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Abstract—Wireless sensor networks are often designed to per-
form two tasks: sensing a physical field and transmitting the data
to end-users. A crucial design aspect of a WSN is the minimization
of the overall energy consumption. Previous researchers aim at
optimizing the energy spent for the communication, while mostly
ignoring the energy cost of sensing. Recently, it has been shown
that considering the sensing energy cost can be beneficial for
further improving the overall energy efficiency. More precisely,
sparse sensing techniques were proposed to reduce the amount
of collected samples and recover the missing data using data
statistics. While the majority of these techniques use fixed or
random sampling patterns, we propose adaptively learning the
signal model from the measurements and using the model to sched-
ule when and where to sample the physical field. The proposed
method requires minimal on-board computation, no inter-node
communications, and achieves appealing reconstruction perfor-
mance. With experiments on real-world datasets, we demonstrate
significant improvements over both traditional sensing schemes
and the state-of-the-art sparse sensing schemes, particularly when
the measured data is characterized by a strong intra-sensor (tem-
poral) or inter-sensors (spatial) correlation.

Index Terms—Wireless sensor networks, sparse sensing, adap-
tive sampling scheduling, compressive sensing, energy efficiency.

I. INTRODUCTION

IN a wireless sensor network (WSN), sensor nodes are de-
ployed to take periodical measurements of a certain physical

field at different locations. Consider a continuous-time spatio-
temporal field that we would like to monitor with the WSN;
denote it as x(ppp, t), where ppp and t represent the spatial position
and the time, respectively. We also define a vector xxx ∈ R

N

containing a discretization of such a field with a sufficiently
high resolution for our purposes. The target of the WSN is to
recover xxx with the maximum precision.

One of the primary goals in designing a WSN is its reduction
of the energy consumption, to extend its lifetime without re-
placing or recharging the batteries of sensor nodes. The energy
consumption of a sensor node mainly comes from three activ-
ities: sensing, data-processing and communication. Tradition-
ally, the costs for processing and communication are assumed
to dominate the overall energy consumption, while the cost
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for sensing is considered negligible. Therefore, a traditional
WSN collects as much data as possible, that is subsequently
compressed and transmitted with the lowest possible rate. In
other words, it collects a vector of samples yyy0 that is equal to
the discretized physical field xxx with some additive noise,

yyy0 = IIIxxx+ωωω, (1)

where III is the identity matrix of size N and ωωω represents the
noise; see Fig. 1(a) for an example.

Ignoring the energy cost for sensing is sub-optimal, if sensing
consumes a comparable amount of energy to communication
and data processing. In fact, new sampling paradigms optimiz-
ing the overall energy consumption have been proposed and
show that further reductions of the energy consumption are
possible. The basic idea involves a reduction of the number
of collected samples and a reconstruction of the missing data
using algorithms exploiting the structure available in the mea-
sured data. The reduction of the collected samples is done by
designing a sampling operator ΦΦΦ ∈ R

M×N with M � N, that it
is used instead of the identity matrix as,

yyy = ΦΦΦxxx+ωωω. (2)

Note that yyy is significantly shorter than xxx and the reconstruction
algorithm must estimate a significant amount of information
from a limited amount of data. Therefore, regularization and
constraints are added to the problem so that a stable solution can
be obtained. Moreover, the reconstruction algorithm must be
jointly designed with the sampling matrix ΦΦΦ to obtain a precise
estimate of xxx.

Pioneering work on sparse sampling considered compressive
sensing (CS) as a reconstruction scheme. CS attempts to re-
cover xxx by solving a convex optimization problem, under the
assumption that xxx is sparse in a known dictionary ΠΠΠ. However,
the solution is only approximate and it is exact if ΠΠΠ and ΦΦΦ
satisfy certain requirements that are generally hard to check [4].
Initially, [9], [16], [23] proposed the use of a sampling matrix ΦΦΦ
composed of random i.i.d. Gaussian entries. Note from Fig. 1(b)
that such ΦΦΦ has very few zero elements. Therefore, the number
of sensing operations is not actually reduced because we need
to know all the values of xxx to compute yyy. Moreover, if we adopt
a distributed algorithm, a dense ΦΦΦ requires the sensor nodes
to transmit their local samples to the other nodes, causing an
excessive energy consumption for communications.

To overcome such limitations, [17], [26] proposed to use a
sparse matrix ΦΦΦ which contains very few non-zero elements.
More precisely, ΦΦΦ has generally only one non-zero element
per row and the locations of such elements determine the
spatio-temporal sampling pattern, see Fig. 1(c). However, the
sampling patterns in these schemes are either fixed or randomly
generated and thus not well adapted to the measured signal.
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Fig. 1. Comparison of various sensing schemes proposed in the literature (the noise term ωωω is omitted for simplicity). We consider a discretized version of the
sampled physical field that is contained into a vector xxx. In (a) we depict the traditional approach where we measure the physical field in each spatio-temporal
location, thus having an identity operator III. In (b), we reduce the number of samples by taking random projections of the measurements. Note that we need to
measure all the elements of xxx and we are just reducing the number of stored samples. On the other hand, in (c) we are reducing the number of measured samples
using a sparse sampling matrix ΦΦΦ. Note that the methods in (b) and (c) require a set of conditions regarding xxx and ΦΦΦ to be satisfied [5]. Among these conditions,
we note that xxx must be sparse under a certain known dictionary ΠΠΠ, see (d). (a) Traditional sensing; (b) CS—Dense matrix; (c) CS—Sparse matrix; (d) sparsity
dictionary.

Moreover, it is generally hard to guarantee the recovery of a
faithful representation of xxx, because the sparsity of dictionary ΠΠΠ
usually changes over time and it may not satisfy the theoretical
requirements of CS [5].

Since the statistics of xxx are often unknown and varying over
time, it may be advantageous to consider the decomposition

xxx = ΨΨΨtααα, (3)

where ΨΨΨt is the time-varying model and ααα∈R
K is a low dimen-

sional representation of xxx with K �N. While the ignorance and
the non-stationarity of the model ΨΨΨt forces us to learn it from
the samples collected in the past, it may give us the advantage of
optimizing the sampling pattern ΦΦΦt according to ΨΨΨt . The non-
stationarity of ΦΦΦt is a feature diversifying our approach from
the CS algorithms, where the sensing patterns are usually fixed
as shown in Fig. 1.

This new problem statement raises new challenges. While
the model ΨΨΨt can be learnt from the incomplete measurements
yyy using an online version of the principal component analysis
(PCA), selecting the sampling pattern ΦΦΦt for minimizing the
construction error is a combinatorial problem. In this paper,
we propose a generalized version of FrameSense, an algorithm
that generates a near-optimal sensor placement for inverse
problems [19]. More precisely, instead of optimizing the sensor
placement, we optimize the spatio-temporal sampling pattern of
the WSN. The obtained sampling pattern is generally irregular,
time-varying and optimized to gather the maximum amount of
information. In particular, it simultaneously exploits the intra-
node (temporal) and inter-node (spatial) correlation potentially
present in the data. See Fig. 2 for a graphical illustration of the
low-dimensional model and of the irregular sampling patterns.

