
High-Dimensional Gaussian Process Bandits

Josip Djolonga
ETH Zürich

josipd@ethz.ch

Andreas Krause
ETH Zürich

krausea@ethz.ch

Volkan Cevher
EPFL

volkan.cevher@epfl.ch

Abstract

Many applications in machine learning require optimizing unknown functions
defined over a high-dimensional space from noisy samples that are expensive to
obtain. We address this notoriously hard challenge, under the assumptions that
the function varies only along some low-dimensional subspace and is smooth
(i.e., it has a low norm in a Reproducible Kernel Hilbert Space). In particular, we
present the SI-BO algorithm, which leverages recent low-rank matrix recovery
techniques to learn the underlying subspace of the unknown function and applies
Gaussian Process Upper Confidence sampling for optimization of the function.
We carefully calibrate the exploration–exploitation tradeoff by allocating the
sampling budget to subspace estimation and function optimization, and obtain the
first subexponential cumulative regret bounds and convergence rates for Bayesian
optimization in high-dimensions under noisy observations. Numerical results
demonstrate the effectiveness of our approach in difficult scenarios.

1 Introduction
The optimization of non-linear functions whose evaluation may be noisy and expensive is a chal-
lenge that has important applications in sciences and engineering. One approach to this notoriously
hard problem takes a Bayesian perspective, which uses the predictive uncertainty in order to trade
exploration (gathering data for reducing model uncertainty) and exploitation (focusing sampling
near likely optima), and is often called Bayesian Optimization (BO). Modern BO algorithms are
quite successful, surpassing even human experts in learning tasks: e.g., gait control for the SONY
AIBO, convolutional neural networks, structural SVMs, and Latent Dirichlet Allocation [1, 2, 3].

Unfortunately, the theoretical efficiency of these methods depends exponentially on the—often
high—dimension of the domain over which the function is defined. A way to circumvent this “curse
of dimensionality” is to make the assumption that only a small number of the dimensions actually
matter. For example, the cost function of neural networks effectively varies only along a few dimen-
sions [2]. This idea has been also at the root of nonparametric regression approaches [4, 5, 6, 7].

To this end, we propose an algorithm that learns a low dimensional, not necessarily axis-aligned,
subspace and then applies Bayesian optimization on this estimated subspace. In particular, our SI-
BO approach combines low-rank matrix recovery with Gaussian Process Upper Confidence Bound
sampling in a carefully calibrated manner. We theoretically analyze its performance, and prove
bounds on its cumulative regret. To the best of our knowledge, we prove the first subexponential
bounds for Bayesian optimization in high dimensions under noisy observations. In contrast to exist-
ing approaches, which have an exponential dependence on the ambient dimension, our bounds have
in fact polynomial dependence on the dimension. Moreover, our performance guarantees depend
explicitly on what we could have achieved if we had known the subspace in advance.

Previous work. Exploration–exploitation tradeoffs were originally studied in the context of finite
multi-armed bandits [8]. Since then, results have been obtained for continuous domains, starting
with the linear [9] and Lipschitz-continuous cases [10, 11]. A more recent algorithm that enjoys
theoretical bounds for functions sampled from a Gaussian Process (GP), or belong to some Repro-

1

ducible Kernel Hilbert Space (RKHS) is GP-UCB [12]. The use of GPs to negotiate exploration–
exploitation tradeoffs originated in the areas of response surface and Bayesian optimization, for
which there are a number of approaches (cf., [13]), perhaps most notably the Expected Improve-
ment [14] approach, which has recently received theoretical justification [15], albeit only in the
noise-free setting.

Bandit algorithms that exploit low-dimensional structure of the function appeared first for the linear
setting, where under sparsity assumptions one can obtain bounds, which depend only weakly on the
ambient dimension [16, 17]. In [18] the more general case of functions sampled from a GP under the
same sparsity assumptions was considered. The idea of random projections to BO has been recently
introduced [19]. They provide bounds on the simple regret under noiseless observations, while we
also analyze the cumulative regret and allow noisy observations. Also, unless the low-dimensional
space is of dimension 1, our bounds on the simple regret improve on theirs. In [7] the authors
approximate functions that live on low-dimensional subspaces using low-rank recovery and analy-
sis techniques. While providing uniform approximation guarantees, their approach is not tailored
towards exploration–exploitation tradeoffs, and does not achieve sublinear cumulative regret.

Our specific contributions in this paper can be summarized as follows:

• We introduce the SI-BO algorithm for Bayesian bandit optimization in high dimensions,
admitting a large family of kernel functions. Our algorithm is a natural but non-trivial
fusion of modern low-rank subspace approximation tools with GP optimization methods.

• We derive theoretical guarantees on SI-BO’s cumulative and simple regret in high-
dimensions with noise. To the best of our knowledge, these are the first theoretical results
on the sample complexity and regret rates that are subexponential in the ambient dimension.

• We provide experimental results on synthetic data and classical benchmarks.

2 Background and Problem Statement
Goal. In plain words, we wish to sequentially optimize a bounded function over a compact, convex
subset D ⊂ Rd. Without loss of generality, we denote the function by f : D → [0, 1] and let x∗
be a maximizer. The algorithm proceeds in a total of T rounds. In each round t, it asks an oracle
for the function value at some point xt and it receives back the value f(xt), possibly corrupted by
noise. Our goal is to choose points such that their values are close to the optimum f(x∗).

As performance metric, we consider the regret, which tells us how much better we could have done
in round t had we known x∗, or formally rt = f(x∗) − f(xt). In many applications, such as
recommender systems, robotic control, etc., we care about the quality of the points chosen at every
time step t. Hence, a natural quantity to consider is the cumulative regret defined as RT =

∑T
t=1 rt.

One can also consider the simple regret, defined as ST = minTt=1 rt, measuring the quality of the
best solution found so far. We will give bounds on the more challenging notion of cumulative regret,
which also bounds the simple regret via ST ≤ RT /T .

Low-dimensional functions in high-dimensions. Unfortunately, our problem cannot be tractably
solved without further assumptions on the properties of the function f . What is worse is that the
usual compact support and smoothness assumptions cannot achieve much: the minimax lower bound
on the sample complexity is exponential in d [20, 6, 7]. We hence assume that the function effec-
tively varies only along a small number of true active dimensions: i.e., the function lives on a
k � d-dimensional subspace. Typically, k or an upper bound on k is assumed known [4, 5, 7, 6].

Formally, we suppose that there exists some function g : Rk → [0, 1] and a matrix A ∈ Rk×d with
orthogonal rows so that f(x) = g(Ax). We will additionally assume that g ∈ C2, which is necessary
to bound the errors from the linear approximation that we will make. Further, w.l.o.g., we assume
thatD = Bd(1+ ε̄) for some ε̄ > 0, where we define Bd(r) to be the closed ball around 0 of radius r
in Rd.1 To be able to recover the subspace we also need the condition that g has Lipschitz continuous
second order derivatives and a full rank Hessian at 0, which is satisfied for many functions [7].

