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Résumé 
!

Dans l'étude présentée ici, nous avons caractérisé systématiquement le circuit, la 

composition cellulaire et la connectivité synaptique de couche 1 (L1) du cortex 

somatosensoriel de rats juvéniles (13-16 jours post-natale). Les paramètres électro-

physiologiques et morphologiques ont été mesurés en utilisant la technique du patch-

clamp suivie d'une coloration histochimique et d’une reconstruction morphologique en 

3D. Suivant la convention de classification de Pétilla, nous avons classifié les cellules 

en fonction de leur type d’activité, et identifié cinq types des cellules par leurs 

propriétés électro-physiologiques: ‘classical Non-Accommodating Cells’ (cNAC), 

‘classical Accommodating Cells’ (cAC), ‘burst Non-Accommodating Cells’ (bNAC), 

‘classical Stuttering cells’ (cSTUT) et ‘classical Irregular Spiking cells’ (cIR). Une 

première classification subjective des différents types morphologiques des cellules a 

identifié les types suivants: ‘Neurogliaform Cell with Dense Axon’ (NGC-DA), 

‘Neurogliaform Cell with Sparse Axon’ (NGC-SA), ‘Horizontal Axon Cell’ (HAC), 

‘Descending Axon Cell’ (DAC), ‘Large Axon Cell’ (LAC) et ‘Small Axon cell’ (SAC). 

Une classification objective a affinée et validée la classification initiale à l'aide des 

méthodes statistiques de l'analyse de la composante principale (PCA) et de l’analyse du 

discriminant linéaire (LDA). 

Nous avons aussi étudié les règles de connectivité entre les cellules de la couche 

L1. Nos résultats montrent que la majorité des cellules sont connectées via une 

connexion lente médiée par les récepteurs GABAB, comportant parfois une composante 

GABAA rapide. La répétition des stimulations produit une diminution de l’amplitude 

des potentiels post-synaptiques mesurés, un effet qui n'a pas été observé lors 

expériences de patch-clamp en mode perforant, mode qui maintient l’intégrité du milieu 

intracellulaire. Nous proposons que l’atténuation de la réponse mesurée soit causée par 

la dilution des composants intracellulaires et des messagers secondaires nécessaires à la 

signalisation des réponses métabotropiques médiées par les récepteurs GABAB. La 

reconstruction morphologique en 3D des paires de cellules connectées a montré la 

présence de multiples synapses par connexion, avec une moyenne de 9 contacts 

présumés par connexion détectée par électrophysiologie. La conductance symétrique 

des jonctions ‘gap’ était de 0,054 ± 0,03.  

Dans d'autres expériences, nous avons étudié la connectivité inter-laminaire, la 

modulation de l'activité dans les dendrites apicales par les neurones de la couche L1, 
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ainsi que les modes d'expression des gènes en L1. Les résultats, bien que non 

concluants, fournissent des indications utiles pour les futures études. 

 

Mots de clé: neocortex, couche 1, inhibition, interneurones, GABA récepteurs, dendrites 

apicales, connectivité inter-laminaire, qPCR!
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Abstract 
In this thesis, we systematically characterised the circuitry, cellular composition 

and synaptic connectivity of layer 1 (L1) of the somatosensory cortex of juvenile rats 

(post natal days 13-16). Electrophysiological and morphological parameters were 

measured using single and multi-cell patch-clamp electrophysiology followed by 

histochemical staining and 3D morphological reconstruction. Guided by the Petilla 

convention, we classified cells in term of their firing patterns, identifying five 

electrophysiological types: classical Non-Accommodating Cells (cNAC), classical 

Accommodating Cells (cAC), burst Non-Accommodating Cells (bNAC), classical 

Stuttering cells (cSTUT) and classical Irregular Spiking cells (cIR). We created first a 

subjective and then an objective classification of different morphological cell types. The 

subjective classification identified the following types – NGC-DA, NGC-SA, HAC, 

DAC, LAC and SAC. The initial classification was refined and validated using PCA 

and LDA. 

We also studied connectivity patterns among L1 cells. Our results showed that a 

majority of the cells were connected by a slow GABAB mediated inhibitory connection, 

with a fast GABAA component. Multiple repetitions of stimulation produced a 

prominent run-down of postsynaptic potential amplitudes, which was not seen in 

perforated patch-clamp recordings that maintained the intracellular milieu. We propose 

that the run-down was due to the dilution of intracellular components and depletion of 

secondary messengers necessary for signalling of postsynaptic metabotropic GABAB 

receptor mediated responses. 3D morphological reconstructions of these pairs of cells, 

showed the presence of multi-synapse connections with an average of 9 putative 

contacts per detected electrophysiological connection. The average coupling co-efficient 

of gap junctions was 0.054 ± 0.03 with symmetrical conductance.  

In additional studies, we investigated patterns of inter-laminar connectivity, the 

modulation of apical dendritic activity by L1 neurons and patterns of gene expression in 

L1. We hope that the results these studies – single cell electrophysiology, morphology 

and connectivity analysis  - provide useful hints for future studies of neocortical L1. 

 

Key words: neocortex, layer 1, single cell properties, inhibition, interneurons, GABA 

receptors, apical dendrites, inter laminar connectivity, qPCR.!
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Chapter 1 Introduction 
This thesis presents a systematic study of Layer 1 (L1) of the somatosensory 

cortex of juvenile rat (post-natal day 13-16). The study focuses on cell morphology, 

electrophysiology, and connectivity. In the appendix, we report additional experiments 

in which we explored the connections of L1 cells to other layers, gene expression 

patterns, and the influence of layer 1 cells on apical dendritic processing in L5 

pyramidal cells. 

Cellular morphologies were reconstructed in 3D using Neurolucida and 

classified into six groups, first using subjective methods and subsequently through an 

objective classification scheme. Each group contained a roughly equal number of 

neurons. Measurements of their electrophysiological behaviour and subsequent 

classification using the Petilla convention identified five types of neurons, The 

prominent electrophysiological type was cNAC. L1 interneurons, forming circuits, 

included both synaptic and electrical gap junctions. All synapses were inhibitory. We 

observed three different kinds of post-synaptic responses mediated by GABAA, GABAB 

and GABAA+B receptors respectively. The gap junctions were symmetrical with similar 

conductance in both directions.  

Our study of interlayer connectivity showed very low connection probabilities. 

Gene expression patterns in L1 were mostly similar to other interneurons, except for the 

presence of certain neuropeptides. We did not observe any measurable effect of L1 cells 

on dendritic processing by pyramidal cells in L5. 

Evolution of the Brain  
All living cells respond to external and internal stimuli and engage in signal 

processing. In most metazoans, however, a subset of unique somatic cells form an 

organised constellation of cells (neurons) specialised for the repeated conduction of an 

excited state to other neurons (Kaas John H, Evolutionary Neuroscience, 2009). This is 

the nervous system. 

According to a hypothesis proposed by Parker in 1919 (The Elementary 

Nervous System, Parker, 2012), the “neuromuscular system” evolved in three major 

stages. At first, it consisted only of muscles, which responded directly to environmental 

stimuli. This 'neuroid' transmission can be considered the forerunner of nervous activity. 

The second step saw the evolution of a receptor-effector system in which the receptors 

arose from epithelial cells positioned close to the differentiated muscles cells. In the 

final stage, a third type of cell, the protoneuron, created connections between the 

sensory and effector cells forming a true nervous system. One of the first uses of this 
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‘proto’ nervous system was the detection of changes in ambient light and the chemical 

environment.  

Over time, changes in environment resulted in the rapid adaptation of organisms. 

Tracing evolution to the nearest common ancestor of the mammals, one of the main 

changes of the nervous system was the increase in neuron number and complexity of 

connectivity. This increase resulted in the appearance of dedicated areas for specific 

function. The neocortex probably arose as a result of such a specialisation in 

mammalian-like animals in the early Mesozoic era.  

The Development of the Neocortex  
In development, the embryonic nervous system forms at a relatively late stage, 

after the formation of the endoderm, mesoderm and ectoderm. The neural plate forms 

from a sheet of ectodermal cells, guided by gradients of transcription factors. It then 

involutes to form the neural tube. Helped by polarity molecules (Hox, Shh, BMP and 

Retinoic acid), the anterior and posterior ends of the neural tube differentiate into the 

prosencephalon, mesencephalon and the diencephalon. The prosencephalon, develops 

further to give rise to the telencephalon and eventually the cerebrum and the neocortex. 

Lamination in the neocortex involves two zones of proliferation – the marginal 

zone and ventricular zone. Neurogenesis occurs mainly in the ventricular zone, while 

the marginal zone splits consecutively to give rise to the subventricular zone, 

intermediate zone, the subplate and the cortical plate (CP) radiating outward in the 

direction of the pia (Principles of Neural Science, Kandel et al., 2012).  Radial glial 

cells provide scaffolding for the migration of newly divided precursors in the 

Ventricular Zone (VZ) and the Sub ventricular zone (SVZ) to reach their destined layer 

in the cortical plate.  

In 1893, Ramon y Cajal and Magnus Gustaf Retzius used Golgi staining to 

characterize what are now known as Cajal Retzius cells (Cajal, 1995; Meyer et al., 

1999). It is now known that these cells secrete an extracellular matrix protein called 

Reelin that plays a vital role in the formation of the neocortical layers, (Lacor et al., 

2000; Meyer and Goffinet, 1998), acting as a dissociation signal for clustered migrating 

neurons. In the early stages of development, Cajal Retzius cells also contribute to 

spontaneous activity that helps to regulate the formation of electrophysiologically active 

cell networks (Aguilo et al., 1999). Studies show that in rats, the axons shrivel up and 

disappear around postnatal day 11 (P11), causing the cells to gradually lose their 

characteristic morphology (Hestrin and Armstrong, 1996; Portera-Cailliau et al., 2005) 

Along with Cajal Retzius cells, L1 is also the first recipient of developing interneurons 
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originating in and migrating from the ganglionic eminence (Wonders and Anderson, 

2006). These interneurons, along with the pyramidal cells make up the entire population 

of neurons in the neocortex. 