Our method derives from and extends the sparse sensing
framework proposed by Quer et al. [17]: the signal is first ap-
proximated by a linear model ΨΨΨt , and the sampling scheduling
is defined in space and time by a sampling matrix ΦΦΦt . Our major
contribution is that we improve the way in which the spatio-
temporal correlation is exploited, such that the sampling pattern
is dynamically adapted to the low dimensional model of the
signal.

It is worth mentioning that the proposed method imposes
no on-sensor computation nor inter-node communication. Each

Fig. 2. Graphical representation of the mathematical model of the proposed
sensing scheme. The signal is modeled by an unknown time-varying linear
K-dimensional model ΨΨΨt that is learn from the collected measurements. The
sampling pattern ΦΦΦt is optimized at run-time according to the signal model and
measures only M values out of the N available ones.

sensor node simply collects measurements according to a des-
ignated sampling pattern and transmits the data to a common
server. The server receives all the data from one or multiple sen-
sor nodes and performs signal reconstruction. This is actually in
accordance to the setup of distributed source coding [22], where
no inter-node communication is used. Hence, the proposed
algorithm provides an alternative solution to the distributed
coding problem: the communication rate is reduced and the
reconstruction error is bounded without using any inter-node
communication.

The proposed algorithm is tested on different sets of real-
word data, outperforming both the traditional sensing schemes
and the state-of-the-art sparse sensing schemes, in terms of re-
construction quality of xxx given a fixed amount of measurements.
Given the aforementioned characteristics, we call the proposed
method “Distributed Adaptive Sparse Sensing,” or DASS.

II. PROBLEM FORMULATION

In this section, we first state the sampling scheduling problem
for a WSN having just one sensor. At the end of the section,
we generalize the problem statement to a WSN with multiple
nodes. We consider a block-based sensing strategy, meaning
that the WSN samples the field for a certain time T and at
the end we reconstruct the vector xxx from the collected samples.
Note that the block length is known and defined a priori. Table I
is the summary of notations that are used in this paper.
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TABLE I
SUMMARY OF NOTATION

Fig. 3. Upper plot: optimized temporal sampling pattern of DASS. Lower
plot: traditional sensing scheme, where samples are collected regularly in time.
The subsampling factor is γ = 1/3, since we collect 4 samples instead of 12 in
each block.

For each temporal block, the discrete physical field xxx is
composed of N samples of x(ppp, t),

xxx = [x(ppp,0),x(ppp,ΔT ), . . . ,x(ppp,(N −1)ΔT )]
� , (4)

where ppp indicates the sensor node location and ΔT is the
sampling period. Note that ΔT determines the desired temporal
resolution and its inverse is the sampling frequency, f = 1/ΔT .
The temporal duration of a block is T = NΔT , that is also
the maximum delay this sensing scheme occurs—the larger T ,
the longer the delay. See Fig. 3 for a graphical representation
of the physical field and its discrete version xxx.

We denote the reconstructed physical field obtained from the
WSN samples as x̃xx. In a sparse sampling scenario, we aim at
reconstructing x̃xx from just a subset of elements of xxx. More
precisely, we measure M elements out of N, where M < N.
The set of indices τττt = {τt

i}
M
i=1 denotes the indices of these M

samples and it is chosen adaptively according to the previous
measurements. The sampling pattern τττt uniquely determines the
sampling matrix ΦΦΦt ∈ R

M×N that previously appears in (2):

ΦΦΦt
i, j =

{
1 if j = τt

i
0 otherwise.

The sensing matrix ΦΦΦt has exactly one non-zero element per
row, and usually a maximum of one non-zero element per
column. Here either ΦΦΦt

i, j or τt
i can be interpreted as a temporal

selector deciding when the node should take a sample—the

index j indicates the time index within a block. It is important
to underline that ΦΦΦt and τττt are time-varying and potentially
changing at every block to adapt to the signal model ΨΨΨt . Fig. 3
shows an example of sampling patterns where τττt changes for
each block.

We define fs = M
N · f = γ f to be the average sampling

frequency of the sensor node.1 The subsampling rate γ =
fs/ f < 1 is an important figure of merit for a sparse sampling
algorithm—the lower the γ, the lower the energy consumed for
sensing.

The measured signal yyy ∈ R
M is defined as

yyy = ΦΦΦt xxx+ωωω, (5)

where ωωω represents the measurement noise, that is modeled as
an additive white Gaussian noise (AWGN), since the thermal
effects [14] or/and quantization [25] are often the dominating
terms.2 Throughout the paper, we mainly discuss the simpler
case of i.i.d. noises; however, we will shortly discuss the exten-
sion to the generic case of noise having a correlation matrix Σωωω.
We define the signal-to-noise ratio (SNR) of the measurement
as following, which will be used in the evaluations:

SNR(dB) = 10log10

( ‖xxx‖2
2

‖ωωω‖2
2

)
. (6)

The target of DASS is to optimize the sampling pattern ΦΦΦt at
the t-th block according to ΨΨΨt such that we collect the minimum
number of samples M while still being able to recover precisely
the original signal. Since we modeled the noise as a AWGN, we
assess the quality of the recovered signal by using root-mean-
square error (RMSE):

ε=
1√
N
‖xxx− x̃xx‖2.

Multiple-Node Scenario: While the above problem state-
ment focuses on a single-sensor scenario for simplicity of
notation, it is simple to generalize the statement to a WSN
with more than one sensor node. More precisely, we assume
that the nodes are synchronized,3 so that we can concatenate all
the measured blocks at different locations pppi in a unique signal
block xxx. Fig. 4 shows an example. xxxA,xxxB,xxxC are signal blocks
from three different locations, ΦΦΦt

A,ΦΦΦ
t
B,ΦΦΦ

t
C are the respective

sampling matrices for each location, and yyyA,yyyB,yyyC are the
respective measurements. We can write⎡
⎣yyyA

yyyB
yyyC

⎤
⎦= ΦΦΦt

⎡
⎣xxxA

xxxB

xxxC

⎤
⎦+ωωω, where ΦΦΦt =

⎡
⎣ΦΦΦt

A 0 0
0 ΦΦΦt

B 0
0 0 ΦΦΦt

C

⎤
⎦ . (7)

Here different sensors can take different number of samples
and ΦΦΦt

A,ΦΦΦ
t
B,ΦΦΦ

t
C can have different sizes. Thus, ΦΦΦt can be

interpreted as a general spatio-temporal selector to choose when

1Note that we denote fs as an average sampling frequency given the irregular
and time-varying sampling pattern.

2Other noise model may be of interest for specific sensors; for example the
noise term of a Geiger counter is usually modeled as a Poisson process.