Smooth, low-complexity functions. In addition to the low-dimensional subspace assumption, we
also assume that g is smooth. One way to encode our prior is to assume that the function g resides in

1Our method method can be extended to any convex compact set, see Section 5.2 in [21].

2

Algorithm 1 The SI-BO algorithm
Require: mX ,mΦ, λ, ε, k, oracle for f , kernel κ
C ← mX samples uniformly from Sd−1

for i← 1 to mX do
Φi ← mΦ samples uniformly from {±1/

√
mΦ}k

y← compute using Equation 1
X̂DS ← Dantzig Selector using y, see Equation 2 and compute the SVD X̂DS = Û Σ̂V̂ T

Â← Û (k) // Principal k vectors of Û , D ← all (Âx, y) pairs queried so far
Use GP inference to obtain µ1(·), σ1(·).
for t← 1 to T −mX(mΦ + 1) do
zt ← arg maxz µt(z) + β

1/2
t σt(z) , yt ← f(ÂT zt) + noise , D.add(zt, yt)

a Reproducing Kernel Hilbert Space (RKHS; cf., [22]), which allows us to quantify g’s complexity
via its norm ‖g‖Hκ . The RKHS for some positive semidefinite kernel κ(·, ·) can be constructed by
completing the set of functions

∑n
i=1 αiκ(xi, ·) under a suitable inner product. In this work, we use

isotropic kernels, i.e., those that depend only on the distance between points, since the problem is
rotation invariant and we can only recover A up to some rotation.

Here is a final summary of our problem and its underlying assumptions:
1. We wish to maximize f : Bd(1 + ε̄) → [0, 1], where f(x) = g(Ax) for some matrix
A ∈ Rk×d with orthogonal rows and g belongs to some RKHSHκ.

2. The kernel κ is isotropic κ(x,x′) = κ′(x − x′) = κ′′(‖x − x′‖2) and κ′ is continuous,
integrable and with a Fourier transform Fκ′ that is isotropic and radially non-increasing.2

3. The function g has Lipschitz continuous 2nd-order derivatives and a full rank Hessian at 0.
4. The function g is C2 on a compact support and max|β|≤2‖Dβg‖∞ ≤ C2 for some C2 > 0.
5. The oracle noise is Gaussian with zero mean with a known variance σ2.

3 The SI-BO Algorithm
The SI-BO algorithm performs two separate exploration and exploitation stages: (1) subspace iden-
tification (SI), i.e. estimating the subspace on which the function is supported, and then (2) Bayesian
optimization (BO), in order to optimize the function on the learned subspace. A key challenge here
is to carefully allocate samples between these phases.

We first give a detailed outline for SI-BO in Alg. 1, deferring its theoretical analysis to Section 4.
Given the (noisy) oracle for f , we first evaluate the function at several suitably chosen points and
then use a low-rank recovery algorithm to compute a matrix Â that spans a subspace well aligned
with the one generated by the true matrix A. Once we have computed Â, similarly to [21, 7], we
define the function which we optimize as ĝ(z) = f(ÂT z) = g(AÂT z). Thus, we effectively work
with an approximation f̂ to f given by f̂(x) = ĝ(Âx) = g(AÂT Âx). With the approximation at
hand, we apply BO, in particular the GP-UCB algorithm, on ĝ for the remaining steps.

Subspace Learning. We learn A using the approach from [7], which reduces the learning prob-
lem to that of low rank matrix recovery. We construct a set of mX points C = [ξ1, · · · , ξmX],
which we call sampling centers, and consider the matrix X of gradients at those points X =
[∇f(ξ1), · · · ,∇f(ξmX)]. Using the chain rule, we have X = AT [∇g(Aξ1), · · · ,∇g(AξmX)].
Because A is a matrix of size k × d it follows that the rank of X is at most k. This suggests that
using low-rank approximation techniques, one may be able to (up to rotation) infer A from X .

Given that we have no access to the gradients of f directly, we approximate X using a linearization
of f . Consider a fixed sampling center ξ. If we make a linear approximation with step size ε to the
directional derivative at center ξ in direction ϕ then, by Taylor’s theorem, for a suitable ζ(x, ε, ϕ):

〈ϕ,AT∇g(Aξ)〉 =
1

ε
(f(ξ + εϕ)− f(ξ))− ε

2
ϕT∇2f(ζ)ϕ︸ ︷︷ ︸
E(ξ,ε,ϕ)

.

2This is the same assumption as in [15]. Radially non-increasing means that if ‖w‖ ≤ ‖w′‖ thenFκ′(w) ≥
Fκ′(w′). Note that this is satisfied by the RBF and Matèrn kernels.

3

Thus, sampling the finite difference f(ξ+ εϕ)− f(ξ) provides (up to the curvature error E(ξ, ε, ϕ),
and sampling noise) information about the one-dimensional subspace spanned by AT∇g(Aξ).
To estimate it accurately, we must observe multiple directions ϕ. Further, to infer the full k-
dimensional subspace A, we need to consider at least mX ≥ k centers. Consequently, for
each center ξi, we define a set of mΦ directions and arrange them in a total of mΦ matrices
Φi = [ϕi,1, ϕi,2, · · · , ϕi,mX] ∈ Rd×mX . We can now define the following linear system:

y = A(X) + e + z, yi =
1

ε

mX∑
j=1

(f(ξj + εϕi,j)− f(ξj)), (1)

where the linear operator A is defined as A(X)i = tr(ΦTi X), the curvature errors have been accu-
mulated in e and the noise has been put in the vector z which is distributed as zi ∼ N (0, 2mXσ

2/ε).

Given the structure of the problem, we can make use of several low-rank recovery algorithms. For
concreteness, we choose the Dantzig Selector (DS, [23]), which recovers low rank matrices via

minimize
M

‖M‖∗ subject to ‖A∗(y −A(M)︸ ︷︷ ︸
residual

)‖ ≤ λ, (2)

where ‖·‖∗ is the nuclear norm and ‖·‖ is the spectral norm. The DS will successfully recover a
matrix X̂ close to the true solution in the Frobenius norm and moreover this distance decreases
linearly with λ. As shown in [7], choosing the centers C uniformly at random from the unit sphere
Sd−1, choosing each direction vector uniformly at random from {±1/

√
mΦ}k, and—in the case of

noisy observations, resampling f repeatedly—suffices to obtain an accurate X̂ w.h.p., as long asmΦ

and mX are sufficiently large. The precise choices of these quantities are analyzed in Section 4.

Finally, we extract the matrix Â from the SVD of X̂ , by taking its top k left singular vectors.
Because the DS will find a matrix X̂ close to X , due to a result by Wedin [24] we know that the
learned subspace will be close to the true one.