One the most striking features of the neocortex is the cortical column.  A cortical 

column is a tightly interconnected vertical array of neurons driven by a small number of 

specific inputs (Mountcastle, 1957). For example, in cats and humans, each ocular 

dominance column receives input from one eye (Swisher et al., 2010) and  each column 

in the rat barrel cortex receives input from a single whisker (Woolsey and Van der 

Loos, 1970). Within the column, cells in different layers (1 to 6) connect among 

themselves according to pre-defined rules. This leads to the formation of localised 

circuits and the compartmentalisation of neural activity. This basic columnar pattern 

repeats across the whole cortex (Fulton, 1949; Toyama et al., 1974; Peters and Jones, 

1985) leading to the self-regulation of local activity, modulation of long range activity, 

finally resulting in larger-scale changes in downstream signals to peripheral targets.  

Layer 1  
Layer 1 is mainly made up of long-range fibres and sparse interneurons and is 

the thinnest of all layers in the neocortex. It is also the least populated layer (Hestrin and 

Armstrong, 1996). 

To date, most L1 studies have focused on the properties of individual cells and 

on long-range connectivity between L1 cells and other brain areas and regions. 

Advances in staining for cellular markers have made it possible to identify a 

wide variety of other L1 morphologies. However, there is still no consensus on their 

classification. Using Golgi and Nissl staining, in the developing occipital cortex of rats 

(P2 to P35) Bradford et al. identified five morphological types of L1 neurons: foetal 

horizontal cells, persisting horizontal cells, vertical cells, classical non-pyramidal cells 

and non-axonal cells (Bradford et al., 1977). By contrast, a study of juvenile rats (P0 - 

P21) by Zhou and Hablitz, identified only four types: Cajal-Retzius cells, Cells with 

Confined Axons, Cells with Axons not confined to Layer 1 and Vertical Axon Cells 

(Zhou and Hablitz, 1996). One of the main reasons for this disparity could be the use of 

different methods. While the first study used Golgi and Nissl staining, the second used 

single cell biocytin filling. The advantage of the biocytin method is that it makes it 

possible to quantify subcellular structures such as spines and boutons – additional 

information that can modify cell classification. 

Subsequent landmark studies have matched morphological data against data 

from single cell electrophysiology. An important first step was the identification of L1 
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cells as interneurons. In their immunohistological study of cat visual cortex, Gabbott 

and Somogyi observed that all L1 neurons are positive for the inhibitory 

neurotransmitter GABA (Gabbott and Somogyi, 1986).  

In 1996, a study of the rat somatosensory cortex  (P7 to P19) by Hestrin and 

Armstrong (Hestrin and Armstrong, 1996) measured the electrophysiological properties 

(spike halfwidth, resting membrane potential input resistances) of three morphological 

types - Axon Horizontal Cells (AHC), Axon Descending Cells (ADC) and 

Neurogliaform (Ngf) cells but did not use the results to propose a morpho-electrical 

classification. A more recent study by Williams et al., (Wozny and Williams, 2011) 

classified L1 cells from the adult rat somatosensory cortex (P24 - P36) into four 

morphological types, including Neurogliaform Cells (NGFC), and Cells with Vertical 

Axons, and four electrophysiological types: Regular Spiking (RS), Fast Spiking (FS), 

Burst Spiking (BS) and classical Accommodating Cells (cAC). By combining these 

individual properties, they identified four morpho-electrical groups – cAC and NGFC; 

cAC and FS; BS, cAC and NGFC and finally, cAC and BS. Another study by Bekkers 

et al. used transgenic GAD67-GFP (Glutamate decarboxylase - 67 – Green Fluorescent 

Protein) P14-P25 mice to categorize L1 cells in the anterior piriform cortex (Suzuki and 

Bekkers, 2010a, 2010b), this time finding seven different morpho-electrical classes, 

As seen, each of these classification strategies group L1 cells in different ways. 

There are several reasons for these discrepancies. These include the choice and 

particularly the age of the model system, the region of the brain under investigation, the 

definitions of the threshold currents used for electrophysiological classification, and 

especially, the quality and ‘completeness’ of morphological reconstructions.  

Regardless of these issues, new information has led to a resurgence of interest in 

the functional role of layer 1, which is now believed to play a major role in neocortical 

information processing. More specifically, L1 has been shown to play a vital role in the 

modulation of input from subcortical areas and from other areas of the cortex. A large 

body of work has demonstrated the role of L1 as a major recipient of short and long-

range fibres. These fibres projecting to L1 can be categorized as columnar or non-

columnar. Columnar fibres are made up of axons from L2/3 interneurons and PCs, 

L5PCs (Oberlaender et al., 2011) and Martinotti cells (MCs) (Wang et al., 2004).  Most 

non-columnar inputs come from long-range fibres, many of which originate in primary 

motor cortex and secondary somatosensory cortex (Cauller, 1995). Thalamocortical 

inputs arrive primarily from the posterior nucleus of the thalamus (Oda et al., 2004; 

Rubio-Garrido et al., 2009).  
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Letzkus et al. have recently demonstrated the functional and behavioural 

significance of these long-range fibres by studying how cholinergic long - range fibres 

modulate L1 activity in fear responses, and the way basal forebrain stimulation affects 

cellular firing frequencies in L1. They show that application of NBQX, an AMPA 

receptor blocker, decreases the baseline, but not the response profile. Nicotinergic 

blockers (MEC and MLA) completely block the control response profiles (Letzkus et 

al., 2011).  

In another in vivo study, Palmer et al. show that interhemispheric inhibition is 

mediated by callosal fibres that modulate the activity of L1 interneurons, indirectly 

influencing the apical dendritic activity of pyramidal cells (Palmer et al., 2012).  

A study by Chu et al. suggests that synaptic connections between L1 cells are 

mediated by a non-classical form of GABAA receptor with slower dynamics than the 

GABAA connections typically found in FS cells (Chu et al., 2003). In general, however, 

there have been relatively few studies of connectivity between layer 1 cells and other 

cells in the same layer.  

In sum, we lack a comprehensive picture of the morphology and function of the 

different types of neurons present in L1; of their long-range connectivity or of the way 

they interact within the layer. The work presented in this thesis attempts to fill this gap 

by describing their distinct electrophysiological and morphological properties, their 

cross-layer circuitry and, most importantly, their local connectivity. 

Methods of study 

In vitro methods 
Understanding the design of an individual layer in the neocortex requires precise 

measurements of single cell electrophysiology, unbiased morphological analyses, the 

study of gene expression patterns, and the characterisation of local and long-range 

connectivity and circuits, which are best obtained using in vitro methods. The main 

methodological challenge is to maintain physiological conditions so that the individual 

neurons are not perturbed and the properties of the circuitry remain as close as possible 

to biological values 

Slices are easier to handle than full brains. However, in vitro and in vivo studies 

often yield contrasting results. In vitro studies use traumatised tissue in which many 

connections have been severed. It is hardly surprising, therefore, that they have 

physiological properties that are very different from those observed in vivo. The major 
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differences between in vivo and in vitro electrophysiology are elegantly explained in 

studies by Thomson et al (Thomson and Deuchars, 1997; Thomson et al., 1996), which 

showed that the probability of connections between pyramidal cells increased threefold 

when the slice thickness increased from 400 to 500 microns. Given that inhibitory 

interneurons on and slightly below the surface of the slice are sensitive to ischemia, 

hypoxia and tissue damage, increasing the thickness of the slice increases the number of 

healthy interneurons contributing to connectivity. 

Observations of circuit behaviour in in vitro preparations may also be 

incomplete or incorrect since slices have no long-range connections. This poses a 

problem, especially in the neocortex, whose in vivo activity is driven by vital 

modulatory inputs from the thalamus. Given these issues, caution is required when 

hypothesizing in vivo function from in vitro data. 

Nonetheless, in vitro methods also have many advantages. Slice 

electrophysiology allows us to study the brain at the cellular and molecular level 

without having to deal with animal immobilisation and anaesthesia, or with problems 

related to the depth of penetration of patch pipettes (Steriade, 2001). In particular, they 

allow experiments requiring precise control over the extracellular ionic environment 

and the use of glass pipettes and other probes. In vitro techniques have made it possible 

to investigate the actions of neurotransmitters on specific types of neurons, following 

the blockage of synaptic transmission. Different methods and angles of slicing have 

contributed to the study of previously inaccessible neuronal types and of spontaneous 

and evoked rhythmic activities. Single neuron patch clamping in slices has made an 

enormous contribution to understanding the electrical properties of different neuronal 

types and their role in the generation of spontaneous electrical activity. The same 

technique has also made it possible to study the transformation of neuronal signals as a 

function of membrane potential and voltage and ligand gated conductances. Finally, 

patch clamping has been extensively used in connectivity studies, elucidating and 

classifying the structures of local circuits up to 100 to 200 µm in diameter (Perin et al., 

2011).  

Classification of neocortical cells 
 One of the key issues in the study of any part of the brain is the classification of 

its component cells.  Early studies made a broad distinction between pyramidal and 

non-pyramidal cells. However the variety of cell morphologies present in the neocortex 

was only fully recognized after Camillo Golgi's invention of the Golgi stain in 1873 and 
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Ramon y Cajal's systematic layer by layer study of human brain samples, using the new 

method (Peter and Jones, Cerebral Cortex, Plenum Press, 1984). 

 Subsequent work on the classification of cortical cells has used a variety of 

molecular and electrophysiological methods. The late 1970s saw the first use of specific 

molecular markers One of the first results was the discovery that only non-pyramidal 

cells express Gamma amino decarboxylase (GAD). This made it possible to use GAD 

as a marker (Ribak, 1978; Ribak et al., 1979). Other markers were subsequently 

discovered in subpopulations of non-pyramidal cells with distinct morphologies. These 

include calcium binding proteins such as Calretinin, Calbindin and Parvalbumin and 

neuropeptides like Vasoactive intestinal peptide (VIP), Cholecystokinin (CCK) and 

Somatostatin (SST) (Kubota and Kawaguchi, 1994; Kawaguchi, 1995; Kawaguchi and 

Kubota, 1997; Kawaguchi and Kondo, 2002). 

 Molecular and morphological classifications were subsequently improved and 

enriched through the use of single cell patch clamping. The technique, introduced by 

Neher and Sakmann in 1981 (Neher et al., 1978; Hamill et al., 1991), made it possible 

to fill individual cells with biocytin and thus to obtain fine-grained reconstructions of 

neuron morphologies. They also enabled measurements of the electrical properties of 

individual cells, allowing robust classifications based on their combined electrical and 

morphological properties. 

