rsr +Rsk +Rt )
, (2.8)

a heat flux of about W = 6 mW flows through the area A. The product of the heat flux by the

thermal resistance of the thermopile results in temperature gradient ∆T ′ = 0.3 ◦C, instead

of 1 ◦C previously assumed. With this value of ∆T ′, the thermopile area must be increased

up to 83 cm2 to obtain a voltage drop of ∆V = 1 V, making impractical any kind of implant

application. In order to compare the different implantation areas, Table 2.1 shows calculated

temperature gradients in different parts of the human body, with an ambient temperature of

25 ◦C.
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2.3. Fuel Cells

Charge pumps are commonly used to increase the voltage drops generated by the thermo-

couples, thus overcoming the problems related to the low voltages generated by the thermal

scavengers [67–70]. Seiko proposed a thermoelectric wristwatch where a voltage of about

300 mV is boosted until 1.5 V, a useful level to power the 1µW quartz circuit [71]. The whole

scavenger can provide a total power of 22.5µW.

The literature offers some examples of thermopiles exploiting the human warmth and consid-

erable effort has been invested to improve the performance of these systems. However, the

power range of thermoelectric harvesters when exploiting the human warmth is still quite

low and generally does not exceed the few hundreds of microwatts when thermal differences

below 5 K are applied. In [72], 1.5µW with a 0.19 cm3 device exploiting a thermal gradient

of 5 K is obtained. Similar results have been obtained by [73] with a device that is able to

deliver 1µW with an area of 1 cm2 and a thermal gradient of 5 K. ThermoLife [74] proposes a

commercially available solution that is able to produce up to 30µW (10µA with a voltage drop

of 3 V) when a temperature difference of 5 K is applied. This device has a volume of 95 mm3

and a weight of 0.23 g.

2.3 Fuel Cells

A fuel cell is an electrochemical device that generates current through the reaction of two

chemical species flowing into it, the fuel on the anode site and the oxidant on the cathode

site. The main difference between a fuel cell and a traditional battery is that the former can

produce energy virtually without stopping, as long as the reactants continue to be present.

Fuel cells exist in many different kinds. The most common is the Proton Exchange Membrane

(PEM) fuel cell (Fig. 2.4). The fuel and the oxidant streams are separated by a membrane

that allows only protons produced on the anode site to cross it and to reduce the oxidant

on the cathode site. The electrons generated on the anode cannot pass directly through the

membrane to reach the cathode; consequently, they have to follow a different external path,

generating current.

Recently, a new kind of membrane-less fuel cells has been introduced [75, 76]. They exploit

the laminar characteristics of micro-channel flows to keep the two reactants separated, thus

avoiding the use of a membrane. Indeed, the PEM membrane needs constant humidification

and it is subject to degradation and fuel crossover. In addition, the cost is usually quite high.

Membrane-less fuel cells, instead, are more compact and enable significant miniaturization.

Also, they do not require water management or cooling system. A schematic example of a

membrane-less fuel cell is reported in Fig. 2.5.

The use of fuel cells exploiting species present into the human body to harvest energy for

implantable biosensors offers considerable advantages. The constant presence and availability

of the reactants directly into the body makes unnecessary external recharging mechanisms

or replacement. Implantable fuel cells that use glucose as reactant are probably the most
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Figure 2.4: Schematic description of a PEM fuel cell. Electrons cannot cross the membrane.
They have to follow a different path, thus generating current. Reprinted from [24].

Figure 2.5: Schematic description of a membrane-less fuel cell. The laminar characteristics of
micro-channel flows are used to keep reactants separated. Elaborated from [83].

studied biofuel cells, due to the high availability of glucose in body fluids. The investigation

and development of these cells began in the 1960s [77].

Glucose fuel cells can be divided into two groups: abiotically catalyzed and enzymatically

catalyzed. The former group utilizes non-biological catalysts, such as noble metals or activated

carbon. The latter group, instead, uses enzymes, such as glucose oxidase or laccase, as

catalysts to enable the electrode reactions. In [78], the state of the art of these devices is

reported. During in vitro experiments, glucose fuel cells abiotically catalyzed can generate

up to 50µW/cm2 [79]. Experiments in vivo performed on a dog have generated 2.2µW/cm2

over a period of 30 days [80]. Enzymatically catalyzed cells can provide a higher power density,

up to 430µW/cm2 [81]. Unfortunately, the lifetime of their enzymatic catalyst has not been

proved beyond a period of one month [82].
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2.4. Infrared Radiation

Figure 2.6: Example of an IR harvester. The IR light emitted by an external source is caught by
an implanted photodiode array. Reprinted from [85].

2.4 Infrared Radiation

These kinds of harvesters exploit an external infrared (IR) source to transmit power to an

implanted photodiode array. This array converts the received radiation into a current to

properly charge the sensor battery (Fig. 2.6).

Some examples of this typology of scavengers are discussed in [84, 85]. The device presented

in [85] can supply power in the order of hundreds microwatts up to few milliwatts when

illuminated by a power density of some milliwatts per square centimeter. The power returned

by that photodiode array when enlighten by a power density of 22 mW/cm2 for 17 min is

sufficient to enable a 20µA cardiac pacemaker to operate for 24 h. In terms of power, it means

about 4 mW of transmitted power if the voltage of the pacemaker battery is considered equal

to 2.4 V. This result has been obtained with a skin temperature rise of 1.4 ◦C, a safe value for

this kind of tissue [86].

This performance has been achieved by means of a large photodiode array, having an area

of 2.1 cm2 and placed in a subcutaneous zone extremely close to the IR emitter (0.8 mm). To

obtain the same performance without further temperature increase when a thicker tissue

is used, the array size can be enlarged. In [85], the same results are demonstrated where a

2 mm human skin is used as barrier with a 10 cm2 photodiode array. Finally, increasing the

emitter power densities to reduce the photodiode area is not recommended. Most of the

heat generated by these scavengers is due to the array heating and a smaller array receiving a

greater power density would involve a considerable temperature rise in the implantation zone.

Due to the area constrains and the difficulties of operating with tissues having high thickness,

these kinds of harvesters are suitable for large devices not deeply implanted (i.e., cardiac

pacemakers) but are practically ineffective with less invasive, deeply implanted devices.

17



Chapter 2. Energy Harvesting and Remote Powering for Implantable Biosensors

Figure 2.7: Low frequency magnetic fields are used to move an implanted rotor to generate
power. Elaborated from [88].

2.5 Low Frequency Magnetic Fields

These kinds of harvesters use low frequency magnetic fields generated outside the body to

move an implanted magnetic rotor and to harvest power exploiting its mechanical rotation

(Fig. 2.7). Some solutions using this technique have been reported in literature [87, 88].

One of the advantages in employing these kinds of scavengers is the high quantity of power

that they can deliver over a relatively long distance and even to deeply implanted biosensors. A

maximum power of 3.1 W over a distance of 1.5 cm has been reported in [88], with an attractive

force between the external and the internal rotors of 1.6 N. This value has been obtained with

a speed of the internal rotor of about 547 rad/s. At a lower speed, up to 0.2 W can be delivered

over a distance of 2 cm when the implanted rotor rotates at 273 rad/s and the resistance of the

load is 200Ω.

The major drawback of this technique is the large size of the implanted rotor, about 10 cm3.

This volume hinders the implantation process. Moreover, moving components need to be

periodically lubricated and substituted when worn out.

2.6 Emerging Techniques

The biological processes in animals and plants to collect, store and reuse energy can inspire

novel harvesting techniques. Some works have presented strong analogies between complex

electronic systems and biological energy management [89].

For example, natural photosynthesis permits plants to collect energy by exploiting the solar

light as source and CO2 and water as reactants. Several efforts have been invested to artificially

reproduce the key steps of the photosynthesis, in order to generate electrical power and energy

fuels [90, 91]. Ref. [92] has proposed a photosynthetic light conversion unit that mimics the

light-harvesting structure of phototrophic bacteria. An array of self-assembled bacteriochloro-

phyll aggregates captures and conveys the solar energy to an embedded “reaction center”. This

element has the role of energy acceptor and contributes to the charge transfer.
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Another kind of scavenger inspired by the natural photosynthesis is the Gräetzel’s cell or Dye-

Sensitized Solar Cell (DSSC) [93]. This device has two electrodes, one of which is transparent

to the solar light. In between the two electrodes, a molecular dye converts the solar light in

electrons that reach the anode electrode by means of a stratum of titanium dioxide (TiO2). The

electron holes generated into the dye reach the cathode electrode through a liquid electrolyte.

The whole mechanism is similar to the natural photosynthesis. Indeed, in this approach the

dye has the same role of the chlorophyll (conversion of light in electrons), the electrolyte has

the same role of the water (replacement of the generated electrons), and the TiO2 has the same

role of the CO2 (electrons acceptor).

This harvesting technique, although at the moment is not directly applicable to the field

of implantable biosensors, could be used in the near future to power devices not deeply

implanted. A possible target, for example, could be subcutaneous biosensors due to their

proximity to the skin and to the solar light.

2.7 Inductive Link

2.7.1 Inductive Link Description

The use of inductive links to power implanted sensors has been deeply investigated in the

last decade. An inductive link usually consists of two coils. The primary coil is placed outside

the body, generating a variable magnetic field by means of an alternate current flowing in it.

The change of the magnetic flux through the secondary coil generates an electromotive force

across it, according to the Faraday-Neumann-Lenz law

ε=−dφB

dt
, (2.9)

where ε is the electromotive force generated by the change of the magnetic fluxφB through the

secondary coil. The minus sign in the right side of the equation indicates that the generated

electromotive force opposes the flux change. Using this method, power is transferred wirelessly

through the body tissues, inducing an electromotive force in the implanted coil by means of

an alternate current flowing on the external coil.

An example of inductive link is reported in Fig. 2.8. The behavior of that circuit is described,

according to (2.9), by the following formulas


V1 =+R1I1 + dφ1

dt
,

V2 =−R2I2 − dφ2

dt
,

(2.10)
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Figure 2.8: An inductive link is obtained with a primary coil L1 connected to a power source
and magnetically coupled to a secondary coil L2. Reprinted from [24].

where R1 and R2 represent the parasitic resistances of the two coils, φ1 is the total magnetic

flux through the primary coil, and φ2 is the total magnetic flux through the secondary coil.

The voltages and the currents reported in (2.10) are functions of time.

Defining the self-inductances L1 and L2 of the two coils and their mutual inductance M as



L1 = ∂φ1

∂I1
,

L2 = ∂φ2

∂I2
,

M = ∂φ1

∂I2
= ∂φ2

∂I1
,

(2.11)

the expressions in (2.10) can be rewritten as


V1 =+R1I1 +L1

dI1

dt
−M

dI2

dt
,

V2 =−R2I2 −L2
dI2

dt
+M

dI1

dt
.

(2.12)

The system can be finally described in the frequency domain by

{
V1 =+R1I1 + jωL1I1 − jωM I2 ,

V2 =−R2I2 − jωL2I2 + jωM I1 ,
(2.13)

where V and I represent now complex phasors.
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Link Efficiency

The efficiency η of an inductive link is defined as the ratio between the power dissipated on

the load and the total dissipated power. We report here the analytical formulas presented

in [94] to describe the link efficiency η as a function of the electrical parameters of the link. By

defining η1 as the power dissipated on the secondary circuit over the totally dissipated power

η1 = ω2M 2

ω2M 2 +R1(R2 +RZ )
, (2.14)

and η2 as the power dissipated on the load over the power dissipated on the secondary circuit

η2 = RZ

RZ +R2
, (2.15)

the link efficiency η can be written as

η= η1η2 = ω2M 2RZ

ω2M 2(R2 +RZ )+R1(R2 +RZ )2 . (2.16)

By defining the coupling coefficient k as

k = Mp
L1L2

, (2.17)

and the quality factor Q as

Q = ωL

R
, (2.18)

the efficiency reported in (2.16) can be rewritten as

η=
k2Q1Q2

R2
RZ(

1+ R2
RZ

+k2Q1Q2
R2
RZ

)(
1+ R2

RZ

) . (2.19)
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The ratio between the intrinsic resistance R2 of the internal inductor and the load RZ that

maximizes the link efficiency is obtained

∂η

∂RZ
= 0 =⇒ RZ = R2

√
1+k2Q1Q2 . (2.20)

Since

∂2η

∂R2
Z

∣∣∣∣
RZ=R2

p
1+k2Q1Q2

< 0 , (2.21)

the stationary point found in (2.20) is a maximum. The desired RZ is obtained by properly

tuning the matching network in Fig. 2.8.

Finally, by combining (2.16) and (2.20), the maximum link efficiency is described by

ηmax = k2Q1Q2(
1+

√
1+k2Q1Q2

)2 . (2.22)

Voltage Gain

The transferred power, although important, is not the only figure of merit of an inductive link.

In order to power a load, the supplied voltage must be sufficiently high, according to the load

specification. Thus, it is useful to define the voltage gain A as the ratio between the voltage VZ

and the source voltage V1. According to [94], the voltage gain A can be written as

A = |VZ |
|V1|

= ωMRZ√[
R1(R2 +RZ )+ω2M 2

]2 +ω2L2
1(R2 +RZ )2

. (2.23)

By studying the voltage gain A as a function of the load RZ , no maximum is found for finite

values of RZ . The voltage gain asymptotically tends to a maximum as RZ tends to infinity

(open circuit).
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Data Transmission

In most of the cases, the power signal driving the primary circuit is generated by a class-E

amplifier, due to the higher efficiency of this circuit as compared to conventional class-B or

class-C amplifiers [95]. Downlink transmission can be achieved by modulating the power

signal generated by the class-E amplifier. Amplitude Shift Keying (ASK) is one of the most

preferred modulation techniques, due to the simplicity of the demodulator that permits to

reduce the area and the power consumption of the implanted chip. In addition, this kind

of modulation enables a simple synchronization between transmitter and receiver. On the

other hand, by modifying the amplitude of the power signal, the transmission efficiency

becomes sub-optimal. Furthermore, the data-rate is lower when compared with other kinds

of downlink modulations. Another solution for downlink communication is the Frequency

Shift Keying (FSK). It enables to reach higher data-rate when compared to the ASK, but this

result is achieved by means of a more complex demodulator and by increasing the difficulty of

synchronization between transmitter and receiver [96].

Uplink transmission is commonly achieved by means of the Load Shift Keying (LSK). By

modifying the impedance of the secondary circuit, the load Zlink seen by the primary cir-

cuit consequently varies, causing the current flowing on the primary coil to change. This

change can be detected by an external demodulator, enabling uplink transmission without

any internal RF transmitter.

