Journal article

Laser interactions with embedded Ca metal nanoparticles in single crystal CaF2

Single crystal calcium fluoride (CaF2) is an important material for vacuum-ultraviolet optics. Nevertheless, prolonged exposure to energetic radiation can color the material by producing calcium metal nanoparticles. We compare the effectiveness of laser conditioning treatments at wavelengths ranging from the near infrared to the deep ultraviolet in removing this coloration. Treatments at 157, 532, and 1064 nm can significantly reduce the visible coloration due to nanoparticles. In contrast, irradiation at 248 nm has little effect at fluences below the damage threshold for the material employed in this work. We present evidence that the effect of laser irradiation on coloration is principally thermal and is largely confined to the first 50 ns after each laser pulse. We attribute the wavelength dependence of the bleaching process to the wavelength dependence associated with Mie absorption by metal nanoparticles. The consequences of these observations with regard to laser conditioning processes in bulk optical materials are discussed.


Related material