Optimizing ĝ. Once we have an approximate Â, we optimize the function ĝ(z) = f(ÂT z) on the
low-dimensional domainZ = Bk(1+ε̄). Concretely, we use GP-UCB [12], because it exhibits state
of the art empirical performance, and enjoys strong theoretical bounds for the cumulative regret. It
requires that ĝ belongs to the RKHS and the noise when conditioned on the history is zero-mean and
almost surely bounded by some σ̂. Section 4 shows that this is indeed true with high probability.

In order to trade exploration and exploitation, the GP-UCB algorithm computes, for each point z,
a score that combines the predictive mean that we have inferred for that point with its variance,
which quantifies the uncertainty in our estimate. They are combined linearly with a time-dependent
weighting factor βt in the following surrogate function

ucb(z) = µt(z) + β
1/2
t σt(z) (3)

for a suitably chosen βt = 2B + 300γt log3(t/δ). Here, B is an upper bound on the squared RKHS
norm of the function that we optimize, δ is an upper bound on the failure probability and γt depends
on the kernel [12]: cf., Section 4.3 The algorithm then greedily maximizes the ucb score above.

Note that finding the maximum of this non-convex and in general multi-modal function, while
considered to be cheaper than evaluating f at a new point, is by itself a hard problem and it is
usually approached by either sampling on a grid in the domain, or using some global Lipschitz
optimizer [13]. Hence, by reducing the dimension of the domain Z over which we have to optimize,
our algorithm has the additional benefit that this process can be performed more efficiently.

Handling the noise. The last ingredient that we need is theory on how to pick σ̂ so that it bounds
the noise during the execution of GP-UCB w.h.p., and how to select λ in (2) so that the true matrix
X is feasible in the DS. Due to the fast decay of the tails of the Gaussian distribution we can pick

σ̂ =
(

2 log 1
δ + 2 log T + log 1

2π

)1/2

σ, where T is the number of GP-UCB iterations and σ2 is the
variance of the noise. Then the noise will be trapped in [−σ̂, σ̂] with probability at least 1− δ.

3If the bound B is not known beforehand then one can use a doubling trick.

4

−2
−1

0
1

2

−2

−1

0

1

2
−20

−15

−10

−5

0

5

10

xy

f
(x
,y
)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−20

−15

−10

−5

0

5

10

x

ĝ
(x
)

true subspace

Figure 1: A 2-dimensional function f(x, y) varying along a 1-dimensional subspace and its projec-
tions on different subspaces. The numbers are the respective cosine distances.

The analysis on λ comes from [7]. They bound ‖A∗(e + z)‖ using the assumption that the second
order derivatives are bounded and, as shown in [23], because z has a Gaussian distribution,

‖A∗(e + z)‖ ≤ 1.2

(
C2εdmXk

2

2
√
mΦ

+
5
√
mXmΦσ

ε

)
(4)

If there is no noise it still holds by setting σ = 0. This bound, intuitively, relates the approximation
quality λ of the subspace to the quantities mΦ, mX as well as the step size ε.

4 Theoretical Analysis

Overview. A crucial choice in our algorithm is how to allocate samples (by choosing mΦ and mX

appropriately) to the tasks of subspace learning and function optimization. We now analyze both
phases, and determine how to split the queries in order to optimize the cumulative regret bounds.

Let us first consider the regret incurred in the second phase, in the ideal (but unrealistic) case that
the subspace is estimated exactly (i.e., Â = A). This question was answered recently in [12], where
it is proven that it is bounded by O∗(

√
T (B
√
γt + γt))

4 . Hereby, the quantity γT is defined as
γT = max

S⊆D,|S|=T
H(yS)−H(yS |f),

where yS are the values of f at the points in S, corrupted by Gaussian noise, andH(·) is the entropy.
It quantifies the maximal gain in information that we can obtain about f by picking a set of T points.
In [12] sublinear bounds for γT have been computed for several popular kernels. For example, for
the RBF kernel in k dimensions, γT = O

(
(log T)k+1

)
. Further, B is a bound on the squared

norm ‖g‖2Hκ of g w.r.t. kernel κ. Note that generally γT grows exponentially with k, rendering the
application of GP-UCB directly to the high-dimensional problem intractable.

What happens if the subspace Â is estimated incorrectly? Fortunately, w.h.p. the estimated function
ĝ still remains in the RKHS associated with kernel κ. However, the norm ‖ĝ‖Hκ may increase, and
consequently may the regret. Moreover, the considered f̂ disagrees with the true f , and consequently
additional regret per sample may be incurred by η = ||f̂ − f ||∞. As an illustration of the effect of
misestimated subspaces see Figure 1. We can observe that subspaces far from the true one stretch
the function more, thus increasing its RKHS norm.

We now state a general result that formalizes these insights by bounding the cumulative regret in
terms of the samples allocated to subspace learning, and the subspace approximation quality.

Lemma 1 Assume that we spend 0 < n ≤ T samples to learn the subspace such that ‖f−f̂‖∞ ≤ η,
‖ĝ‖ ≤ B and the error is bounded by σ̂, each w.p. at least 1 − δ/4. If we run the GP-UCB
algorithm for the remaining T − n steps with the suggested σ̂ and δ/4, then the following bound on
the cumulative regret holds w.p. at least 1− δ

RT ≤ n+ ηT︸︷︷︸
approx. error

+O∗(
√
T (B
√
γt + γt))︸ ︷︷ ︸

RUCB(T,ĝ,κ)

4We have used the notation O∗(f) = O(f log f) to suppress the log factors. Ω∗(·) is analogously defined.

5

cosΘ = [1.00, 1.00]

−2 −1 0 1 2
−2

−1

0

1

2
cosΘ = [0.04, 0.00]

−2 −1 0 1 2
−2

−1

0

1

2
cosΘ = [0.99, 0.04]

−2 −1 0 1 2
−2

−1

0

1

2
cosΘ = [0.97, 0.95]

−2 −1 0 1 2
−2

−1

0

1

2

Figure 2: Approximations ĝ resulting from differently aligned subspaces. Note that inaccurate
estimation (the middle two cases) can wildly distort the objective.

where RUCB(T, ĝ, κ) is the regret of GP-UCB when run for T steps using ĝ and kernel κ 5.

Lemma 1 breaks down the regret in terms of the approximation error incurred by subspace-
misestimation, and the optimization error incurred by the resulting increased complexity ‖ĝ‖2Hκ ≤
B. We now analyze these effects, and then prove our main regret bounds.

Effects of Subspace Alignment. A notion that will prove to be very helpful for analyzing both,
the approximation precision η and the norm of ĝ, is the set of angles between the subspaces that are
defined by A and Â. The following definition [25] makes this notion precise.

Definition 2 LetA, Â ∈ Rk×d be two matrices with orthogonal rows so thatAAT = ÂÂT = I . We
define the vector of cosines between the spanned subspaces cos Θ(A, Â) to be equal to the singular
values of AÂT . Analogously sin Θ(A, Â)i = (1− cos Θ(A, Â)2

i)
1/2.