2.7.2 Inductive Link in the Literature

Inductive links present considerable advantages when compared with other kinds of power

transmission previously discussed. Exploiting this technique, data can be transmitted from

outside to inside the body (downlink) and vice versa (uplink) without using an RF transmitter

or receiver. This can be feasible by modulating the load of the secondary coil, varying in this

way the total load seen by the primary coil. This technique of data transmission, often called

backscattering, enables saving a large amount of energy by avoiding the use of implanted RF

transmitters. Indeed, RF transmitters usually have the highest power consumption among the

components of an implantable biosensor. The possibility to avoid implanted RF transmitters,

together with a delivered power up to few milliwatts, make this technique particularly suitable

for low-invasive, implantable biosensors. Commercial products exploiting inductive links to

power implanted biosensors are currently available on the market. One of these products is

the neurostimulator “RestoreUltra”, produced by Medtronic [35]. It is a stimulator of the spinal

cord and is equipped with a battery that can be recharged from outside avoiding invasive

surgeries.

This technique presents strong analogies with the use of RFID passive tags [97]. An RFID

passive tag consists of an integrated circuit with memory that is powered by the incidental

field generated by a reader. Once powered, the chip generally transmits its identification tag

to the reader by means of an RF transmitter or by exploiting the backscattering technique.
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Figure 2.9: Power gain obtained by [98] using an inductive link composed of two 4 mm2 coils.
Simulations and measurements return an optimal transmission frequency around 2.5 GHz.
Reprinted from [98].

Thus, an RFID passive tag needs energy only when the tag is required by the reader and it

is not equipped with a battery. Implantable biosensors, instead, could need to be powered

even when no reading occurs. Thus, in most cases the biosensors must be equipped with an

implanted battery.

Almost all the works reported in the literature utilize frequencies in the order of few megahertz

or lower [25–33]. The reason behind this choice is that this range of frequencies minimizes

the power absorbed by the tissues, yielding a higher transmission efficiency. At these fre-

quencies, an inductive link can be analyzed by means of the Kirchhoff’s laws using lumped

parameters [94]. This method of analysis has been introduced in the previous section.

A recent work has explored the possibility to use extremely small inductors [98]. These

geometries involve an optimal frequency in the gigahertz range. In that range of frequencies, to

characterize a network in terms of lumped elements, as we have done in the previous section,

is difficult and in certain cases intractable. Indeed, in the microwave range it is not always

possible to define voltages and currents in a univocal manner. Moreover, the measurement

of impedances and admittances, when possible, requires the use of short-circuits or open-

circuits, not always easily realizable at high frequency. For these reasons, in the microwave

and optical range a description of the networks in terms of scattering parameters is usually

preferred [99]. A brief introduction of the scattering parameter theory is given in the Appendix.

Ref. [98] has simulated the performance of an inductive link consisting of two square coils with

an area of 4 mm2. These coils are separated by a substrate of 1.5 cm (composed of air, 2 mm of

skin, 1 mm of fat, 4 mm of muscle, 8 mm of skull and brain). The result obtained is reported in

Fig. 2.9. The optimum frequency is located around 2.5 GHz, at least two orders of magnitude

higher than the frequencies commonly used for wireless power transmission. Moreover, this

result has been validated by measurements using beef sirloin as substrate. However, the value

of power gain reported is sensibly lower than those presented by the works previously cited,

operating in the low megahertz range.
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Other works [100] have shown an increase of the power gain, together with a shift of the optimal

frequency in the sub-gigahertz range, where the area of the external coil is increased up to

4 cm2. The optimum frequency is still two orders of magnitude higher than the frequencies

commonly used. An implantable chip exploiting high frequency power transmission has been

presented by [34]. The working frequency is 915 MHz and it can deliver a maximum power of

140µW at 1.2 V, sending 0.25 W through 15 mm of tissue. The implanted coil has an area of

4 mm2, while the transmitting coil has an area of 4 cm2.

To recap, a summary of some works that exploit inductive links to power implantable devices

is reported in Table 2.2. For each of these, some of the key parameters have been extracted

and reported in the table to enable a fast comparison. Missing data in Table 2.2 have not

been declared in the literature. In contrast to other harvesting techniques presented before,

inductive links are able to deliver a noticeable amount of power (order of milliwatts) while

requiring a relatively small area. Furthermore, power can be transferred wirelessly through the

body tissues without any physical link that could cause infections or discomfort. in Table 2.3,

inductive links are compared with other harvesting techniques previously introduced.

Most of the works presented in Table 2.2 perform data communication between the external

devices and the implanted sensors, with data-rates up to few hundreds kilobits per second.

Finally, all the works reported in Table 2.2 use frequencies in the order of few megahertz with

the exception of the last one, where a frequency in the gigahertz range is used. The amount of

power delivered by this last solution and its efficiency are noticeably smaller than the others,

but they have been obtained using the smallest implanted coil among those reported in the

table.

2.7.3 Health Implication - Specific Absorption Rate

An important parameter to be considered, when the power source is close to the body, is the

Specific Absorption Rate (SAR) of the tissues

SAR = σ|E|2
ρ

, (2.24)

whereσ andρ are the conductivity and the density of the involved tissues, respectively, and |E|2
is the norm of the incident electric field. The SAR, measured in watts per kilogram, determines

the quantity of power absorbed by the tissues and is strictly related to their temperature

increase. The SAR is usually calculated as an average over a region of 1 g or 10 g of tissue,

depending on the national laws. In the IEEE guideline [101], the SAR limits for a general public

exposure are 4 W/kg for any 10 g of tissue of hands, wrists, feet, and ankles; 1.6 W/kg for any 1 g

of any other tissue. In the ICNIRP guideline [102], the SAR limits for a general public exposure

are 2 W/kg for any 10 g of head and trunk and 4 W/kg for any 10 g of the limbs.
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Chapter 2. Energy Harvesting and Remote Powering for Implantable Biosensors

In [103] a large number of cases where people were daily subjected to microwave fields with

densities in the order of few milliwatts per square centimeter have been analyzed, without

finding any significant health implication. In addition, it reports the trend of SAR on humans

with respect to the frequency, when an incident field of 1 mW/cm2 is applied. The maximum

absorption is around 70 MHz, where SAR is equal to 0.225 W/kg. At higher frequencies, around

2.45 GHz, SAR is one order of magnitude smaller, being equal to 0.028 W/kg. This value is

comparable with that obtained around 20 MHz, where SAR is equal to 0.015 W/kg.

Recent studies have focused on the neurological effects of microwaves. The head has become

the primary focus due to the wide use of electronic devices for mobile communication. With

certain kinds of mobile phones, a maximum SAR of 3.72 W/kg, averaged over 1 g of tissues of

the head, can be reached at 900 MHz while the mobile phone is transmitting 600 mW [104]. If

averaged over 10 g of tissues, the SAR can be 1.99 W/kg. The increase of temperature of the

head tissues is included in the range between 0.22 ◦C and 0.43 ◦C. These measurements have

been performed with a radiated power of 600 mW. Ref. [105] found no positive evidence of

risk to the health or the brain related to pulsed or continuous exposure to microwave having

power levels typical of GSM communication, such as the ones previously reported.

2.8 Chapter Contribution and Summary

In this chapter we have presented the most common techniques for powering implantable

sensors. Kinetic, thermoelectric, fuel-cell based, infrared, and low frequency magnetic har-

vesters have been studied. For each technique the main key points and drawbacks have been

reported together with a description of the state of the art.

Finally, special attention has been dedicated to the remote powering through inductive link.

This technique enables wireless power transfer and bidirectional data communication by using

the magnetic coupling between an external and an implanted coil. The amount of delivered

power, together with the possibility to communicate with the sensor without implanted RF

transmitters, make this solution particularly suitable for the i-IronIC platform.
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3 Inductive Link for mm-sized Implants:
Frequency and Geometry Optimiza-
tion
Inductive links are widely used for remote powering of implantable biosensors [25–33]. As

reported in the previous chapter, in most cases they operate at frequencies below 10 MHz.

This upper limit is often proposed to minimize the quantity of power absorbed by the tissues

and to increase the link efficiency. Standards related to SAR have been defined by IEEE [101]

and ICNIRP [102]. Recent works, based on full-wave analysis [98, 100], have questioned this

assumption. Ref. [34] has shown a 4 mm inductor working at 915 MHz, in the microwave range

(see Table 2.2). However, the link efficiency is drastically reduced as compared to inductive

links operating in the low megahertz range.

In this chapter we study the possibility to operate in the low megahertz range, where tissue

absorption is minimum, while assuring a mm-sized receiving inductor compatible with the re-

quirement of the i-IronIC implantable sensor. This is one of the most important contributions

of this chapter. Indeed, the possibility to work in a frequency range where tissue absorption is

minimum while using a miniaturized receiving inductor paves the way to efficient and unob-

trusive implantable devices. The Industrial, Scientific, and Medical (ISM) radio band provides

standard frequencies for this type of applications. The most commonly used are 6.78 MHz

and 13.56 MHz. In this work we did not limit our investigation to these two frequencies and

we did not pose constraints on the working frequency of the inductive link.

In the remainder of the chapter, the design of an inductive link is studied starting from the

electrical proprieties of the body tissues. The impact on the link efficiency of several factors

(such as coil geometry, implantation depth, and misalignments) is simulated. Finally, the

design of both the transmitting and the receiving inductors is described. A mathematical

model to calculate the electrical parameters of a spiral inductor starting from its geometry

is presented. This model can help the designer to optimize the link efficiency. The results

obtained in this chapter have been used to design and fabricate the miniaturized receiving

inductors presented in the next chapter.
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Chapter 3. Inductive Link for mm-sized Implants: Frequency and Geometry
Optimization

Figure 3.1: Slice of human abdomen obtained with the Visible Human Server [106]. In the slice
are visible: spinal cord, kidneys, colon, and small intestine. Reprinted from [37].

3.1 Inductive Link Analysis

Electrical Properties of the Body Tissues

In order to investigate the behavior of an inductive link that remotely powers an implantable

device, it is necessary to model the electrical properties of the appropriate human tissues. A

large number of tissues have been investigated with the Cole-Cole dispersion model [107]. This

model describes the complex permittivity ε̂ of a tissue as a function of the angular frequency

ω of the incident electromagnetic field

ε̂= ε∞+∑
n

∆εn

1+ ( jωτn)(1−αn )
+ σi

jωε0
, (3.1)

where τ is a time constant characterizing the polarization mechanism, α is a measure of the

broadening of the dispersion, ε0 is the permittivity of the vacuum andσi is the static ionic con-

ductivity of the tissue. The term ε∞ is the permittivity of the tissue at field frequencies where

ωτÀ 1. Finally, ∆εn = εs −ε∞, where εs is the permittivity of the tissue at field frequencies

where ωτ¿ 1. These parameters are reported in [107] for a large variety of body tissues.

We have investigated different implantation zones by using the Visible Human Server [106],

that enables 3D real-time navigation into the human body (Fig. 3.1). Four different locations,

such as arm, forearm, abdomen, and leg have been explored with the Visible Human Server

and modeled using the Cole-Cole dispersion model [37]. The description of the tissues within

these implantation zones is reported in Table 3.1, together with the location of the coils.

Then, we have imported the different tissues in the simulation tool Agilent Momentum to

perform full-wave analyses in different parts of the human body. The inductive links have
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3.1. Inductive Link Analysis

Table 3.1: Implantation sites. Table from [37].

Arm Forearm Abdomen Leg
External coil

Air - 1 mm External coil
Skin - 2 mm Air - 1 mm

External coil Fat - 1.5 mm Skin - 2 mm External coil
Air - 1 mm Air - 1 mm Fat - 2 mm Air - 1 mm

Skin - 1.5 mm Receiving coil Air - 1 mm Skin - 2 mm
Fat - 4.5 mm Air - 1 mm Receiving coil Fat - 3 mm

Air - 1 mm Fat - 1.5 mm Air - 1 mm Air - 1 mm
Receiving coil Muscle - 12 mm Fat - 2 mm Receiving coil

Air - 1 mm Ulna - 5 mm Muscle - 17 mm Air - 1 mm
Fat - 4.5 mm Muscle - 2 mm Colon - 40 mm Fat - 3 mm

Muscle - 36 mm Radius - 3 mm Fat - 40 mm Muscle - 45 mm
Humerus - 18 mm Muscle - 12 mm Intestine - 33 mm Femur - 14 mm

Muscle - 48 mm Blood - 5 mm Blood - 17 mm Muscle - 45 mm
Fat - 9 mm Muscle - 4 mm Spine - 56 mm Fat - 6 mm

Skin - 1.5 mm Blood - 4 mm Muscle - 83 mm Skin - 2 mm
Muscle - 8 mm Fat - 10 mm

Fat - 3 mm Skin - 2 mm
Skin - 2 mm

been considered as 2-port networks and the S-parameters obtained with the simulation tool

have been used to calculate the link efficiency as described in the Appendix.

Effects of the Coil Geometry on the Link Efficiency

The size of the inductors greatly affects the link efficiency. Smaller inductors involve higher

working frequency but lower link efficiency. The effects of the coil geometry on the link

efficiency and the working frequency are reported here for receiving inductors compatible

with the size of the i-IronIC sensor.

We have performed a set of simulations with the receiving coil implanted in the arm (Table 3.1).

The results are shown in Fig. 3.2. As expected, a reduced size of the coils involves a higher

optimal frequency, together with a lower link efficiency. For the tested geometries, the optimal

frequency is always located over 100 MHz, at least one order of magnitude higher than the

frequencies commonly used. With the largest geometry the link efficiency is about 30%.

Implantation Sites

The implantation sites depend on several factors, such as the substances to detect or the

tissues to check. For instance, the monitoring of glucose in elderly patients or diabetics can

be performed in the interstitial regions of the abdomen, while the monitoring of lactate in
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Chapter 3. Inductive Link for mm-sized Implants: Frequency and Geometry
Optimization
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Figure 3.2: The smaller size of the coils involves a higher optimal frequency, along with a lower
link efficiency. Simulations are performed in the arm. Reprinted from [37].

sportsmen must be performed in the interstitial regions of the limbs under stress. Thus, we

have tested different implantation zones, reported in Table 3.1, keeping unchanged the ge-

ometries of the coils. The results are shown in Fig. 3.3. The optimal frequency does not change

by implanting the receiving coil in different zones. Moreover, the link efficiency depends on

the implantation depth and decreases with deeper implanted coils. The differences of tissues

in the implantation zones do not affect the link efficiency.

Lateral Misalignment

Misalignments between the transmitting and the receiving coil can occur due to erroneous

placement of the external inductor or difficulties in locating the exact implantation zone. Thus,

we have simulated lateral misalignments between the coils for a given geometry (Fig. 3.4). The

simulations are performed with the receiving coil implanted in the arm. Lateral misalignments

strongly affect the link efficiency, while they do not shift the optimal frequency. Furthermore,

lateral misalignments over 20 mm seriously compromise the efficiency of the inductive link.