3Note that the proposed method does not require a precise synchronization.
In fact, eventual variations of the model due to the lack of synchronization are
handled by the proposed method thanks to the adaptive learning of the model.
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Fig. 4. Signals of multiple distributed sensor nodes can be concatenated into
a single signal stream at the server for recovery.

and where to sample such that we collect the maximum amount
of information. Moreover, it is worth mentioning that ΦΦΦt is
optimized for each block to adapt to the time-varying model
of the physical field.

III. BUILDING BLOCKS

The proposed method is graphically represented in Fig. 5 and
is based on the three building blocks described in this section:

1) The desired signal x̃xx is reconstructed using the collected
measurements yyy, the signal model ΨΨΨt and the estimated
mean xxx (Section III-A).

2) We use the measurements yyy to update the approximation
model ΨΨΨt , xxx (Section III-B).

3) The sampling pattern for the next temporal block τττt+1 is
optimized according to ΨΨΨt and is transmitted back to the
sensor node(s) (Section III-C).

The overhead of DASS on the sensor node is minimal in
practice. First, the sampling pattern τττt has a sparse structure and
hence it can be encoded efficiently with a few bytes per block.
Therefore, the extra communication cost for receiving τττt is
minimal. Second, all the algorithmic complexity of DASS is at
the server side, while the sensor nodes only need to sample and
transmit the signal according to the sampling pattern received
from the server. Therefore, the CPU and memory requirements
of the sensor node are minimal.

In what follows, we analyze each block explaining the chal-
lenges and the proposed solution.

A. Signal Approximation and Reconstruction

Due to the nature of most physical fields, a signal block
is partially predictable by analyzing past data. In many cases,
this predictability can be expressed by assuming that the signal
belongs to a K-dimensional linear subspace ΨΨΨt ∈ R

N×K . Such
a subspace approximates xxx as

x̂xx = ΨΨΨtααα+ xxx, (8)

where x̂xx is the approximated field, ααα ∈ R
K is the vector of the

projection coefficients and xxx is the mean of xxx.
If the modeling subspace ΨΨΨt is well designed and K is

sufficiently large compared to the complexity of xxx, the signal

Fig. 5. Representation of the operations of DASS in a WSN. The sensor node
sends the measured data to the processing server and receives the sampling
pattern for the next temporal block. The server uses the data to update the signal
model ΨΨΨt , reconstructs the discrete physical field x̃xx and optimizes the sampling
pattern τττt+1 for the sensor nodes. Note that τττt+1 uniquely determines ΦΦΦt+1.

realization xxx can be accurately expressed with just K � N
coefficients contained in ααα. To find such a subspace, we analyze
all the past signal realizations and estimate at the t-th block
the K-dimensional subspace ΨΨΨt that minimizes the expected
approximation error

εa =
1√
N
E(‖xxx− x̂xx‖2) . (9)

This is a dimensionality reduction problem that can be solved
by the well known technique of principal component analysis
(PCA).4 It has an analytic solution but it requires the covariance
matrix CCCxxx.

Unfortunately, in our scenario it is hard to estimate CCCxxx since
we have access only to M out of N elements of xxx. However,
if the M sampled elements are varying at each temporal block
t, we may collect enough information to have a sufficiently
precise estimate of CCCxxx. We present a set of methods to estimate
CCCxxx in Section III-B.

Note that the approximation through ΨΨΨt exploits the spatial
and temporal correlation among the elements of xxx. The higher
the correlation available in xxx, the lower the dimensionality of
the subspace ΨΨΨt , the number of parameters K and the necessary
measurements M. Hence, one of the key aspects is the choice of
the signal block length T . In fact, it should be chosen such that
the delay of the WSN respects the design specification while
maximizing the correlation among the blocks. For example, a
sensor measuring the outdoor light intensity naturally shows
diurnal patterns. Therefore, if we choose a block length of one
hour, the correlation within the signal block is usually weak.
On the other hand, if we choose a block length of one day, the
correlation is stronger.

Once the approximation model ΨΨΨt is estimated, recovering
the signal x̃xx amounts to estimating ααα from the measurements yyy
when considering the approximated signal model,

yyy ≈ ΦΦΦt x̂xx+ωωω = ΦΦΦt(ΨΨΨtααα+ xxx)+ωωω. (10)

If ωωω is an i.i.d. Gaussian random noise, we can recover ααα by
solving an Ordinary Least Square (OLS) problem [17]:

α̃αα = argmin
ααα

‖yyy−ΦΦΦt xxx−ΦΦΦtΨΨΨtααα‖2
2, (11)

4The CS-based sparse sensing methods in [17] also used PCA for subspace
learning.
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which has the following analytic solution,

α̃αα = (ΦΦΦtΨΨΨt)
†
(yyy−ΦΦΦt xxx). (12)

Here (ΦΦΦtΨΨΨt)
† is the Moore-Penrose pseudoinverse of ΦΦΦtΨΨΨt

that is defined for a generic matrix AAA as AAA† = (AAA∗AAA)−1AAA∗. We
can slightly vary the reconstruction technique to account for
more complicated noise models. For example, if the noise is
distributed according a known covariance matrix Σωωω, we can
estimate ααα as

α̃αα =
(
(ΦΦΦtΨΨΨt)

∗Σ−1
ωωω ΦΦΦtΨΨΨt)−1

(ΦΦΦtΨΨΨt)
∗Σ−1

ωωω (yyy−ΦΦΦt xxx). (13)

We can generalize such an estimator to other additive noise
models, see [15]. For the remainder of the paper we keep
considering the i.i.d. Gaussian noise case. Nonetheless, we
show in Appendix A that the proposed framework is compatible
to correlated noises by whitening the measured data before the
processing.

Once we define the estimator for ααα, the reconstruction al-
gorithm is straightforward and is described in Algorithm 1.
The following proposition states the necessary conditions to
find a unique solution and provides an upper bound for the
reconstruction error, that is going to be fundamental when
optimizing the sampling pattern. Such a result is an adaption
of two classic results of linear algebra [11].

Proposition 1: Consider a sensor network measuring a phys-
ical field as in (10) where the M measurements are corrupted
by an i.i.d. Gaussian noise with variance σ2. If M ≥ K, ΨΨΨt ∈
R

N×K is formed by orthonormal columns and rank(ΦΦΦtΨΨΨt) = K,
then x̃xx can be uniquely determined using Algorithm 1. The
reconstruction error is bounded by

ε2 =
1
N
‖xxx− x̃xx‖2

2 ≤
1

λK
ε2

a +σ2
K

∑
i=1

1
λi
, (14)

where εa is the approximation error due to the signal model ΨΨΨt

and λi (1 ≤ i ≤ K) is the i-th largest eigenvalue of the matrix
ΨΨΨt∗ΦΦΦt∗ΦΦΦtΨΨΨt .