Let us see how Â affects ĝ. Because ĝ(z) = g(AÂT z), the matrix M = AÂT , which converts
any point from its coordinates determined by Â to the coordinates defined by A, will be of crucial
importance. First, note that its singular values are cosines and are between −1 and 1. This means
that it can only shrink the vectors that we apply it to (possibly by different amounts in different
directions). The effect on ĝ is that it might only “see” a small part of the whole space, and its shape
might be distorted, which in turn will increase its RKHS complexity (see Figure 2 for an illustration).
Lemma 3 If g ∈ Hκ for a kernel that is isotropic with a radially non-increasing Fourier transform
and ĝ(x) = g(AÂTx) for some A, Â with orthogonal rows, then for C = C2

√
2k(1 + ε̄),

‖f − f̂‖∞ ≤ C‖sin Θ(A, Â)‖2 and ‖ĝ‖2Hκ ≤ |prod cos Θ(A, Â)|−1‖g‖2Hκ . (5)

Here, we use the notation prodx =
∏d
i=1 xi to denote the product of the elements of a vector. By

decreasing the angles we tackle both issues: the approximation error η = ‖f − f̂‖∞ is reduced
and the norm of ĝ gets closer to the one of g. There is one nice interpretation of the product of the
cosines. It is equal to the determinant of the matrix M . Hence, ĝ will not be in the RKHS only if M
is rank deficient as dimensions are collapsed.

Regret Bounds. We now present our main bounds on the cumulative regret. In order to achieve
sublinear regret, we need a way of controlling η and ‖ĝ‖Hκ . In the following, we show how this
goal can be achieved. As it turns out, subspace learning is substantially harder in the case of noisy
observations. Therefore, we focus on the easier, noise-free setting first.

Noiseless Observations. We should note that the theory behind GP-UCB still holds in the deter-
ministic case, as it only requires the noise to be bounded a.s. by σ̂. The following theorem guarantees
that in this setting for non-linear kernels we have a regret dominated by GP-UCB, which is of order
Ω∗(
√
TγT), as it is usually exponential in k.

Theorem 4 If the observations are noiseless we can pick mx = O(kd log 1/δ), ε = 1
k2.25d3/2T 1/2

and mϕ = O(k2d log 1/δ) so that with probability at least 1− δ we have the following

RT ≤ O(k3d2 log2(1/δ)) + 2 RUCB(T, g, κ).

5 Because the noise parameter σ̂ depends on T , we have to slightly change the bounds from [12] as we have
a term of order O(

√
log T + log(1/δ)); c.f. supplementary material.

6

Noisy Observations. Equation 4 hints that the noise can have a dramatic effect in learning effi-
ciency. As already mentioned, the DS gets better results as we decrease λ. In the noiseless case, it
suffices to increase the number of directions mΦ and decrease the step size ε in estimating the finite
differences. However, the second term in λ can only be reduced by decreasing the variance σ2.

As a result, each point that we evaluate is sampled n times and we take as its value the average.
Moreover, note that because the standard deviation decreases as 1/

√
n, we have to resample at least

ε−2 times and this significantly increases the number of samples that we need. Nevertheless, we
are able to obtain cumulative regret bounds (and thereby the first convergence guarantees and rates)
for this setting, which only polynomially depend on d. Unfortunately, the dependence on T is now
weaker than those in the noiseless setting (Theorem 4), and the regret due to the subspace learning
might dominate that of GP-UCB.

Theorem 5 If the observations are noisy, we can pick ε = 1
k2.25d1.5T 1/5 and all other parameters

as in the previous theorem. Moreover, we have to resample each point O(σ2k2dT 2/5mΦ/ε
2) times.

Then, with probability at least 1− δ

RT ≤ O
(
σ2k11.5d7T 4/5 log3(1/δ)

)
+ 2 RUCB(T, g, κ).

Mismatch on the effective dimension k. All models are imperfect in some sense and the structure
of a general f is impossible to identify unless we have further scientific evidence beyond the data.
In our case, the assumption f(x) = g(Ax) for some k more or less takes the weakest form for
indicating our hope that BO can succeed from a sub-exponential sample size. In general, we must
tune k in a degree to reflect the anticipated complexity in the learning problem. Fortunately, all
the guarantees are preserved if we assume a k > ktrue, for some true synthetic model, where
f(x) = g(Ax) holds. Underfitting k leads to additional errors that are well-controlled in low-rank
subspace estimation [23]. The impact of under fitting in our setting is left for future work.

5 Experiments

The main intent of our experiments is to provide a proof of concept, confirming that SI-BO not just
in theory provides the first subexponential regret bounds, but also empirically obtains low average
regret for Bayesian optimization in high dimensions.

Baselines. We compare SI-BO against the following baseline approaches:

• RandomS-UCB, which runs GP-UCB on a random subspace.
• RandomH-UCB, which runs GP-UCB on the high-dimensional space. At each iteration

we pick 1000 points at random and choose the one with highest UCB score.
• Exact-UCB, which runs GP-UCB on the exact (but in practice unknown) subspace.

The βt parameter in the GP-UCB score was set as recommended in [12] for finite sets. To optimize
the UCB score we sampled on a grid on the low dimensional subspace. For all of the measurements
we have added Gaussian zero-mean noise with σ = 0.01.

Data sets. We carry out experiments in the following settings:

• GP Samples. We generate random 2-dimensional samples from a GP with Matèrn kernel
with smoothness parameter ν = 5/2, length scale ` = 1/2 and signal variance σ2

f = 1.
The samples are “hidden” in a random 2-dimensional subspace in 100 dimensions.

• Gabòr Filters. The second data set is inspired by experimental design in neuroscience
[26]. The goal is to determine visual stimuli that maximally excite some neuron, which
reacts to edges in the images. We consider the function f(x) = exp(−(θTx− 1)2), where
θ is a Gabór filter of size 17× 17 and the set of admissible signals is [0, 1]d.

In the appendix we also include results for the Branin function, a classical optimization benchmark.