Multiple-turn External Coils and Frequency Shift

Finally, we have performed a set of simulations using external coils with multiple turns. The

results are shown in Fig. 3.5. In two simulations (14 turns and 29 turns), the trace width of the

external coil is 0.2 mm, while the trace spacing is 0.2 mm. In the third simulation (30 turns)

the trace width is 0.254 mm, while the trace spacing is 0.14 mm. The optimal frequency is

always lower than in the case where a single-turn external coil is used. In the case of a 30-turn

external coil the optimal frequency is about 10 MHz, at least one order of magnitude lower

than the optimal frequencies obtained in the previous simulations. These results show the
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3.1. Inductive Link Analysis
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Figure 3.3: Different implantation sites do no affect the optimum frequency. The differences
among the three curves are mostly due to the different implantation depths. Reprinted
from [37].

M
ax

im
um

 L
in

k 
Ef

fic
ie

nc
y

Figure 3.4: Lateral misalignments between the coils have been simulated for a given geometry.
The misalignments do not affect the optimal frequency. Reprinted from [37].
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Figure 3.5: Maximum link efficiency obtained with multiple-turn external coils. The number of
turns and the geometry of the external coils affect the optimal frequency. Reprinted from [37].

possibility to operate in the low megahertz range, where tissue absorption is minimum, while

dealing with mm-sized receiving inductors and multi-turn, cm-sized transmitting inductors.

This achievement has been obtained by increasing the size and the number of turns of the

external inductor, as compared to the previous simulations.

This last set of simulations suggests the use of a multiple-turn external inductor, in order to

work in the low megahertz range where tissue absorption is minimum. In the next section,

a mathematical model is proposed to obtain the electrical parameters of multi-turn spiral

inductors starting from their geometry. Several multi-turn external inductors are modeled

using that method.

3.2 Inductor Modeling

The capability to model multi-turn spiral inductors in terms of lumped elements, starting from

their geometry, is extremely important while designing inductive links. Instead of running long

Finite Element Method (FEM) simulations for a large number of geometries, a mathematical

model can be used to define a subset of possible geometries to be subsequently tested with

more powerful analysis tools. In this section we propose a lumped RLC description of printed

spiral inductors (Fig. 3.6). Several models have been presented in the literature to define

the value of these elements [108–112]. However, most of these models describe inductors

integrated on silicon, thus limiting their applicability to printed inductors. In this section,

we present a model dedicated to printed spiral inductors, obtained from different analyses

reported in the literature, most of which have been recently reviewed in [113]. The model has

been implemented in Matlab and the results of the simulations have been compared with the

impedance measurements.
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3.2. Inductor Modeling

L Rs

Cp

Rp

Figure 3.6: Lumped RLC model of a printed spiral inductor. Second order effects are not
considered. Reprinted from [38].
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w sεn
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Figure 3.7: Geometrical and physical parameters of a printed inductor and the surrounding
substrates. Reprinted from [38].

The model aims to determine the values of the RLC lumped elements reported in Fig. 3.6,

describing the behavior of a printed inductor. The model receives as input the geometrical

and physical parameters of the inductors and the surrounding substrates (Fig. 3.7). In this

analysis we have considered only square-shaped inductors.

Inductance L

Different equations have been proposed in the literature to approximate the value of the

inductance L. We have used the expression proposed by [114] for square-shaped coil:

L = 1.27 ·µn2dav g

2

[
ln

(
2.07

ϕ

)
+0.18ϕ+0.13ϕ2

]
, (3.2)
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where µ is the magnetic permeability of the metal traces, n is the number of turns, dav g =
(do +di )/2, and ϕ= (do −di )/(do +di ). The parameter ϕ, called fill factor, tends to zero if the

turns are concentrated close to the external perimeter, while it tends to one if the turns fill all

the inductor area. As underlined by [113], the error in (3.2) is higher than 8% for s/w > 3 and

the accuracy degrades with ϕ≤ 0.1 or n ≤ 2.

Capacitance Cp

The parallel capacitance Cp has an important role among the different elements of the model.

Indeed, this component determines the self-resonance frequency of the inductor.

To calculate the parallel capacitance Cp we first define the parallel capacitance per unit length

Ca . According to the model presented by [111, 113], the value of Ca can be expressed as

Ca =C0 +
n∑

i=1
C0i = εeffC0 , (3.3)

where C0 is the capacitance per unit length between adjacent traces and C0i is the capacitance

between the traces and the i th substrate.

According to [111], the value of C0 is defined as follows:


C0 = ε0

K (k ′
0)

K (k0)
,

k0 = s

s +2w
,

k ′
0 =

√
1−k2

0 ,

(3.4)

where K ( · ) is the complete elliptic integral of the first kind and ε0 is the electrical permittivity

of the vacuum (ε0 ' 8.854×10−12 F/m).

The value of εeff is calculated as

εeff = 1+ 1

2

k∑
i=2

(εri −εri−1 )
K (k0)K (k ′

i )

K (k ′
0)K (ki )

+ 1

2

n∑
i=k+2

(εri −εri−1 )
K (k0)K (k ′

i )

K (k ′
0)K (ki )

, (3.5)

where the term εri is the relative permittivity of the i th substrate and the terms ki and k ′
i are
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3.2. Inductor Modeling

defined as


ki =

tanh
(
πs
4ti

)
tanh

(
π(s+2w)

4ti

) ,

k ′
i =

√
1−k2

i ,

(3.6)

where ti is the thickness of the i th substrate.

According to [111, 113], the effect of trace thickness on the capacitances is considered by

reducing the spacing s in (3.4b) and (3.6a) of a factor 2∆, where ∆ is defined as

∆= t

2πεe

[
1+ ln

(
8πw

t

)]
, (3.7)

being εe the relative permittivity of the material between the traces.

Finally, by considering the total length of the inductor as

l = 4ndo −4n2w − (2n −1)2s +
[(π

2
−2

)
(4n −1) p

]
, (3.8)

the parallel capacitance Cp can be written as

Cp = Ca

n
· l . (3.9)

Different from [113], Ca in (3.9) has been divided by a factor n to consider the voltage drop

across the inductor turns. This solution has been suggested by [115].

Resistance Rs

The series resistance Rs of the model includes two elements. The first element is indepen-

dent of the frequency and is described by the Ohm’s law. The second element is frequency

dependent and includes the skin effect.
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An estimation of the series resistance, suggested by [115], is

Rs = ρ l

(
1

w t
+ 1

2δ(t +w)

)
, (3.10)

where ρ is the resistivity of the metal traces. The term δ represents the skin depth and can be

expressed as

δ=
√

2ρ

ωµ
, (3.11)

where ω is the angular frequency and µ is the magnetic permeability of the metal traces.

Resistance Rp

Parallel resistance Rp is due to the finite resistance of the insulating layer where the inductor

is placed. According to [115], parallel resistance has been modeled as

Rp = ρk tk

w l
, (3.12)

where ρk and tk are the resistivity and the thickness of the k th layer where the inductor is

placed.

Model Validation

The mathematical model just introduced has been implemented in Matlab and the results have

been compared with the measurements. The geometrical parameters of the test inductors

are listed in Table 3.2. For these geometries, the results obtained from simulations and

measurements are listed in Table 3.3. The impedance of the test inductors has been measured

by means of a network analyzer starting from the scattering parameters. In the simulations,

the impedance Z is calculated using the lumped parameters presented in Fig. 3.6:

Z = RsRp + jωLRp

(Rs +Rp −ω2LRpCp )+ jω(L+Rp RsCp )
. (3.13)
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3.2. Inductor Modeling

Table 3.2: Geometrical parameters of the test inductors. Table from [38].

Geometrical Parameters TxA TxB TxC

do (mm) 38 37.8 24.3

di (mm) 5.4 7.8 1.37

s (mm) 2.5 1 0.146

w (mm) 1.2 1 0.254

p (mm) 3.8 2 0

n 5 8 29

t (µm) 35 35 35

ε1 (Air) 1 1 1

t1 (mm) Open Open Open

ε2 (Air) 1 1 1

t2 (mm) Open Open Open

ε3 (FR4) 4.4 4.4 4.4

t3 (mm) 1.2 1.2 0.8

Table 3.3: Electrical parameters of the test inductors. Table from [38].

Electrical Parameters
TxA TxB TxC

Measurement Model Measurement Model Measurement Model

Self-resonance frequency (MHz) 112.2 160.5 70.4 75.9 32.6 32.5

L (µH) 0.588 0.565 1.53 1.52 9.44 9.50

Cp (pF) 3.42 1.74 3.34 2.89 2.52 2.52

Re{Z} @ 1 MHz (Ω) 0.28 0.22 0.56 0.45 3.61 3.68

Im{Z} @ 1 MHz (Ω) 3.76 3.58 9.76 9.64 60.1 60.4
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(a)

(b)

(c)

Figure 3.8: Impedance of the inductors described in Table 3.2. TxA (a), TxB (b), TxC (c).
Reprinted from [38].
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3.3. Chapter Contribution and Summary

In Fig. 3.8 are shown the real and the imaginary part of the inductor impedance. The simula-

tions are compared with the measurement results. The self-resonance frequencies returned by

the simulations are slightly different from those obtained with the measurements. This shift

is due to the inaccuracy of the model while estimating the parallel capacitance Cp . Indeed,

the measured value of Cp is noticeably influenced by several factors, such as the surrounding

environment and the parasitic capacitances. Thus, it is difficult to model this element with

high precision.

Nevertheless, the value of Cp provided by the model is sufficient to have a rough valuation

of the self-resonance frequency. Then, if we assume to work at least one order of magnitude

below the self-resonance frequency, the model can be simplified by neglecting the presence of

Cp . Indeed, at these low frequencies the parallel capacitance does not significantly affect the

impedance Z presented in (3.13).

As shown in Table 3.3, at the operating frequency of 1 MHz the maximum error on the

impedance is 21.4% on the real part and 4.8% on the imaginary part for spiral TxA. For more

dense geometries, such as TxC, the error of the model at 1 MHz is reduced to 1.9% on the real

part and 0.5% on the imaginary part.

3.3 Chapter Contribution and Summary

In this chapter we have presented the research work dedicated to the design and optimization

of an inductive link with mm-sized receiving inductors. The effects of several factors (such

as coil geometry, implantation depth, and misalignments) on the link efficiency have been

analyzed by means of simulations. Smaller inductors involve higher optimal frequencies,

as well as a lower efficiency. Lateral misalignments do not affect the optimal frequency but

seriously compromise the link efficiency. Finally, no particular changes have been noticed

while simulating different implantation zones.

Particular emphasis has been given to the possibility to operate in the low megahertz range,

where tissue absorption is minimum, while using a multi-turn, cm-sized external inductor.

This result has been used in the design and manufacturing of the receiving inductors presented

in the next chapter.

Finally, a model has been presented to calculate the electrical proprieties of multi-turn external

inductors starting from their geometry. This model has been realized to aid the designer while

optimizing the link efficiency. The model is particularly suitable for dense inductors working

at least one order of magnitude below the self-resonance frequency.
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4 Design and Fabrication of Miniatur-
ized Receiving Inductors

In this chapter we describe the design and realization of mm-sized receiving inductors for

implantable devices. Two different approaches are considered: multi-layer printed spiral

inductors and microfabricated spiral inductors.

Multi-layer printed spiral inductors consist of several printed inductors, stacked and elec-

trically connected to obtain a multi-layer structure. This solution noticeably increases the

link efficiency while compared with single-layer structures having the same area. Moreover,

inductor area can be further reduced while preserving the link efficiency if the number of

layers is increased.

Microfabricated spiral inductors have been explored to further reduce the size of the im-

plantable biosensor. The main challenge of this approach is to preserve the inductor quality

factor while dealing with single-layer, mm-sized structures. The fabrication process flow is de-

scribed in detail in the remainder of the chapter, together with the electrical characterization

of the microfabricated inductors.

4.1 Multi-layer Spiral Inductors

In this section we explore the use of multi-layer printed spiral inductors as receiving elements

of an inductive link. Thanks to this approach, the size of the receiver inductors can be

noticeably reduced with respect to the classical “pancake” inductors or the single-layer spiral

inductors, such as those used in [25–27, 31–33]. Moreover, the decrease in size does not result

in a lower efficiency of the system in terms of power transmission. Finally, the small size of

multi-layer spiral inductors supports their implantation in the subcutaneous zones by means

of an injection.

The proposed approach is initially compared to different solutions presented in literature,

such as litz-wire coils, on-chip inductors, and MEMS inductors. Then, the advantages of multi-

layer structures, in terms of link efficiency and voltage gain, are investigated and compared

with a single-layer approach.
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4.1.1 Standard Design Techniques for Inductive Links

The design of the inductors composing the link greatly affects both the performance of the sys-

tem and the comfort of the patient. Indeed, the small size of the receiving inductor noticeably

simplifies the implantation process and reduces the discomfort of the patient. Litz-wire coils,

integrated CMOS inductors, MEMS inductors, and printed spiral coils are the most common

solutions for the receiving inductors.

Litz wires consist of many thin strands, individually insulated and twisted or woven together,

according to a predefined pattern. Then, those wires can be used to obtain the receiving

coil (litz-wire coils). Litz-wire inductors have already been used for the remote powering of

implantable systems [27, 116]. This approach reduces the resistive losses due to the skin and

proximity effects [117]. However, the advantages of using litz wires, rather than solid wires,

decrease for frequencies higher than hundreds of kilohertz. By increasing the frequency over

that range, a threshold is reached where local proximity losses increase and litz wires become

more lossy than solid wires. This threshold has been estimated close to 1 MHz [118]. Usually,

inductive links for the remote powering of implantable devices operate in a slightly higher

frequency range, between 1 MHz and 13.56 MHz, with two dedicated frequencies at 6.78 MHz

and 13.56 MHz [25–28, 30–33]. Thus, frequency limitations are a drawback of using litz-wire

coils for the remote powering of implantable sensors.

Frequency issues can be mitigated by increasing the number of strands, while reducing the

diameter. However, physical limits exist on strand reduction. Moreover, a smaller diameter of

the strands results in a decreased packing factor, defined as the ratio between the copper area

and the area of the bundle [118].

Another implementation is the integration of spiral inductors on-chip with the logic circuitry

to be powered by the receiver. This approach considerably reduces the area of the system.

However, by using a standard CMOS fabrication process, passive inductors usually have small

inductance (typically in the range of nanohenries [119]) and high resistance, leading to quality

factors with maximum value at high frequency (from hundreds megahertz up to few gigahertz)

and usually lower than ten [120,121]. For these reasons, this approach is not suitable for power

links operating in the low megahertz range.

These limitations can be surmounted by using different microfabrication techniques. Several

solutions have been presented in literature employing MEMS inductors. By using thick-metal

surface micromachining technology, ref. [51] significantly decreased the inductor resistance,

as compared to standard CMOS inductors. This decrease enables higher quality factors.

However, since the inductance values remain in the order of few nanohenries, those quality

factors still have their maximum in the gigahertz range.