Algorithm 1 Signal reconstruction

Require: ΨΨΨt , xxx, τττt and ΦΦΦt

Ensure: x̃xx
1: Measure the signal yyy according to τττt .
2: x̃xx = ΨΨΨt(ΦΦΦtΨΨΨt)

†
(yyy−ΦΦΦt xxx)+ xxx.

Proof: Since the Gaussian noise is independent from the
approximation error, we can treat them independently. More-
over, it is sufficient to compute the error on the estimation of ααα
given the assumed orthonormality of the columns of ΨΨΨt .

For reconstruction error due to the approximation error εa,
we look at the worst case scenario with the following optimiza-
tion problem,

max
∥∥∥(ΨΨΨtΨΨΨt)

†
(xxx− x̂xx)

∥∥∥2

2

subject to
1
N
‖(xxx− x̂xx)‖2

2 = εa,

whose solution is proportional to the smallest eigenvalue of
(ΨΨΨtΨΨΨt)

†. More precisely, it is possible to show that the approx-
imation noise is upper bounded by 1

λK
ε2

a, where εa is the norm
of the approximation error.

For the reconstruction error due to the white noise, we use
a known result of frame theory, see [10]. We merge the two
results to conclude the proof. �

The upper-bound of the total error ε is a function of both
the approximation error εa and the measurement noise ωωω. The
former term depends on the number of parameters K: when K =
N, we have εa = 0 and it grows when we decrease K. However,
the rate at which the error increases depends on the spectrum of
Cxxx. In fact, if xxx has elements that are highly correlated, a small
K could be sufficient to model xxx with a small approximation
error. The latter term can be controlled directly by optimizing
the sampling pattern. More precisely, we cannot reduce σ but
we can reduce the amplification due to the spectrum λk through
an optimization of the sampling matrix ΦΦΦt .

Note that the part involving εa only depends on the smallest
eigenvalue because we are not guaranteed that the approxima-
tion error spreads over all the eigenvectors of ΦΦΦtΨΨΨt . In fact, the
worst case scenario is represented by the approximation error
being in the same direction of the eigenvector with the smallest
eigenvalue and εa is consequently maximally amplified.

Compared to the methods based on CS, our approach based
on a low-dimensional model and OLS has the following advan-
tages: i) the solution is easy to compute and it requires a single
matrix inversion, ii) it enables an analysis of the reconstruction
error and a consequent optimization of the sampling pattern τττt

such that the upper-bound of ε is minimized.

B. Learning From Incomplete Data Over Time

In Section III-A, we have highlighted some challenges re-
garding the estimation of the covariance matrix CCCxxx—a funda-
mental step to determine the approximation model ΨΨΨt . Most of
the challenges derive from the lack of a sufficiently large set of
realizations of xxx, that are needed to estimate CCCxxx. First, there is
virtually no past data for a newly installed WSN. Second, CCCxxx

is likely to vary over time. Third, a high ratio of data points
(1 − γ) are not available for the estimation since we collect
sparse measurements. Therefore, we need an on-line algorithm
that estimates and adaptively updates the covariance matrix CCCxxx

from incomplete data.
The main difficulty is the lack of complete realizations of

xxx. Two strategies are generally considered to overcome such a
problem. The first one proposes to estimate from yyy an interpola-
tion xxxinterp using classic methods such as linear, polynomial or
spline interpolation. The second strategy skips the estimation
of CCCxxx and attempts to perform directly the principal component
analysis on the data having missing entries, see [18].

From our quantitative results, the second class of algorithms
is less powerful for our purposes. Therefore, we focus our atten-
tion on the interpolation methods. More precisely, we analyze
two different methods that implement an adaptive learning and
updating of the approximation model ΨΨΨt from the interpolated
signal xxxintep.
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The first, whose pseudocode is given in Algorithm 2, uses a
FIFO buffer to store the most recent L blocks. Whenever a new
block is added into the buffer, the oldest block in the buffer is
excluded. As the approximation model is estimated according
to the signal realizations in the buffer, this scheme is able to
capture the variation of signal statistics over time.

Algorithm 2 Updating ΨΨΨt , xxx using a buffer

Require: yyy, L
Ensure: ΨΨΨt , xxx

1: interpolate yyy → xxxintep.
2: insert xxxintep into a buffer storing the most recent L blocks.
3: estimate Cxxx and xxx from the buffer.
4: ΨΨΨt is formed by the eigenvectors corresponding to the K

largest eigenvalues of the matrix Cxxx.

The second, see Algorithm 3, adaptively updates the approx-
imation model via a technique called incremental PCA [12]. It
does not keep signal realizations in memory, instead, it stores
the largest K eigenvalues of CCCxxx, λλλ = {λi}, for i = 1, . . . ,K. This
method requires significantly less memory (K versus N × L),
and shows better performance when compared to Algorithm 2.
Note that in both algorithms, the choice of L depends on the
variability of the signal statistics for each specific application.
In practice, we can cross-validate this parameter to find a
suitable value (e.g., L = 30). We discuss and compare the per-
formance of these two algorithms in the experimental results.

Algorithm 3 Updating ΨΨΨt , xxx using incremental PCA

Require: yyy, L, ΨΨΨt−1, λλλt−1, xxxt−1

Ensure: ΨΨΨt , λλλt , xxxt

1: interpolate yyy → xxxintep.

2: a = ΨΨΨt−1∗(xxxintep − xxxt−1).
3: b = (ΨΨΨt−1a+ xxxt−1))− xxxintep, and then normalize b.
4: c = b∗(xxxintep − xxxt−1).

5: D = 1
L+1

[
diag(λλλt−1) 0

0∗ 0

]
+ L

(L+1)2

[
aa∗ ca
ca∗ c2

]
.

6: Solve the eigenproblem: D = R ·diag(λλλ′) ·R−1, λλλ′ is
sorted in decreasing order.

7: ΨΨΨ′ = [ΨΨΨt−1 b] ·R.
8: update ΨΨΨt as the first K columns of ΨΨΨ′.
9: update λλλt as the first K values of λλλ′.

10: update xxxt as (Lxxxt−1 + xxxintep)/(L+1).

C. Sampling Scheduling Algorithm

According to Proposition 1, minimizing the overall error ε is
equivalent to finding the optimal sampling pattern τττ that min-
imizes (14). We fix the values of K and M in the optimization
process, and hence the approximation error εa is fixed. In this
paper, we assume that the model ΨΨΨt is sufficiently precise and
the dimensions K is large enough so that the term due to the

white noise σ is dominant. Note that if the approximation error
decays exponentially fast with K, there exists always a small K
such that εa � σ. We will show in the experimental part that
meteorological data exhibits such an exponential decay of the
approximation error.