 Further advances in the field have made it possible to measure concentrations of 

gene transcripts, for populations of single cells, permitting the development of 

classification techniques that enrich the methods mentioned above with transcriptomics 

(Cauli et al., 1997). It should be noted, however, that the use of these methods is fraught 

with technical difficulties - especially when cells are small and fragile - conditions in 

which it is difficult to obtain all three classes of data, while maintaining high quality. 

The ultimate aim of any classification experiment is to obtain clean datasets 

from different domains that can be combined to give a near complete description and 

definition of a given cell type. Although much has already been achieved, this is still 

very definitely a work in progress and many problems remain to be resolved. 

Neural micro-circuitry 
A second critical issue in any study of the cortex is how to identify the short-

range connections between neurons and the local circuits they form. Until the recent 

introduction of optogenetics (Zemelman et al., 2002; Lima and Miesenböck, 2005),  the 

most effective method available was multipatch clamping. 
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In 1997, Markram, Lubke and Sakmann used this multipatch clamping to 

measure subthreshold excitatory PSPs between pyramidal cells in the necortex of 

juvenile rats, thus identifying connections between these neurons (Markram et al., 

1997). While this initial work used just two electrodes, subsequent developments made 

it possible to use up to 12 electrodes simultaneously, allowing the identification of 

repeated connectivity motifs (Perin et al., 2011)  

The main limitation of multipatch clamping is the difficulty and cost of 

constructing and operating setups with large numbers of pipettes. The currently 

preferred alternative is to use optogenetic techniques. Optogenetics make it possible to 

stimulate very large numbers of cells. Given however that the new techniques can only 

detect suprathreshold PSPs, recording subthreshold cellular responses (essential for the 

detection of connections) still requires patch clamping. In brief, we still do not have the 

ability to fully characterize the connectivity and activity of local microcircuitry.  



Chapter 2 Materials and Methods 

Slice preparation   
Experiments were carried out according to Swiss National and Institutional 

guidelines. 13 to 16 day old, non-anaesthetised Wistar rats were rapidly decapitated and 

their brains carefully removed and kept in iced, artificial cerebrospinal fluid (aCSF). 300 

µm thick parasaggital slices, approximately 1.7 - 2.2 mm lateral to the midline slices were 

cut on an HR2 vibratome (Sigmann Elektronik, Heidelberg, Germany) with a 5° incline. 

The primary somatosensory cortex (SSC) on the slice was located by the anterior extremity 

of the hippocampus (bend of the CA3 region). Hind limb SSC was designated as ± 1 mm 

from this extremity and all cells in L1 were patched within this region. The slices were 

incubated at 35°C for 30 minutes and left at room temperature in the holding chamber, 

until recording.  

Electrophysiology 
Cells were visualised by Infrared Differential Interference Contrast microscopy 

(IR-DIC) (Olympus BX51WI microscope, PCO CCD imaging or VX55 Photonics camera) 

(Stuart et al., 1993). L1 cells were selected according to their positions (not more than 100 

microns away from the pia). Cells at the layer 2-3 interface were avoided. Slices kept on 

the electrophysiological setup were continuously superfused with aCSF containing (in 

mM) 125 NaCl, 25 NaHCO3, 2.5 KCl, 1.25 NaH2PO4, 2 CaCl2, 1 MgCl2 and 25 D-glucose, 

bubbled with 95% O2 – 5% CO2. The intracellular pipette solution contained (in mM) 110 

Potassium Gluconate, 10 KCl, 4 ATP-Mg, 10 Phosphocreatine, 0.3 GTP, 10 HEPES and 

13 Biocytin, adjusted to 290 - 300 mOsm/Lt with D-Mannitol (25 - 35 mM) at pH 7.3." 

Chemicals were sourced from from Sigma Aldrich (Stenheim, Germany) or Merck 

(Darmstadt, Germany). Gabazine (SR 95331 hydrobromide Ref. no. 1262, Tocris 

Biosciences) was used at a working concentration of 20 µM, diluted from a 20 mM stock 

solution and CGP55845 (Tocris Biosciences, Ref. no. 1248) was used at working 

concentration of 4 µM, diluted from a 10 mM stock made in DMSO. Care was taken to 

keep the working concentration of DMSO to levels less than 1 in 1000 to avoid any 

chances of cellular toxicity.  

Multiple somatic whole cell recordings (1 - 6 cells) were performed with Axopatch 

200B amplifiers in current clamp mode at 34 ± 1°C bath temperature. Data acquisition was 

performed via an ITC-18, connected to a Macintosh, running a custom written routine in 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
"!The membrane potential values cited have not been adjusted for the liquid junction potential, which was 
approximately -14 mV!
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IGOR Pro (Version 6.05A, Wavemetrics, Portland, OR, USA). Voltage signals were 

sampled at rates between 5 and 10 kHz and filtered with a 2 kHz Bessel filter. Patch 

pipettes with a tip resistance of 3 - 8 M! were pulled with a Flaming/Brown micropipette 

puller P-97 (Sutter Instruments and Co.) using borosilicate glass capillaries with filaments 

(Article code number 1403513, Hilgenberg). Experiments were performed both with 

standard intracellular solution (as described in Slice Preparation) and with Amphotericin B 

for normal and perforated patch-clamp, respectively.  

Intrinsic electrical properties of the cells were measured using different stimuli and 

calibrated current intensities. Calibration was performed by varying the amplitude of a 

square pulse of 50 pA until it elicited a single action potential. The cells were then left 

undisturbed at native resting membrane potentials. As soon as electrical access was 

obtained, a predefined set of stimuli (e-code) was applied .  

Cells were classified in terms of the basic types defined in the Petilla Interneuron 

Convention (Ascoli et al., 2008). We identified five electrophysiological neuron types (e-

types), each characterised by a specific firing pattern: classical Accommodating Cells 

(cAC), classical Non-Accommodating Cells (cNAC), bursting Non-Accommodating Cells 

(bNAC), classical Stuttering Cells (cSTUT) and classical Irregular Spiking Cells (cIR). For 

each cell, we plotted Inter Spike Intervals (ISIs) against AP sequence order. This gave us a 

linear regression line and a coefficient of correlation to quantify the goodness of fit to the 

linear regression. Cells whose regression line had a slope greater than or equal to 1 and 

whose sum of the Root Mean Square (RMS) error was less than 30 (mean = 28.76), were 

classified as Accommodating Cells. Cells whose regression line had a slope less than 1 and 

whose sum of the RMS errors were less than 30 (mean = 20.11), were classified as Non-

Accommodating Cells. Cells whose regression lines had RMS errors greater than 30 were 

separated into cSTUT/cIR group for further anaylsis. For our final classification, we 

combined this information with information about the pattern of ISI in the AP train. We 

also further investigated the properties of cells using other stimuli as listed in Table 1 

Synaptic connections were measured by applying presynaptic stimuli (a train of 

action potentials (APs) elicited by current pulses at varying frequencies) plus a “recovery 

test pulse” (RTR) 500 ms after the train. The pulse duration was 3 ms with amplitude of 

1"2 nA. This was usually sufficient to trigger reliable and precisely timed APs. The 

postsynaptic membrane potential was current clamped to approximately –57 mV in order 

to increase the electric driving force (ECl = – 69 mV). If a synaptic connection was 

detected, we iterated the procedure 10 to 20 times with inter-stimulus intervals (ISIs) of 30, 

60, 90 and 120 seconds. C.V (Co-efficient of Variation) was calculated by dividing the S.D 

(Standard Deviation) of the single IPSP amplitudes by the mean value.  
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Single cell and synaptic parameters were extracted with the help of custom-made 

scripts in IGOR Pro (Version 6.05A) and Matlab (R2009b). Total amplitude values of the 

Inhibitory Post Synaptic Potentials (IPSPs) were calculated peak to peak. Rise and decay 

times of the IPSPs were calculated at 20 - 80% of the total amplitude.  

Perforated patch recording 
A 240 µg/ml stock solution of Amphotericin B (Sigma-Aldrich – Cat no. A-4888) 

in Dimethylsulfoxide (DMSO) was prepared. A working concentration of 120 µg/ml was 

achieved by sonicating 8 µl of stock in 1 ml of Intracellular Solution (ICS). The tip of the 

pipette was back-filled with normal ICS solution until the end of the taper. This was then 

layered with approximately 20 µl of Amphotericin-ICS following which; the pipette was 

quickly fitted on to the silver wire electrode. Care was taken to apply minimum positive 

pressure and to minimize movement within the tissue before reaching the chosen cells. 

Once adequate electrical access (access resistance values < 20 M!) was achieved, the cell 

was current clamped and stimulation protocols applied.  

Morphological reconstructions  
The staining and mounting procedure resulted in shrinkage of the slice to 50 - 75% 

of its original 300 µm thickness. Reconstructions were corrected for this value. The 

anisotropic shrinkage along the X - Y plane was around 0 - 10% and not corrected. The 

cells were reconstructed in 3D under an Olympus BX 51W microscope with a water-

immersion 60 (NA 0.9) or an oil-immersion 100X (NA 1.35) objective using Neurolucida 

software (MicroBrightField, Magdeburg, Germany). Reconstructed neurons and 

connections were analysed both with NeuroExplorer (MicroBrightField) and custom 

written scripts in Matlab. The list of parameters extracted closely match those reported in 

(Wang et al., 2002). Putative synaptic contacts were identified as close appositions of 

boutons and dendrites in the same focal plane.  

Morphology analyses: 

Subjective morphological analyses 

Morphological parameters (similar to those listed in (Wang et al., 2004) were 

extracted using NeuroExplorer and used as the basis for an initial subjective classification 

of morphological types. Table IV lists the main parameters used in the classification and 

the p-values that are most significant. 
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Objective morphological analyses 

An objective analysis of the L1 morphologies was performed to validate the 

initial subjective classification scheme. Principal Component Analysis (PCA) and Linear 

Discriminant Analysis (LDA) were applied using custom Python code and the Scikit-learn 

machine learning Python module (Pedregosa, 2011) on the normalised dataset. The central 

idea of principal component analysis (PCA) is to reduce the dimensionality of a dataset 

consisting of a large number of inter-related variables, while retaining as much as possible 

of the variation present in the dataset. The initial uncorrelated principal components (PCs) 

are transformed and ordered as per the amount of variation retained (Jolliffe, 2002). LDA 

maximises the ratio of between-class variance to within-class variance, enabling similar 

elements in the dataset to group together and maximising the distance between dissimilar 

elements. Following LDA, ten-fold cross-validation was performed to determine the 

accuracy of the resulting linear classifier. In order to ensure that overfitting was not 

occurring during LDA, ten rounds of ten-fold cross-validation were performed on the same 

data set with class assignments randomised. A student’s t-test was used to compare the 

scores from the actual data set to the pooled scores of the randomized data sets. 