Results. The results are presented in Figure 3. We show the averages of 20 runs (10 runs for
GP-Posterior) and the shaded areas represent the standard error around the mean. We show both
the average regret and simple regret (i.e., suboptimality of the best solution found so far). We find
that although SI-BO spends a total of mX(mΦ + 1) samples to learn the subspace and thus incurs

7

0 1000 2000 3000 3500
0

0.2

0.4

0.6

0.8

1

R
t/
t

Number of samples

Our approach

RandomS−UCB

RandomH−UCB
Exact−UCB

(a) GP-Posterior

500 1000 1500 2000 2500 3000 3500
0

0.2

0.4

0.6

0.8

1

R
t/
t

Number of samples

UCB−3
UCB−1

UCB−2

(b) GP-Posterior, Different k

500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

1

R
t/
t

Number of samples

Exact−UCB

RandomH−UCB
RandomS−UCB

Our approach

(c) Gabór

0 1000 2000 3000 3500
0

0.2

0.4

0.6

0.8

1

S
im

pl
e

R
eg

re
t

Number of samples

Our approach
RandomH−UCBRandomS−UCB

Exact−UCB

(d) GP-Posterior

500 1000 1500 2000 2500 3000 3500
0

0.2

0.4

0.6

0.8

1

S
im

pl
e

R
eg

re
t

Number of samples

UCB−1

UCB−2

UCB−3

(e) GP-Posterior, Different k

500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

1

S
im

pl
e

R
eg

re
t

Number of samples

Exact−UCB

RandomS−UCB

Our approach

RandomH−UCB

(f) Gabór

Figure 3: Performance comparison on different datasets. Our SI-BO approach outperforms the
natural benchmarks in terms of cumulative regret, and competes well with the unrealistic Exact-
UCB approach that knows the true subspace A.

much regret during this phase, learning the subspace pays off, both for average and simple regret,
and SI-BO ultimately outperforms the baseline methods on both data sets. This demonstrates the
value of accurate subspace estimation for Bayesian optimization in high dimensions.

Mis-specified k. What happens if we do not know the dimensionality k of the low dimensional
subspace? To test this, we experimented with the stability of SI-BO w.r.t. k. We sampled 2-
dimensional GP-Posterior functions and ran SI-BO with k set to 1, 2 and 3. From the figure above
we can see that in this scenario SI-BO is relatively stable to this parameter mis-specification.

6 Conclusion
We have addressed the problem of optimizing high dimensional functions from noisy and expensive
samples. We presented the SI-BO algorithm, which tackles this challenge under the assumption that
the objective varies only along a low dimensional subspace, and has low norm in a suitable RKHS.
By fusing modern techniques for low rank matrix recovery and Bayesian bandit optimization in a
carefully calibrated manner, it addresses the exploration–exploitation dilemma, and enjoys cumu-
lative regret bounds, which only polynomially depend on the ambient dimension. Our results hold
for a wide family of RKHS’s, including the popular RBF and Matèrn kernels. Our experiments on
different data sets demonstrate that our approach outperforms natural benchmarks.

Acknowledgments. A. Krause acknowledges SNF 200021-137971, DARPA MSEE FA8650-11-
1-7156, ERC StG 307036 and a Microsoft Faculty Fellowship. V. Cevher acknowledges MIRG-
268398, ERC Future Proof, SNF 200021-132548, SNF 200021-146750, and SNF CRSII2-147633.

References
[1] D. Lizotte, T. Wang, M. Bowling, and D. Schuurmans. Automatic gait optimization with gaussian process

regression. In Proc. of IJCAI, pages 944–949, 2007.

[2] J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization. The Journal of Machine
Learning Research, 13:281–305, 2012.

[3] Jasper Snoek, Hugo Larochelle, and Ryan Prescott Adams. Practical bayesian optimization of machine
learning algorithms. In Neural Information Processing Systems, 2012.

[4] Ker-Chau Li. Sliced inverse regression for dimension reduction. Journal of the American Statistical
Association, 86(414):316–327, 1991.

8

[5] G. Raskutti, M.J. Wainwright, and B. Yu. Minimax rates of estimation for high-dimensional linear regres-
sion over `q-balls. Information Theory, IEEE Transactions on, 57(10):6976–6994, 2011.

[6] S. Mukherjee, Q. Wu, and D. Zhou. Learning gradients on manifolds. Bernoulli, 16(1):181–207, 2010.

[7] H. Tyagi and V. Cevher. Active learning of multi-index function models. In Advances in Neural Informa-
tion Processing Systems 25, pages 1475–1483, 2012.

[8] H. Robbins. Some aspects of the sequential design of experiments. Bulletin of the American Mathematical
Society, 58(5):527–535, 1952.

[9] P. Auer. Using confidence bounds for exploitation-exploration trade-offs. The Journal of Machine Learn-
ing Research, 3:397–422, 2003.

[10] R. Kleinberg, A. Slivkins, and E. Upfal. Multi-armed bandits in metric spaces. In STOC, pages 681–690,
2008.

[11] S. Bubeck, R. Munos, G. Stoltz, and C. Szepesvári. Online optimization in X-armed bandits. In NIPS,
2008.

[12] N. Srinivas, A. Krause, S. Kakade, and M. Seeger. Information-theoretic regret bounds for gaussian
process optimization in the bandit setting. IEEE Transactions on Information Theory, 58(5):3250–3265,
May 2012.

[13] E. Brochu, V.M. Cora, and N. De Freitas. A tutorial on bayesian optimization of expensive cost func-
tions, with application to active user modeling and hierarchical reinforcement learning. arXiv preprint
arXiv:1012.2599, 2010.

[14] J. Močkus. On bayesian methods for seeking the extremum. In Optimization Techniques IFIP Technical
Conference Novosibirsk, July 1–7, 1974, pages 400–404. Springer, 1975.

[15] A.D. Bull. Convergence rates of efficient global optimization algorithms. The Journal of Machine Learn-
ing Research, 12:2879–2904, 2011.

[16] A. Carpentier and R. Munos. Bandit theory meets compressed sensing for high dimensional stochastic
linear bandit. Journal of Machine Learning Research - Proceedings Track, 22:190–198, 2012.

[17] Y. Abbasi-Yadkori, D. Pal, and C. Szepesvari. Online-to-confidence-set conversions and application to
sparse stochastic bandits. In Conference on Artificial Intelligence and Statistics (AISTATS), 2012.

[18] B. Chen, R. Castro, and A. Krause. Joint optimization and variable selection of high-dimensional gaussian
processes. In Proc. International Conference on Machine Learning (ICML), 2012.

[19] Z. Wang, M. Zoghi, F. Hutter, D. Matheson, and N. de Freitas. Bayesian optimization in high dimensions
via random embeddings. In In Proc. IJCAI, 2013.

[20] R.A. DeVore and G.G. Lorentz. Constructive approximation, volume 303. Springer Verlag, 1993.

[21] M. Fornasier, K. Schnass, and J. Vybiral. Learning functions of few arbitrary linear parameters in high
dimensions. Foundations of Computational Mathematics, pages 1–34, 2012.

[22] B. Schölkopf and A.J. Smola. Learning with kernels: Support vector machines, regularization, optimiza-
tion, and beyond. MIT press, 2001.

[23] E.J. Candes and Y. Plan. Tight oracle inequalities for low-rank matrix recovery from a minimal number
of noisy random measurements. Information Theory, IEEE Transactions on, 57(4):2342–2359, 2011.

[24] P. A. Wedin. Perturbation bounds in connection with singular value decomposition. BIT Numerical
Mathematics, 12(1):99–111, 1972.