Electroplating techniques can be used to obtain microfabricated inductors with lower re-

sistance, when compared to thin film inductors. An inlaid electroplating procedure is used

in [53] to realize microcoils on silicon substrates. The fabricated inductor has an area of
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4.1. Multi-layer Spiral Inductors

14×14 mm2 and a quality factor of about 34 at 4 MHz. Similar performance is obtained by

using electroplated gold on an insulating substrate [122]. The fabricated inductor has an area

of 15×15 mm2 and a quality factor of 29 at 13.56 MHz.

Finally, another option to design the receiving inductor is to use a standard Printed Circuit

Board (PCB) process. This method enables the realization of the receiving coil on rigid or

flexible substrates. Flexible substrates can considerably facilitate the implantation process.

Furthermore, by using printed inductors several layers can be stacked to obtain multi-layer

structures. The multi-layer approach enables area reduction, while preserving the perfor-

mance of the link. Differently from what happens with microfabrication, no technological

limitations exist on the number of layers that can be stacked.

The multi-layer approach has already been presented in literature [47–49]. Ref. [48] has

proposed a 10×10 mm2, 4-layer, 2.5µH receiving inductor having a quality factor of about 90

at 13.56 MHz. These results have been simulated. The effects on the inductance and the quality

factor of different parameters (i.e., number of layers, spacing between adjacent traces, and

trace width) are reported. A set of equations is proposed to calculate the electrical parameters

of multi-layer structures starting from their physical characteristics [49]. A 9×9 mm2, 2-layer,

3.8µH receiving inductor with a quality factor of 42 at 10 MHz has been developed by using

these analytic expressions [49].

Several key points make this technique particularly suitable for the remote powering of im-

plantable systems. The implantation process can be eased by the flexibility of the substrate

and the possibility to partially reduce the inductor area, while preserving the link performance.

Moreover, a relatively high quality factor can be obtained with a simple and inexpensive

process.

This section contributes to the existing literature by investigating the use of multi-layer in-

ductors for the remote powering of implantable systems. Indeed, the fabrication and mea-

surement of multi-layer structures and the effects of their geometry on the link efficiency and

voltage gain are a novel contribution to the literature. Furthermore, an asymmetrical shape of

the receiving inductor is investigated. Due to a rectangular shape, having the form factor of a

needle, the implantation process can be facilitated. This reduces the discomfort of the patient.

Multi-layer rectangular structures are realized on a flexible substrate and measured, in order

to compare their performance with the simulations reported in literature.
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4.1.2 Design and Test of Multi-layer Spiral Inductors

We have designed and measured different geometries in order to determine the optimal

tradeoff among the link efficiency, the voltage gain, and the size of the receiving inductors.

The curves presented here are obtained by measuring the electrical parameters of the coils.

By substituting these parameters in (2.22) and (2.23), the link efficiency and the voltage gain

are determined. The electrical parameters of the coils are measured by means of a network

analyzer (Rohde & Schwarz - ZVL).

Initially, receiving inductors with different size have been tested by using the same external

inductor (Fig. 4.1). The results of these measurements show that the link efficiency does not

increase over 10 MHz. This behavior is in agreement with the simulations in Fig. 3.5. Moreover,

by increasing the size and the number of turns of the receiving inductor, both the link efficiency

and the voltage gain increase. Indeed, a larger area and more turns for the receiving inductor

lead to a higher mutual inductance M between the coils and the link efficiency (2.22) increases

with M . Furthermore, if expression (2.20) is satisfied, also the voltage gain (2.23) increases

with M .

Different widths of the traces have been measured for the external inductor, while maintaining

the area fixed (Fig. 4.2). A lower number of turns with larger width results in a lower resistance

R1 of the external inductor and the maximum link efficiency (2.22) is a decreasing function

of R1. However, a lower number of turns also reduces the mutual inductance M and the

maximum link efficiency (2.22) is an increasing function of M . Consequently, to test which

behavior is predominant between the decrease in R1 and the decrease in M , different widths

are tested for the traces of the external inductor, while keeping constant the inductor area.

In the inductors with wider traces, the decrease in M outweighs the decrease in R1, thereby

lowering the maximum link efficiency. Instead, the voltage gain strongly increases where

the number of turns of the external inductor is reduced. Indeed, it can be shown that the

voltage gain (2.23) is inversely proportional to the number of turns of the external coil under a

constant-Q assumption [94].

This assumption considers the quality factor of a coil independent of the number of turns,

for a given shape and size of the coil. This assumption can be used while optimizing the

link efficiency, since the maximum link efficiency varies slowly with the quality factors of the

inductors composing the link. This assumption has been used in [94, 124] to optimize the link

performance.

The major constraint related to the use of subcutaneous implantable devices is the size. Indeed,

to reduce the discomfort of the patient and facilitate the implantation process, implantable

devices should be as small as possible. This requirement is in conflict with the results shown

in Fig. 4.1. Indeed, a smaller internal coil results in a lower link efficiency and voltage gain.

To mitigate this issue, a multi-layer approach is experimentally investigated. Multi-layer

inductors, thanks to their small area, are particularly suitable for this type of applications.
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4.1. Multi-layer Spiral Inductors

Figure 4.1: Link efficiency and voltage gain decrease when smaller receiving inductors are
used. The distance between the coils is 5 mm. The inductance and resistance of each coil
are measured at 5 MHz. Notations w, s, and t indicate the trace width, the spacing between
adjacent turns, and the trace thickness, respectively. Reprinted from [123].
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Figure 4.2: By reducing the number of turns of the external inductor and increasing their width,
the link efficiency slightly decreases while the voltage gain noticeably increases. This behavior
is not affected by the larger (group a) or smaller (group b) size of the internal inductor. The
distance between the coils is 5 mm. The inductance and resistance of each coil are measured
at 5 MHz. The notation of the parameters is the same as in Fig. 4.1. Reprinted from [123].
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Figure 4.3: Layout of a multi-layer spiral inductor on PCB. Reprinted from [123].

The design of a multi-layer inductor is shown in Fig. 4.3. In a multi-layer coil, the same spiral

inductor is replicated on the two layers of several PCB; then, the different boards are stacked

and the inductors are electrically connected. Thus, a single multi-layer inductor is obtained. A

multi-layer inductor has the same area as the equivalent single-layer inductor, but includes

many more turns and, hence, a higher coupling with the external inductor. Attention must

be paid to the direction of the current among the different layers. Indeed, the layout must

be designed to have the current flowing in the same direction in all the layers. Thus, the

contribution of each layer to the total magnetic field will have the same sign.

We have realized and tested several multi-layer inductors to investigate their performance

and compare them with a single-layer approach (Fig. 4.4). In Fig. 4.5 the same geometries

depicted in Fig. 4.1 are shown, with the addition of an 8-layer, 14-turn inductor. This multi-

layer inductor has higher link efficiency and voltage gain as compared with the single-layer

inductor having the same area. The link efficiency is 35% higher, shifting from 0.17 to 0.23 at

10 MHz. The voltage gain is almost one order of magnitude higher.

By using multi-layer inductors it is possible to partially compensate a reduction of area by

properly increasing the number of layers. This possibility is shown in Fig. 4.5. The 12-layer,

21-turn inductor having an area of 30 mm2 and a total thickness of 816µm exhibits almost

the same performance of the 8-layer, 14-turn inductor, with an area of 76 mm2 and a total

thickness of 544µm. Consequently, the same performance is obtained with an area reduction

of about 60%.
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Figure 4.4: Multi-layer spiral inductors are obtained by stacking and connecting single-layer
inductors realized on a flexible substrate. Reprinted from [123].

4.1.3 Performance Evaluation

In order to measure the performance of the system where multi-layer spiral inductors are

used, the following setup is used. The transmitting inductor is driven by using a class-E power

amplifier (described in Chapter 5). The power collected by the receiving inductor is measured

by means of a spectrum analyzer (Rohde & Schwarz - ZVL). The receiving inductor is not

directly connected to the spectrum analyzer. Instead, a capacitive matching network is used

to match the input impedance of the instrument (50Ω) to the impedance of the receiving

inductor. A mechanical setup is used to adjust the distance between the transmitting and

receiving inductors, while assuring a planar alignment. The distance between the inductors

lies within the range from 6 mm to 70 mm.

To investigate the performance of the system, we have performed a first set of measurements

in ambient air. The receiving inductor is the 12-layer, 21-turn, 15×2 mm2 coil shown in

Fig. 4.5. The amplifier can transmit about 15 mW over a distance of 6 mm. The link efficiency,

as calculated from (2.22) by using the measured values of the inductors, is about 13%. While

transmitting 15 mW at 6 mm, the amplifier consumes about 340 mW. Thus, the overall effi-

ciency of the system is about 4.4%. The transferred power quickly decreases when the distance

between the inductors increases. In Fig. 4.6, the curve denoted as “model” is obtained by using

the measured values of the inductors in (2.22); the curve named “measurement” is obtained by

reporting the power effectively delivered to the load. Measurements present good agreement

with eq. (2.22) reported in Chapter 2. Both the curves decrease as 1/x2.5.

Finally, a second set of measurements is performed with beef sirloin between the inductors

(Fig. 4.7). The thickness of the sirloin is 17 mm. In this case, the transferred power is about

1.17 mW. This result is similar to that obtained in ambient air by using the same distance

between the inductors (Fig. 4.6).
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Figure 4.5: Multi-layer spiral inductors (group b) enable a higher link efficiency and voltage
gain if compared with single-layer inductors having the same area (group a). Furthermore,
the reduction of area in multi-layer inductors can be partially compensated by increasing
the number of layers (group b). The distance between the coils is 5 mm. The inductance and
resistance of each coil are measured at 5 MHz. The notation of the parameters is the same as
in Fig. 4.1. Reprinted from [123].
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Figure 4.6: Both the model based on (2.22) and the measurements confirm a strong depen-
dence of the transferred power on distance. Reprinted from [123].

Figure 4.7: Measurements are performed using beef sirloin between the inductors. Reprinted
from [123].
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Figure 4.8: Microfabricated spiral inductors during the fabrication process (step (c) of Fig. 4.12).
Reprinted from [125].

4.2 Microfabricated Spiral Inductors

Microfabrication can sensibly decrease the size of implantable coils, thus reducing the dis-

comfort of the patient. Indeed, inductors can be fabricated directly on the substrate hosting

the system to be powered (Fig. 1.1). The main challenge of this approach is to preserve the

quality factor of the inductors while dealing with small structures. To that aim, trace thickness

should be in the order of tenths of micrometers to reduce the resistance and increase the

quality factor.

Several solutions have been proposed in the literature for the microfabrication of spiral

inductors. Thick electroplated inductors on SU8 flexible substrate [50] and silicon [51, 52]

have been proposed. In these works, the coil thickness does not exceed 24µm. Ref. [53] has

shown an inlaid process to fabricate electroplated inductors on a silicon substrate with a

trace thickness of 60µm. However, the proposed inlaid technique cannot be directly used on

substrates other than silicon .

In this section, we propose a process to microfabricate electroplated spiral inductors with high

trace thickness (starting from 60µm) on different substrates, such as silicon or pyrex (Fig. 4.8).

Microfabrication of the receiving inductor directly on the silicon substrate hosting the sensor

can noticeably decrease the total volume of the system, as compared with the case where multi-

layer printed inductors are used [123]. Finally, the realization of high-thickness structures with

a single photoresist deposition is a practical contribution to the existing literature.
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Figure 4.9: The inductors, having a size of 14.88×2 mm2, are simulated onto a substrate of
525µm silicon + 1µm silicon dioxide. Reprinted from [125].

4.2.1 Inductor Design

In this section, several geometries are analyzed for the receiving inductor. These geometries

are then compared in terms of quality factor. The quality factor Q of a generic inductor is

defined as

Q = ωL

R
, (4.1)

where L is the inductance value, R is the resistance value, and ω is the working angular

frequency. The quality factors of the transmitting and the receiving inductors directly affect

the link efficiency η, reported in (2.22). That equation can be expressed as a function of the

quality factors of the inductors composing the link

η=
k2Q1Q2

R2
RL

(1+ R2
RL

+k2Q1Q2
R2
RL

)(1+ R2
RL

)
, (4.2)

where Q1 and Q2 are the quality factors of the transmitting and the receiving inductors,

respectively, k is the coupling coefficient, R2 is the resistance of the receiving inductor, and RL

is the load resistance.

54



4.2. Microfabricated Spiral Inductors

0

5

10

15

20

25

30

0 2 4 6 8 10

Q
ua

lit
y 

Fa
ct

or
 -

Q

Frequency (MHz)

t = 20 μm
t = 40 μm
t = 60 μm
t = 80 μm

Figure 4.10: A higher trace thickness t decreases the inductor resistance, thus increasing the
quality factor. Reprinted from [125].

The simulations reported here are performed with the commercial electromagnetic solver

Sonnet. All the inductors are simulated as a thick layer of copper onto a substrate of 525µm sil-

icon + 1µm silicon dioxide. The area of the receiving inductor is set to 14.88×2 mm2 (Fig. 4.9).

This constraint is given by the size of the silicon substrate that will host the microfabricated

inductors [20]. Since the inductive link described in [20] operates at 5 MHz, the comparison of

the different geometries is performed at that frequency.

A first set of simulations is performed to check the dependence of the quality factor on the

trace thickness. The results of these simulations are shown in Fig. 4.10. As previously stated, a

higher trace thickness involves a lower resistance, thus increasing the quality factor. However,

due to skin and proximity effects, the quality factor cannot be continuously increased by

increasing the trace thickness. In this case, a thickness higher than 60µm does not lead to

significant improvements in terms of quality factor. The thickness of the microfabricated

inductors is set to 60µm. This value corresponds to the maximum thickness achievable by

using a single layer of photoresist in the microfabrication process. A higher trace thickness

is still compatible with the fabrication process, although it requires more than one layer of

photoresist.

A second set of simulations is performed to determine the number of turns of the spiral

inductor. The results of these simulations are shown in Fig. 4.11. The quality factor is weakly

dependent on the number of turns, for a given shape and size of the coil. This is in agreement

with the constant-Q assumption [94, 124]. This assumption considers the quality factor of a

coil independent of the number of turns, for a given shape and size of the coil. According to

the simulation results, the number of turns is fixed equal to 6 (Fig. 4.9). The trace width is

equal to 80µm and the inter-trace width is equal to 40µm.
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Figure 4.11: The quality factor, for a given shape and size of the spiral inductor, is weakly
dependent on the number n of turns. Reprinted from [125].
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Figure 4.12: Fabrication process flow. (a) Seed layer evaporation; (b) Photolithography;
(c) Electroplating; (d) Polishing; (e) Stripping; (f) Wet etching. Reprinted from [125].
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4.2.2 Fabrication Process Flow

The inductors are fabricated on silicon substrate. Silicon substrate consists of 525µm thick,

100 mm silicon 〈100〉 wafers. These substrates are p-type doped and exhibit a resistivity of

0.1−100Ω cm. Wafers are delivered with 1µm wet oxide on the top layer; the oxidation is

used to insulate the inductors from the silicon substrate.