 Additional descriptive morphological features were appended to the original 

list of parameters to better describe the spatial spread and the branching parameters of the 

reconstructions (Table V).  

A first LDA trial was performed with six groups, matching the initial 

subjective classification. The analysis was then re-run first removing the DAC group and 

then combining the NGC groups. 

3D Visualisation 

Construction of large-scale 3D models of neural microcircuitry requires specialised 

applications to position and connect thousands of morphologically complex 3D neurons. 

The EPFL Blue Brain Project has developed custom software for this purpose. The 

BlueBuilder application allows a user to define the macroscopic shell and recipe for a 

neural microcircuit, load and position 3D neuron models within the shell, detect putative 

appositions between neurons, and ultimately export a circuit configuration file that other 

applications can use for simulation and visualization. In the work described here, 3D 

neural circuits were visualised using RTNeuron a multi-threaded multi-GPU (Graphics 

Processing Unit) application developed by the project (Hernando et al., 2008). 
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Calcium imaging of L5PC apical dendritic activity  
Para-sagittal neocortical slices were cut from the juvenile rat brain, as described 

earlier. Experiments and imaging was carried out using the slice likely to have the most 

intact layer 5 pyramidal cell apical dendrites (the ‘parallel’ slice). L1 cells were chosen 

under a Dodt contrast gradient (Luigs and Neumann), patched and filled with Alexa – 594 

hydrazide (10 µM, A10442, Molecular Probes). A Layer 5 Pyramidal Cell (L5PC) directly 

below the L1 cells was patched and filled with Oregon Green 488 BAPTA-1, 

hexapotassium salt (O-6806, Molecular Probes) and Alexa-594. The two photon 

experiments were performed with a femtosecond pulsed infrared excitation light of 880 

nm, generated by a MaiTai laser (SpectraPhysics) and focused via a 40 # 0.8 NA water 

immersion objective (Olympus). An E650SP filter (Chroma Technology) prevented 

backscattered infrared light from hitting the photomultiplier tubes (PMTs). A dichroic 

mirror followed by band-pass filters split emitted fluorescence into a red (607 ± 22.5 nm) 

PMT channel and a green (525 ± 35 nm) PMT channel. The green channel was used to 

visualise GFP and the red channel was used to visualise the patch-clamp pipette and the L1 

neuron (Gentet et al., 2010). The L5PC was left to fill for up to one hour. The stimulation 

protocol and line scanning began as soon as the apical branches were clearly visible.  

L1 cells were stimulated with a series of pulses, testing the effect on the back 

propagating calcium-mediated AP in the apical dendrites of the L5PC. Pulses of 3 spikes at 

20, 40, 50 and 70 Hz were applied to individual L1 cells, 1.5, 1.5 and 0.5 s before and after 

L5PC stimulation (Fig 20b). The line scan had an acquisition time of 5 seconds, the line 

width varied according to the chosen scan area. The value of the line period was between 

2.5 to 3 s. Linescans were processed in ImageJ (1.45n). The final analyses were performed 

in Matlab (R2009b). 

 

Single cell transcriptomics 
To study mRNA expression patterns, we performed cytoplasm aspirations from 

single neurons in L1. Protocols were developed by Monyer and Jonas, and are described in 

detail as follows, (Single Channel Recording, Sakmann and Neher, Springer Press 2009). 

Slices were made following the same protocol as for routine electrophysiology. The setup, 

holders and silver wire electrodes were wiped with RNaseZAP (R2020, Sigma Aldrich). 

Borosilicate glass pipettes were baked in a dry heat oven at 200 °C for 4 hours. The ICS 

was made with RNase - free water, filtered (0.2µm pore filter, Millipore Cat no. 

SLGV033RS) and autoclaved prior to aliquoting. The original recipe was modified to 

exclude ATP-Mg, phosphocreatinine and GTP, since these components are extremely heat 
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labile. Pipettes were pulled to have a tip resistance up to 2.5 M! and filled with 4 to 6 µl 

of ICS. L1 neurons were targeted and patched as in a normal electrophysiology experiment 

and a standard set of stimuli was applied. On completion of the electrical protocols, gentle 

and sustained negative pressure (50 to 200 mbar) was applied for a short period of time (3 

minutes) to aspirate the contents of the cell into the glass pipette. The pressure was 

maintained for three minutes and/or until the soma visibly shrank. The pipette was then 

slowly withdrawn, passed repeatedly through the air liquid interface to remove any 

extracellular debris on the outside walls, and mounted on the holder of a custom-built 

frame. Using the frame, the pipette was slowly lowered into a 200 µl PCR tube filled with 

1 µl of RNase Inhibitor (40 units/µl). The tip of the glass pipette was broken by gently 

pushing it against the bottom of the tube. Once a faint crack was felt, the pipette was 

elevated and the contents expelled applying weak positive pressure. All samples were 

stored at -80°C and tested against three controls. RNAse free water provided a negative 

control for the PCR procedure. A second ICS control tested for solution contamination. To 

test for the presence of extraneous extracellular material, a pipette was filled with ICS and 

left for 2 to 3 minutes, close to the position of an aspirated cell. The content of the pipette 

provided a third tissue/slice control. 

We used a high capacity RNA to cDNA kit (Catalog number 4387406, 

Invitrogen) to convert the single cell mRNA to cDNA. Specific genes (see Taqman assay 

list) were pre-amplified using the Taqman PreAmp Master Mix (Catalog number 4391128, 

Invitrogen). Hamilton liquid handling system was used to fill a 384 well plate with three 

samples for each gene for each aspirated cell. Quantitative PCR (qPCR) was performed 

using the Applied Biosystem 7900HT Fast Real-Time PCR System and gene specific 

Taqman assays (see Taqman assay list). Efficiencies of these assays were calculated using 

the ‘Ct slope method’ and a series of ten-fold template dilutions. The threshold cycle or Ct 

was plotted against the long of known cDNA concentrations.. The results of the qPCRs for 

each of the tested genes was normalised to the expression levels of "-actin using the 

following equation from Zucker et al., (Zucker et al., 2005):  

! ! ! !! ! !!"#"!"$%"!!"!!!"#"!"$%"! !! ! !!!"#$%!!!"!!!"#$%!! 
where, 

V = relative value of the target gene normalised to the reference gene (in this case, "-actin) 

E = primer efficiency 

Ct = threshold crossing cycle number 

Both the Ct-values and the V-values were taken into account for studying 

changes in target gene expression levels. 
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Taqman assay list : 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

S.no Gene name Taqman assay id 

1 Beta-Actin Rn00667869_m1 

2 Calbindin (CB) Rn00583140_m1 

3 Calretinin (CR) Rn00588816_m1 

4 Parvalbumin (PV) Rn00574541_m1 

5 GAD65 Rn00561244_m1 

6 GAD67 Rn00566593_m1 

7 Neuropeptide Y (NPY) Rn01410145_m1 

8 Pro opiomelanocortin (POMC) Rn01473378_m1 

9 Reelin Rn00589609_m1 



 19 

Chapter 3 Results - Electrophysiology 

Intrinsic electrophysiology properties of single cells 

Five electrophysiological types in L1 

Compared to cortical pyramidal cells, L1 cells are harder to maintain in an 

electrophysiologically viable state for long periods of time - partly due to their small size 

(Zhou and Hablitz, 1996). Small cells are also more vulnerable to physical damage 

(shrinkage and/or swelling) and loss of gigaohm seals. For our study, we were nonetheless 

able to select 98 cells out of 810 with AP amplitudes greater than 50 mV and access 

resistances less than 10 M!.  

Classical Accommodating Cells (cAC) 

Accommodating Cells, which begin to spike with the onset of stimulus, which do 

not produce bursts and which do not display a delayed response, were classified as classical 

Accommodating Cells (cAC) (Fig 1a-a).  10% of the L1 cells in our sample (n = 11) 

belonged to this e-type.  

Classical Non-Accommodating Cells (cNAC) 

Non-Accommodating Cells, which begin to spike with the onset of stimulus, 

which do not produce bursts and which do not display a delayed response, were classified as 

classical Non-Accommodating Cells (cNAC)  (Fig. 1a-b). These were the most common e-

type among L1 cells (n = 41, 40%). 

Bursting Non-Accommodating Cells (bNAC) 

Non-Accommodating Cells that display a burst on the onset of stimulus are 

defined as bursting Non-Accommodating Cells (bNAC; n = 25, Fig 1a-c). We identified two 

subtypes of these cells.  The first subtype (n = 15) consists of bNACs that respond to the 

stimulus with four rapid spikes with a mean ISI of less than 25 ms.  

A second subtype of bNAC (n = 10), displayed a ‘doublet’ of spikes (a pair of 

action potentials with a maximum ISI of 25 ms) at the beginning of firing.  

Classical Stuttering Cells (cSTUT) 

Cells with a poorly fitted regression line (sum of RMS error greater than 30) and 

at least one "silent period" of more than 100 ms were classified as classical Stuttering Cells. 
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13% of L1 cells (n = 14) belonged to this class. The mean sum of the RMS error for these 

was 339.05. The average duration of the silent periods was 193.43 ms and the average ISI 

during spiking was 38.2 ms (Fig 1a-d). 

Classical Irregular spiking cells (cIR) 

Cells with a poorly fitted regression line, which did not meet the criteria for 

cSTUT, were classified as Classical Irregular Spiking Cells. 7% of L1 cells (n=8, Fig 1a-e) 

belonged to this class. The mean of the RMS error for these cells was 46.46. 

Figure 1b shows an example set of traces from a cNAC cell that was used to 

extract typical single cell electrophysiological features (Table I) for further grouping and 

analysis. 