[25] G.W. Stewart and J. Sun. Matrix Perturbation Theory, volume 175. Academic Press New York, 1990.

[26] John G Daugman et al. Uncertainty relation for resolution in space, spatial frequency, and orientation
optimized by two-dimensional visual cortical filters. Optical Society of America, Journal, A: Optics and
Image Science, 2:1160–1169, 1985.

[27] J.A. Tropp. User-friendly tail bounds for sums of random matrices. Foundations of Computational
Mathematics, 12(4):389–434, 2012.

9

APPENDIX : SUPPLEMENTARY MATERIAL

A Effects of Subspace Alignment

There is an alternative view of looking at RKHS’s using the Fourier Transform (FT) of the kernel.
The following two lemmas can be found in [15][§3.1] where proofs and additional references can
also be found. Note that because of the conditions on the kernel its FT is integrable and non-negative.

Lemma 6 (Lemma 1 in [15]) Hκ(Rd) is the space of real continuous functions f ∈ L2(Rd) whose
norm

‖f‖2Hκ(Rd) =

∫
Rd

|Ff(ω)|2

Fκ(ω)
dω

is finite, taking 0/0 = 0.

Lemma 7 (Lemma 2 in [15]) Hκ(S) is the space of functions f = g|S for some g ∈ Hκ(Rd) with
norm

‖f‖Hκ(S) = inf
g|S=f

‖g‖Hκ(Rd)

and there is a unique g minimizing this expression.

We will need the following well known result, which can be interpreted as the multivariate version
of the popular stretch lemma for the one dimensional case.

Lemma 8 Let g ∈ L2(Rn) be a function with Fourier transform Fg. For any function g′ that has
the form

g′(z) = g(Mz)

for some non-singular matrix M we have that

Fg′(ω) = |detM |−1g(M−Tω)

Proof

Fg′(ω) =

∫
Rn

exp(−2πizTω)g′(z)dz

=

∫
Rn

exp(−2πizTω)g(Mz)dz

= |detM |−1

∫
Rn

exp(−2πizTM−Tω)g(z)dz

= |detM |−1Fg(M−Tω)

The third step followed from integration by substitution. �

We can now show how the RKHS norm of the learned function relates to that of the true low-
dimensional function.

Lemma 9 If g ∈ H(Z) and ĝ : Ẑ → R is defined as ĝ(z) = g(Mz) for some non-singular M
that satisfies 0 < ‖M‖ ≤ 1 for some matrix norm compatible with the Eucledian norm `2, then the
following holds

‖ĝ‖2Hk(Ẑ) ≤
1

|detM |
‖g‖2Hk(Z)

10

Proof The proof is very simple and is similar to that of [15][Lem. 4]. If Z = Rn, then

‖ĝ‖2Hk(Rn)

(1)
=

∫
|F ĝ(ω)|2

Fk(ω)
dω

(2)
= |detM |−2

∫
|Fg(M−Tω)|2

Fk(ω)
dω

(3)
= |detM |−1

∫
|Fg(ω)|2

Fk(MTω)
dω

(4)

≤ |detM |−1

∫
|Fg(ω)|2

Fk(ω)
dω

(5)
=

1

|detM |
‖g‖2Hk(Rn)

The second equality follows from Lemma 8 and the third one from integration by substitution and
the fact that detMT = detM . Noticing that 0 < ‖M‖ = ‖MT ‖ ≤ 1 we can use the compatibility
of ‖·‖ with the `2 norm to conclude that ‖Mw‖ ≤ ‖M‖‖w‖2 ≤ ‖w‖2 Then, we apply the fact that
Fk is radially non-increasing to obtain (4). Finally, we use Lemma 6. If Z ⊂ Rn, let gH ∈ Hk(Rn)
be the unique minumum norm extension of g (Lemma 7). Then ĝH(z) = gH(Mz) agrees with ĝ on
Ẑ and we can use the above argument. �

We can now finally prove the central result in this section.

Proof (Lemma 3) The first part of the lemma is already known, e.g. see Appendix E.2 in [7]. The
second conclusion follows from Lemma 9. �

B Regret Bounds

B.1 Almost Surely Bounded Error

Assume that the noise isN (0, σ2) and let ei denote the noise at iteration i. We denote by z a random
variable distributed as N (0, 1). The probability of having an error bigger than σ̂ = tσ is equal to

P{ T
max
i=1
|εi| > tσ} ≤ TP(|ε1| > tσ)

= TP(|z| > t)

≤ T√
2π

exp(−t2/2)

where we have used a standard Gaussian tail inequality. Hence if we pick

σ̂ = (2 log T + 2 log
1

δ
+ log

1

2π
)1/2σ

the probability of observing noise outside [−σ̂, σ̂] is at most δ.

B.2 Proof of Lemma 1

Proof The first n samples are spent on learning the subspace and a trivial bound on the regret
of these first steps is n. Because by assumption the maxima of g and ĝ differ by at most η and
GP-UCB(T − n, ĝ, k) is the regret w.r.t. ĝ, at each step we will accrue at most η additional regret.
Hence, with probability at least 1− δ the total regret is bounded by

n︸︷︷︸
subs. learning

+ (T − n)η︸ ︷︷ ︸
approx.

+GP-UCB(T − n, ĝ, k)

We now apply Theorem 3 from [12] to GP-UCB(T, ĝ, k) and this completes the proof. �

11

Because for non-linear functions GP-UCB(·) = Ω∗(
√
T) if we can assure that η = O(1/

√
T) and

n = O∗(
√
T), then the regret will be dominated by GP-UCB.

Note that our σ̂ is a function of T and the bounds in [12] depend on σ̂, which is treated as a constant.
More precisely, in Theorem 3 in [12] we have to change

1

log(1 + 1
σ2)

to
1

log(1 + 1
(2 log T+2 log 1

δ+log 1
2π)σ2)

.

Note that the function 1/ log(1+1/x) is bounded by x+1, so in the worst case we will be multiplying
the cumulative regret bounds by a term of order O(

√
log T + log(1/δ)).

B.3 Notation

Because there are plenty of variables and constants that we use in the proofs of the regret bounds,
we provide their definitions in the table below.

Symbol Meaning
X Contains the derivatives at the centers
σk k-th largest singular value of X
X̂ The matrix obtained from the DS

X̂(k) Closest rank k matrix to X̂ in ‖·‖F
d Ambient dimension
k The dimension of the subspace

mX Number of centers
mΦ Number of directions
ε The step in the numerical gradient

C2 Bound on second derivatives of g
α The k-th singular value of Hf

κ Bound on the RIP constant
η Bound on ‖f − f̂‖∞
δ Bound on the failure probability
λ Controls the feasibility region in the DS

B.4 Background

Before showing the regret bounds results we must first set the stage by stating some results on
subspace learning. Many of these results have been already known from [7] and [21], but we extend
them if necessary for our setting.