To optimize the scheduling pattern, we would like to find the
sampling pattern that minimizes the following cost function,

Θ(Ψ̃ΨΨ
t
) =

K

∑
k=1

1
λk

, (15)

where λk are the eigenvalues of (Ψ̃ΨΨ
t
)
∗
Ψ̃ΨΨ

t
, and Ψ̃ΨΨ

t
= ΦΦΦtΨΨΨt . Note

that this optimization is equivalent to finding the M rows of ΨΨΨt

that forms the submatrix Ψ̃ΨΨ
t

with the smallest Θ(Ψ̃ΨΨ
t
). However,

it has been already shown that such optimization is NP-hard [7],
[8] and has a complexity O(

(N
M

)
), which is prohibitively high in

practice.
Therefore, we investigate approximate solutions to the

scheduling problem that can be implemented efficiently. These
approximate solutions are usually hard to find because the cost

function Θ(Ψ̃ΨΨ
t
) has many local minima that are arbitrarily far

away from the global minimum. Therefore, proxies of Θ(Ψ̃ΨΨ)
are usually chosen as a cost function for the approximated al-
gorithm with a twofold aim: (i) inducing an indirect minimiza-

tion of Θ(Ψ̃ΨΨ
t
) and (ii) being efficiently optimized by standard

techniques, as convex optimization or greedy algorithms.
In this paper, we extend our recent work [19] about near-

optimal sensor placement for linear inverse problems to solve
the sampling scheduling problem. In [19], we considered a
generic linear inverse problem defined as,

xxx = ΨΨΨααα, (16)

where xxx contains all the possible sensors locations, ΨΨΨ is a
known linear model and ααα a set of parameters that we would
like to estimate. Then, we assumed that we can measure only
a subset of elements of xxx, hence the sensor-placement problem,
and proposed an algorithm based on the greedy minimization
of a proxy: the frame potential [6]. Such a proxy is defined as

FP(ΨΨΨt ,S) = ∑
i, j∈S

∣∣∣〈ψψψi,ψψψ j〉
∣∣∣2 , (17)

where ψψψi is the i-th row of ΨΨΨt and S contains the set of
candidate locations for sensing. Under some mild solutions, we
proved that such an algorithm is near-optimal w.r.t. the RMSE
of the solution. While this proof is quite technical and available
in [19], there is an intuitive explanation of why the frame poten-
tial is a good proxy. Shortly speaking, the frame potential favors
the rows of ΨΨΨt that are closer to be orthogonal to each other.
Therefore, the algorithm selects the sensor locations containing
a large amount of information regarding the measured physical
field.

In this work, we note that the sensor placement problem
and the sampling scheduling problem are extremely similar: we
have a linear inverse problem and we would like to estimate a
set of parameters xxx using the least number of measurements yyy
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without compromising the RMSE of the estimation. Nonethe-
less, there are a set of differences characterizing the latter:

• the model ΨΨΨt that we use to model the data measured by
the sensor network is generally not known a priori and is
time-variant,

• the sensor placement is optimized according to the spa-
tial correlation, while here we consider the joint spatio-
temporal correlation,

• the sensor placement is determined at design-time, while
the sampling schedule is time-varying and optimized at
run-time.

The sampling scheduling algorithm proposed in this paper
is based on an equivalent greedy “worst-out” procedure: as
input we have the signal model ΨΨΨt and we initially consider
the identity matrix of size N as the sampling matrix ΦΦΦt+1. At
each iteration, we remove the row of ΦΦΦt+1 that maximizes the
cost function (17). After N −M + 1 iterations we are left with
an optimized ΦΦΦt+1 that has only M elements different from zero
and has near-optimal performance when reconstructing xxx from
the measurements yyy. Note that if ΨΨΨt satisfies the conditions
given in [19], the obtained sampling matrix ΦΦΦt+1 recovers xxx
from the measurements yyy with a near-optimal RMSE.

In most of the scenarios, the sampling schedule optimized
according to the proposed greedy minimization of the frame
potential has state-of-the-art performance. However, there ex-
ists scenarios where a uniform sampling schedule could be
better [26], such as when the temporal measurements are
characterized by a low-pass spectrum. Therefore, at the end
of the greedy optimization we compare the RMSE obtained
by the greedy and the uniform schedule and opt for the one
with smallest reconstruction error. Note that the reconstruction
error cannot be computed exactly given the uncertainty on the
approximation error and we use the expression provided by
Proposition 1, that bounds the RMSE for any given sampling
matrix ΦΦΦt .

A detailed description of the overall algorithm is given in
Algorithm 4. Note that for the very first block of data during
system startup, the uniform sampling schedule is used for
initialization.

Algorithm 4 Greedy sampling scheduling

Require: ΨΨΨt , M
Ensure: τττt+1 for the next temporal block

1: Initialize the set of removed sampling indices: L = /0.
2: Initialize the set of selected sampling indices: S =

{1, . . . ,N}.
3: Find the first two rows to eliminate, L =

argmaxi, j∈S |〈ψψψi,ψψψ j〉|2.
4: Update S = S \L .
5: repeat
6: Find the optimal row, i∗ = argmaxi∈S FP(ΨΨΨt ,S \ i).
7: Update the set of removed indices, L = L ∪ i∗.
8: Update the set of selected indices, S = S \ i∗.
9: until|S |= M

10: τττt+1=argminτττ

{
ε2

a
λK

+σ2Θ(Ψ̃ΨΨ
t
), τττ is uniform pattern orS

}
.

TABLE II
SUMMARY OF METHODS USED IN EXPERIMENTS

IV. COMPARISONS WITH BASELINE METHODS

In this section, we briefly summarize the state-of-the-art
methods for the sparse sensing problem. They will serve as the
baseline for comparisons in Section V.

The first category of methods [17], [26] is based on
compressive sensing (CS). With the notations introduced in
Section II, xxx is the unknown signal, yyy contains the incomplete
measurements, and ΦΦΦ is a sparse sampling matrix with only M
elements different from zero. We assume xxx to be sparse w.r.t. a
dictionary ΠΠΠ. More precisely, we have xxx = ΠΠΠsss and sss has just a
few coefficients different from zero, that is ‖sss‖0 � N (see [3]
for more details). By approximating the �0 norm with the �1

norm [4], the reconstruction method for the noiseless case is:

min
sss∈RN

‖sss‖1, s.t. yyy = ΦΦΦΠΠΠsss, (18)

while the one for the noisy case is

min
sss∈RN

‖sss‖1, s.t. ‖yyy−ΦΦΦΠΠΠsss‖2 ≤ ξ, (19)

where ξ measures the energy of the noise. Problem (18) and
(19) are both convex and can be solved [4] in polynomial time
using various solvers, in general iterative or based on convex
optimization. In both methods, we use uniform sampling as the
sampling scheduler—τt

j = � jN/M�.
The second category of baseline methods [17] are based

on learning the K-dimensional time-varying model ΨΨΨt and a
reconstruction via OLS as in Algorithm 1. We use two sampling
schedulers, namely, a uniform sampling, and a random sam-
pling where τt

j is randomly selected with a uniform distribution.
Table II lists all the methods (including DASS) that are

evaluated in the experiments. To have a fair comparison, ΠΠΠ
in CS-based methods and ΨΨΨt in OLS-based methods are both
learnt5 by the incremental PCA described in Algorithm 3.