Readers will note that our classification does not reproduce all the e-types 

identified by other authors, for instance the Late Spiking (LS) cells identified by Chu et al., 

(Chu and Hablitz, 2003). We observe that several alternative classifications are based on the 

use of stimulation currents around the threshold value. In our own work, we observed that 

repeated stimulation with these currents produces highly variable spiking behaviour. Chu et 

al., (Chu and Hablitz, 2003). We therefore used a square pulse stimulus of 50 pA and varied 

the amplitude of the pulse until it produced a single AP. The same scaling was used to scale 

the amplitudes of all subsequent stimuli. This procedure ensured replicability, producing a 

reliable and parsimonious classification scheme.  

Electrophysiological Circuitry 
Multi-neuron patch-clamp recording from pairs of neurons detected 82 electrical 

connections (gap junctions) and 248 chemical synaptic connections, all displaying 

hyperpolarising GABAergic-like IPSPs. For the study reported below, we selected cells with 

AP amplitudes greater than 50 mV and Access Resistance less than 10 M!.  

Electrical connections 

To detect the presence of gap junctions, we injected a hyperpolarising step 

current pulse (50 to 100 pA) into one cell in each pair and measured the hyperpolarised 

response from the other (Fig. 2a). The average coupling co-efficient (the ratio of the 

amplitude of the postsynaptic response to the presynaptic response) was 0.0543 ± 0.028 

(mean ± SE). All recorded gap junctions (82/2727 pairs; 3% probability) conducted bi-

directionally, with no significant differences between conductances in the two directions 
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(coupling coefficients 0.052 ± 0.02 and 0.056 ± 0.03 respectively) and were therefore 

classified as symmetrical gap junctions.  

Synaptic connections 

For further analysis, we selected 142 out of 248 connections with IPSP 

amplitudes greater than 1 mV after 5 repetitions of the stimulation protocol.  

In 32 connections a single AP was sufficient to evoke IPSPs, always with rise 

times less than 60 ms (28.7 ± 15 ms; mean ± S.D)  (Fig 2b). However, the majority of 

connections (n = 110) only responded to trains of stimuli, at a minimum frequency of 40Hz, 

usually but not always with rise times between 60 and 379 ms (159.45 ± 60.23 ms; mean ± 

S.D).  

An analysis of IPSP latencies showed a distinction between a group of 

connections with a mean latency of 4.14 ± 2.47 ms (mean ± S.D, n= 111), and a second 

group with a mean of 12.89 ± 2.963 ms (mean ± S.D, n = 31) (Fig 3e). Decay times varied 

between 105 ms to 1.26 s (336.2 ± 138.7 ms; mean ± S.D). The CV (coefficient of variation) 

had a mean value of 0.38 ± 0.25 (mean ± S.D). 

We also observed a steady decay of IPSP amplitude over repetitions of 

stimulation (Fig 4). This decay persisted despite using varying inter stimulus intervals of 30, 

60 and 90 seconds (Fig 4c). 

Fast rise times and low latencies are characteristic of GABAA transmission 

dynamics. The calculated chloride reverse potential for our ICS was -69 mV. This value is 

again compatible with our results. Slow rise times and higher latencies suggest a role for 

GABAB transmission, a hypothesis supported by our calculated potassium reversal potential 

(-102 mV).  However, we also observed that in many cases connections with fast rise times 

and low latencies had reversal potentials close to the typical values for potassium and that 

connections with slow rise times and high latencies often had reversal potentials around the 

typical values for chloride. 

To clarify the respective contributions of GABAA and GABAB receptors we 

performed 44 experiments with perforated patch clamping, a technique that limits 

cytoplasmic dilution and eliminates amplitude decay. In the seven connections, for which it 

was possible to obtain stable recordings (pre drug IPSP amplitude = 4.83 mV) we applied 

specific inhibitors, and measured the resulting IPSPs (Fig. 5b). The presence of a GABAA 

antagnonist (20 µM Gabazine) led not only to reductions in IPSP amplitudes but also 

completely abolished fast rise times (IPSP amplitude during Gabazine perfusion = 1.66 
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mV). The introduction of a GABAB antagonist (4 µM CGP55845) blocked the remaining 

IPSP amplitude (IPSP amplitude during CGP55845 perfusion = 0.64 mV). After washout, 

the amplitude of the IPSP recovered almost completely (IPSP amplitude after washout = 

3.27 mV).  

These results prove that the GABAA and GABAB receptors are both involved in 

mediating the synaptic response. The GABAA receptors are responsible for fast rise times 

and most of the amplitude of the IPSP. The GABAB receptors are responsible for slow rise 

times.  
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Figure 1 (a) Characteristic firing pattern for continuous adapting cells (cAC). The first scattter plot 

on the right plots raw ISI values for successive APs with their linear fits; the second scatter plot 

shows the grand fit, which has a slope of 1.168. All patterns with slopes clearly greater than 1 were 

taken as adapting. (b) Firing pattern for continuous non-adapting cells (cNAC) with scatter plots of 

ISI values, and grand fit. Both fits show minimum changes in ISI values (slope = -0.013). (c) Firing 

pattern for burst non-adapting cells (bNAC). The scatter graphs show that ISI values are initially low; 

they then abruptly peak, after which subsequent ISI values follow a typical non-accommodating 

trend. The grand fit for the post peak ISIs has a slope less than 1 (0.322). (d) Firing pattern for 

classical stuttering cells (cSTUT) with episodic action potentials followed by protracted periods of 

silence. The scatter plot show no meaningful trend and silent periods up to 700 ms. (e) Firing patterns 

for typical irregular firing cells (cIR) showing irregularly spaced action potentials but with much 

shorter silent periods than cSTUT.  
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Figure 2 A sample of current stimuli used as part of the e-code and the voltage responses of a 

typical cNAC (a) APThreshold is a gradually ramped current stimulus designed to detect the the 

firing threshold of the neuron; (b) APWaveform is a set of square pulses of very short duration, 

used to study the properties of single APs. (c) a set of subthreshold square pulses used to extract 

the input resistance of the neuron at peak and steady state voltages (d) The single 

hyperpolarising Delta pulse provides information about the membrane time constant; (e) RAc is 

a short hyperpolarising pulse, used to monitor electrical access to the cell, during 

electrophysiological recordings. 



 
Table 1 Values of the electrophysiological parameters for each electrophysiological cell-type in L1. These parameters were extracted automatically from the 

responses of the cells to a standardised set of electrical stimuli. cAC: n = 11, cNAC: n = 41, bNAC: n = 25, cSTUT:n = 14, cIR: n = 8.  



 
Table 2 Pairwise comparisons between electrophysiological cell-types in Table I. P<0.05 = * and 

P<0.01 = ** (Student's T). Table shows comparisons with at least significant differences for at least 2 

features. 



 
Figure 2 Examples of electrical recordings from pairs of cells connected by (a) a gap junction; 

connections mediated by (b) GABAA, (c) GABAB and (d) GABAA+B; individual traces in red; mean 

values in black. All post synaptic cells were clamped at -57 mV.  

 



 
Figure 4 Parameters for synapses between L1 cells. (a) distribution of IPSP amplitudes (b) 

Distribution of IPSP halfwidth, (c) distribution of IPSP risetime (d) distribution of IPSP decay time 

(e) distribution of PSP latency values (f) distribution of coefficients of variation (f) scatter plot 

latency against IPSP amplitude scatter with a linear fit and a slope of -0.32 (g) distribution of values 

for Co-efficient of Variation (CV). The best fit for the rise time histogram in (c) is a double Gaussian, 

indicating the presence of two populations of GABAergic connections 



 
Figure 4 (a) shows an example of a GABAergic synapse between L1 cells (b) shows the same post 

synaptic traces as (a) but staggered in offset to show the decay of amplitude over repetions of the 

stimulus. (c) shows the decay of IPSP amplitudes over three different values of Inter stimulus 

Intervals (ISI)  



 

 
Figure 5 (a) Frequency analysis of a synaptic connection performed with perforated patch, 

examples showing variation in spike number (3, 8 and 15) and frequency (10, 20, 40, 50 Hz); All 

postsynaptic cells were clamped at -57 mV(b) pharmacology performed with Gabazine (GABAA 

blocker) and CGP55845 (GABAB blocker); All postsynaptic cells were clamped at -57 mV (c) 

histogram of the amplitudes of connection measured with normal ICS patch and perforated patch, 

showing the presence of lower amplitude connections with perforated patch (d) rise and decay 

times of the connection also differ, possibly due to the perforated patch. 

!



Chapter 4 Results - Morphology 

Intrinsic morphological properties of single cells  

Expert-based subjective classification 

Out of a total of 158 stained L1 cells, 95 were reconstructed in 3D for 

morphometric analysis and quantitative comparison. For each neuron, we measured a large 

set of dendritic and axonal parameters including segment length, segment tortuosity and 

branch angles (Table III). On this basis, we produced an initial subjective classification of 

cells into the following types: Neurogliaform Cells with dense (NGC-DA) and sparse local 

axonal arbourisation (NGC-SA), Horizontal Axon Cells (HAC), Descending Axon Cell 

(DAC); Large Axon Cell (LAC) and Small axon cell (SAC). We also identified one Cajal-

Retzius cell.  

 

 

 

!
!
!
!
!
!
!
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Neurogliaform Cells with dense axonal arbours (NGC-DA) 

  NGC-DA cells, very similar to the Neurogliaform cells reported in other 

cortical layers, were identified by their small dense arborisation and curvy axonal and 

small dendritic segments (26 ± 2 µm). (Kawaguchi and Kubota, 1997; Kisvárday et al., 

1990; Szabadics et al., 2007) (Fig 6a). With a maximum horizontal extension (H) of 122 ± 

9 µm and a maximum vertical extension (V) of 133 ± 12 µm, these were the smallest cells 

we found in L1 (Table III).  

Neurogliaform Cells with Sparse Axonal Arbours (NGC-SA) 

  NGC-SA neurons showed axonal branching patterns similar to NGC-DA, in 

terms of segment length, curviness, tortuosity, and branch angles. However, NGC-SA had 

Cell type Total number Percentage (%) 

NGC-DA 33 20.88 

NGC-SA 26 16.45 

HAC 37 23.41 

DAC 25 15.82 

LAC 19 12.02 

SAC 17 10.75 



sparser distributions of arbourisations, significantly shorter total lengths, lower segment 

numbers and shorter maximum vertical extensions. The dendritic arbourisations were also 

wider, showing larger horizontal extensions, longer segment lengths and smaller branching 

angles (Table III).  