Two thin layers of chromium (20 nm) and gold (100 nm) are evaporated by Joule effect on the

wafer top layer (Leybold - Optics LAB600H) (Fig. 4.12.a). Chromium layer is used for adhesion;

gold layer is used in the next steps as a conductive seed layer for copper electroplating.

A layer of 60µm Ordyl dry film (Alpha 960 - Elga Europe) is laminated on the wafers. Ordyl

dry film is a negative photoresist designed to be developed and stripped in mildly alkaline

solutions. The lamination process is performed at 110 ◦C (PhotoPro33 Laminator). Wafers are

pre-heated prior the lamination to dehumidify.

Trenches are opened in the Ordyl film to enable copper electroplating of the inductor traces

(Fig. 4.12.b). To that aim, photoresist is exposed to UV light source (Süss MicroTec - MJB4)

having a power density of 15 mW/cm2. Exposure time is set to 6 seconds. Photoresist develop-

ing is performed at room temperature in sodium carbonate (Na2CO3, 0.8%-1.2%) for a time

period between 270 seconds and 330 seconds. To remove organic residuals at the bottom of

the trenches, plasma cleaning is performed after developing (power: 200 W; pressure: 50 Pa;

O2 flow: 200 sccm; time: 20 s).

Copper is then electroplated inside the trenches (Fig. 4.12.c). Wafers are merged in a copper

plating bath (Rohm & Haas - Copper Intervia 8510). The exposed gold layer acts as a cathode. A

direct current of 130 mA is forced through it. The current density, defined as the ratio between

the cathodic current and the area of the exposed gold layer, is about 40 mA/cm2. Electroplating

is performed for 1 h and 30 min.

Electroplating is not-uniform along the wafer area. Differences in thickness of several microm-

eters are measured between different inductors; differences in thickness are also measured

between different traces of the same inductor. To achieve a uniform thickness of 60µm, cop-

per traces are polished until they are planar with the film surface (Fig. 4.12.d). To that aim,

chemical-mechanical polishing is performed (STEAG - Mecapol E460) (slurry: 1609BTA; head

speed: 45 rpm; plate speed: 50 rpm; pressure: 34.5 kPa; time: 25 min).

Photoresist is then stripped with sodium hydroxide (NaOH, 2.5%) at room temperature

(Fig. 4.12.e). The stripping solution swells the Ordyl film; as a consequence, the film is peeled

off from the surface. However, stripping of Ordyl between the inductor traces is difficult,

since the film tends to get stuck in the narrow inter-trace spaces when swelled. To increase

the stripping temperature does not lead to noticeable improvements and can damage the

copper by creating a layer of copper(II) hydroxide (Cu(OH)2) around the traces. To improve

the process, stripping solution is stirred and a pipette is used to remove the film.
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(a) (b)

Figure 4.13: SEM pictures of the microfabricated inductors. Reprinted from [125].

Once the film removed, the inductor traces are still short-circuited due to the conductive

chromium-gold seed layer (Fig. 4.12.e). To conclude the process, those two metals are removed

from the inter-trace spaces by wet etching (Fig. 4.12.f).

Gold is removed by using KI+ I2 (25 g/L and 12 g/L, respectively) at room temperature. The

etch rate is between 40 and 80 nm/min; however, several minutes are needed to completely

remove the gold layer between the traces. The gold etcher reacts with the copper by creating

a thick layer of copper(I) iodide (CuI) around the traces; that layer can be removed by using

ammonia (NH3, 45%), thus exposing again the copper traces.

Chromium is removed by using KMnO4 +Na3PO4 (60 g/L and 200 g/L, respectively) at room

temperature. The etch rate is about 40 nm/min but, similarly to what happens with gold,

several minutes are needed to completely remove the chromium between the traces. Pictures

of the inductors, captured with a Scanning Electron Microscope (SEM) at the end of the

fabrication process, are shown in Fig. 4.13.

Finally, wafers are cut to separate the inductors and aluminium wire bonding is used to

connect the inner edge of each inductor to the contact pad laying outside the spiral. Epoxide

resin is applied over the bonding area to prevent short-circuits.

4.2.3 Performance Evaluation

Microfabricated inductors on silicon wafers are measured with a network analyzer (Rohde &

Schwarz - ZVL) to check the electrical characteristic. The measured values of resistance and

reactance are reported in Fig. 4.14. The comparison with the simulated values, also reported in

Fig. 4.14, shows a perfect agreement between measurements and simulations. At the working

frequency (5 MHz), the error on the resistance is in the order of few hundreds milliohms, while

the error on the inductance is in the order of tenths of nanohenries.
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Figure 4.14: Electrical characteristic of the microfabricated inductors. Measurements show a
perfect agreement with the simulations. Reprinted from [125].

Microfabricated inductors are tested within a real setup, in order to measure the link efficiency.

Power is sent to the receiving inductors by means of a class-E power amplifier (described

in Chapter 5). The received power against the distance between transmitting and receiving

inductors is reported in Fig. 4.15. The received power is measured by using a spectrum analyzer

(Rohde & Schwarz - ZVL) connected to the receiving inductor. A purely capacitive matching

network is used between the instrument and the receiving coil to maximize the received power.

A maximum received power of 8.7 mW is measured within a distance of 6 mm between the

inductors. This performance is comparable to that previously reported, where multi-layer

spiral inductors are used within the same setup.

59



Chapter 4. Design and Fabrication of Miniaturized Receiving Inductors

0

2

4

6

8

10

0 10 20 30 40 50 60 70 80

R
ec

ei
ve

d 
Po

w
er

 (m
W

)

Distance (mm)

Recv. Pwr.: 6μW - Ampl. Pwr.: 192mW - Eff.: <0.01%

Recv. Pwr.: 20μW - Ampl. Pwr.: 189mW - Eff.: 0.01%

Recv. Pwr.: 105μW - Ampl. Pwr.: 188mW - Eff.: 0.06%

Recv. Pwr.: 550μW - Ampl. Pwr.: 192mW - Eff.: 0.29%

Recv. Pwr.: 2.85mW - Ampl. Pwr.: 206mW - Eff.: 1.38%

Recv. Pwr.: 4.7mW - Ampl. Pwr.: 217mW - Eff.: 2.17%
Recv. Pwr.: 6.3mW - Ampl. Pwr.: 230mW - Eff.: 2.74%

Recv. Pwr.: 8.7mW - Ampl. Pwr.: 246mW - Eff.: 3.54%

Figure 4.15: Power received by the microfabricated inductor against the distance between
transmitting and receiving inductors. Overall efficiency, defined as the ratio between the
received power and the power used by the amplifier, is also reported. Reprinted from [125].

4.3 Chapter Contribution and Summary

In this chapter we have described the design and fabrication of mm-sized receiving inductors

compatible with the size of the implantable biosensor. Multi-layer, printed spiral inductors

and microfabricated spiral inductors have been presented.

Multi-layer, printed spiral inductors with rectangular shape have been studied and measured.

The rectangular shape, having the form factor of a needle, is designed to ease the implantation

process and reduce the discomfort of the patient. A class-E power amplifier is used to drive

those inductors. The system can transfer up to 15 mW over a distance of 6 mm in air. The

maximum link efficiency measured is about 4.4%. Furthermore, the system can transfer up

to 1.17 mW when a 17 mm beef sirloin is placed between the inductors. If compared with

single-layer inductors having the same area, multi-layer inductors exhibit a link efficiency

improvement up to 35% and a voltage gain improvement of one order of magnitude. The

overhead for these improvements is an increase in thickness of few hundreds micrometers.

Moreover, the same performance, in terms of link efficiency and voltage gain, is obtained with

a decrease in area of 60% by simply increasing the number of layers.

A microfabrication process is also proposed to further decrease the implantation size. Ac-

cording to the given constraints, several geometries are simulated and compared. Finally,

a 60µm thick, 6-turn spiral inductor is realized on silicon substrate. The microfabricated

coil is measured and tested within a real setup. Powered with a class-E power amplifier, the

inductor receives up to 8.7 mW within a distance of 6 mm between the transmitting and the

receiving coils. At that distance, the overall efficiency of the link, defined as the ratio between

the received power and the power dissipated by the transmitting source, is equal to 3.54%.

This performance is comparable to that obtained when multi-layer spiral inductors were used.
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5 IronIC Patch

In this chapter, the external power and data transmitter, named Ironic patch, is described at

component-level. The patch is conceived to remotely power the implanted sensor through

inductive link while enabling bidirectional data transmission. Due to its bendability, the patch

can be placed on concave or convex parts of the body to transmit power wirelessly through

the body tissues. Power is transmitted by means of an embedded class-E power amplifier

driving the external inductor. Short-range, bidirectional communication with the implantable

system is also enabled. Downlink communication, from the patch to the implanted sensor is

achieved by means of ASK modulation. Uplink communication from the implanted sensor to

the patch is achieved by using LSK modulation. Finally, long-range communication between

the patch and Android portable devices is enabled by means of Bluetooth connection. In this

chapter we describe the architecture of the external patch at component-level, together with

its performance.

5.1 Patch Design

Wearable and flexible devices for biomedical measurements have already been presented in

the literature. A survey on wearable sensor-based systems for medical aims has been proposed

by [40]. Flexible systems to be worn around the wrist have been reported by [41] and [42]

for monitoring and evaluation of vital signs. Wearable devices for pulse oximetry have been

presented by [43] and [44]. The electronic patch described in [44] is a single unit without

wires and does not limit the movements. A flexible and stretchable ECG patch to monitor the

heart activity has been proposed by [45]. Fabricated on a polyamide substrate, that patch

can fit any body curve. Finally, flexible electronics have been used to fabricate clothes and

textiles with built-in sensors. A system based on a textile wearable interface is presented

by [46]. The system can acquire different biomedical signals simultaneously. The state of the

art of flexible, wearable devices is represented by the “epidermal electronics” [126]. These

classes of electronic systems achieve the mechanical characteristic of the epidermis in terms

of thickness, elastic modulus, bending stiffness, and density. Several devices, such as body

sensors, can be embedded in those systems and placed in every part of the body.
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Figure 5.1: Functionalities of the IronIC patch.

Figure 5.2: The patch is realized on a flexible FR4 substrate, having a thickness of 0.1 mm.

Different from all these devices, the IronIC patch reported in this chapter is not directly

involved in the sensing process, but it is designed to provide power and connectivity to

implanted systems. Thanks to a high efficiency class-E power amplifier, the patch can transfer

power wirelessly through the body tissues by using an inductive link. Bidirectional data

communication is enabled by using an ASK modulator (downlink) and an LSK demodulator

(uplink). The patch can be remotely controlled by means of an Android application. In this

section, the patch is described in detail at component-level. An overview of its functionalities

is depicted in Fig. 5.1.

5.1.1 Substrate Description

The patch is fabricated as a double-layer PCB on flexible substrate (Fig. 5.2). The substrate is

an FR4 board having a thickness of 0.1 mm. FR4 is a composite material composed of woven

fiberglass cloth with an epoxy resin binder. The mechanical parameters of this substrate are

reported in Table 5.1. Solder mask is applied on top and bottom layers. Metallic vias are used

to connect the two layers. The bendability of the patch enables the user to place it directly

over the implantation zone, in convex or concave parts of the body (Fig. 5.3). This reduces the

possibility of misalignment between the transmitting and the receiving coils.
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Table 5.1: Physical properties of the FR4 patch substrate.

Substrate Thickness 0.1 mm

Copper Initial Thickness 18µm

Peel Strength (minimum) 0.9 N/mm

Moisture Absorption (maximum) 0.11%

Flexural Strength (minimum)
Length dir. 580 N/mm2

Cross dir. 410 N/mm2

Density 1.91 g/cm3

Figure 5.3: The patch can be placed over the implantation zones, in concave or convex parts
of the body, to power the implanted sensor and communicate with it.

5.1.2 Class-E Power Amplifier

Amplifiers in class-E, such as that depicted in Fig. 5.4, are commonly used to drive inductive

links, due to the high efficiency, theoretically equal to 100% [94, 95, 127]. The MOSFET M2,

driven by a square waveform, acts as a switch. Capacitors C3 and C4 must be tuned to have

the current and the voltage across M2 never different from zero at the same time. Therefore,

theoretically the switch does not dissipate power. In Fig. 5.5 is shown the behavior of voltage

and current across the switch while the amplifier is well-tuned. Choke inductor L1 is used

to decouple AC signals of the amplifier from DC supply. Inductor L2 is the transmitting coil.

Different sets of equations have been proposed to tune the electrical parameters of a class-E

power amplifier [95, 127].

In this design, the amplifier is driven by a 5 MHz square waveform having 50% duty cycle. The

circuit to generate that waveform, based on a Pierce oscillator, is also shown in Fig. 5.4. The

user can enable the amplifier by means of the Bluetooth module. The ISM radio band provides

standard frequencies for this type of applications. The most commonly used are 6.78 MHz

and 13.56 MHz. In this work we did not limit our investigation to these two frequencies and

we did not pose constraints on the working frequency of the inductive link.
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Figure 5.4: Schematic of the IronIC patch at component-level. Reprinted from [36].
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Switch
 Current

Switch
 Voltage

O� On

Figure 5.5: Behavior of voltage and current across the switch of a well-tuned class-E amplifier.
Reprinted from [95].

5.1.3 Downlink Modulator

Downlink communication is achieved by modulating the amplitude of the current flowing

on the transmitting inductor L2. To that aim, the supply of the amplifier is switched to

the downlink modulator (Fig. 5.4). This block, based on a Darlington pair, is inspired to

that presented by [128]. The circuit modulates the supply of the amplifier, thus modulating

the current on the transmitting inductor. This modulation is detected by the amplitude

demodulator embedded into the implanted sensor. The modulating bitstream is generated by

the application running on the remote device and it is transmitted to the patch by means of

the Bluetooth module. The bit-rate is set to 100 kbps. The modulation depth is determined by

the ratio between resistors R7 and R8.

5.1.4 Uplink Demodulator

Uplink communication is achieved by modulating the load of the internal sensor seen by the

transmitter. Load modulation affects not only the current flowing on the external inductor, but

also the DC current drawn by the amplifier from the supply and passing through resistor R9

(Fig. 5.4). To demodulate an uplink bitstream, the voltage drop across resistor R9 is digitized

and analyzed by the microcontroller. A high voltage drop, due to a high current, corresponds

to an internal load not short-circuited (digital value 0); conversely, a low voltage drop, due to a

low current, corresponds to a short-circuited internal load (digital value 1).

Since the current drawn by the amplifier depends on several factors, such as the distance

between the inductors and the interleaved tissues, the threshold between high and low current

is updated prior to each communication. The uplink bit-rate is set to 66.6 kbps. This bit-rate

is slightly lower than the downlink bit-rate due to the computational time required to perform

a real-time threshold check. Data acquired from uplink communication are transmitted via

Bluetooth to the application running on the remote device.
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5.1.5 Power Supply

The patch is powered by two rechargeable lithium-ion polymer batteries (LiPo). Each bat-

tery has a nominal voltage of 3.7 V and weights 3.7 g. The volume of the single battery is

30.6×20.2×3.6 mm3. Each battery has a capacity of 120 mAh and a maximum discharging

rate of 3 A. The maximum charging current is 0.6 A.