V. EVALUATIONS OF DASS AND

SPARSE SENSING METHODS

In this section we evaluate the performance of DASS and com-
pare it with the state-of-the-art sparse sensing methods. Besides
the experiments on the single-node case, we also verify DASS
in the multi-node case where nearby sensor nodes measure spa-
tially correlated signals. We use two real-world meteorological
datasets as the ground truth, namely Payerne and Valais:

5The experimental results show that K = M is the best choice for CS-based
methods, while K < M is a parameter which needs to be optimized for OLS-
based methods, see Section V-A.
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Fig. 6. Locations of the sensor nodes that collected the data-set Valais.

TABLE III
SUMMARY OF EXPERIMENTAL DATASETS

• Payerne is provided by MeteoSwiss [1]. This dataset
contains 1500 days of continuous measurements for two
physical quantities (temperature and solar radiation),6

which are suitable for studying long-term performance of
DASS. As MeteoSwiss only deployed a few observation
stations across the whole nation, we use Payerne for
evaluating the single-node case.

• Valais is provided by a microclimate monitoring service
provider [13]. A total of 20 stations are deployed in a
mountain valley. Fig. 6 shows six of them, covering an area
of around 18 km2. The deployments were started in March
2012 and collected 125 days of continuous temperature
measurements. We use Valais for evaluating the multi-
node case.

The two datasets are summarized in Table III. For both data-
sets, there are 144 uniformly sampled data points for each day.
We choose the day as the length of each block, that is, N = 144.

One of the targets of this section is to evaluate DASS
and compare it with other algorithms when the sensing de-
vice induces measurement noise. Since we do not know the
groundtruth of the physical field, we assume that Payerne and
Valais represent the real value of the field xxx. Then, we add white
Gaussian noise to simulate the effect of noisy measurements.
We evaluate the algorithms for different SNR of the measure-
ment (as defined in (6)).

Note that the main merit figure considered in this section
is the final reconstruction error under a fixed subsampling
rate γ. Since all sparse sensing schemes directly transmit the
sensing samples without further data compression, two schemes
with the same γ have the same amount of energy consumed
for sensing and communication,7 regardless of which sensing
platform is used.

6We denote by Payerne-temperature the dataset of temperature measure-
ments. The notation is similar for solar radiation.

7The processing costs of the considered sparse sensing methods are
negligible.

Fig. 7. Normalized approximation error for the two considered datasets as
a function of the model parameter K. Note how the error monotonically
decreases with K given the optimality of PCA. Moreover, we highlight how
the approximation error shows an exponential decay with K; thus confirming
our assumption described in Section III-C.

Fig. 8. Optimal ratio K/M of DASS for a fixed subsampling rate w.r.t. the
SNR of the measurement (Payerne-temperature dataset). First, we note that
K/M must be smaller than 1 according to Proposition 1. Second, we note
that for an increasing quality of the measurements we can collect just M ≈ K
samples, meaning that the reconstruction algorithm is less influenced by the
noise and we need less samples. As a conclusive note, we would expect the plots
to be monotonically increasing. However, this is not the case due to the random
nature of the noise model and to the near-optimality of scheduling algorithm.

A. Components of DASS

In this section, we evaluate the key components of DASS,
including the optimal choice of K, the cost function Θ(ΦΦΦtΨΨΨt)
in the sampling scheduling algorithm, and the performance of
adaptive learning algorithms.

Optimal Choice of Dimension K: First, the larger the K
the smaller the approximation error for any dataset, the only
difference being the decay rate of such an error. Such aspect
for the two considered dataset is depicted in Fig. 7, where the
data has been normalized for K = 0. Note that for both datasets
we have an exponential decay of the approximation error as
a function of K. Therefore, there exists a small K for which
the approximation error is negligible w.r.t. the Gaussian noise
corrupting the measurements, as we have previously assumed.

As stated in Proposition 1, the overall reconstruction error
ε is a function of both the approximation error εa(9) and the
cost function Θ(ΦΦΦtΨΨΨt)(15). Generally, εa decreases with K and
Θ(ΦΦΦtΨΨΨt) increases with K, hence there is an optimal choice of
K for minimizing the overall error. The optimal K depends on
the data statistics, the subsampling rate, and the SNR of the
measurement. By cross-validation, Fig. 8 shows the optimal
ratio K/M for Payerne-temperature. We can see that DASS
generally opts for a larger K when the SNR of measurement in-
creases. This is intuitive since with better measurements we can
afford a more complicated model with a weaker regularization.

Sampling Scheduling: The greedy algorithm proposed in
Section III-C (Algorithm 4) finds an approximate solution of
the sampling scheduling problem. By Proposition 1, Θ(ΦΦΦtΨΨΨt)
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TABLE IV
AVERAGE Θ(ΦΦΦt ΨΨΨt) ACHIEVED BY DIFFERENT SAMPLING SCHEDULING

METHODS (γ = 10%, SNR of the measurement = 30 dB)

Fig. 9. Learning curves of DASS (Payerne-temperature, γ = 10%, SNR of the
measurement = 30 dB): comparisons of two online learning algorithms and
a one-time learning algorithm with long backlog of past data. Note that
Algorithm 3 achieves always the lowest error.

determines the reconstruction error. Table IV shows the value of
Θ(ΦΦΦtΨΨΨt) achieved by different sampling scheduling methods
for different datasets. Note that a higher value indicates worse
stability w.r.t. noise. We can see that the greedy algorithm
achieves the best result for the two datasets. In particular, it is
substantially better than uniform sampling for solar radiation
data. For temperature data, since Θ(ΦΦΦtΨΨΨt) of the uniform
sampling strategy is already near the lower bound,8 the greedy
algorithm provides little improvement. In the next section,
we demonstrate how these improvements translate into better
reconstruction performance for DASS.

Learning Over Time: DASS is designed to learn the signal
statistics from past data. In practical scenarios, a long backlog
of data is usually unavailable and thus DASS should be de-
signed to learn the model from scratch. We proposed Algorithm 2
and Algorithm 3 for this task. Fig. 9 shows the learning curves
of these two algorithms over three years of data. As a
benchmark, we considered an offline method that learns the
model from 600 days of past data and is represented by the
red-dotted curve. The offline method derives the transform
matrix once for all from the complete signal. However, using
this matrix may still provide worse results as the signal is
non-stationary.

Note how Algorithm 2 and Algorithm 3 capture the signal
statistics precisely. In particular, it is interesting to note that
even if they use less data—the last 30 days—they are generally
better than the offline method that considers 600 days of data.
It is clear that the non-stationary signal model ΨΨΨt is captured
only by the adaptive on-line algorithms. Moreover, Algorithm 3
with incremental PCA performs better than the buffer-based
Algorithm 2.

In the following experiments, we will only consider
Algorithm 3 due to its better performance and lower memory
requirements.