Horizontal Axon Cells (HAC) 

  HAC neurons were characterised by large horizontal axonal arbourisations and 

large segment lengths (axon segment length = 67 ± 3 µm). As a result, their 

Horizontal/Vertical extent (H/V) ratio (H: 826 ± 47 mm, V: 202 ± 16 mm) was higher than 

for any other cell type. 

Descending Axon Cells (DAC) 

  With axonal collaterals that descend into deeper layers, commonly reaching 

layer 4 or 5, these neurons correspond to the descending axon cells reported in previous 

studies (Hestrin and Armstrong, 1996) (Fig. 6b, Table III). Their horizontal and vertical 

axonal arbourisation patterns were the largest of any cell type. They also showed the 

largest dendritic segment lengths. 

Large Axon Cells  (LAC) 

  The axons of LACs displayed the longest length, the highest segment number 

and the highest maximum branch order we observed in any cell type (Fig. 6b, Table III). 

LACs’, axonal collaterals often spread into layers 2 and 3 (6/10 cells). LAC dendrites 

displayed the highest segment number (i.e. higher frequency of branching) observed in any 

cell type. 

Small Axon Cells (SAC) 

  SACs had the lowest axonal segment number, the smallest H/V ratio, the 

lowest axonal tortuosity values, the lowest maximum axonal branch order (MABO), the 

largest axonal branch angles, the lowest bouton density and the lowest total axonal lengths 

of any cell type (Fig. 6b, Table III). Some SACs (4/11 cells) projected one to two axonal 

collaterals into layers 2 and 3.  

Rare cell types  

  Out of 160 stained cells, we found one Cajal-Retzius cell like Cell (CR-like C). 

This is consistent with the fact that the CR cell type appears in the L1 of very young 



animals and disappears around P10 (Hestrin and Armstrong, 1996).  

Objective analyses  

To refine and qualify our initial classification of morphological cell types we performed a 

series of objective analyses as described below. 

Variance analysis 

  A systematic analysis of individual feature variance values made it possible to 

identify outliers and incomplete cells. Out of a total of 91 cells, two displayed feature 

values far outside the distributions for the other cells. In particular, the densities of their 

basal dendrite were respectively 8.93 and 2.57 standard deviations from the mean (Fig 7). 

These cells were considered as outliers and excluded from our subsequent analyses. 

Feature power analysis 

  Preliminary tests suggested that our original subjective feature set might not be 

sufficient to allow fully automated separation among different morphological cell types. 

We, therefore enriched our additional feature list with a large set of new features 

commonly used in the literature (Table IV) and used feature power analysis to rank them 

according to their ability to cluster the dataset. This analysis compares the between-group 

variance with the within-group variance of each feature to determine the ones that are most 

discriminative. Features that are most powerful in their discrimination appear on the upper 

left corner of the plot. Fig. 8a shows the results of one such analysis. In the analyses 

reported below we used the full feature set, excluding two low power features (43 and 22), 

which we removed to ensure clarity and robustness (See Fig 9b and Table IV) 

Principal Component Analysis (PCA) 

The central idea of principal component analysis (PCA) is to reduce the 

dimensionality of a dataset consisting of a large number of inter-related variables, while 

retaining as much as possible of the variation present in the dataset. The initial 

uncorrelated principal components (PCs) are transformed and ordered as per the amount of 

variation retained (Jolliffe, 2002). To generate an initial unsupervised analysis, we 

normalised the raw feature dataset and performed a PCA. More than 25 % of the total 

variance in the dataset was explained by the first principal component. Moreover, we did 

not see a clear separation of any groups of cells (Fig. 8b).  



Linear Discriminant Analyses (LDA) 

For our final objective classification, we applied LDA, a supervised method 

that reduces the dimensionality of a given dataset, while preserving as much discriminatory 

information as possible i.e. maximising the ratio of between-class to within-class variance. 

The result is a weight vector which, when applied to features, produces the maximum 

possible separation between groups (Krzanowski, 2000). 

In LDA, it is necessary to define the number of clusters to be generated. Using 

the same number of six categories as in the subjective classification, HAC, DAC and LAC 

cells separated very clearly. However SAC and the NGC cells were not well separated 

(Fig.8d). Since the DAC group was the best separated cell type, we removed DAC cells 

from the dataset and re-ran the LDA with five groups. This resulted in a better separation 

of NGC-DA and LAC but NGC-SA and SAC still clustered together. The results of the 

classification are given in Fig. 8c. 

Figure 9c shows LDA of the remaining dataset, after the removal of both DAC 

and HAC. This results in a clear separation of the remaining groups – SAC, LAC, NGC-

DA and NGC-SA. 

Morphological Circuitry 

Gap junctions   

To verify the morphological cell types involved in gap junctions, we selected 

four electrically coupled stained cell pairs. Of the four pairs, one involved two LACs; two 

pairs involved a LAC and a HAC and a LAC and a DAC, respectively; one involved a 

DAC and an NGC-DA. We reconstructed one electrically and synaptically coupled L1 

pair (Fig 10a). Among the eleven putative coupling contacts, four were on the dendrites 

(Fig 11 for zoomed in views). Seven contacts involved the axonal collaterals of the two 

neurons. 

Synaptic connections   

Among eighteen pairs of connected L1 neurons from fourteen well-stained 

arbourisations, four neuron types (HAC, DAC, NGC-DA and LAC) were found to form 

GABAergic synaptic connections. In most cases, synapses were between neurons of the 

same type (11/18 pairs, 61%), mainly HACs and/or DACs (8/11 pairs, 73%), or NGC-

DAs (3/11 pairs, 14%). All connections between different types of neurons (7/18 pairs, 



39%) involved HAC and/or DAC cells, mostly as postsynaptic cells (5/7 pairs). LAC (3/7 

pairs) and NGC-DA (2/7 pairs) were often presynaptic cells.  

Five pairs of L1 connected neurons were reconstructed. These cells had an 

average of 9.2 putative synapses per pair on the soma and dendrites of the postsynaptic 

cell. A high fraction (39%) of putative synapses was formed on the soma. This kind of 

contact was observed in four out of five reconstructed pairs. (Fig 12 for zoomed in views). 

Fig 13 shows the electrophysiological recordings from these pairs of connected cells 

Morphoelectrical types 

Combining morphological and electrophysiological classification provides a more 

comprehensive view of the diversity of L1 cells than either of these schemes taken on its 

own. Out of 38 cells for which we obtained high quality staining and electrophysiological 

data, 28 (73.6%) expressed a cNAC firing pattern. The most common morphological types 

were HAC and NGC-DA, each represented by 10/38 cells (26.3%). Combining these two 

parameters, the most common morpho-electrical types (ME-type) were NGC-DA - cNAC 

and HAC-cNAC (7/38; 18.4% each). The next most common ME-types were LAC- cNAC 

and and NGC-SA - cNAC.  

Some firing patterns appeared only in specific morphological types. Thus cAC 

firing patterns were found only in NGC-DAs, SACs and LACs; the cSTUT type was found 

only in NGC-DAs, and the cIR type only in HACs (Figs 14a, 14b and 15). 

!



 
Figure 6a Three of the six major morphological cell types (subjective classification). (a) typical neurogliaform cells with dense axonal arbourisation (NGC-

DA). (b) atypical neurogliaform cells with sparse axonal arbourisation (NGC-SA). (c) Horizontal Axon cells (HAC). Dendrites are shown in red and the 

axonal arbour in blue. 

 



 
Figure 6b Three of the six major morphological cell types as classified by subjective classification. (d) HACs with a descending axon  (DAC) (e) Dense 

and (f) small axon cells (LAC and SAC) Dendrites are shown in red and axonal arbour in blue



 
Table 4 Listing of the morphometric features used for the objective analyses (bif = bifurcating) 

 



 

 
Figure 7 Boxplot of normalised values for dendrite density, This plot indicates the extreme 

outlier values found in cells 49 and 50 indicated by red circles.



 

 
Figure 8 (a) Feature power analysis: the features with the greatest discriminatory power are all 

axonal features. (b) Variance explained by PCA components. (c) PCA plots for the standardised 

dataset (d) LDA plots (n= 6) showing a significant grouping of DAC, HAC and LAC. (e) LDA 

plots with n = 5 (after removal of DAC) showing better separation of NGC-DA. 



 
Figure 9 (a) Variance analysis heatmap showing possible outliers. (b) feature power analysis 

after the removal of two outlier features (22 and 43) describing dendritic and axonal tortuosity. 

(c) LDA after removal of DAC and HAC. NGC-DA, NGC-SA, LAC and SAC separate clearly 

(d) feature power analysis for the LDA in (c). 



 
Figure 10 3D morphologies for four pairs of connected L1 cells showing the soma positions 

along with the dendritic and axonal arbours and putative contact points for each kind of 

connection. Pre-synaptic cells are in red; post-synaptic cells are in blue. Putative contact points 

are marked with a green asterisk



 
Figure 11 Light microscope images of putative contact points between a pair of cells connected 

by gap junction (same pair as Fig 10). Black circles indicate the possible contact points 

identified by visual inspection. 

 



 
Figure 12 (a) Close-up of a 3D rendering of the two cells with gap junctions; contact points 

marked with yellow hexagons. (b) cells with GABAA -mediated connections (c) cells connected 

by GABAB mediated connections, and (d) cells with connections mediated by both by GABAA  

and GABAB receptors. 



 
Figure 13: (a) Gap junction electrophysiology of the reconstructed pair in Figure 10 (b) typical 

GABAA post synaptic response elicited by a single pulse for the pair reconstructed in Figure 10 

(c) corresponding GABAB IPSP as observed for the reconstructed pair of cells in Figure 10 (d) 

GABAA+B response as seen between the pair of cells reconstructed in Figure 10 



 
Table 3 A summary of the morphometric parameters for the six morphological cell-types used for the subjective classification.!!



 
Figure 14 Firing types seen in L1 with their corresponding cellular morphologies 



Figure 15 Firing types seen in L1 with their corresponding cellular morphologies.  



 
Figure 16 Morpho-electrical types in L1 showing (a) firing types (b) subjective morphological 

classes (c) and (d) cell distributions, and (e) a numbers of cells belonging to each subtype.