The two batteries are placed in series to obtain an overall voltage of 7.4 V (Fig. 5.4). Different

supply voltages are generated on-board. The analog voltage AVdd is equal to 6 V. The digital

voltage DVdd is equal to 3.3 V.

A voltage monitor is used to check the batteries and prevent over-discharge. The LED is ON

when the battery voltage is higher than 6.7 V and switches off when it is lower.

5.1.6 External Inductor

The external transmitting inductor is a 30-turn, planar spiral coil with an area of 38×24 mm2.

The copper thickness is about 40µm, while the distance between adjacent turns is 150µm.

The width of the copper traces is 250µm.

As reported in Chapter 4, the geometry of the external inductor strongly affects the perfor-

mance of the link. By using as receiving inductor the microfabricated structure described in

the previous chapter, at 5 MHz the link efficiency (ratio between the power dissipated on the

load and the total dissipated power) is about 25%. The link efficiency does not include the

losses due to the amplifier. In the following section, the power consumption of the amplifier is

obtained and the overall link efficiency is calculated including the losses.

The working frequency is chosen within the band commonly used for remote powering

through inductive link, between 1 MHz and 13.56 MHz [26, 27, 31]. In that range, the power

absorbed by the tissues is minimum, thus avoiding tissue heating.

5.2 Experimental Results

In this section, the performance of the system is evaluated in terms of transferred power and

battery consumption. Moreover, the system is compared to similar devices presented in the

literature.

5.2.1 Performance Evaluation

The patch has been tested by using multi-layer printed coils and microfabricated inductors as

receiving antennas. The performance obtained with multi-layer inductors has been shown

in Section 4.1.3 of the previous chapter. By using as receiving coil the 12-layer, 21-turn,

15×2 mm2 inductor, the amplifier can transmit about 15 mW over a distance of 6 mm.
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Table 5.2: Power consumption of the patch in different operating modes. Table from [36].

Bluetooth Module Voltage Monitor Waveform Gen. Power Amplifier Total Power

Stand-by Mode 59.2 mW 14.8 mW - - 74 mW

Connection Mode 185 mW 14.8 mW - - 199.8 mW

Power Mode
59.2 mW 14.8 mW 125.8 mW 340.4 mW 540.2 mW

(BT Disconnected)

Power Mode
185 mW 14.8 mW 125.8 mW 340.4 mW 666 mW

(BT Connected )

The link efficiency, as calculated from (2.22) by using the measured values of the inductors, is

about 13%. While transmitting 15 mW at 6 mm, the amplifier consumes about 340 mW. Thus,

the overall efficiency of the system is about 4.4%.

The performance obtained by means of microfabricated inductors has been reported in

Section 4.2.3 of the previous chapter. A maximum received power of 8.7 mW is measured

within a distance of 6 mm between the inductors. Within that distance, the link exhibits an

efficiency of 25%, while the overall efficiency is equal to 3.54%.

In both cases, downlink communication is successfully tested at 100 kbps by means of ASK

modulation, while uplink communication is successfully tested at 66.6 kbps by means of LSK

modulation.

5.2.2 Battery Consumption

The system can operate in different modes. A summary of the power drawn from the 7.4 V

supply in the different operating modes is reported in Table 5.2.

In stand-by mode, the Bluetooth module is not connected but intermittently inquires for

possible connections. The analog supply AVdd is disconnected and the amplifier is disabled.

Digital circuits are disabled and the microcontroller is in low-power mode. The voltage

monitor checks the batteries to prevent over-discharge. The total power consumption is about

74 mW, with an estimated battery duration of about 10 h (80% of battery discharge).

In connection mode, the Bluetooth module communicates with a remote device. Consequently,

the power consumption increases. This additional power is the only difference as compared

to the stand-by mode. The total power consumption in connection mode is about 200 mW,

with an estimated battery duration of about 3.5 h.

In power mode, analog and digital circuits are enabled and the amplifier is operative. The

system transmits power or communicates with the implanted device. It is possible to further

split up this operating mode in two cases, according to the Bluetooth status (connected or

not). With the chosen tuning, the amplifier consumes about 340 mW. When the Bluetooth is

not connected, the measured battery duration in power mode is about 1.5 h.
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5.2.3 Comparison with the Literature

The system designed is compared with similar designs reported in literature [26, 27, 31, 34]. In

order to compare inductive links dedicated to the remote powering of implantable biosensors,

a figure of merit (FOM) in proposed in [29]

FOM = 10log

[
d 2

D1 ×D2
×

(
BW

fcar r i er

)
×η

]
, (5.1)

where d is the distance between the inductors, D1 and D2 are the diameters of the external

and internal inductors (supposed circular), BW is the data-transmission bandwidth, fcar r i er

is the carrier frequency, and η is the link efficiency.

The figure of merit just introduced considers many important aspects of an inductive link.

However, specific limitations also exist. First of all, it cannot be applied to those designs where

data communication with the implanted devices is not performed, such as in [27, 28, 34].

Moreover, by considering only the diameter of an inductor as an indicator of the size, this

figure of merit does not consider the thickness of the inductors. This parameter cannot be

neglected, since the volume of a wearable or implantable device affects the discomfort of the

patient.

For these reasons, we introduce a new figure of merit FOM3D−η that can be applied also to

those systems where data communication is not performed and includes the volume of the

inductors instead of the area

FOM3D−η = 10log

[
d 3

V1 +V2
×η

]
, (5.2)

where d is the distance between the inductors, V1 and V2 are the volumes of the external and

internal inductors (any shape), and η is the link efficiency.

Unfortunately, the link efficiency η is not always clearly stated in all the publications; instead,

the transmitted power is usually provided. Thus, a further figure of merit FOM3D−P is adopted.

FOM3D−P considers the transmitted power P instead of the link efficiency

FOM3D−P = 10log

[
d 3

V1 +V2
×P

]
. (5.3)

This figure of merit is slightly biased if compared with the previous, since even a poor design

with a low link efficiency can deliver a fair amount of power by transmitting a large quantity of
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Chapter 5. IronIC Patch

power through the primary coil. However, FOM3D−P can be applied to a broader number of

cases as compared to the FOM3D−η.

These two figures of merit have been applied to several devices in literature [26, 27, 31, 34]. The

results are listed in Table 5.3 and compared with the performance of the system described in

this work.

Even if in some cases our system shows better performance (i.e., while compared with [27] in

terms of FOM3D−η or while compared with [26] in terms of FOM3D−P), the results obtained

with our solutions are generally comparable with those of the other systems reported in the

literature. However, while the other systems are focused on the receiver, the device proposed

here aims to improve the wearability of the external transmitter. Indeed, the patch is easily

wearable and completely autonomous in terms of supply. Finally, it enables bidirectional data

communication with implanted sensors.

5.3 Chapter Contribution and Summary

In this chapter, the power and data transmitter named IronIC patch has been described. The

device has been realized on a flexible substrate and can be placed on concave or convex parts

of the body, directly over the implantation zone. Short-range communication is performed by

using ASK modulation (downlink) and LSK modulation (uplink).

Tested with a 12-layer, 21-turn, 15×2 mm2 receiving inductor the patch can transfer up to

15 mW over 6 mm distance with an overall efficiency of 4.4%; tested with a 14.88×2 mm2,

6-turn, microfabricated receiving inductor, the system can transfer up to 8.7 mW over 6 mm

distance with an overall efficiency of 3.54%. In both cases, downlink communication has been

tested up to 100 kbps and uplink communication has been tested up to 66.6 kbps. Finally, the

patch has been compared with similar devices reported in the literature in terms of FOM3D−η
and FOM3D−P.

The patch is connected with Android devices via Bluetooth. Thus, commands and data can be

transferred bidirectionally between the user and the implantable device by using the patch as

a gateway. The user interface to interact with the patch is depicted in the next chapter.
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6 Android Interface

In order to enable long-range communication with the IronIC patch presented in the previous

chapter, we designed an Android application running on smartphones and tablets. The

application, named BlueCells, provides a user-friendly interface to set the measurement

parameters and plot the data provided by the patch. Furthermore, the acquired data can be

stored on external memories, such Secure Digital (SD) cards.

The application utilizes the patch as a gateway to communicate to the implanted sensor. Every

command sent from the application is received from the patch (long-range communication)

and directly transmitted by the patch to the implanted sensor (short-range communication).

Similarly, every message returned by the implanted sensor is detected by the patch and re-

directed to the application.

BlueCells uses the 8b/10b encoding technique to communicate with the implanted sensor

through the patch. The 8b/10b provides DC-balancing and bounded disparity, avoiding long

sequences of the same logic value. Indeed, short-range communication strongly affects the

transmitted power and long sequences of the same logic value can sensibly decrease the power

received by the sensor while communicating with the application.

In this chapter, the BlueCells interface is described in detail. Finally, in order to test the

performance of the interface, the application has been used with an external sensor for

glucose and lactate detection in cell culture medium.

The Android application presented in this chapter has been developed by [129] in collaboration

with the author of this thesis.

6.1 Application Description

In this section is described the Android application designed to communicate with the im-

planted sensor through the patch. The application uses Bluetooth protocol to transmit com-

mands and data and to receive the measured samples.
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Chapter 6. Android Interface

In this scenario, the patch acts as a gateway between portable devices (smartphones or tablets)

and the implanted biosensor.

The application consists of six activities. These activities enable the user to define the measure-

ment parameters and to start and conclude a measurement session. Moreover, they provide a

graphical output of the measurement results.

Welcome Activity

The “Welcome Activity” (Fig. 6.1.a) is the first activity to be run after the user has launched the

application. It shows the logo and the background style. The user can pass to the next activity

by touching the screen.

Setting Activity

In the “Setting Activity” (Fig. 6.1.b) the user can define the measurement settings. In the first

version of the software, the only measurement allowed is the chronoamperometry. Thus, the

user can set the sampling period, the sampling instants, and the working electrode to be used

among the five available. Furthermore, a moving average filter can be applied to the measured

output. Once the parameters are set, the user can start the measurement.

Chart Activity

The “Chart Activity” (Fig. 6.1.c) asks the user to connect the device to the patch by means of

the option menu. In the background is shown the chart used by the application to plot the

acquired data.

Device List Activity

In the “Device List Activity” (Fig. 6.1.d) are displayed the available Bluetooth devices. The user

can select the patch by touching its name on the screen. If the patch is not paired, the user

can use the function “Search for other devices”.

Final Chart Activity

In the “Final Chart Activity” (Fig. 6.1.e) every sample acquired during the measurement is

plotted in real-time. The signal is conveniently downsized to fit the device screen. The user

can stop the measurement at any time with a long touch of the screen. Afterwards, the user

can scroll and zoom the signal for a better analysis. Moreover, he can save the signal on the SD

card of the device.
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6.1. Application Description

End Session Activity

The “End Session Activity” (Fig. 6.1.f) concludes the measurement session. The user can now

start a new measurement.

6.1.1 Communication Protocol

The instruction set of the biosensor, reported in Fig. 6.2, consists of five main commands, each

having a length of two bytes. The three most significant bits of every instruction define the

command type.

The instruction SETUP is used to define the measurement parameters. Two measurements

can be performed by the biosensor: chronoamperometry (CA) and cyclic voltammetry (CV).

SETUP[12:11] select the type of analysis. The measurement parameters are set in SETUP[10:0].

Two bits (SETUP[10:9]) define the parameter to be set, while the remaining bits (SETUP[8:0])

contain the numerical value to be assigned. When a cyclic voltammetry is selected, the

following parameters can be set: scan rate, minimum voltage, and maximum voltage. When a

chronoamperometry is selected, the applied potential can be set.

The instruction START is used to begin a measurement. START[12:11] set the measurement to

perform (chronoamperometry or cyclic voltammetry) while START[10:8] define the working

electrode to be used for the measurement. The remaining bits are ignored.

The instruction GET is used to require a measured sample from the biosensor. Beside the

cell current, due to the running measurement, pH and temperature can be recorded by the

sensor. GET[12:11] defines which measured sample should be returned. The remaining bits

are ignored.

The instruction ABORT is used to stop the measurement. ABORT[10:8] define the working

electrode to be stopped. The remaining bits are ignored.

Data are sent from the biosensor to the portable device using the DATA format. DATA[12:0]

contain the numerical value of the sample required by the portable device. The remaining bits

are ignored.

The communication protocol between the portable device and the biosensor is reported

in Fig. 6.3, in the case of a cyclic voltammetry. After every command sent by the portable

device, the biosensor can send OK (command correctly received), ERROR (command not

correctly received) or provide the required DATA if the instruction GET is received. After every

command, the portable device waits a fixed timeout. If no response is received within the

timeout period, the same command is sent again. After three unsuccessful attempts, the

portable device stops the communication and informs the user. If an ERROR is received, the

same instruction is sent again.
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(a) (b)

(c) (d)

(e) (f )

Figure 6.1: Activities of BlueCells application. (a) Welcome; (b) Setting; (c) Chart; (d) Device
List; (e) Final Chart; (f) End Session. Elaborated from [129].
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Figure 6.2: Biosensor instruction set. Elaborated from [129].

6.1.2 8b/10b Encoding

The 8b/10b is an encoding technique that maps 8-bit symbols to 10-bit symbols, in order

to achieve DC-balancing and bounded disparity [130]. The output stream has a balanced

number of zeros and ones and does not contain long sequences of the same logic value. These

requirements are important for the application described in this thesis. During downlink

communication, the power transmitted by the patch strongly decreases while a logic zero is

sent. During uplink communication, the receiving inductor is short-circuited when a logic

one is sent; thus, the implanted device does not receive power. For these reasons, a 8b/10b

encoding is used to convert both the downlink and uplink bitstreams in order to achieve

DC-balancing and avoid long sequences of the same logic value. The downlink bitstream

is encoded by the portable device before the transmission and decoded by the implantable

sensor; the uplink bitstream is encoded by the implantable sensor and decoded by the portable

device. The patch acts as a simple gateway between the portable device and the implantable

sensor.

The encoding diagram is shown in Fig. 6.4. As reported in the previous paragraph, every

instruction is a 2-byte word. The final output is a 20-bit word that is used for the transmission.

During the encoding, every byte is split in two blocks. The 3 most significant bits are encoded

using a 3b/4b look-up table, while the 5 least significant bits are encoded using a 5b/6b look-

up table. The disparity of the 10-bit word is the sum of the disparity of the 4-bit and 6-bit
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Figure 6.3: Communication protocol for a cyclic voltammetry. Elaborated from [129].
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Figure 6.4: Description of the 8b/10b encoding. Elaborated from [129].

blocks. Thus, if the outputs of those table are disparity neutral, the final 10-bit word is perfectly

balanced. However, only 6 out of 16 possible combinations of 4 bits and only 20 out of 64

combinations of 6 bits are disparity neutral. The other combinations can have disparity ±2.