8The lower bound of Θ(ΦΦΦt ΨΨΨt) is γ = M/N if and only if ΦΦΦt ΨΨΨt is a basis.

Fig. 10. Reconstruction error (RMSE) w.r.t. SNR of the measurement, of
DASS, OLS-uniform, OLS-random, CS and CSN, respectively (γ = 10%).
The SNR is assumed to be accurately estimated. (a) Payerne-temperature.
(b) Payerne-solar radiation. DASS is either on par with the best method, see
(a), or significantly better, see (b). Note that in (b) OLS-random is not visible
in the plot because it is significantly worse than the other methods.

B. DASS Versus Baseline Methods

Here, we compare DASS with the baseline methods in-
troduced in Table II, namely, CS, CSN, OLS-random, and
OLS-uniform.

Known Noise Level: For DASS, we need to choose the
optimal K according to the cross-validation studied in Fig. 8.
A similar parameter tuning is necessary for CSN, where ξ in
Problem (19) represents the noise level. Therefore, whenever
we consider the case of noisy measurements, an estimate of the
SNR of the measurement is necessary to avoid degradations of
the reconstruction quality.

In the first experiment, we assume that the estimation of the
SNR is exact. Fig. 10 shows the comparison results of DASS,
OLS-uniform, OLS-random, CS and CSN, for both temperature
and solar radiation data. First, note that OLS-uniform generally
performs better than the two CS-based schemes, especially in
low SNR regime. In high SNR regime (>35 dB), OLS-uniform,
CS and CSN tend to perform the same. Second, the bad
performance of OLS-random indicates that random sampling
is not a valid sampling strategy for neither temperature nor
solar radiation signals. Third, while DASS and OLS-uniform
perform almost equivalently for temperature data, we can note
that DASS is substantially better for solar radiation data. This
fact is in accordance with the analysis of Θ(ΦΦΦtΨΨΨt) given in
Table IV: if Θ(ΦΦΦtΨΨΨt) is large due to uniform sampling (see
solar radiation data), then the sampling scheduling algorithm of
DASS (Algorithm 4) significantly improves the effectiveness of
sensing while preserving the average sampling rate.

Error in Noise Estimation: In practice, the estimation of the
noise level might be not exact. Here, we study the performance
deviation of the considered algorithms when there is an error
in such estimates. More precisely, we fix all the parameters and
we vary the estimation error of the SNR and then measure the
performance of the algorithms in terms of RMSE.

Fig. 11 shows the reconstruction error with respect to the
estimation error of SNR, whereas the true SNR is 30 dB. We
can see that DASS performs the best, and generally DASS and
OLS-uniform are both stable w.r.t. errors in the SNR estimation.
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Fig. 11. Reconstruction error (RMSE) w.r.t. estimation error of the SNR of
the measurement, of OLS-uniform, DASS and CSN, respectively (Payerne-
temperature, γ = 10%). The true SNR is 30 dB. Note that the proposed method
is more robust to errors in the estimation of the noise power, when compared to
other methods.

However, the performance of CSN degrades severely when the
SNR is underestimated. The reason behind this large gap is that
DASS and OLS-uniform both solve a least square problem (11),
which could automatically reveal the unknown noise variance
after optimization. On the contrary, CSN requires a known
noise variance in the objective function, and hence it can be
affected severely if the SNR is not correctly estimated a priori.

According to results given in Figs. 10 and 11, DASS is both
more accurate and robust when compared to the state-of-the-art
sparse sensing methods.

C. DASS on Multiple Sensor Nodes

As discussed in Section II, the concept of DASS can be ex-
tended to multiple sensor nodes by concatenating the collected
samples in a single vector yyy and using the same strategy as for
the single-node case.

Merging the data of all the spatial nodes possibly augments
the correlation; DASS may exploits such correlation to reduce
the sampling rate. In fact, if all the measurements collected
by the sensors are linearly independent then DASS generates
the same sampling scheduling that would have been optimized
for each sensor individually. However, if there exists some
correlation between the different sensor nodes, then DASS
jointly optimizes the sensor scheduling so that the total average
sampling rate is reduced.

We denote by Joint DASS the scheme that jointly reconstructs
the signals of the WSN (Fig. 4), and Independent DASS the
scheme that independently reconstructs the signals of each
node. Note that in both schemes, sensor nodes are operating in a
purely distributed manner; the difference is that Joint DASS ag-
gregates the sensed data of all nodes and jointly processes them.

Fig. 12 shows the ratio between the subsampling rates of
Joint DASS and Independent DASS, using the data-set Valais.
We only show up to six nodes because the benefit stabilized
at 30% with more than 4 nodes in the experiments. We can
see that as the number of sensor nodes increases, the required
sampling rate of Joint DASS gradually decreases. In particular,
with 4 nodes we can reduce the number of samples by 70% with
Joint DASS. Therefore, exploiting the spatial correlation further
enhances the energy reduction of DASS. On the other hand, the
benefit flatten out when we consider 5 or more sensor nodes.
The intuition behind this phenomenon is that as the number of
nodes increases, there are more nodes far apart from each other
and hence the spatial correlations reduce accordingly.

Fig. 12. Ratio of sampling rate between Joint DASS and Independent DASS,
such that both schemes have the same reconstruction error (Valais, SNR of the
measurement = 20 dB). Note that the joint scheme always reduces the number
of samples required, this is due to the spatial correlation available in the
sampled data.

Fig. 13. Two approaches to sensing in a WSN node. (a) Traditional scheme:
collect periodical samples at a frequency f , compress and transmit the com-
pressed data. (b) DASS: collect samples with an optimized temporal pattern at
an average frequency γ · f and transmit the raw data.

VI. ENERGY SAVING OVER TRADITIONAL DATA

COLLECTION SCHEMES

In Section V, we have shown that DASS achieves better sens-
ing precision w.r.t the state-of-the-art sparse sensing schemes.
In this section, we study the overall energy saving of DASS
w.r.t. the traditional data collection schemes [20], [27]. The
energy saving is particularly significant on platforms where
the energy consumed for sensing is more pronounced. This
is intuitive since DASS can substantially reduce the number
of sensing samples. Nevertheless, our analysis shows that this
saving is also noticeable on platforms with small sensing cost,
e.g., a Tmote-sky node [24].

The traditional data collection schemes typically sample the
physical field at a high frequency f as in (1) and then compress
the samples to reduce the communication rate, see Fig. 13(a).
In contrast, DASS collects measurements using an optimized
sampling pattern and a reduced average sensing frequency γ · f ,
where γ < 1. Then, each sensor node transmits the raw data
points without any compression, see Fig. 13(b). In both tradi-
tional schemes and DASS, we aim at precisely reconstructing
the signal xxx. Furthermore, we restrict the discussion to the
single node scenario. Our scheme can exploit both temporal
and spatial correlations among the data gathered. However,
the traditional schemes can only achieve energy savings by
exploiting the temporal correlation on a single sensor node,
because joint compression from multiple sensor nodes requires
higher energy cost for the inter-node communications.
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Fig. 14. Relative energy saving of DASS (γ = 10%) w.r.t. traditional data
collection schemes. The saving depends on the sensing platform (value of rs)
and the compression ratio rc in traditional sensing. The “star” and “circle”
markers represent the energy saving on Tmote-sky, when DASS achieves the
same reconstruction error as traditional sensing using LTC and DCT-LPF
compression methods [27] (on dataset Payerne-temperature). The dashed lines
indicate further savings when r increases, that is for sensors with higher energy
costs.