Chapter 5 Discussion and Conclusions 
In this thesis, we characterized the single cell and microcircuit properties of the 

somatosensory neocortical L1 of juvenile rat, using standardised protocols for single and 

multi-electrode patch clamp electrophysiology, biocytin labelling and immunohistochemistry 

and introducing reproducible methods for the classification of electrophysiological behaviour 

and neuron morphologies. We identified six morphological classes of neurons, all present 

with approximately equal frequencies. More than 60% of these cells displayed a Non-

Accommodating (NAC) pattern of firing. As already seen in previous studies, some 

connections among these neurons were recruited by single APs, displaying IPSP kinetics 

reminiscent of GABAA mediated responses. However, the majority was not activated by 

single APs and required high frequency trains of presynaptic APs. This is a novel finding.  In 

some cases, the observed IPSPs were similar to GABAB mediated responses. In others they 

showed rise time properties characteristic of GABAA in combination with slow-decay times 

characteristic of GABAB. Subsequent pharmacological manipulations confirmed that 

GABAA and GABAB were both implicated in the IPSP kinetics. 

Single cell properties 

Electrophysiology 

In our study, as in previous work by Zhou and Hablitz, small L1 interneurons 

were frequently damaged or destroyed due to post-recording pipette withdrawal (Zhou and 

Hablitz, 1996), leading to physical damage (shrinkage and/or swelling) and loss of gigaohm 

seals. Despite the loss of a significant number of cells, we were nonetheless able to select a 

final single cell dataset of 98 cells. 

Our analysis revealed that all these cells could be placed into classes based on the 

firing patterns described by the Petilla interneuron convention (Ascoli et al., 2008). Like the 

previous study (Hestrin and Armstrong, 1996), we detected non-accommodating cNAC cells 

(40 % of the cells in our study). Unlike these studies, we also found several other types of 

cell including bNAC (15%), cSTUT (14%) cAC (11%), cIR, (8%) and unclassified firing 

types (9%). The study did not detect the fast spiking cells reported in (Wozny and Williams, 

2011). This may have been neurons begin to display FS characteristics develop relatively late 

in development: Wozny and Williams used older rats than those in our own study.  Our 

failure to detect FS neurons may also be due to differences in method: we used currents of 



200 pA, significantly lower than the 1 nA current used in their study. Higher currents would 

normally be expected to induce higher firing frequencies. However the physiological 

relevance of observation made under these conditions is questionable.  

Similar considerations apply to the Late and Non Late spiking cells, reported by 

Chu et al., (Chu et al., 2003). As reported earlier, our work used a standardized current 

injection protocol, in which currents were scaled to produce a regulated firing frequency. 

This means we do not have to rely on the firing threshold, which is known to be highly 

variable. Chu et al, by contrast, do not attempt to maintain such a standard. It is possible, 

therefore, that the different spiking behaviours they observe could be the result of 

uncontrolled changes in threshold values. During our own experiments, we sometimes 

observed apparently random changes from late to non-late spiking behaviour and vice versa 

(data not shown). This supports the idea that early and late spiking behaviour is not 

sufficiently stable to be used as a criterion for electrophysiological classification of neuron 

types.  

We believe that the methods we have applied in L1 are suitable for use with 

other cell populations, for example in other layers and/or areas of the cortex and in other 

species. In particular, we believe it is especially important to focus on firing patterns since it 

makes it possible to compare data for a specific population of interneurons with data for 

other populations as classified by the Petilla Convention (Ascoli et al., 2008).  

Although the distinctions between different firing patterns were relatively clear, 

we are aware that our current classification is not definitive. However, these distinctions, on 

their own are not enough to detect the way individual ion channels affect the 

electrophysiological behaviour of the cell. This is a theme for future research that will 

probably require the development of new protocols. 

Morphology 

In our classification of L1 morphologies we developed an initial subjective 

classification, and subsequently refined it using objective methods. This approach allowed us 

to identify six distinct morphological groups, a finer classification scheme than those 

developed by other authors, who reported between 2 and 4 groups.  

Our classification final scheme includes three morphological types (NGCs, 

HACs and DACs) previously identified by Hestrin and Armstrong (Hestrin and Armstrong, 

1996). Unlike these authors, however, we split the NGCs into two (NGC-SA, NGC-DA) and 

add two completely new types (SAC and LAC) 



Like our electrophysiological classification, the methods we have used in this 

study are fully standardized and lend themselves to work in other layers, brain areas and 

species. Our objective analysis of cell types use custom written Python and MATLAB codes 

and are fully reproducible. 

This having been said, we recognize that some aspects of our current classifier 

are stronger than others. In particular, there is a very clear distinction between HAC, DAC 

and the neurons not belonging to these types.  However, the differences that distinguish 

NGC-SA, NGC-DA, SAC and LAC are relatively subtle and the functional relevance is an 

open question. It is possible that a rich classification of morphologies combined with 

electrophysiological data could provide a useful, multidimensional classification of electro-

morphological types, as proposed by Toledo-Rodriguez (Toledo-Rodriguez et al., 2004). 

However, in our own study, the number of neurons with good quality electrophysiological 

and morphological data was too small to confirm this possibility. 

Circuit Properties 
To our knowledge, there has only been one previous study (Chu et al., 2003) of 

the circuit properties of these L1 interneurons.  

One of our main findings is the discovery of slow transient GABAA+B mediated 

IPSPs between neocortical L1 cells. This matches similar phenomena previously observed in 

the ferret thalamocortical loop (Kim et al., 1997), in rat neocortical layer 5 and the 

CA1region of hippocampus (Thomson and Destexhe, 1999) and in connections between 

cortical interneurons and pyramidal cells in other layers (Chu and Hablitz, 2003; Pérez-Garci 

et al., 2006; Suzuki and Bekkers, 2010a, 2010b; Tamas et al., 2003). 

A majority of these slow inhibitory connections required a 40 Hz spike train to 

produce a postsynaptic response. To our knowledge, no other study has documented this kind 

of post-synaptic GABAB response between L1 cells. Rise times varied between 5 ms and 379 

ms. Response amplitudes decayed rapidly with increasing number of repetitions. We 

hypothesized that the decrease was due to the dilution of intracellular contents with the ICS, 

leading to the depletion of secondary messenger molecules such as cAMP (cyclic adenosine 

monophosphate). This interpretation is supported by the rapid decline in the amplitude of the 

IPSPs observed during repeated stimulation – exactly what we would expect with depletion 

of secondary messenger molecules. Perforated patch clamp experiments – which conserve 

the intra-cellular environment - showed no comparable decay. This is confirmatory evidence 

for our hypothesis. 



These observations can be explained in terms of a dynamic molecular model of the 

binding of GABA to its receptors proposed by (Destexhe and Sejnowski, 1995). In this 

model, as in our own observations, IPSP responses have a slow sigmoidal rising phase and a 

multi-exponential decay. The authors explain this delay by the density of co-releasing 

terminals and the number and frequency of pre-synaptic action potentials. The model IPSPs 

also display a 10 - 20 ms onset delay, similar to the delay observed in our own experiments. 

Destexhe and Sejnowski explain this second delay by the time necessary for multiple G 

protein binding sites to cooperatively bind G proteins. (Destexhe and Sejnowski, 1995). 

Conclusions 
In the study presented here, we set out to identify and characterize the components 

and connectivity of neocortical L1 in the somatosensory cortex of juvenile rat. We believe 

that we have accomplished this goal. Our results include the identification and classification 

of the morphologies and electrical behaviour of L1 neurons, the quantification of the 

presence of different morphoelectrical types, the characterization of intra-laminar 

connectivity, and the identification of a new kind inhibitory connection between L1 

interneurons mediated by a combination of GABAA and GABAB receptors. 

As far as concerns methods, we have conducted all our studies on the somatosensory 

cortex of rat at P13-P16. In the future, this will make it possible to connect our results to 

results from other groups in our lab and the Blue Brain Project, which are studying other 

aspects of the same area (different cortical layers, different cell populations, different levels 

of organization). Particularly important, in this setting, has been the development of 

standardised, highly reproducible methods using standard protocols and codes for the 

objective classification of cell firing patterns and of cell morphology, 

Obviously many issues remain open. In particular, we still do not have a clear picture 

of the connections between L1 and other layers and of their development in older rats. 

Similarly, the data we have gathered is not yet sufficient to elucidate the putative role of L1 

neurons in the modulation of the activity of L5PC apical dendrites or to form a detailed 

picture of gene expression within the layer. Nonetheless, we have explored a broad range of 

methods (techniques for the objective classification of cells, two-photon microscopy to study 

the effect of L1 stimulation on the activity of L5PC apical dendrites, isolation techniques for 

single cell transcriptomics). We are confident that these methods will make a valuable 

contribution to future studies. 



Appendix  
This appendix describes three sets of additional experiments conducted during the 

preparation of this thesis, whose results, while not conclusive, can help to guide the design 

of future experiments, exploring similar scientific questions. 

The first set of experiments used cytoplasmic aspirations from single cells followed 

by real time qPCR to study gene expression patterns in single L1 neurons. The second set 

studied the connectivity of L1 with PCs in L2/3 and L5. The third and final set used patch 

clamping and 2 photon assisted calcium imaging to investigate how apical dendritic activity 

in L5PCs,  was affected by simultaneous stimulation of single L1 interneurons. 

Single cell transcriptomics 
mRNA levels play an important role in regulating cell development and activity and 

may provide important predictive information about the cell's electrical behaviour and 

morphology. To date, however, there have been very few studies of mRNA expression in L1 

cells. As with in vitro and slice studies in general, the main challenge is to achieve 

resolution at the single cell level.  

As a method, we chose cytoplasmic aspiration followed by single cell qPCR. Assay 

primers were selected after careful cross checking with laboratory data on expression 

patterns for cortical interneurons (Toledo-Rodriguez et al., 2004) and data from the Allen 

Brain Atlas (http://www.brain-map.org/). To facilitate initial standardization experiments, 

we began with a small number of primers (See table in Materials and Methods). Statistical 

analyses were performed according to the methods and statistical tests cited by Zucker et al., 

(Zucker et al., 2005). 

Results 

The threshold cycle value (Ct) for each primer indicates the PCR cycle at which the 

amplification of the target gene is in the mid-log phase. Lower values of Ct indicate an 

abundance of the target gene, and thus, ease of amplification. Higher values, conversely, 

denote a paucity of target gene transcripts.  