To avoid combinations of blocks having the same disparity, a variable named Running Dis-

parity (RD) is introduced. The variable is used to select the outputs of the 3b/4b and 5b/6b

look-up tables. The variable can assume two values, +1 and -1. When RD is equal to +1, the

outputs of the tables having disparity -2 are preferred; viceversa, when RD is equal to -1, the

outputs having disparity +2 are preferred. When an output with disparity equal to -2 is chosen

from one of the two tables, the value of RD is changed to -1. When an output with disparity

equal to -2 is chosen from one of the two tables, the value of RD is changed to +1. This behavior

is displayed in Fig. 6.5. This method assures that for every 20-bit word the difference between

the number of ones and zeros is lower than 2 and there are no more than 5 consecutive ones

or zeros.
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Figure 6.5: Running disparity state diagram. Elaborated from [129].

6.2 Experimental Results

The BlueCells application has been tested with an external sensor in order to evaluate the

interface performance. The sensor used for these measurements has been designed to detect

glucose and lactate in cell culture medium by means of chronoamperometry [131]. The

medium is constantly in contact with a three-electrode cell by using a peristaltic pump. Once

the measurement is run, the medium enriched with glucose and lactate is changed at the inlet

of the fluidic system every 5 min. Concentration ranges of glucose and lactate are between

5 mM and 25 mM. The change of concentration results in a current variation on the active

working electrode.

The results acquired with the interface are reported in Fig. 6.6. The sensitivity for glucose

is (4.67±1.26) nA/(mM·mm2) with a detection limit of (1.41±0.90) mM, while for lactate is

(12.16±3.8) nA/(mM·mm2) with a detection limit of (0.28±0.17) mM. These results show

that the developed application is suitable for real-time and online monitoring.
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Figure 6.6: Calibration lines of lactate and glucose, obtained by means of the Android applica-
tion and an external sensor. Offsets have been subtracted from the two lines.

6.3 Chapter Contribution and Summary

In this chapter we have introduced the Android interface, named BlueCells, to interact with

the implanted biosensor. The interface, running on smartphones or tablets, exploits the

IronIC patch as a gateway to transmit commands to the implanted device. In the same way,

the application receives the samples acquired by the implanted device and plot them on the

screen of portable devices. Then, the acquired data can be saved on external memories, such

as SD cards.

The communication protocol implemented by the application is based on an 8b/10b encoding,

to achieve DC-balancing and bounded disparity. Indeed, long sequences of the same logic

value can affect the power received by the implanted sensor and compromise its functionality.

The 8b/10b encoding assures a difference between ones and zeros lower than 2 for every 20-bit

word and the absence of more than 5 consecutive ones or zeros.

Finally, the interface has been tested with an experimental setup to detect glucose and lactate

in cell culture medium by means of chronoamperometry. The test proved the capability of our

interface to perform real-time, online monitoring of clinically relevant species.
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In this chapter it is reported the design of the power module embedded in the implantable

sensor. The module is needed to collect and store the power provided by the inductive link,

while enabling bidirectional data communication. It consists of a voltage rectifier and a

low-dropout regulator (designed by [39]) to store and manage the received power, an ASK

demodulator to perform short-range downlink communication with the external patch, and

an LSK modulator to perform short-range uplink communication.

The whole circuit has been designed in 0.18µm CMOS technology to be combined with the

integrated sensor. In this chapter we report the design, simulation, and test of the module.

The functionalities are reported together with the design constraints. Finally, measurements

are performed to check the performance of the system while operating within a real setup.

7.1 Design

In order to use the power delivered by the receiving inductor, the implantable sensor must

be equipped with a voltage rectifier and a low-dropout regulator. The former converts the

AC voltage at the edges of the receiving inductor to a DC voltage between 2.1 V and 3 V. The

latter converts that DC voltage to a stable 1.8 V. Finally, an amplitude demodulator and a load

modulator are needed to enable downlink and uplink communication, respectively. These

circuits (rectifier, regulator, amplitude demodulator, and load modulator) should be integrated

within the sensor to provide a stable supply voltage and perform bidirectional, short-range

communication.

In this section we describe the design of a power management module including voltage

rectifier, ASK demodulator and LSK modulator. The regulator used in the system has been

designed by [39] and kindly provided to the author of this thesis. The module is designed in

0.18µm CMOS technology. A schematic view is shown in Fig. 7.1.
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Figure 7.1: The implanted sensor receives power and data from the IronIC patch. The trans-
mitter performs long-range communication with remote devices by means of Bluetooth. The
low-dropout regulator has been designed by [39]. Elaborated from [132].

7.1.1 Voltage Rectifier and Load Modulator

The schematic of the voltage rectifier is reported in Fig. 7.2, together with the load modulation

unit. At the beginning of the operations, when no power is transmitted and the output

capacitor Co is discharged, switch M1 is open and switch M2 is closed. Thus, the equivalent

circuit is an half-wave rectifier with four clamping diodes to prevent overvoltage of the output

(Vo ≤ 3 V). The half-wave configuration has been chosen to have a low threshold rectifier.

Furthermore, active rectifiers were not allowed since the only supply source depends on the

output of the rectifier itself. Diode D1 is not integrated within the circuit but is an external

component. Thus, a low threshold Schottky diode can be used to increase the efficiency of the

rectifier due to the reduced threshold.

Load modulation is performed by switching the transistor M1 at the input of the rectifier

according to the uplink bitstream Vup. When a high logic value is transmitted, switch M1

is closed and short-circuits the input of the rectifier. This is detected by the external patch

as a different current flowing on the transmitting inductor. When the receiving inductor is

short-circuited, no power is delivered to the load. To avoid the discharge of Co due to the

leakage current of the clamping diodes, switch M2 is kept open when a high logic value is

transmitted.

To prevent the latch-up of transistor M1 when the input voltage Vi has negative values, its

bulk is not connected to ground. Transistors Ma and Mb are used to bias the bulk of M1 to the

lowest between drain and source voltages. To realize that circuit, the bulks of M1, Ma, and Mb

are fabricated within a separate p-well (triple well, in Fig. 7.3).
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Figure 7.2: Schematic of the voltage rectifier and the load modulation unit. Elaborated
from [132].

G1 G2D1S1 D2S2

p - substrate

n - well

p - well

n+ n+ n+ n+

G3 D3S3

n+ n+

NM1 NM2 NM3

Figure 7.3: In order to have NMOS transistors with bulk potential different from the substrate
potential, a triple well has been used. In this example, transistors NM1 and NM2 can have bulk
potential different from NM3.
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Figure 7.4: Schematic of the amplitude demodulator. The circuit is driven by a two-phase,
non-overlapping clock signal (ϕ1 and ϕ2). Elaborated from [132].

7.1.2 Amplitude Demodulator

The power management module is equipped with an embedded ASK demodulator to read

downlink bitstreams transmitted by the external patch. The schematic of the demodulator is

reported in Fig. 7.4.

The circuit is driven by a two-phase non-overlapping clock signal (ϕ1 and ϕ2, in Fig. 7.4).

While signal ϕ1 is high, the equivalent circuit is reported in Fig. 7.5a. Capacitor C2 is charged

to the amplitude of the sinusoidal signal Vi through the switch M10. Diodes D6, D7 and D8

prevent the discharge. The voltage across C2 is read as a logic value by inverters I3 and I4.

During this phase, capacitor C1 is discharged.

The threshold between high logic values and low logic values at the edges of C2 depends

on several factors, such as modulation depth, distance between the inductors, and power

consumption of the implanted sensor. For this reason, the threshold of inverter I3 can be

changed at run-time. The schematic of I3 is reported in Fig. 7.6. In order to increase the

threshold range, a pseudo-logic is used. Block A is used if a threshold lower than classic
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(a) ϕ1 = 1; ϕ2 = 0 (b) ϕ1 = 0; ϕ2 = 1

Figure 7.5: Equivalent circuit of the demodulator in Fig. 7.4 while ϕ1 = 1 (a) and ϕ2 = 1 (b).
Elaborated from [132].

CMOS inverters is needed. Indeed, in block A the pull-up network is a bench of PMOS, each

having a different on-resistance. The appropriate pull-up PMOS among the 32 available can

be selected at run-time by driving low the related signal A[0:31]. A higher pull-up resistance

involves a lower threshold voltage. Block B can be used instead of block A if a threshold voltage

higher than classic CMOS inverters is needed. In block B, the pull-down network is a bench of

NMOS, each having a different on-resistance. The appropriate pull-down NMOS among the

32 available can be selected at run-time by driving high the related signal B[0:31]. A higher

pull-down resistance involves a higher threshold voltage. The characteristic of inverter I3 is

reported in Fig. 7.7. The group of waveforms on the left (low threshold) is obtained with block

A, while the group of waveforms on the right (high threshold) is obtained with block B.

When signal ϕ2 is high, the equivalent circuit is reported in Fig. 7.5b. Capacitor C1, previously

discharged, forces a zero voltage between gate and source of M10. Thus, switch M10 is open

disregarding the value of Vi. During this phase, capacitor C2 is discharged for the next reading

and the output of inverters I3 and I4 is neglected. Similar to what happens with transistor M1

of the rectifier (Fig. 7.2), a sub-circuit is included to bias the bulk of transistors M3−4, M7−8,

and M10 and prevent latch-up.

7.2 Simulations

The power management module is simulated to check its performance. While receiving

or transmitting a bitstream, the sensor is assumed in low power mode, with a maximum

current consumption of 350µA; while performing a measurement, the sensor is assumed

in high power mode, with a maximum current consumption of about 1.3 mA. These power

consumptions are much higher than those required by the implanted sensor. However, a worst

case scenario is assumed to check the capability of the power module to operate with more

power-demanding sensors.
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Figure 7.6: Pseudo-logic is used to achieve threshold voltages sensibly higher or lower than
those obtained with standard CMOS inverters.
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Figure 7.7: Characteristic of inverter I3. The different waveforms have been obtained by
changing the pull-up transistor of block A (waveforms on the left) or the pull-down transistor
of block B (waveforms on the right).
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In this set of simulations the power delivered from the receiving inductor to a matched load

is equal to 5 mW. This value decreases while downlink communication is performed. While

transmitting a high logic value the transferred power is about 3 mW; while transmitting a low

logic value the transferred power is about 1 mW. These values have been measured with the

IronIC patch described in Chapter 5, within a distance of 10 mm between the inductors.

A purely capacitive matching network (CA and CB, in Fig. 7.1) is used between the receiving

inductor and the input of the rectifier to achieve impedance matching. Due to the non-

linearity of the rectifier, it is not possible to define a linear input impedance for that block.

Thus, simulations have been performed to determine an average value of input impedance.

With the data just introduced, the transmitted power is maximum when the receiving inductor

is matched with a 150Ω load. This value is used to select capacitors CA and CB of the matching

network.

The regulator designed by [39] has a dropout voltage of 300 mV. Thus, the output voltage Vo of

the rectifier should always be higher than 2.1 V to assure the correct functioning of the sensor

at 1.8 V.

A simulation is performed to check the behavior of the rectifier, the amplitude demodulator,

and the load modulator (Fig. 7.8). Capacitor Co is charged until it reaches a voltage of 2.75 V at

time 270µs. Eighteen bits, with a bit-rate of 100 kbps, are sent to the sensor by modulating

Vi at time 300µs. Those bits are correctly detected at the output Vdem of the demodulator at

every rising edge of the clock signal ϕ1. During the communication, the output voltage Vo of

the rectifier never drops below 2.1 V. This assures the correct functioning of the sensor.

An uplink communication is simulated at time 520µs. Several bits are sent with a bit-rate

of 100 kbps from the sensor to the IronIC patch by short-circuiting the input of the rectifier

according to signal Vup of Fig. 7.2. The effect of this modulation on the input voltage Vi is

reported in Fig. 7.8. Similar to what happens during downlink communication, the output

voltage Vo of the rectifier never drops below 2.1 V during the transmission, thus assuring the

correct functioning of the sensor.
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Figure 7.8: The power module is simulated to check its performance. Downlink and uplink
communications are correctly performed at 100 kbps. The output of the rectifier is always
higher than 2.1 V; thus, the regulator can provide a stable supply voltage of 1.8 V to the sensor.
Reprinted from [132].

88



7.3. Measurements

Figure 7.9: Layout of the power module fabricated in 0.18µm CMOS technology.

7.3 Measurements

The circuit has been manufactured in 0.18µm CMOS technology. In Fig. 7.9 is reported a

picture of the fabricated chip. A measurement setup has been prepared to check the function-

alities of the power module while driven by the IronIC patch (Fig. 7.10).

89



Chapter 7. Integrated Power Module
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Figure 7.10: The measurement setup used to test the performance of the power module.

7.3.1 Rectifier and Load Modulator

The rectifier reported in Fig. 7.2 has been tested with a variable load at the output. The output

voltage and the output current have been plotted against the output load for several distances

between the coils. These plots are reported in Fig. 7.11. While the distance between the

inductors is 6 mm, the rectifier is able to deliver a maximum current of 2.24 mA with a voltage

of 2.2 V. This corresponds to a delivered power of 5 mW.

Higher current consumptions are not allowed to avoid an output voltage lower than 2.1 V.

Indeed, 2.1 V is the minimum voltage required by the regulator to assure a stable voltage of

1.8 V to the sensor. Output voltages higher than 3 V are prevented by the clamping diodes D2−5

(Fig. 7.2). In Fig. 7.12 is reported a screenshot of the input (CH1) and output (CH2) voltages of

the rectifier during the functioning.

The test of the load modulator is reported in Fig. 7.13. The receiving coil is short-circuited

according to the uplink bitstream Vup (CH3). The uplink bitrate is set to 66.6 kbps. This modu-

lation is detected by the IronIC patch as a variation of the supply current of the transmitting

power amplifier. This current variation is converted into a voltage (CH4) and digitized from the

patch. Load modulation strongly affects the power carrier at the input of the voltage rectifier

(CH1) and the rectified voltage (CH2).
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Figure 7.11: Output voltage (a) and output current (b) of the rectifier against the output load
for several distances between the inductors. Voltages higher than 3 V are prevented by the
clamping diodes.
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Figure 7.12: Input (CH1) and output (CH2) voltages of the rectifier during the functioning.

Figure 7.13: Test of the uplink communication through load modulation. The receiving
inductor is short-circuited according to the uplink bitstream (CH3). Load modulation is
detected as a variation of the supply current of the external class-E power amplifier (CH4).
Load modulation affects the power carrier at the input of the rectifier (CH1) and the output
voltage of the rectifier (CH2). The downlink bitstream has a bit-rate of 66.6 kbps.
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Figure 7.14: Test of downlink communication through ASK modulation. The downlink bit-
stream is modulated on the power carrier (CH1) at the input of the rectifier. The output of the
demodulator (CH4) is valid at the rising edge of the clock signal ϕ1 (CH3). Load modulation
affects the rectified voltage (CH2). The downlink bitstream has a bit-rate of 100 kbps.