As we have already mentioned, the error of the DS decreases with λ and this is stated precisely in
the next lemma. The probability is taken over the mΦ sampling directions.

Lemma 10 (Corollary 1 in [7]) If X is feasible in the DS then the matrix X̂(k) satisfies

‖X − X̂(k)‖2F ≤ τ
2 ≤ 4kλ2

w.p. at least
1− 2 exp(−mΦq(κ) + 4k(d+mX + 1)u(κ))︸ ︷︷ ︸

p1(mX ,mΦ)

for some 0 ≤ κ <
√

2− 1 and u(κ) = log(36
√

2
κ), q(κ) = 1

144 (κ2 − κ3

9).

Due to a result by Wedin [24] we can show that if two matrices are close in the Frobenius norm,
then the subspaces spanned from their left singular vectors are aligned.

Lemma 11 If ‖X − X̂(k)‖F ≤ τ and we extract Â from the top k left singular vectors of X̂(k) then

‖sin Θ(A, Â)‖2 ≤
√

2

σk − τ
τ

12

Proof Follows from the proof of Lemma 1 in [7] and Theorem I.5.5 in [25]. �

We will need the following technical lemma for one of the central results that we will show.
Lemma 12 Let

X = {x ∈ (0, 1]n |
n∑
i=1

xi = n− 1 + µ}

for some µ ∈ (0, 1]. Then minx∈X
∏n
i=1 xi = µ and the minimum is achieved at points x which

have one coordinate equal to µ and all other to 1.

Proof First I will show that at the minimum there must exist some i such that xi = µ. Assume
the contrary. Then all of the elements are greater than µ (if at least one of them is smaller than µ
then the equality can not be satisfied). Moreover we assume w.l.o.g. that they are ordered so that
µ < µ+m1︸ ︷︷ ︸

x1

≤ · · · ≤ µ+mn︸ ︷︷ ︸
xn

and all mi are positive. We consider two cases

(i) Assume µ+m1 +m2 ≤ 1. Consider the modified vector x̂ where we set

x̂1 = µ, x̂2 = µ+m1 +m2, x̂i = xi for i > 2

The constraints are again satisfied, so this is a valid assignment. The value of this assignment
is A′ = Cµ(µ+m1 +m2) while the old one had a value of A = C(µ+m1)(µ+m2). It is
easy to check that A′ < A and this is a contradiction.

(ii) Assume µ + m1 + m2 = 1 + β for some β > 0. Note that x1 + x2 = µ + µ + m1 + m2 =
1 + β + µ ≤ 2. Hence β + µ ≤ 1 and we can create a new vector x̂ as

x̂1 = β + µ, x̂2 = 1, x̂i = xi for i > 2

The new value isA′ = (2µ+m1 +m2−1)C while the old one wasA = (µ+m1)(µ+m2)C.
By assumption A′ ≥ A which is possible only if the following quadratic is not positive

q(µ) = µ2 + µ(m1 +m2 − 2) + (1 +m1m2 −m2 −m1)

By finding the zeros of q we see that A′ ≥ A only if µ ∈ [1 − m2, 1 − m1]. However if
µ ≥ 1 − m2, then x2 = µ + m2 ≥ 1. This is impossible, because it would imply that
x2 = x3 = · · · = xn = 1. Then

∑n
i=1 xn = x1 +n−1 > µ+n−1, which is a contradiction.

Hence we can conclude that at least one of the elements in the optimal solution has to be µ. Then
the setX over which we optimize consists of points which have one element equal to µ and all other
to 1. �

The following lemma will tell us how precise our solutions from the DS has to be in order to have a
good approximation accuracy and have the norm of the ĝ under control.

Lemma 13 If for some F, η ∈ (0, 1) the recovered matrix X̂(k) satisfies

‖X − X̂(k)‖F︸ ︷︷ ︸
τ

≤ min{ 1

1 +
√

2
1−F

η

η + 2C2

√
k(1 + ε̄)

}

︸ ︷︷ ︸
Ξ

σk

then ‖f − f̂‖∞ ≤ η and ‖ĝ‖2Hk ≤
1
F ‖g‖

2
Hk .

Proof The first claim follows directly from Lemmas 3 and 11. For brevity let us denote sin Θ =
(λ1, · · · , λk) and cos Θ = (γ1, · · · , γk). From Lemma 11 it follows that

k∑
i=1

λ2
i = k −

k∑
i=1

γ2
i ≤ 2(

τ

σk − τ
)2

⇓
k∑
i=1

|γi|
|γi|≤1

≥
k∑
i=1

γ2
i ≥ k − 2(

τ

σk − τ
)2

13

Assume that we want to assure that the minimal cosine is at least C for some C ∈ (0, 1). This is
obviously satisfied if

k∑
i=1

|γi| ≥ k − 2(
τ

σk − τ
)2 > k − 1 + C

because then
min
i
|γi| ≥ 1− 2(

τ

σk − τ
)2 > C

Which will be satisfied if
τ

σk − τ
<

√
1− C

2
=⇒ τ <

1

1 +
√

2
1−C

σk

We can now apply Lemma 12 and Lemma 3 to obtain the final result. �

The final ingredient necessary before showing the regret bounds is a lower bound on σk which can
be obtained from a concentration inequality on the sum of positive semi-definite matrices [27]. The
bound that we use depends on the quantity α, which is equal to the k-th largest singular value of the
following “Hessian” matrix

Hf =

∫
Sd−1

∇f(x)∇f(x)T dµ,

where µ is the uniform measure on Sd−1.
Lemma 14 (Lemma 4.5 in [21]) For any ρ ∈ (0, 1) the k-th singular value σk of the matrix X that
we try to retrieve with the DS satisfies

σk ≥
√

(1− ρ)mXα

w.p at least 1− k exp(−mXαρ
2

2kC2
2

)︸ ︷︷ ︸
p2(mX)

.

Moreover, it has been proven in [7] that under the assumptions that we made for the Hessian of f
and the Lipschitz continuity of the second derivatives of f , α behaves as α = Θ(1/d). We will use
this fact when proving the cumulative regret bounds.