V-values were calculated using beta actin as the housekeeping gene, as per the 

methods given in the study by Zucker et al., (Zucker et al., 2005). Ct values for beta actin 

were fairly constant across cells (Ct = 23.78 ± 3.6). To select cells for further analysis, we 

tested for the presence of glutamic acid decarboxylase (GAD67), a gene that codes for the 



enzyme necessary for the production of GABA in the somata of interneurons. Much like 

beta actin, levels of GAD67 (Ct = 23.73 ± 3.51) were relatively constant across cells. Cells 

that failed to express beta actin or GAD67 were not considered in the subsequent analyses. 

Apart from GAD67, the most frequently expressed gene was Reelin (35/36 cells 

positive; v-value 0.005.). Two other frequently expressed genes were Calretinin (Calb2) 

(51/69 cells positive, v value 0.15) and NPY (20/33 cells positive, v value 0.21). 

 The most rarely detected gene was Calbindin (Calb1) (positive expression in 

7/69 cells) with a mean v-value of 0.027. The next rarest gene was GAD65, detected in 

35/69 cells with a mean v-value of 1.13.  

Most of the genes showed fluctuating v-values across cells, making it difficult to 

derive reliable quantitative estimates of expression levels. We thus interpret our results as 

binary indicators of the expression of specific genes.  

 

 

 

S.no Gene  Average v-value Number of cells Expression (%) 

1 GAD67 13.02 69 100 

2 Calb1 0.027 7 (/69) 10.15 

3 Calb2 0.15 51 (/69) 73.91 

4 GAD65 1.13 35 (/69) 50.72 

5 NPY 0.21 20 (/33) 60.6 

6 Reelin 0.005 35 (/36) 97.23 

7 POMC 0 0 0 

8 Parvalbumin 0 0 0 



 
Figure 17 Amplification curves for a small set of genes in the aspirated cytoplasm of two 

groups of L1 cells (a) shows !eta-Actin, used as a housekeeping gene (b) shows Calretinin (c) 

shows Reelin and (d) shows Parvalbumin which did not show any amplification in the sets of 

tested L1 cells. 



!
Figure 18 Threshold (Ct) values for the genes tested shown in two different groups of L1 cells 

(a) and (b) Parvalbumin was not expressed in L1 cells along with some outlier values for 

Calbindin (Calb1) expression 

Expression patterns in L1 
As reported earlier, our study of gene expression patterns in L1 produced extremely 

variable data, which was difficult to interpret. To facilitate the standardisation of protocols, 

we restricted our testing to a small set of genes, namely the interneuron genes listed in 

Toledo-Rodriguez et al., (Toledo-Rodriguez et al., 2004) and additional genes identified in 

the Allen Brain Atlas (http://www.brain-map.org/). We believe that our data can provide 

useful hints for the identification of markers for L1 cells and the planning of future 

experiments studying laminar gene expression patterns. 

Our results confirmed the presence of GAD67 in these cells and thus, that L1 cells 

are indeed all interneurons. The expression levels for Calb1, Calb2 and PV were highly 

variable and did not correspond to any expression pattern previously reported for other 

interneurons. A high frequency of Reelin expression provided supporting evidence for the 

vital role of L1 cells in lamination during development. 



Cross-layer connectivity 
The majority of information on inter-laminar connectivity comes from patch 

clamping pairs of cells across layers. A review article by Thomson and Lamy (Thomson and 

Lamy, 2007) succinctly summarises the probabilities and connection types for many cell 

types across all layers, except  layer 1. In this study, we attempted to partially fill this gap, 

calculating connection probabilities and identifying the types of synapse involved. To this 

end, we performed 103 patch clamp experiments. In each experiment we patched two cells 

each in L1, L2/3 and L5 of the same cortical column and tested for connections. Overall we 

tested 544 cells and 1086 possible connections. 

Results 

 Our experiments detected just eight connected pairs of L1 and L2/3 cells 

(connection probability = 0.025 %, 320 pairs tested) and three connections between L1 cells 

and L5 pyramidal cells (connection probability = 0.009 %, 322 pairs tested).  

 IPSPs for L1 to L2/3 connections displayed slow inhibition - similar to the 

GABAB mediated responses observed in many connections between L1 cells (Fig 19a). Out 

of three L1 to L5 connections, one displayed slow rise and decay times (Fig 19c) whereas the 

other two showed faster rise and decay times (Fig 19b). These responses were abolished by 

perfusion of Gabazine but failed to return to normal after washout of the drug.  



 
 
Figure 19 (a) Connection between L1 cell and a L2/3 pyramidal cell. (b) and (c) connections 

between  L1 and L5 pyramidal cells. (b) typical GABAB mediated connection with slow rise 

and decay times, (c) fast GABAA type IPSPs. All cells were held at -57 mV. 



L1 and trans-laminar circuits 
Our third study investigated the probability of connections between L1 cells in 

general and L5 PCs, showing that the connection probability was extremely low: 0.009% 

(3/322). This result contrasts with the findings of a recent study (Jiang et al., 2013) 

published after the completion of our own work. The authors classified L1 interneurons into 

just two groups (SBC and ENGC), based solely on their morphological characteristics. They 

then measured pairwise connection probabilities for different types of cell reporting the 

following values:  ENGCs to L5PCs: 18.1%, SBC to L2/3 bipolar cells (BPC) 27.9%; 

ENGC to NGC; 42.6%).  Given that we did not probe for L2/3 interneurons we cannot 

comment on the reported connection probabilities. Readers will however, that the authors' 

reported probability of connections from ENGCs to L5PCs (18.1%) is much high than the 

result from our study. Given that the type and strength of connectivity between different cell 

populations is known to vary across development, we conjecture that the disparity in values 

may be related to the age of our experimental animals. 



Calcium imaging of L5PC dendrites with single cell L1 stimulation 
Action potentials generated in the axon initial segment of a pyramidal neuron 

propagate back through the dendritic tree in a complex way that is influenced by a variety of 

factors.  When dendritic activity coincides with a back-propagating action potential it causes 

calcium ion accumulation in the dendrites. Imaging of these changes in calcium 

concentration can detect differences in dendritic activity in L5 neurons associated with 

stimulation of a patched L1 neuron.  

To detect these small events, we performed experiments involving a total of 7 

dendritic fragments and 20 L5PCs.  In each individual experiment, we patched two 

pyramidal cells, filled them with a calcium sensitive dye (Oregon Green BAPTA - OGB), 

and imaged the change in calcium concentration at the dendrites with a 2-photon 

microscope. Simultaneously, we patched a single L1 cell, directly above the pair of L5PCs 

and filled it with Alexa 594 dye, making it possible to visualise the extent of the dendrites 

and axons.  

Results 

 Single action potentials in the L5PC did not evoke a detectable calcium response 

in the apical dendrites. We therefore performed additional experiments to determine the 

number of spikes needed to elicit a reliable response. The minimal stimulus that elicited a 

reliable response was a pulse of 0.06 s duration with 3 spikes.  

 Responses to L1 stimuli were measured at 1500, 1000 and 500 ms before and 

after L5PC stimulation. Fig 20a shows the schematic of the experiment and Fig 20b shows 

the stimulation pattern.  

The experiments showed no measurable effect of stimulation of L1 cells on L5 

dendritic activity. The mean amplitude of the normalized !F/F values (0.844 ± 0.02 (mean ± 

S.D) did not show any significant change between time points and across experiments (Fig 

20c). Fig 20d shows the negligible change in decay kinetics of the calcium response across 

stimulation times and dendrites.  

 

 

 



 
Figure 20 (a) A L1 neuron filled with Alexa 594 and L5PC with OGB. (b) The protocol used to 

stimulate L5PCs and L1 neurons. t = 0 seconds indicates the time of stimulation of the L1 

neuron. The L5PC was stimulated at various time points (1.5s, 1.0s and 0.5s) before and after t 

= 0 seconds. (c) average values of !F/F imaged and calculated at the different dendritic sites. 

The large error bars negate the evidence of any effect of L1 single neuron stimulation on L5PC 

apical dendritic activation (d) three repetitions of calcium activity recorded from two different 

dendritic segments. The decays at the six different time points are colour coded. We saw no 

change in the decay time kinetics across dendritic segments. 



Interaction with apical pyramidal dendrites 
Calcium-mediated APs, generated locally at the L5PC apical dendrites, projecting to 

L1, couple synaptic inputs from different cortical layers and interact with back-propagated 

AP from the soma, supporting the detection of coincident signals arriving within a given time 

window (Larkum et al., 1999, 2001; Schaefer et al., 2003; Spruston, 2008). Given the 

position of L1 in the neocortex, it is possible that GABAergic L1 cells modulate this activity. 

GABAB receptors on the membrane of these apical extremities (Kulik et al., 2003; López-

Bendito et al., 2002), are known to directly block the dendritic Ca2+ channels responsible for 

Ca2+-AP (Pérez-Garci et al., 2006), making them less sensitive to incoming stimuli including 

thalamo-cortical inputs and back-propagating action potentials.  

To investigate this possibility, we use a two-photon microscope to image dye-filled 

apical dendrites of L5PCs while simultaneously stimulating single L1 cells. However, we 

were unable to observe any change in the amplitudes and decay time kinetics of the calcium 

transients. It is known that the density of calcium and sodium channels at the apical dendritic 

tufts is suboptimal in young rats such as those we used in our study (P13 to P16) (Hamill et 

al., 1991; Kang et al., 1996). It is likely, therefore, that the calcium transients elicited by 

stimulation will be weak.  

We also filled the L1 neurons for the same period as the L5PCs. Thus, it is very likely 

that the dilution of the secondary messenger molecules, have led to a much weaker release of 

GABA. It is also possible that the stimulation of single L1 cells does not release enough 

GABA in the vicinity of the GABAB receptors to elicit detectable calcium transients 

(Destexhe and Sejnowski, 1995). We could not test this since we did not use the 40Hz 15 

spike train that we used to test connections between L1 cells. Thus, even though our 

experiments show no evidence of the effect, it would be premature to conclude that there is 

no effect. Further investigations could use channelorhodopsin experiments or glutamate 

uncaging to ensure precise and reliable activation of the desired synapses. 
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