7.3.2 Amplitude Demodulator

Downlink communication is performed by modulating the amplitude of the power carrier.

That modulation is detected by the amplitude demodulator and the modulating signal is

provided to the sensor as a digital bitstream.

In Fig. 7.14 is reported an example of downlink communication at 100 kbps. The power carrier

at the input of the rectifier (CH1) is modulated by the patch. The modulation affects the

received power. This is visible on the rectified voltage at output of the rectifier (CH2). However,

as long as the rectified voltage does not fall below 2.1 V, the correct functioning of the sensor

is assured. Clock signals ϕ1 and ϕ2 should be provided to the demodulator in order to read

the demodulated bitstream. The output Vdem of the demodulator (CH4) is valid at the rising

edge of clock signal ϕ1 (CH3).

7.4 Chapter Contribution and Summary

The integrated module for the management of the received power and bidirectional data

communication has been presented in this chapter. The module consists of a voltage rectifier,

a low-dropout regulator (designed by [39]), an ASK demodulator for downlink communication,

and an LSK modulator for uplink communication.

The module has been designed in 0.18µm CMOS technology and tested with the IronIC patch

to check its performance. While the distance between the inductors is set to 6 mm, the rectifier

is able to deliver up to 5 mW to the load, with a voltage higher than 2.1 V. This last requirement
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is imposed by the regulator, that requires a minimum input voltage of 2.1 V to provide a stable

output voltage of 1.8 V.

The load modulator has been tested with uplink bitstreams having bit-rate 66.6kbps. The

bitstreams are correctly detected by the IronIC patch, while the output voltage of the rectifier

never drops below 2.1 V. The amplitude demodulator has been tested with downlink bit-

streams having bit-rate 100kbps. The amplitude demodulator properly detects the incoming

bitstreams. According to the transmission parameters (such as the distance between the

inductors, the power consumed by the sensor, and the modulation depth), the threshold of

the demodulator can be adjusted at run-time.

These measurements confirm the functionalities of the power module, that can be used to

power the implanted sensor while providing bidirectional data communication. The module

can be integrated with the sensing circuit and embedded in the implantable unit.
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8 Conclusions and Future Work

In this thesis we have described the research developed within the i-IronIC project. The

project aims to design an implantable platform for metabolite monitoring in the human body.

The implanted sensor, capable to detect up to five different metabolites, is powered by an

external transmitter (IronIC patch) through inductive link. The absence of implanted batteries

decreases the discomfort of the patient and avoids periodic battery replacements. Inductive

link is used not only for wireless power transfer, but also for bidirectional data communication

with the sensor (short-range communication). The use of the same inductive link for powering

and communication decreases the power consumption of the sensor, as compared to the case

where an implanted RF transmitter is used.

An important part of this work involved the design of an inductive link operating in the

megahertz range while a mm-sized receiving inductor is used. Simulations and measurements

leaded to two different solutions for the receiving inductor. Multi-layer printed inductors and

microfabricated inductors have been tested in order to reduce the size of the implanted device

and ease the implantation process.

The external patch can be controlled by using portable devices, such as smartphones or tablets.

An Android application, named BlueCells, has been realized to communicate with the patch

(long-range communication) and transmit commands to the implanted sensor. By using the

patch as a gateway, the application receives the data acquired by the sensor and plots them

in real-time on the device screen. The data can be saved on external memories or analyzed

directly on the device.

Finally, an integrated power module has been designed to store and manage the power

transmitted by the patch. That system has been designed in 0.18µm CMOS technology

and consists of a voltage rectifier and a low-dropout regulator (designed by [39]) for power

management, an ASK demodulator and an LSK modulator for short-range, bidirectional

data communication. The system has been conceived to be integrated with the sensor and

implanted in the subcutaneous tissues of the body.
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8.1 Thesis Summary and Contributions

The contents of this thesis were organized as follows.

In Chapter 1 we have introduced the i-IronIC project. The aim of the project is the design and

realization of an implantable, low cost, health-care device for real-time monitoring of several

human metabolites. The contribution of this research work to the i-IronIC project consists

of the design and realization of a complete platform to provide power, data communication

and remote control to the implantable sensor. High wearability of the transmitting unit, low

invasivity of the implanted electronics, integration of the power management module within

the sensor, and a reliable communication protocol with portable devices are the key points of

this platform.

In Chapter 2 we have presented the most common techniques for powering implantable

sensors. Kinetic, thermoelectric, fuel-cell based, infrared, and low frequency magnetic har-

vesters have been studied. For each technique, the main key points and drawbacks have

been reported together with a description of the state of the art. Finally, special attention

has been dedicated to the remote powering through inductive link. This technique enables

wireless power transfer and bidirectional data communication by using the magnetic coupling

between an external inductor and an implanted coil. The amount of delivered power, together

with the possibility to communicate with the sensor without implanted RF transmitters, make

the solution particularly suitable for the i-IronIC platform.

In Chapter 3 we have presented the research dedicated to the design and optimization of

an inductive link working with mm-sized receiving inductors. The effects of several factors

(such as coil geometry, implantation depth, and misalignments) on the link efficiency have

been analyzed by means of simulations. Smaller inductors involve higher optimal frequency,

as well as a lower efficiency. Lateral misalignments do not affect the optimal frequency

but seriously compromise the link efficiency. Finally, no changes have been noticed while

simulating different implantation zones. Particular emphasis has been given to the possibility

of operating in the low megahertz range, where tissue absorption is minimum, while using

a multi-turn, cm-sized external inductor. Finally, a model has been presented to calculate

the electrical proprieties of multi-turn external inductors starting from their geometry. This

model has been realized to aid the designer while optimizing the link efficiency. The model is

particularly suitable for dense inductors working at least one order of magnitude below the

self-resonance frequency.

In Chapter 4 we have described the design and fabrication of mm-sized receiving inductors

compatible with the size of the implantable biosensor. Multi-layer, printed spiral inductors and

microfabricated spiral inductors have been presented. Multi-layer, printed spiral inductors

with rectangular shape have been studied and measured. The rectangular shape is chosen to

ease the implantation process and reduce the discomfort of the patient. Moreover, the same

performance, in terms of link efficiency and voltage gain, is obtained with a decrease in area of

60% by increasing the number of layers. A microfabrication process is also proposed to further
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decrease the implantation size. The performance of microfabricated inductors is comparable

to that obtained when multi-layer spiral inductors were used.

In Chapter 5 the power and data transmitter named IronIC patch has been described. The

device has been realized on a flexible substrate and can be placed on concave or convex parts

of the body, directly over the implantation zone. Short-range communication is performed by

using ASK modulation (downlink) and LSK modulation (uplink). The patch is connected with

Android devices via Bluetooth. Thus, commands and data can be transferred bidirectionally

between the user and the implantable device by using the patch as a gateway.

In Chapter 6 we have introduced the Android application, named BlueCells, designed to

interact with the implanted biosensor. The interface, running on smartphones or tablets,

exploits the IronIC patch as a gateway to transmit commands to the implanted device. In the

same way, the application receives the samples acquired by the implanted sensor and plots

them on the screen of portable devices. The communication protocol implemented by the

application is based on an 8b/10b encoding, to achieve DC-balancing and bounded disparity.

Finally, the interface has been tested with an experimental setup to detect glucose and lactate

in cell culture medium by means of chronoamperometry. The test proved the capability of our

interface to perform real-time, online monitoring of clinically relevant species.

In Chapter 7 we have presented the integrated module for the management of the received

power and the bidirectional data communication. The module consists of a voltage rectifier, a

low-dropout regulator (designed by [39]), an ASK demodulator for downlink communication,

and an LSK modulator for uplink communication. The module has been designed in 0.18µm

CMOS technology and tested with the IronIC patch to check its performance. These mea-

surements confirm the functionality of the module, that can be used to power the implanted

sensor while providing bidirectional data communication. The block can finally be integrated

with the sensing circuit and embedded in the implantable unit.

8.2 Future Work

In this thesis we laid the foundations for a battery-less, implantable platform dedicated to

metabolite detection in the human body. The platform is composed of several blocks: the An-

droid user interface, the IronIC patch, the receiving inductor, and the integrated power module.

All these blocks have been deeply described and studied in the previous chapters and different

solutions have been proposed to face the challenges of the project. Nevertheless, several

improvements need to be done in order to obtain a completely working, standalone prototype.

We report here, for every block, possible ideas and roadmaps for future developments.

The Android interface can be improved by implementing a real-time analysis of the acquired

waveforms. Thus, the interface can directly communicate to the user the presence and the

concentration of the compounds analyzed.

97



Chapter 8. Conclusions and Future Work

Indeed, at present these details must be extrapolated from the cell current plotted on the

screen, making the application difficult to use for persons without biological background.

The patch could be improved in several ways. Its flexibility could be increased by re-arranging

the layout of the different components to create lines of bending. Moreover, the power

consumption could be reduced by using new Bluetooth Low-Energy (BLE) or replacing the

Bluetooth protocol with ZigBee. These changes would enable a sensible reduction of the

power consumption and would lead to a longer battery lifetime.

The microfabricated antenna could be manufactured directly on the bottom layer of the

implantable sensor. This would require Through Silicon Vias (TSV) to connect the receiving

inductor to the sensor located on the top layer of the platform. The presence of TSV would

lead to important changes in the fabrication process flow. However, the additional workload

would be compensated by the dramatic size reduction of the implantable device, as compared

to the case where multi-layer printed spiral inductors are used.

The integrated power module should be integrated with the sensor, in order to further reduce

the size of the implantable device. The use of an internal diode would also contribute to reduce

the size. Furthermore, the power consumption of the different blocks of the power module

could be optimized. More in particular, ASK demodulator could be improved by reducing

the power consumption of the threshold adjustment circuit and by including synchroniza-

tion with the modulated bitstream. This last change would sensibly improve the downlink

communication, by enabling more complex communication patterns.

Besides these improvements, that could sensibly enhance the system described, this thesis has

proved the feasibility of a battery-less, remotely controlled approach for implantable systems

dedicated to real-time, continuous monitoring of human metabolism. The use of this platform

could definitely change the modern medicine by enabling personalized and point-of-care

therapies tuned on the response of the patient.
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A Appendix

We append here a brief introduction to the theory of scattering parameters. As stated in

Chapter 2, at high frequencies, such as in the microwave range, it can be difficult or even

impossible to describe a circuit by using voltages and currents. Moreover, the measurement of

impedances and admittances may require the use of short-circuits or open-circuits that are

not always easy to realize at high frequency. Consequently, in the microwave and optical range

a description of the networks by means of scattering parameters is usually preferred [99].

Referring to Fig. A.1, each voltage and current of a two-port network can be divided into two

components, one incident and the other reflected


Vn =V +

n +V −
n ,

In = 1

Z0n
(V +

n −V −
n ) ,

(A.1)

where V +
n and V −

n are the incident and the reflected components, respectively, and Z0n is the

characteristic impedance of port n. Both voltages and currents are represented as complex

vectors.

When the ports of a network have different characteristic impedances, it has sense to normalize

the components just introduced:


an = 1p

Z0n
V +

n ,

bn = 1p
Z0n

V −
n .

(A.2)
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Figure A.1: Schematic description of a two-port network by means of the scattering parameters.
Reprinted from [24].

Thus, it is possible to rewrite the voltages and the currents of the network as


Vn =

√
Z0n(an +bn) ,

In = 1p
Z0n

(an −bn) ,
(A.3)

where n is still referred to the port. It is now possible to introduce the generalized scattering

matrix S

{
b1 = S11a1 +S12a2 ,

b2 = S21a1 +S22a2 ,
(A.4)

where the generic element Si j can be written as

Si j = bi

a j

∣∣∣
ak=0 for k 6= j

. (A.5)

In most practical situations, the characteristic impedance is the same for all the ports of a

network. In that case, its value is indicated as Z0 and it is called characteristic impedance of

the network. Consequently, the normalization factor will be the same for all the ports and

equal to
p

Z0.

The use of a normalization factor involves some advantages. First, differently from Vn and In ,

the normalized factors an and bn are directly related to the power flow, being |an |2 and |bn |2
the incident power and the reflected power at port n.
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The coefficients indicated with the greek letter Γ in Fig. A.1 are called reflection coefficients

and describe the ratio of the amplitude of the reflected wave to the amplitude of the incident

wave. With relation to Fig. A.1, these coefficients can be written as


ΓS = ZS −Z0

ZS +Z0
,

ΓL = ZL −Z0

ZL +Z0
,

(A.6)

where ZS and ZL are the source and load impedances, respectively.

The signals involved in the two-port network reported in Fig. A.1 can be expressed by means

of a signal flow graph, as the one shown in Fig. A.2. Incident wave generated by the source VS

is indicated as bS and it can be shown that bS =VS

p
Z0

ZS+Z0
.

Referring to Fig. A.2, it is now possible to introduce the definitions of power gain:



GT
.= Pd

Pavs
, Transducer Power Gain

G
.= Pd

Pi
, Power Gain

GA
.= Pavo

Pavs
, Available Gain

(A.7)

where Pavs is the power available from the source, Pi is the power at the input port of the

network, Pavo is the power available at the output port of the network, and Pd is power

delivered to the load. The different power gains can be rewritten as



GT = 1−|ΓS|2
|1−ΓinΓS|2

· |S21|2 ·
1−|ΓL|2

|1−S22ΓL|2
,

G = 1

1−|Γin|2
· |S21|2 ·

1−|ΓL|2
|1−S22ΓL|2

,

GA = 1−|ΓS|2
|1−S11ΓS|2

· |S21|2 ·
1

1−|Γout|2
,

(A.8)

where Γin = S11 + S12S21ΓL
1−S22ΓL

and Γout = S22 + S12S21ΓS
1−S11ΓS

.

An important situation is when the input impedance and the output impedance of the network

are conjugately matched to the source impedance and to the load impedance, respectively.
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Figure A.2: Signal flow chart of a two-port network. Reprinted from [24].

In this case, named simultaneous conjugate match, the three definitions of power gain that we

have reported assume the same maximum value.

Finally, it is useful to introduce the voltage gain at the ports of the network. By defining



A11
.= ΓSS11 −1 ,

A12
.= ΓSS12 ,

A21
.= ΓLS21 ,

A22
.= ΓLS22 −1 ,

(A.9)

the voltage gain is equal to

Av = a2 +b2

a1 +b1
= −A21 + (A22S21 −S22 A21)

A22 + (A22S11 −S12 A21)
. (A.10)

With these theoretical elements a two-port network, such as an inductive link for remote

powering, can be analyzed by means of the scattering parameters. As previously mentioned,

the description of a network by means of the scattering parameters is always possible, while it

is not always possible or convenient to use an approach based on lumped elements.
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