B.5 Bounding The Failure Probability

Other than the noise failing to be bounded a.s., there is another possible source of failure – the sub-
space learning algorithm can fail to learn the subspace within the required accuracy. The following
lemma precisely bounds the probability of that happening.
Lemma 15 The residual is bounded by λ, i.e. Equation 4 holds, with probability at least

1− exp(−cmX)︸ ︷︷ ︸
p3(mX)

for some c > 0

Proof First appeared in [7] based on Lemma 1.1 in [23]. �
Lemma 16 We can pick mX = O(kα log(1/δ)) and mΦ = O(kdα log(1/δ)) so that the failure
probability is at most δ. Moreover, if α = Θ(1/d) then we have a better dependence on d and we
can use mΦ = O(k2d log(1/δ)).
Proof The failure probability for the algorithm is at most p1(mX ,mΦ)+p2(mX)+p3(mX). From
the previous lemma we can obviously achieve p3 = δ/3 if we have mX = O(log(1/δ)). Because
only mX appears in p2 if we pick (assuming δ < 3/k)

mX ≥
4kC2

2

αρ2
log(3/δ) ≥ 2kC2

2

αρ2
(log(3/δ) + log k)

then p2 ≤ δ/3. Similarly, by taking a look at p1(mX ,mΦ) we see that by choosing mΦ as

mΦ ≥
1

q(κ)

[
4k(d+ 1)u(κ) + log(6/δ) + 4ku(κ)

4kC2
2

αρ2
log(3/δ)

we also have p1 ≤ δ/3. The special case for α = Θ(1/d) follows easily as none of the terms above
contain both d and α. �

14

B.6 Regret Bounds

The following lemma combines many of the results that we have stated so far and will be very useful
in showing the regret bounds.

Lemma 17 If

4k 1.2

(
C2εdmXk

2

2
√
mΦ

+
5
√
mXmΦσ

ε

)2

︸ ︷︷ ︸
λ2

≤ Ξ2(1− ρ)mXα

then
τ ≤ Ξσk w.p. at least 1− p1(mX ,mΦ)− p2(mX)− p3(mΦ)

Proof We have that with at least the claimed probability Lemmas 15, 14 and 10 hold, in which case

τ
Lemma 10
≤ 2

√
kλ ≤ Ξ

√
(1− ρ)mXα

Lemma 14
≤ Ξσk

where the second inequality follows from the assumption. �

We can now state the regret bounds by combining this result with Lemma 13.

B.6.1 Noiseless Case

Proof (Theorem 4) If we set C = 1/2 in Lemma 13 we see that the to have precision η and a
guarantee that ‖ĝ‖2Hk ≤ 2‖g‖2Hk we will need the following to hold

‖X − X̂(k)‖F︸ ︷︷ ︸
τ

≤ min{1/2, η

η + 2C2

√
k(1 + ε̄)

}︸ ︷︷ ︸
Ξ

σk

The result will follow from picking mX ,mΦ and ε in Lemma 17 so that the above holds and the
sampling complexity is mX(mΦ + 1) = O∗(

√
T). We will pick mX as in proof of Lemma 16.

Now, the inequality above will hold if

mΦ ≥ Ξ−2 1.44C2k
5ε2d2

(1− ρ)α
mX

⇐=

mΦ ≥ Ξ−2 1.44C3
2k

6ε2d2

(1− ρ)α2ρ2
log(3/δ)

If Ξ = 1/2 then the claim can be easily proven as the dependence on T is very weak. Otherwise the
above inequality transforms to (setting η = T−1/2)

mΦ ≥ (1 + 2
√
kTC2(1 + ε̄))2 1.44C3

2k
6ε2d2

(1− ρ)α2ρ2
log(3/δ)

Which is satisfied by setting for some constant C depending on ρ, C2 and ε̄

mΦ ≥ C
k6.5ε2d2

α2
T log(3/δ)

We can now apply the fact that α = Θ(1/d). Hence, the claimed guarantees will hold if we pick
mΦ = O(k2d log(1/δ)) and ε = 1

k2.25d3/2T 1/2 . We finally apply Lemma 1. �

15

B.6.2 Noisy Case

The proofs are similar to the previous case, we just have an additional term that we have to bound in
Lemma 17. We do this by resampling which will reduce σ.

Proof (Theorem 5) Unfortunately for this case we can not achieve cumulative regret of O∗(
√
T).

Let us try to see how many samples do we need to have η = O(T−β) for some β ∈ (0, 1). We will
pick mX the same way as in Lemma 16. We will average out each point mΦn/ε

2 times in which
case in order the condition in Lemma 17 to hold we need

√
4.8k

(
C2εdmXk

2

2
√
mΦ

+
6
√
mXσ√
n

)
≤ Ξ

√
(1− ρ)mXα

Following the proof from the noiseless case we can make

√
4.8k

C2εdmXk
2

2
√
mΦ

≤ 1

2
Ξ
√

(1− ρ)mXα (6)

by choosing mΦ = O(k2d log(1/δ)) and ε = 1
k2.25d3/2Tβ

. We will now assure that

√
4.8k

6
√
mXσ√
n

≤ 1

2
Ξ
√

(1− ρ)mXα (7)

which is satisfied if for some C depending on ρ

n ≥ Ξ−2Ckσ
2

α

Again the case Ξ = 1/2 easily yields the claimed bounds as then Ξ is independent of T . Otherwise
we need

n ≥ (1 + 2
√
kT βC2(1 + ε̄))2Ckσ

2

α
⇐= For some C ′ depending on C2, ρ

n ≥ C ′ k
2σ2

α
T 2β

Hence, as α = Θ(1/d) we have to resampleO(k2dσ2T 2βmΦ/ε
2) times. By combining Equations 6

and 7 and applying Lemma 17 we can achieve η = O(T−β) and also have ‖ĝ‖Hk ≤ 2‖ĝ‖Hk using
a total of mXm

2
Φn/ε

2 = O(k11.5d7σ2T 4β/ε2 log(1/δ)3) samples. To bound the regret we use
Lemma 1 and we will get both T 1−β and T 4β as terms in the bound. If we optimize for β we get
β = arg minβ{1− β, 4β} = 1/5 and this proves the claim. �

16

C Optimizing the Branin Function

500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

1
R

t/
t

Number of samples

Exact−UCB

Our approach

RandomS−UCB

RandomH−UCB

(a) Branin - Average regret.

500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

1

S
im

pl
e

R
eg

re
t

Number of samples

RandomS−UCB

Our approach

Exact−UCB

RandomH−UCB

(b) Branin - Simple regret.

x

y

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

(c) The Branin function.

The Branin function is a classical benchmark for global optimization. The function is two-
dimensional and we hide it in a random two-dimensional subspace in 100 dimensions. It is flat
near the origin and peaks very sharply on two opposite corners of the square. The heights of these
peaks differ, which makes it even more complicated to optimize. To encourage more exploration
we have increased βt by a factor of 15. This objective is very challenging because it is not well
modeled with a GP prior and it is relatively flat near the origin, which means that it does not satisfy
our assumptions. For example we see that even when we know the subspace exactly GP-UCB does
not perform well. Moreover, its maximum is concentrated at the boundary of the region – hence
we would need an extremely good approximation to the subspace in order to be able to achieve low
regret.

17

	Introduction
	Background and Problem Statement
	The SI-BO Algorithm
	Theoretical Analysis
	Experiments
	Conclusion
	Effects of Subspace Alignment
	Regret Bounds
	Almost Surely Bounded Error
	Proof of Lemma 1
	Notation
	Background
	Bounding The Failure Probability
	Regret Bounds
	Noiseless Case
	Noisy Case

	Optimizing the Branin Function