It is clear that DASS reduces the energy consumption for the
sensing operations over the traditional scheme. However, DASS
may not necessarily consume less communication energy, since
the compression ratio rc

9 used in traditional sensing is generally
better than 1/γ. In fact, existing data compression schemes can
achieve a compression ratio rc of 1.5 ∼ 5 for lossless coding
[20], and 5 ∼ 50 for lossy coding [27], while a typical value of
γ used in DASS is 0.1. Hence, there is a tradeoff between the
energy saved on sensing and communications.

Such a tradeoff between the different energy consumption
depends on platform-specific parameters. In particular, we de-
note the energy consumption for collecting and transmitting
one sample as Esensor and Eradio, respectively. An interesting
figure is the ratio between the two energy values, that we
denote as rs = Esensor/Eradio. Intuitively, the larger rs, the larger
the energy savings obtained by DASS. For the traditional data
collection schemes, we assume that the compression step has a
negligible energy cost. For DASS we use a subsampling rate of
γ = 0.1, which means that 10% of the original signal is sampled
and transmitted.

Under these assumptions, we can quantitatively analyze the
relative energy savings of DASS w.r.t. the traditional sens-
ing as a 2-D function of the platform parameter rs and the
compression ratio rc achieved by the compression stage of
the traditional scheme. Such function representing the energy
saving is plotted in Fig. 14. We see that there is a line, indicated
by the zero value, that defines where DASS is more energy-
efficient than the traditional schemes. Above the line, a WSN
consumes less energy if it uses DASS and vice versa. Note
that DASS is only less efficient in the scenarios where the
compression ratio rc is very high and the platform parameter
rs is very low.

We also looked at the energy savings for a plausible real
world scenario. More precisely, we consider Tmote-sky, a low-
power sensing platform widely used in WSNs [24]; it has
a photodiode sensor that measures the light intensity of the

9rc equals uncompressed size/compressed size.

Fig. 15. Energy consumptions of a Tmote-sky sensor: (a) while the node
measures one sample of light intensity (two-bytes), Esensor = 7.5 × 10−6 J;
(b) while the node transmits a packet with 24 bytes of payload, 24 ·Eradio =
6.9×10−4 J.

surroundings and communicates with others through short-
range radio. We measured the two energy consumptions Esensor

and Eradio of Tmote-sky in a set of experiments, and an example
of the results is given in Fig. 15. In particular, the experiments
indicate that rs = 0.26. To evaluate the energy consumption of
a traditional scheme, we need to choose a specific compression
algorithm and measure the achieved rc. Zordan et al. [27]
have recently compared various lossy compression algorithms
and showed that DCT-LPF [27] achieves the best performance
in terms of compression ratio. However, it is also a complex
algorithm and may have a significant energy consumption on
a resource-limited platform such as Tmote-sky. Therefore, we
also consider a lightweight algorithm, LTC [21], that achieves
the lowest energy consumption on WSN nodes if the energy
cost for compression is considered.

Here, we ignore the energy cost of compression and we
compare both algorithms with DASS. Note that, if we consider
computational energy cost, the benefit of DASS will be even
larger since it requires minimal on-board computation. We
implement and evaluate the two algorithms on the dataset
Payerne-temperature, and record the corresponding compres-
sion ratio rc when their reconstruction errors are the same as
those achieved by DASS.

The “star” and “circle” markers in Fig. 14 show the energy
savings of DASS over a Tmote-sky that compresses the data
with LTC and DCT-LPF, respectively. The energy savings for
the two cases are equal to 50% and 35%. It is worth mentioning
that the compression ratios achieved in Fig. 14 (“star” and
“circle” markers) are specific of the considered meteorologi-
cal datasets. There might be extreme cases where traditional
compression schemes achieve a very high compression ratio
(e.g., rc = 100), and the respective saving falls below zero.
However, we observe in Fig. 14 that the energy savings can
still be obtained in such cases, if rs increases due to a higher
energy cost for sensing, as denoted by the dashed lines. This
scenario could be realistic for many WSNs, in particular those
using sensor belonging to the following two classes:

• Sensors with high energy consumption: for example an air
pollution sensors consume 30 ∼ 50 mW instead of the
3 mW of a Tmote-sky’s light sensor.
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• Sensors with long sampling time: for example the ane-
mometer, a sensor that measures wind’s direction and
strength, requires 1 ∼ 3 seconds of continuous measure-
ment per sample instead of the 4 ms of the Tmote-sky’s
light sensor.

VII. CONCLUSION

In this paper, we proposed DASS, a novel approach for sparse
sampling that optimizes sparse sampling patterns for precisely
recovering spatio-temporal physical fields. DASS is based on
three main blocks. First, it adaptively learns the signal statistics
from past data. Second, it dynamically adjusts the sampling
pattern according to the time-varying signal statistics. Third,
it recovers the signal from the limited amount of collected
samples and according to the learnt signal statistics.

We demonstrated the effectiveness of DASS through exten-
sive experiments using two real-world meteorological datasets.
The results show significant improvements over the state-of-
the-art methods. These improvements are more pronounced in
the presence of significant spatial and/or temporal correlation
in the sampled data by WSN.

We evaluated DASS on static WSNs; however, DASS is flexi-
ble and can be applied to other sensing scenarios such as mobile
WSNs. For instance, sensors are installed on top of buses for
collecting various environmental data along their trajectories
[2]. The collected samples show strong correlation due to the
fixed routeperiodically takenby thebuses. In futurework,wewill
analyze the advantages of an optimized sensing schedule in such
cases, where the constraint is not the energy consumption but the
relatively slow speed of sampling of certain pollution sensors.

APPENDIX A
EXTENSION OF DASS TO CORRELATED NOISE

In this appendix, we show how DASS deals with a sensor
network with correlated sensing noises.

We assume the noise ωωω to have zero mean and a correlation
matrix Σωωω and recall that our measurements are defined as

xxx+ωωω,

where xxx is the actual physical field that we are measuring.
We define ΩΩΩ = (Σωωω)

−0.5 and we whiten the measurements
according as

ΩΩΩ(xxx+ωωω) = xxx′+ωωω′,

where the noise ωωω′ is now i.i.d. Therefore, we note that DASS
can be easily applied to sensing scenarios where the noise is not
i.i.d. by whitening the measured data before the processing.
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